(Regression, caused by a patch for the bug 22646).
Problem: when result type of date_format() was changed from
binary string to character string, mixing date_format()
with a ascii column in CONCAT() stopped to work.
Fix:
- adding "repertoire" flag into DTCollation class,
to mark items which can return only pure ASCII strings.
- allow character set conversion from pure ASCII to other character sets.
--long-query-time is now given in seconds with microseconds as decimals
--min_examined_row_limit added for slow query log
long_query_time user variable is now double with 6 decimals
Added functions to get time in microseconds
Added faster time() functions for system that has gethrtime() (Solaris)
We now do less time() calls.
Added field->in_read_set() and field->in_write_set() for easier field manipulation by handlers
set_var.cc and my_getopt() can now handle DOUBLE variables.
All time() calls changed to my_time()
my_time() now does retry's if time() call fails.
Added debug function for stopping in mysql_admin_table() when tables are locked
Some trivial function and struct variable renames to avoid merge errors.
Fixed compiler warnings
Initialization of some time variables on windows moved to my_init()
SP with local variables with non-ASCII names crashed the server.
The server replaces SP local variable names with NAME_CONST calls
when putting statements into the binary log. It used UTF8-encoded
item names as variable names for the replacement inside NAME_CONST
calls. However, statement string may be encoded by any
known character set by the SET NAMES statement.
The server used byte length of UTF8-encoded names to increment
the position in the query string that led to array index overrun.
Item_func_user doesn't calculate anything in it's val_str() method,
just returns saved str_value.
Though Item::save_in_field method can destroy str_value, relying on
val_str() return. As a result we get the garbage stored in field.
We cannot use Item::save_in_field implementation for Item_func_user,
reimplement it in simpler way.
causes full table lock on innodb table.
Also fixes Bug#28502 Triggers that update another innodb table
will block on X lock unnecessarily (duplciate).
Code review fixes.
Both bugs' synopses are misleading: InnoDB table is
not X locked. The statements, however, cannot proceed concurrently,
but this happens due to lock conflicts for tables used in triggers,
not for the InnoDB table.
If a user had an InnoDB table, and two triggers, AFTER UPDATE and
AFTER INSERT, competing for different resources (e.g. two distinct
MyISAM tables), then these two triggers would not be able to execute
concurrently. Moreover, INSERTS/UPDATES of the InnoDB table would
not be able to run concurrently.
The problem had other side-effects (see respective bug reports).
This behavior was a consequence of a shortcoming of the pre-locking
algorithm, which would not distinguish between different DML operations
(e.g. INSERT and DELETE) and pre-lock all the tables
that are used by any trigger defined on the subject table.
The idea of the fix is to extend the pre-locking algorithm to keep track,
for each table, what DML operation it is used for and not
load triggers that are known to never be fired.
The need arose when working on Bug 26141, where it became
necessary to replace TABLE_LIST with its forward declaration in a few
headers, and this involved a lot of s/TABLE_LIST/st_table_list/.
Although other workarounds exist, this patch is in line
with our general strategy of moving away from typedef-ed names.
Sometime in future we might also rename TABLE_LIST to follow the
coding style, but this is a huge change.
This bug may manifest itself for select queries over a multi-table view
that includes an ORDER BY clause in its definition. If the select list of
the query contains references to the same view column with different
aliases the names of the columns in the result output will be nevertheless
the same, coinciding with one of the alias.
The bug happened because the method Item_ref::get_tmp_table_item that
was inherited by the class Item_direct_view_ref ignored the fact that
the name of the view column reference must be inherited by the fields
of the temporary table that was created in order to get the result rows
sorted.
SHOW CREATE TABLE or SELECT FROM I_S.
Actually, the bug discovers two problems:
- the original query is not preserved properly. This is the problem
of BUG#16291;
- the resultset of SHOW CREATE TABLE statement is binary.
This patch fixes the second problem for the 5.0.
Both problems will be fixed in 5.1.
For a join query with GROUP BY and/or ORDER BY and a view reference
in the FROM list the metadata erroneously showed empty table aliases
and database names for the view columns.
Coding style: classes start with a capital letter.
Rename some classes related to parsing:
create_field -> Create_field
foreign_key -> Foreign_key
key_part_spec -> Key_part_spec
This bug was introduced by the fix for the bug#27300. In this fix a section
of code was added to the Item::tmp_table_field_from_field_type method.
This section intended to create Field_geom fields for the Item_geometry_func
class and its descendants. In order to get the geometry type of the current
item it casted "this" to the Item_geometry_func* type. But the
Item::tmp_table_field_from_field_type method is also used for creation of
fields for UNION and in this case this method is called for an object of the
Item_type_holder class and the cast to the Item_geometry_func* type causes
a server crash.
Now the Item::tmp_table_field_from_field_type method correctly works when it's
called for both the Item_type_holder and the Item_geometry_func classes.
The new geometry_type variable is added to the Item_type_holder class.
The new method called get_geometry_type is added to the Item_field
and the Field classes. It returns geometry type from the field for the
Item_field and the Field_geom classes and fails an assert for other Field
descendants.
Problem: we may get syntactically incorrect queries in the binary log
if we use a string value user variable executing a PS which
contains '... limit ?' clause, e.g.
prepare s from "select 1 limit ?";
set @a='qwe'; execute s using @a;
Fix: raise an error in such cases.
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
The LEAST/GREATEST functions compared DATE/DATETIME values as
strings which in some cases could lead to a wrong result.
A new member function called cmp_datetimes() is added to the
Item_func_min_max class. It compares arguments in DATETIME context
and returns index of the least/greatest argument.
The Item_func_min_max::fix_length_and_dec() function now detects when
arguments should be compared in DATETIME context and sets the newly
added flag compare_as_dates. It indicates that the cmp_datetimes() function
should be called to get a correct result.
Item_func_min_max::val_xxx() methods are corrected to call the
cmp_datetimes() function when needed.
Objects of the Item_splocal class now stores and reports correct original
field type.
DATE and DATETIME can be compared either as strings or as int. Both
methods have their disadvantages. Strings can contain valid DATETIME value
but have insignificant zeros omitted thus became non-comparable with
other DATETIME strings. The comparison as int usually will require conversion
from the string representation and the automatic conversion in most cases is
carried out in a wrong way thus producing wrong comparison result. Another
problem occurs when one tries to compare DATE field with a DATETIME constant.
The constant is converted to DATE losing its precision i.e. losing time part.
This fix addresses the problems described above by adding a special
DATE/DATETIME comparator. The comparator correctly converts DATE/DATETIME
string values to int when it's necessary, adds zero time part (00:00:00)
to DATE values to compare them correctly to DATETIME values. Due to correct
conversion malformed DATETIME string values are correctly compared to other
DATE/DATETIME values.
As of this patch a DATE value equals to DATETIME value with zero time part.
For example '2001-01-01' equals to '2001-01-01 00:00:00'.
The compare_datetime() function is added to the Arg_comparator class.
It implements the correct comparator for DATE/DATETIME values.
Two supplementary functions called get_date_from_str() and get_datetime_value()
are added. The first one extracts DATE/DATETIME value from a string and the
second one retrieves the correct DATE/DATETIME value from an item.
The new Arg_comparator::can_compare_as_dates() function is added and used
to check whether two given items can be compared by the compare_datetime()
comparator.
Two caching variables were added to the Arg_comparator class to speedup the
DATE/DATETIME comparison.
One more store() method was added to the Item_cache_int class to cache int
values.
The new is_datetime() function was added to the Item class. It indicates
whether the item returns a DATE/DATETIME value.
The Item_outer_ref class based on the Item_direct_ref class was always used
to represent an outer field. But if the outer select is a grouping one and the
outer field isn't under an aggregate function which is aggregated in that
outer select an Item_ref object should be used to represent such a field.
If the outer select in which the outer field is resolved isn't grouping then
the Item_field class should be used to represent such a field.
This logic also should be used for an outer field resolved through its alias
name.
Now the Item_field::fix_outer_field() uses Item_outer_field objects to
represent aliased and non-aliased outer fields for grouping outer selects
only.
Now the fix_inner_refs() function chooses which class to use to access outer
field - the Item_ref or the Item_direct_ref. An object of the chosen class
substitutes the original field in the Item_outer_ref object.
The direct_ref and the found_in_select_list fields were added to the
Item_outer_ref class.