Commit graph

646 commits

Author SHA1 Message Date
Monty
57c526ffb8 Added detection of memory overwrite with multi_malloc
This patch also fixes some bugs detected by valgrind after this
patch:

- Not enough copy_func elements was allocated by Create_tmp_table() which
  causes an memory overwrite in Create_tmp_table::add_fields()
  I added an ASSERT() to be able to detect this also without valgrind.
  The bug was that TMP_TABLE_PARAM::copy_fields was not correctly set
  when calling create_tmp_table().
- Aria::empty_bits is not allocated if there is no varchar/char/blob
  fields in the table.  Fixed code to take this into account.
  This cannot cause any issues as this is just a memory access
  into other Aria memory and the content of the memory would not be used.
- Aria::last_key_buff was not allocated big enough. This may have caused
  issues with rtrees and ma_extra(HA_EXTRA_REMEMBER_POS) as they
  would use the same memory area.
- Aria and MyISAM didn't take extended key parts into account, which
  caused problems when copying rec_per_key from engine to sql level.
- Mark asan builds with 'asan' in version strihng to detect these in
  not_valgrind_build.inc.
  This is needed to not have main.sp-no-valgrind fail with asan.
2023-02-27 19:25:44 +02:00
Sergei Petrunia
a7666952e0 MDEV-30569: Assertion ...ha_table_flags() in Duplicate_weedout_picker::check_qep
DuplicateWeedout semi-join optimization requires that the tables in
the parent subquery provide rowids that can be compared across table
scans. Most engines support this, federated is the only exception.

DuplicateWeedout is the default catch-all semi-join strategy, which
must be always available. If it is not available for some edge case,
it's better to disable semi-join conversion altogether.

This is what was done in the fix for MDEV-30395. However that fix
has put the check before the view processing, so it didn't detect
federated tables inside mergeable VIEWs.

This patch moves the check to be done at a later phase, when mergeable
views are already merged.
2023-02-10 13:35:32 +02:00
Monty
ed0a723566 Cache file->index_flags(index, 0, 1) in table->key_info[index].index_flags
The reason for this is that we call file->index_flags(index, 0, 1)
multiple times in best_access_patch()when optimizing a table.
For example, in InnoDB, the calls is not trivial (4 if's and 2 assignments)
Now the function is inlined and is just a memory reference.

Other things:
- handler::is_clustering_key() and pk_is_clustering_key() are now inline.
- Added TABLE::can_use_rowid_filter() to simplify some code.
- Test if we should use a rowid_filter only if can_use_rowid_filter() is
  true.
- Added TABLE::is_clustering_key() to avoid a memory reference.
- Simplify some code using the fact that HA_KEYREAD_ONLY is true implies
  that HA_CLUSTERED_INDEX is false.
- Added DBUG_ASSERT to TABLE::best_range_rowid_filter() to ensure we
  do not call it with a clustering key.
- Reorginized elements in struct st_key to get better memory alignment.
- Updated ha_innobase::index_flags() to not have
  HA_DO_RANGE_FILTER_PUSHDOWN for clustered index
2023-02-03 14:38:26 +03:00
Monty
66d9c1b22d Fixes for 'Filtering'
- table_after_join_selectivity() should use records_init (new bug)
- get_examined_rows() changed to double to get similar results
  as in MariaDB 10.11
- Fixed bug where table_after_join_selectivity() did not correct
  selectivity in the case where a RANGE is used instead of a REF.
  This can happen if the range can use more key_parts than the REF.
  WHERE key_part1=10 and key_part2 < 10

Other things:
- Use JT_RANGE instead of JT_ALL for RANGE access in all parts of the code.
  Before we used JT_ALL for RANGE.
- Force RANGE be used in best_access_path() if the range used more key
  parts than ref. In the original code, this was done much later in
  make_join_select)(). However we need to know in
  table_after_join_selectivity() if we have used RANGE or not.
- Added more information about filtering to optimizer_trace.
2023-02-02 23:59:44 +03:00
Monty
2eb6b801ad Fixes some issues in Firstmatch optimization
Allows FirstMatch to handle the case where the fanout of firstmatch tables
is already less than 1.
Also Fixes LooseScan strategy to set position->{records_init, records_out}
(They were set to 0 which also caused assertion failures)

Author: Sergei Petrunia <sergey@mariadb.com>
Reviewer: Monty
2023-02-02 23:58:58 +03:00
Monty
d9d0e78039 Add limits for how many IO operations a table access will do
This solves the current problem in the optimizer
- SELECT FROM big_table
  - SELECT from small_table where small_table.eq_ref_key=big_table.id

The old code assumed that each eq_ref access will cause an IO.
As the cost of IO is high, this dominated the cost for the later table
which caused the optimizer to prefer table scans + join cache over
index reads.

This patch fixes this issue by limit the number of expected IO calls,
for rows and index separately, to the size of the table or index or
the number of accesses that we except in a range for the index.

The major changes are:

- Adding a new structure ALL_READ_COST that is mainly used in
  best_access_path() to hold the costs parts of the cost we are
  calculating. This allows us to limit the number of IO when multiplying
  the cost with the previous row combinations.
- All storage engine cost functions are changed to return IO_AND_CPU_COST.
  The virtual cost functions should now return in IO_AND_CPU_COST.io
  the number of disk blocks that will be accessed instead of the cost
  of the access.
- We are not limiting the io_blocks for table or index scans as we
  assume that engines may not store these in the 'hot' part of the
  cache. Table and index scan also uses much less IO blocks than
  key accesses, so the original issue is not as critical with scans.

Other things:
  OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different
  costs. All the old costs, like index_only_read, can be extracted
  from 'cost'.
- Added to the start of some functions 'handler *file= table->file'
  to shorten the code that is using the handler.
- handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST
  to 'cost in milliseconds'
- New functions:  handler::index_blocks() and handler::row_blocks()
  which are used to limit the IO.
- Added index_cost and row_cost to Cost_estimate and removed all not
  needed members.
- Removed cost coefficients from Cost_estimate as these don't make sense
  when costs (except IO_BLOCKS) are in milliseconds.
- Removed handler::avg_io_cost() and replaced it with DISK_READ_COST.
- Renamed best_range_rowid_filter_for_partial_join() to
  best_range_rowid_filter() as using the old name made rows too long.
- Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to
  'double' as Cost_estimate power was not used for these and thus
  just caused storage and performance overhead.
- Changed cost_for_index_read() to use 'worst_seeks' to only limit
  IO, not number of table accesses. With this patch worst_seeks is
  probably not needed anymore, but I kept it around just in case.
- Applying cost for filter got to be much shorter and easier thanks
  to the API changes.
- Adjusted cost for fulltext keys in collaboration with Sergei Golubchik.
- Most test changes caused by this patch is that table scans are changed
  to use indexes.
- Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get
  make checking number of potential IO blocks easier during debugging.
2023-02-02 23:57:30 +03:00
Monty
b66cdbd1ea Changing all cost calculation to be given in milliseconds
This makes it easier to compare different costs and also allows
the optimizer to optimizer different storage engines more reliably.

- Added tests/check_costs.pl, a tool to verify optimizer cost calculations.
  - Most engine costs has been found with this program. All steps to
    calculate the new costs are documented in Docs/optimizer_costs.txt

- User optimizer_cost variables are given in microseconds (as individual
  costs can be very small). Internally they are stored in ms.
- Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost
  (9 ms) to common SSD cost (400MB/sec).
- Removed cost calculations for hard disks (rotation etc).
- Changed the following handler functions to return IO_AND_CPU_COST.
  This makes it easy to apply different cost modifiers in ha_..time()
  functions for io and cpu costs.
  - scan_time()
  - rnd_pos_time() & rnd_pos_call_time()
  - keyread_time()
- Enhanched keyread_time() to calculate the full cost of reading of a set
  of keys with a given number of ranges and optional number of blocks that
  need to be accessed.
- Removed read_time() as keyread_time() + rnd_pos_time() can do the same
  thing and more.
- Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks.
  Used heap table costs for json_table. The rest are using default engine
  costs.
- Added the following new optimizer variables:
  - optimizer_disk_read_ratio
  - optimizer_disk_read_cost
  - optimizer_key_lookup_cost
  - optimizer_row_lookup_cost
  - optimizer_row_next_find_cost
  - optimizer_scan_cost
- Moved all engine specific cost to OPTIMIZER_COSTS structure.
- Changed costs to use 'records_out' instead of 'records_read' when
  recalculating costs.
- Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h.
  This allows one to change costs without having to compile a lot of
  files.
- Updated costs for filter lookup.
- Use a better cost estimate in best_extension_by_limited_search()
  for the sorting cost.
- Fixed previous issues with 'filtered' explain column as we are now
  using 'records_out' (min rows seen for table) to calculate filtering.
  This greatly simplifies the filtering code in
  JOIN_TAB::save_explain_data().

This change caused a lot of queries to be optimized differently than
before, which exposed different issues in the optimizer that needs to
be fixed.  These fixes are in the following commits.  To not have to
change the same test case over and over again, the changes in the test
cases are done in a single commit after all the critical change sets
are done.

InnoDB changes:
- Updated InnoDB to not divide big range cost with 2.
- Added cost for InnoDB (innobase_update_optimizer_costs()).
- Don't mark clustered primary key with HA_KEYREAD_ONLY. This will
  prevent that the optimizer is trying to use index-only scans on
  the clustered key.
- Disabled ha_innobase::scan_time() and ha_innobase::read_time() and
  ha_innobase::rnd_pos_time() as the default engine cost functions now
  works good for InnoDB.

Other things:
- Added  --show-query-costs (\Q) option to mysql.cc to show the query
  cost after each query (good when working with query costs).
- Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust
  the value that user is given. This is used to change cost from
  microseconds (user input) to milliseconds (what the server is
  internally using).
- Added include/my_tracker.h  ; Useful include file to quickly test
  costs of a function.
- Use handler::set_table() in all places instead of 'table= arg'.
- Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and
  shown in microseconds for the user but stored as milliseconds.
  This is to make the numbers easier to read for the user (less
  pre-zeros).  Implemented in 'Sys_var_optimizer_cost' class.
- In test_quick_select() do not use index scans if 'no_keyread' is set
  for the table. This is what we do in other places of the server.
- Added THD parameter to Unique::get_use_cost() and
  check_index_intersect_extension() and similar functions to be able
  to provide costs to called functions.
- Changed 'records' to 'rows' in optimizer_trace.
- Write more information to optimizer_trace.
- Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3)
  to calculate usage space of keys in b-trees. (Before we used numeric
  constants).
- Removed code that assumed that b-trees has similar costs as binary
  trees. Replaced with engine calls that returns the cost.
- Added Bitmap::find_first_bit()
- Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia).
- Added records_init and records_after_filter to POSITION to remember
  more of what best_access_patch() calculates.
- table_after_join_selectivity() changed to recalculate 'records_out'
  based on the new fields from best_access_patch()

Bug fixes:
- Some queries did not update last_query_cost (was 0). Fixed by moving
  setting thd->...last_query_cost in JOIN::optimize().
- Write '0' as number of rows for const tables with a matching row.

Some internals:
- Engine cost are stored in OPTIMIZER_COSTS structure.  When a
  handlerton is created, we also created a new cost variable for the
  handlerton. We also create a new variable if the user changes a
  optimizer cost for a not yet loaded handlerton either with command
  line arguments or with SET
  @@global.engine.optimizer_cost_variable=xx.
- There are 3 global OPTIMIZER_COSTS variables:
  default_optimizer_costs   The default costs + changes from the
                            command line without an engine specifier.
  heap_optimizer_costs      Heap table costs, used for temporary tables
  tmp_table_optimizer_costs The cost for the default on disk internal
                            temporary table (MyISAM or Aria)
- The engine cost for a table is stored in table_share. To speed up
  accesses the handler has a pointer to this. The cost is copied
  to the table on first access. If one wants to change the cost one
  must first update the global engine cost and then do a FLUSH TABLES.
  This was done to be able to access the costs for an open table
  without any locks.
- When a handlerton is created, the cost are updated the following way:
  See sql/keycaches.cc for details:
  - Use 'default_optimizer_costs' as a base
  - Call hton->update_optimizer_costs() to override with the engines
    default costs.
  - Override the costs that the user has specified for the engine.
  - One handler open, copy the engine cost from handlerton to TABLE_SHARE.
  - Call handler::update_optimizer_costs() to allow the engine to update
    cost for this particular table.
  - There are two costs stored in THD. These are copied to the handler
    when the table is used in a query:
    - optimizer_where_cost
    - optimizer_scan_setup_cost
- Simply code in best_access_path() by storing all cost result in a
  structure. (Idea/Suggestion by Igor)
2023-02-02 23:54:45 +03:00
Sergei Petrunia
6d179ad134 Fix typecast warnings-as-errors on Windows. 2023-02-02 23:12:54 +03:00
Monty
4515a89814 Fixed cost calculations for materialized tables
One effect of this change in the test suite is that tests with very few
rows changed to use sub queries instead of materialization. This is
correct and expected as for these the materialization overhead is too high.

A lot of tests where fixed to still use materialization by adding a
few rows to the tables (most tests has only 2-3 rows and are thus easily
affected when cost computations are changed).

Other things:
- Added more variables to TMPTABLE_COSTS for better cost calculation
- Added cost of copying rows to TMPTABLE_COSTS lookup and write
- Added THD::optimizer_cache_hit_ratio for easier cost calculations
- Added DISK_FAST_READ_SIZE to be used when calculating costs when
  reading big blocks from a disk
2023-02-02 22:58:38 +03:00
Monty
1d82e5daf7 Move join->emb_smj_nest setting to choose_plan()
This cleans up the interface for choose_plan() as it is not depending
on setting join->emb_sj_nest.

choose_plan() now sets up join->emb_sj_nest and join->allowed_tables before
calling optimize_straight_join() and best_extension_by_limited_search().

Other things:
- Converted some 'if' to DBUG_ASSERT() as these should always be true.
- Calculate 'allowed_tables' in choose_plan() as this never changes in
  the childs.
- Added assert to check that next_emb->nested_join->n_tables doesn't
  get to a wrong value.
- Documented some variables in sql_select.h
2023-02-02 22:55:21 +03:00
Monty
5e651c9aea Make the most important optimizer constants user variables
Variables added:
- optimizer_index_block_copy_cost
- optimizer_key_copy_cost
- optimizer_key_next_find_cost
- optimizer_key_compare_cost
- optimizer_row_copy_cost
- optimizer_where_compare_cost

Some rename of defines was done to make the internal defines similar to
the visible ones:
TIME_FOR_COMPARE -> WHERE_COST; WHERE_COST was also "inverted" to be
a number between 0 and 1 that is multiply with accepted records
(similar to other optimizer variables).
TIME_FOR_COMPARE_IDX -> KEY_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.
TIME_FOR_COMPARE_ROWID -> ROWID_COMPARE_COST. This is also inverted,
similar to TIME_FOR_COMPARE.

All default costs are identical to what they where before this patch.

Other things:
- Compare factor in get_merge_buffers_cost() was inverted.
- Changed namespace to static in filesort_utils.cc
2023-02-02 21:44:00 +03:00
Monty
b6215b9b20 Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.

The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path().  TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.

The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.

When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.

To remedy the above, the following key & row fetch related costs
has been added:

- The cost of fetching and using a row is now split into different costs:
  - key + Row fetch cost (as before) but multiplied with the variable
  'optimizer_cache_cost' (default to 0.5). This allows the user to
  tell the optimizer the likehood of finding the key and row in the
  engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
  sql layer or creating a row from the join_cache to the record
  buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
  the engine to the SQL layer. This is used when we calculate the cost
  index only reads. It makes index scans more expensive than before if
  they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
  This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
  when doing a index scan and comparing the rowid to the filter.
  Before this cost was assumed to be 0.

All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other.  There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.

To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
  account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
  ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
  TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
  into account.  This is used with filesort where we don't need
  to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
  optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
  KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
  optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
  KEY_COPY_COST & TIME_FOR_COMPARE.

I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
  temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
  table.

When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.

Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.

In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).

The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.

Detailed list of changes:

- Calculate index_only_cost consistently and correctly for all scan
  and ref accesses. The row fetch_cost and index_only_cost now
  takes into account clustered keys, covered keys and index
  only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
  similar costs. This is bases on the assumption that data is more
  often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
  TIME_FOR_COMPARE. Now all scan costs takes this into
  account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
  adjusting this on can reduce or increase the cost of index or direct
  record lookups. The effect of the default is that key lookups is now
  a bit cheaper than before. See usage of 'optimizer_cache_cost' in
  handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
  which produced a wrong cost when index scan was used. Changed
  JOIN_TAB:::scan_time() to take into consideration clustered and
  covered keys. The values are now cached and we only have to call
  this function once. Other calls are changed to use the cached
  values.  Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
  more close to 'range' calculations. The cost is now lower than
  before for small data sets and higher for large data sets as we take
  into account how many keys are read (main.opt_trace_selectivity,
  main.limit_rows_examined).
- Ensured that index_scan_cost() ==
  range(scan_of_all_rows_in_table_using_one_range) +
  MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
  is choice of doing a full index scan and a range-index scan over
  almost the whole table then index scan will be preferred (no
  range-read setup cost).  (innodb.innodb, main.show_explain,
  main.range)
  - Fixed the EQ_REF and REF takes into account clustered and covered
    keys.  This changes some plans to use covered or clustered indexes
    as these are much cheaper.  (main.subselect_mat_cost,
    main.state_tables_innodb, main.limit_rows_examined)
  - Rowid filter setup cost and filter compare cost now takes into
    account fetching and checking the rowid (KEY_NEXT_FIND_COST).
    (main.partition_pruning heap.heap_btree main.log_state)
  - Added KEY_NEXT_FIND_COST to
    Range_rowid_filter_cost_info::lookup_cost to account of the time
    to find and check the next key value against the container
  - Introduced ha_keyread_time(rows) that takes into account finding
    the next row and copying the key value to 'record'
    (KEY_COPY_COST).
  - Introduced ha_key_scan_time() for calculating an index scan over
    all rows.
  - Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
  - Added index_only_fetch_cost() as a convenience function to
    OPT_RANGE.
  - keyread_time() cost is slightly reduced to prefer shorter keys.
    (main.index_merge_myisam)
  - All of the above caused some index_merge combinations to be
    rejected because of cost (main.index_intersect). In some cases
    'ref' where replaced with index_merge because of the low
    cost calculation of get_sweep_read_cost().
  - Some index usage moved from PRIMARY to a covering index.
    (main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
  TIME_FOR_COMPARE into account.  See sql_select.cc::apply_filter().
  filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
  of filtered rows for ranges. The reason is that we want to ensure
  that 'range' is calculated similar to 'ref'. There is also more work
  needed to calculate the selectivity when using ranges and ranges and
  filtering.  This causes filtering column in EXPLAIN EXTENDED to be
  100.00 for some cases where range cannot use filtering.
  (main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
  finding the next row and copying the row from the engine to
  'record'. This causes costs of table scan to slightly increase and
  some test to changed their plan from ALL to RANGE or ALL to ref.
  (innodb.innodb_mysql, main.select_pkeycache)
  In a few cases where scan time of very small tables have lower cost
  than a ref or range, things changed from ref/range to ALL.
  (main.myisam, main.func_group, main.limit_rows_examined,
  main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
  but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
  materialization. This causes some very small tables to use scan
  instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
  accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
  to ensure that the 'Last_query_cost' status variable contains the
  same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
  handler::read_time(). This should have no effect as it's 1.0 by
  default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
  adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
  just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
  preceding tables (as have to restore all fields for all previous
  table combination when checking the where clause)
  The new cost added is:
  (row_combinations * ROW_COPY_COST * number_of_cached_tables).
  This increases the cost of join buffering in proportion of the
  number of tables in the join buffer. One effect is that full scans
  are now done earlier as the cost is then smaller.
  (main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
  caused wrong plans to be created; It prefered JT_EQ_REF even if it
  would be much more expensive than a full table scan. A related
  issue was that worst_seeks only applied to full lookup, not to
  clustered or index only lookups, which is not consistent. This
  caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
  typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
  caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
  - More costs, especially for materialization and index_merge.
  - Make lables more uniform
  - Fixed a lot of minor bugs
  - Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
  the cost did not take into account the number of row retrivals
  that has to be done or the cost of comparing the rows with the
  WHERE clause. The cost calculated would be just a fraction of
  the real cost. Now we calculate the cost as we do for ranges
  and 'ref'.
- 'Using index for group-by' is used a bit more than before as
  now take into account the WHERE clause cost when comparing
  with 'ref' and prefer the method with fewer row combinations.
  (main.group_min_max).

Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
  like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
  index when displaying 'Using index'. This caused some old plans to
  show 'Using index'.  (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
  updated, and the cost we compared with was not the one that was
  used.
- Fixed very wrong cost calculation for priority queues in
  check_if_pq_applicable(). (main.order_by now correctly uses priority
  queue)
- When calculating cost of EQ_REF or REF, we added the cost of
  comparing the WHERE clause with the found rows, not all row
  combinations. This made ref and eq_ref to be regarded way to cheap
  compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
  covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
  cost of a JT_REF key. This may be true for InnoDB primary key, but
  not for other unique keys or other engines. Now we use handler
  function to calculate the cost, which allows us to handle
  consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
  enabled but still changed the 'keyread' variable (which is wrong).
  Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
  calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
  record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
  and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
  means that the cost for hash_joins more expensive than calculated
  in best_access_path (a difference of 10x * TIME_OF_COMPARE).
  This is fixed in the new code thanks to that we now include
  TIME_OF_COMPARE cost in 'read_time'.

Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
  (No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
  to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h

Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
  This is because the cost of doing a range fetch of lineitem(98 rows) is
  almost as big as the whole join of order,lineitem. The filtering will
  also ensure that we only have to do very small key fetches of the rows
  in lineitem.
- main.index_merge_myisam had a few changes where we are now using
  less keys for index_merge. This is because index scans are now more
  expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
  This ensures that it is up to date per statements.
  Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
  filesort into consideration when table scan is chosen.
  (main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
  on a table with 1 row will now use table scan instead of key lookup.

TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
  when there is a ref access but scan is chosen.
  For this we have to store the lowest known value for
  'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
  costs. This will fix tests like main.order_by_innodb,
  main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
  cost_for_index_read() if there where no quick keys. This will reduce
  the computed cost for ORDER BY with LIMIT in some cases.
  (main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
  of rows we have to read when considering using a index table scan to
  resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
  benefit of reading multiple rows from the same page.
2023-02-02 21:43:30 +03:00
Monty
766bae2b31 Make trace.add() usage uniform
- Before any multiple add() calls, always use (if trace_started()).
- Add unlikely() around all tests of trace_started().
- Change trace.add(); trace.add(); to trace.add().add();
- When trace.add() goes over several line, use the following formating:
trace.
 add(xxx).
 add(yyy).
 add(zzz);

This format was choosen after a discussion between Sergei Petrunia and
me as it looks similar indepedent if 'trace' is an object or a
pointer. It also more suitable for an editors auto-indentation.

Other things:

Added DBUG_ASSERT(thd->trace_started()) to a few functions that should
only be called if trace is enabled.

"use_roworder_index_merge: true" changed to "use_sort_index_merge: false"
As the original output was often not correct.
Also fixed the related 'cause' to be correct.

In best_access_path() print the cost (and number of rows) before
checking if it the plan should be used. This removes the need to print
the cost in two places.

Changed a few "read_time" tags to "cost".
2023-02-02 20:53:59 +03:00
Monty
4062fc28bd Optimizer code cleanups, no logic changes
- Updated comments
- Added some extra DEBUG
- Indentation changes and break long lines
- Trivial code changes like:
  - Combining 2 statements in one
  - Reorder DBUG lines
  - Use a variable to store a pointer that is used multiple times
- Moved declaration of variables to start of loop/function
- Removed dead or commented code
- Removed wrong DBUG_EXECUTE code in best_extension_by_limited_search()
2023-01-30 15:22:21 +02:00
Oleksandr Byelkin
45087dd0b3 Merge branch '10.9' into 10.10 2023-01-18 16:45:59 +01:00
Oleksandr Byelkin
26d8485244 Merge branch '10.7' into 10.8 2023-01-18 16:37:40 +01:00
Oleksandr Byelkin
795ff0daf0 Merge branch '10.6' into 10.7 2023-01-18 16:36:13 +01:00
Marko Mäkelä
a8c5635cf1 Merge 10.5 into 10.6 2023-01-17 20:02:29 +02:00
Monty
981a6b7044 MDEV-30395 Wrong result with semijoin and Federated as outer table
The problem was that federated engine does not support comparable rowids
which was not taken into account by semijoin code.

Fixed by checking that we don't use semijoin with tables that does not
support comparable rowids.

Other things:
- Fixed some typos in the code comments
2023-01-13 16:23:21 +02:00
Marko Mäkelä
4ce6e78059 Merge 10.9 into 10.10 2022-07-28 11:25:21 +03:00
Marko Mäkelä
f79cebb4d0 Merge 10.7 into 10.8 2022-07-28 10:33:26 +03:00
Marko Mäkelä
742e1c727f Merge 10.6 into 10.7 2022-07-27 18:26:21 +03:00
Marko Mäkelä
30914389fe Merge 10.5 into 10.6 2022-07-27 17:52:37 +03:00
Marko Mäkelä
098c0f2634 Merge 10.4 into 10.5 2022-07-27 17:17:24 +03:00
Oleksandr Byelkin
3bb36e9495 Merge branch '10.3' into 10.4 2022-07-27 11:02:57 +02:00
Monty
1f0187ff8d Reduced size of POSITION
Replaced Cost_estimate prefix_cost with a double as prefix_cost was
only used to store and retrive total prefix cost.

This also speeds up things (a bit) as don't have to call
Cost_estimate::total_cost() for every access to the prefix_cost.

Sizeof POSITION decreased from 304 to 256.
2022-07-26 22:27:29 +07:00
Sergei Petrunia
0e9a255ec8 MDEV-28871: Assert ... failed in JOIN::dbug_verify_sj_inner_tables...
optimize_semi_joins() calls update_sj_state() to update semi-join
optimization state in the JOIN class.

greedy_search() algorithm considers different join prefixes,
and then picks one table to put into the join prefix.
Most of the semi-join optimization state is in the table's entry
in the join->positions[cur_prefix_size].

However, it also needs to call update_sj_state() to update the
semi-join optimization state in the JOIN class.

There is one exception, which is the cause of this bug: when we're
inside optimize_semi_join_nests() and are optimizing a subquery,
optimize_semi_joins() does nothing, it doesn't call update_sj_state().

greedy_search() must not do that either.
2022-07-07 22:15:42 +03:00
Marko Mäkelä
0af9346079 Merge 10.7 into 10.8 2022-06-09 14:37:53 +03:00
Marko Mäkelä
fe75e5e5b1 Merge 10.6 into 10.7 2022-06-09 14:11:43 +03:00
Marko Mäkelä
a9d0bb12e6 Merge 10.4 into 10.5 2022-06-09 12:22:55 +03:00
Marko Mäkelä
c89e3b70a7 Merge 10.3 into 10.4 2022-06-09 11:53:46 +03:00
Sergei Petrunia
f0ea7f7f33 MDEV-28749: restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly
(Try 2)

The code that updates semi-join optimization state for a join order prefix
had several bugs. The visible effect was bad optimization for FirstMatch or
LooseScan strategies: they either weren't considered when they should have
been, or considered when they shouldn't have been.

In order to hit the bug, the optimizer needs to consider several different
join prefixes in a certain order. Queries with "obvious" query plans which
prune all join orders except one are not affected.

Internally, the bugs in updates of semi-join state were:
1. restore_prev_sj_state() assumed that
  "we assume remaining_tables doesnt contain @tab"
  which wasn't true.
2. Another bug in this function: it did remove bits from
   join->cur_sj_inner_tables but never added them.
3. greedy_search() adds tables into the join prefix but neglects to update
   the semi-join optimization state. (It does update nested outer join
   state, see this call:
     check_interleaving_with_nj(best_table)
   but there's no matching call to update the semi-join state.
   (This wasn't visible because most of the state is in the POSITION
    structure which is updated. But there is also state in JOIN, too)

The patch:
- Fixes all of the above
- Adds JOIN::dbug_verify_sj_inner_tables() which is used to verify the
  state is correct at every step.
- Renames advance_sj_state() to optimize_semi_joins().
  = Introduces update_sj_state() which ideally should have been called
    "advance_sj_state" but I didn't reuse the name to not create confusion.
2022-06-07 20:43:10 +03:00
Sergei Petrunia
19c721631e MDEV-28749: restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly
(Try 2) (Cherry-pick back into 10.3)

The code that updates semi-join optimization state for a join order prefix
had several bugs. The visible effect was bad optimization for FirstMatch or
LooseScan strategies: they either weren't considered when they should have
been, or considered when they shouldn't have been.

In order to hit the bug, the optimizer needs to consider several different
join prefixes in a certain order. Queries with "obvious" query plans which
prune all join orders except one are not affected.

Internally, the bugs in updates of semi-join state were:
1. restore_prev_sj_state() assumed that
  "we assume remaining_tables doesnt contain @tab"
  which wasn't true.
2. Another bug in this function: it did remove bits from
   join->cur_sj_inner_tables but never added them.
3. greedy_search() adds tables into the join prefix but neglects to update
   the semi-join optimization state. (It does update nested outer join
   state, see this call:
     check_interleaving_with_nj(best_table)
   but there's no matching call to update the semi-join state.
   (This wasn't visible because most of the state is in the POSITION
    structure which is updated. But there is also state in JOIN, too)

The patch:
- Fixes all of the above
- Adds JOIN::dbug_verify_sj_inner_tables() which is used to verify the
  state is correct at every step.
- Renames advance_sj_state() to optimize_semi_joins().
  = Introduces update_sj_state() which ideally should have been called
    "advance_sj_state" but I didn't reuse the name to not create confusion.
2022-06-07 18:48:44 +03:00
Sergei Petrunia
bd946a4059 Code cleanup: don't call subquery_types_allow_materialization() on prepare
For subqueries that are processed as semi-joins.
2022-02-25 10:23:48 +03:00
Oleksandr Byelkin
9ed8deb656 Merge branch '10.6' into 10.7 2022-02-04 14:11:46 +01:00
Oleksandr Byelkin
f5c5f8e41e Merge branch '10.5' into 10.6 2022-02-03 17:01:31 +01:00
Oleksandr Byelkin
cf63eecef4 Merge branch '10.4' into 10.5 2022-02-01 20:33:04 +01:00
Oleksandr Byelkin
a576a1cea5 Merge branch '10.3' into 10.4 2022-01-30 09:46:52 +01:00
Alexey Botchkov
020dc54dab MDEV-20770 Server crashes in JOIN::transform_in_predicates_into_in_subq upon 2nd execution of PS/SP comparing GEOMETRY with other types.
The Item_in_subselect::in_strategy keeps the value and as the error
happens the condition isn't modified. That leads to wrong ::fix_fields
execution on second PS run. Also the select->table_list is merged
but not restored if an error happens, which causes hanging loops on
the third PS execution.
2022-01-26 07:48:09 +04:00
Marko Mäkelä
d2a7710635 Merge 10.4 into 10.5 2021-12-03 10:27:35 +02:00
Marko Mäkelä
1e54a9716d Merge 10.6 into 10.7 2021-12-02 17:22:06 +02:00
Sergei Petrunia
5f22e83a29 Make the Optimizer Trace of reqular query and PS EXECUTE be identical
Print this piece when we've just made the choice to convert to semi-join.
Also, print it when we've already made that choice before:

  transformation": {
     "select_id": 2,
     "from": "IN (SELECT)",
     "to": "semijoin",
     "chosen": true
   }
2021-11-29 16:25:27 +03:00
Sergei Petrunia
cca4e14f9b Make the Optimizer Trace of reqular query and PS EXECUTE be identical
Print this piece when we've just made the choice to convert to semi-join.
Also, print it when we've already made that choice before:

  transformation": {
     "select_id": 2,
     "from": "IN (SELECT)",
     "to": "semijoin",
     "chosen": true
   }
2021-11-29 16:19:10 +03:00
Marko Mäkelä
7e8a13d9d7 Merge 10.6 into 10.7 2021-11-19 17:45:52 +02:00
Marko Mäkelä
dc8def73f7 Merge 10.5 into 10.6 2021-11-16 16:30:45 +02:00
Marko Mäkelä
09205a1c9a Merge 10.4 into 10.5 2021-11-16 14:26:13 +02:00
Sergei Krivonos
1f1ee085fb MDEV-23766: Fix fix_semijoin_strategies_for_picked_join_order by assert 2021-11-09 12:06:49 +02:00
Sergei Golubchik
0299ec29d4 cleanup: MY_BITMAP mutex
in about a hundred of users of MY_BITMAP, only two were using its
built-in mutex, and only one of those two was actually needing it.

Remove the mutex from MY_BITMAP, remove all associated conditions
and checks in bitmap functions. Use an external LOCK_temp_pool
mutex and temp_pool_set_next/temp_pool_clear_bit acccessors.

Remove bitmap_init/bitmap_free, always use my_* versions.
2021-08-26 23:39:52 +02:00
Monty
6079b46d8d Split item->flags into base_flags and with_flags
This was done to simplify copying of with_* flags

Other things:
- Changed Flags to C++ enums, which enables gdb to print
  out bit values for the flags. This also enables compiler
  errors if one tries to manipulate a non existing bit in
  a variable.
- Added set_maybe_null() as a shortcut as setting the
  MAYBE_NULL flags was used in a LOT of places.
- Renamed PARAM flag to SP_VAR to ensure it's not confused with persistent
  statement parameters.
2021-05-19 22:27:28 +02:00
Monty
7ca4e381f7 Removed Item::is_fixed() and Item::has_subquery()
One should instead use Item::fixed() and Item::with_subquery()

Removed Item::is_fixed() and has_subquery() and did the following replace:
replace is_fixed() fixed() -- *.*
replace 'has_subquery()' 'with_subquery()' -- *.*
2021-05-19 22:27:28 +02:00