The previous threads locked need to be released too.
This occurs if the initialization of any of the non-first
mutex/conditition variables errors occurs.
This is follow-up to commit 1193a793c4.
We will set innodb_use_native_aio=OFF by default also in mariadb-backup
when running on a potentially affected kernel.
because plugin code is not only about encryption anymore
(also loads provider plugins), and xb_ prefix prevents name
clashes with the server code (that mariabackup links with).
bzip2/lz4/lzma/lzo/snappy compression is now provided via *services*
they're almost like normal services, but in include/providers/
and they're supposed to provide exactly the same interface
as original compression libraries (but not everything,
only enough of if for the code to compile).
the services are implemented via dummy functions that return
corresponding error values (LZMA_PROG_ERROR, LZO_E_INTERNAL_ERROR, etc).
the actual compression libraries are linked into corresponding
provider plugins. Providers are daemon plugins that when loaded
replace service pointers to point to actual compression functions.
That is, run-time dependency on compression libraries is now on plugins,
and the server doesn't need any compression libraries to run, but
will automatically support the compression when a plugin is loaded.
InnoDB and Mroonga use compression plugins now. RocksDB doesn't,
because it comes with standalone utility binaries that cannot
load plugins.
make BACKUP STAGE behave as FTWRL, desyncing and pausing the node
to prevent BF threads (appliers) from interfering with blocking stages.
This is needed because BF threads don't respect BACKUP MDL locks.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
because the name was misleading, it counts not threads, but THDs,
and as THD_count is the only way to increment/decrement it, it
could as well be declared inside THD_count.
In the InnoDB data files, we allocate 32 bits for tablespace identifiers
and page numbers as well as tablespace flags. But, in main memory
data structures we allocate 32 or 64 bits, depending on the register
width of the processor. Let us always use 32-bit fields to eliminate
a mismatch and reduce the memory footprint on 64-bit systems.
It is implementation-defined whether alignment requirements
that are larger than std::max_align_t (typically 8 or 16 bytes)
will be honored by the compiler and linker.
It turns out that on IBM AIX, both alignas() and MY_ALIGNED()
only guarantees alignment up to 16 bytes.
For some data structures, specifying alignment to the CPU
cache line size (typically 64 or 128 bytes) is a mere performance
optimization, and we do not really care whether the requested
alignment is guaranteed.
But, for the correct operation of direct I/O, we do require that
the buffers be aligned at a block size boundary.
field_ref_zero: Define as a pointer, not an array.
For innochecksum, we can make this point to unaligned memory;
for anything else, we will allocate an aligned buffer from the heap.
This buffer will be used for overwriting freed data pages when
innodb_immediate_scrub_data_uncompressed=ON. And exactly that code
hit an assertion failure on AIX, in the test innodb.innodb_scrub.
log_sys.checkpoint_buf: Define as a pointer to aligned memory
that is allocated from heap.
log_t::file::write_header_durable(): Reuse log_sys.checkpoint_buf
instead of trying to allocate an aligned buffer from the stack.
This gives a short overview over found/missing dependencies as well
as enabled/disabled features.
Initial author Heinz Wiesinger <heinz@m2mobi.com>
Additions by Vicențiu Ciorbaru <vicentiu@mariadb.org>
* Report all plugins enabled via MYSQL_ADD_PLUGIN
* Simplify code. Eliminate duplication by making use of WITH_xxx
variable values to set feature "ON" / "OFF" state.
Reviewed by: wlad@mariadb.com (code details) serg@mariadb.com (the idea)
fil_ibd_create(): Remove code that should have been removed in
commit 86dc7b4d4c already.
We no longer wrote an initialized page to the file, but we would
still allocate a page image in memory and write it.
xb_space_create_file(): Remove an unnecessary page write.
(This is a functional change for Mariabackup.)
In commit 1c5ae99194 (MDEV-25666)
we had changed Mariabackup so that it would no longer skip files
whose names start with #sql. This turned out to be wrong.
Because operations on such named files are not protected by any
locks in the server, it is not safe to copy them.
Not copying the files may make the InnoDB data dictionary
inconsistent with the file system. So, we must do something
in InnoDB to adjust for that.
If InnoDB is being started up without the redo log (ib_logfile0)
or with a zero-length log file, we will assume that the server
was restored from a backup, and adjust things as follows:
dict_check_sys_tables(), fil_ibd_open(): Do not complain about
missing #sql files if they would be dropped a little later.
dict_stats_update_if_needed(): Never add #sql tables to
the recomputing queue. This avoids a potential race condition when
dropping the garbage tables.
drop_garbage_tables_after_restore(): Try to drop any garbage tables.
innodb_ddl_recovery_done(): Invoke drop_garbage_tables_after_restore()
if srv_start_after_restore (a new flag) was set and we are not in
read-only mode (innodb_read_only=ON or innodb_force_recovery>3).
The tests and dbug_mariabackup_event() instrumentation
were developed by Vladislav Vaintroub, who also reviewed this.
In commit 49e2c8f0a6 (MDEV-25743)
we made dict_sys_t::find() incompatible with the rest of the
table name hash table operations in case the table name contains
non-ASCII octets (using a compatibility mode that facilitates the
upgrade into the MySQL 5.0 filename-safe encoding) and the target
platform implements signed char.
ut_fold_string(): Remove; replace with my_crc32c(). This also makes
table name hash value calculations independent on whether char
is unsigned or signed.
This fixed the MySQL bug# 20338 about misuse of double underscore
prefix __WIN__, which was old MySQL's idea of identifying Windows
Replace it by _WIN32 standard symbol for targeting Windows OS
(both 32 and 64 bit)
Not that connect storage engine is not fixed in this patch (must be
fixed in "upstream" branch)
Many InnoDB data dictionary cache operations require that the
table name be copied so that it will be NUL terminated.
(For example, SYS_TABLES.NAME is not guaranteed to be NUL-terminated.)
dict_table_t::is_garbage_name(): Check if a name belongs to
the background drop table queue.
dict_check_if_system_table_exists(): Remove.
dict_sys_t::load_sys_tables(): Load the non-hard-coded system tables
SYS_FOREIGN, SYS_FOREIGN_COLS, SYS_VIRTUAL on startup.
dict_sys_t::create_or_check_sys_tables(): Replaces
dict_create_or_check_foreign_constraint_tables() and
dict_create_or_check_sys_virtual().
dict_sys_t::load_table(): Replaces dict_table_get_low()
and dict_load_table().
dict_sys_t::find_table(): Renamed from get_table().
dict_sys_t::sys_tables_exist(): Check whether all the non-hard-coded
tables SYS_FOREIGN, SYS_FOREIGN_COLS, SYS_VIRTUAL exist.
trx_t::has_stats_table_lock(): Moved to dict0stats.cc.
Some error messages will now report table names in the internal
databasename/tablename format, instead of `databasename`.`tablename`.
The implementation of handlerton::drop_database in InnoDB is
unnecessarily complex. The minimal implementation should check
that no conflicting locks or references exist on the tables,
delete all table metadata in a single transaction, and finally
delete the tablespaces.
Note: DROP DATABASE will delete each individual table that the
SQL layer knows about, one table per transaction.
The handlerton::drop_database is basically a final cleanup step
for removing any garbage that could have been left behind
in InnoDB due to some bug, or not having atomic DDL in the past.
hash_node_t: Remove. Use the proper data type name in pointers.
dict_drop_index_tree(): Do not take the table as a parameter.
Instead, return the tablespace ID if the tablespace should be dropped
(we are dropping a clustered index tree).
fil_delete_tablespace(), fil_system_t::detach(): Return a single
detached file handle. Multi-file tablespaces cannot be deleted
via this interface.
ha_innobase::delete_table(): Remove a work-around for non-atomic DDL
and do not try to drop tables with similar-looking name.
innodb_drop_database(): Complete rewrite.
innobase_drop_database(), dict_get_first_table_name_in_db(),
row_drop_database_for_mysql(), drop_all_foreign_keys_in_db(): Remove.
row_purge_remove_clust_if_poss_low(), row_undo_ins_remove_clust_rec():
If the tablespace is to be deleted, try to evict the table definition
from the cache. Failing that, set dict_table_t::space to nullptr.
lock_release_on_rollback(): On the rollback of CREATE TABLE, release all
locks that the transaction had on the table, to avoid heap-use-after-free.
The functions fil_file_readdir_next_file(), os_file_opendir(),
os_file_closedir() became dead code in the server in MariaDB 10.4.0
with commit 09af00cbde (the removal of
the crash recovery logic for the TRUNCATE TABLE implementation that
was replaced in MDEV-13564).
os_file_opendir(), os_file_closedir(): Define as macros.
During data file creation, InnoDB holds dict_sys mutex, tries to
write page 0 of the file and flushes the file. This not only causing
unnecessary contention but also a deviation from the write-ahead
logging protocol.
The clean sequence of operations is that we first start a dictionary
transaction and write SYS_TABLES and SYS_INDEXES records that identify
the tablespace. Then, we durably write a FILE_CREATE record to the
write-ahead log and create the file.
Recovery should not unnecessarily insist that the first page of each
data file that is referred to by the redo log is valid. It must be
enough that page 0 of the tablespace can be initialized based on the
redo log contents.
We introduce a new data structure deferred_spaces that keeps track
of corrupted-looking files during recovery. The data structure holds
the last LSN of a FILE_ record referring to the data file, the
tablespace identifier, and the last known file name.
There are two scenarios can happen during recovery:
i) Sufficient memory: InnoDB can reconstruct the
tablespace after parsing all redo log records.
ii) Insufficient memory(multiple apply phase): InnoDB should
store the deferred tablespace redo logs even though
tablespace is not present. InnoDB should start constructing
the tablespace when it first encounters deferred tablespace
id.
Mariabackup copies the zero filled ibd file in backup_fix_ddl() as
the extension of .new file. Mariabackup test case does page flushing
when it deals with DDL operation during backup operation.
fil_ibd_create(): Remove the write of page0 and flushing of file
fil_ibd_load(): Return FIL_LOAD_DEFER if the tablespace has
zero filled page0
Datafile: Clean up the error handling, and do not report errors
if we are in the middle of recovery. The caller will check
Datafile::m_defer.
fil_node_t::deferred: Indicates whether the tablespace loading was
deferred during recovery
FIL_LOAD_DEFER: Returned by fil_ibd_load() to indicate that tablespace
file was cannot be loaded.
recv_sys_t::recover_deferred(): Invoke deferred_spaces.create() to
initialize fil_space_t based on buffered metadata and records to
initialize page 0. Ignore the flags in fil_name_t, because they are
intentionally invalid.
fil_name_process(): Update deferred_spaces.
recv_sys_t::parse(): Store the redo log if the tablespace id
is present in deferred spaces
recv_sys_t::recover_low(): Should recover the first page of
the tablespace even though the tablespace instance is not
present
recv_sys_t::apply(): Initialize the deferred tablespace
before applying the deferred tablespace records
recv_validate_tablespace(): Skip the validation for deferred_spaces.
recv_rename_files(): Moved and revised from recv_sys_t::apply().
For deferred-recovery tablespaces, do not attempt to rename the
file if a deferred-recovery tablespace is associated with the name.
recv_recovery_from_checkpoint_start(): Invoke recv_rename_files()
and initialize all deferred tablespaces before applying redo log.
fil_node_t::read_page0(): Skip page0 validation if the tablespace
is deferred
buf_page_create_deferred(): A variant of buf_page_create() when
the fil_space_t is not available yet
This is joint work with Thirunarayanan Balathandayuthapani,
who implemented an initial prototype.
Ever since MDEV-18518 made DDL operations mostly crash-safe inside InnoDB,
it became obvious that Mariabackup might not be entirely safe with regard to
concurrent DDL operations.
check_if_skip_table(): Do not skip files whose name starts with #sql.
We cannot know whether a DDL operation is in progress and the table
might in fact be needed later.
SST scripts for Galera should use the new mariabackup interface
instead of the innobackupex interface, which is currently only
supported for compatibility reasons.
This commit converts the SST script for mariabackup to use the
new interface. It does not need separate tests, as any problems
will be seen as failures when running multiple tests for the
mariabackup-based SST.
This patch fixes an issue with launching mariabackup during SST
(when used with Galera), when during bootstrap mariabackup receives
the "--innodb" option, which is incorrectly interpreted as shortcut
for "--innodb-force-recovery". This patch does not require separate
test for mtr, as the problem is visible in general testing on
buildbot.
A consistency check for fil_space_t::name is causing recovery failures
in MDEV-25180 (Atomic ALTER TABLE). So, we'd better remove that field
altogether.
fil_space_t::name was more or less a copy of dict_table_t::name
(except for some special cases), and it was not being used for
anything useful.
There used to be a name_hash, but it had been removed already in
commit a75dbfd718 (MDEV-12266).
We will also remove os_normalize_path(), OS_PATH_SEPARATOR,
OS_PATH_SEPATOR_ALT. On Microsoft Windows, we will treat \ and /
roughly in the same way. The intention is that for per-table
tablespaces, the filenames will always follow the pattern
prefix/databasename/tablename.ibd. (Any \ in the prefix must not
be converted.)
ut_basename_noext(): Remove (unused function).
read_link_file(): Replaces RemoteDatafile::read_link_file().
We will ensure that the last two path component separators are
forward slashes (converting up to 2 trailing backslashes on
Microsoft Windows), so that everywhere else we can
assume that data file names end in "/databasename/tablename.ibd".
Note: On Microsoft Windows, path names that start with \\?\ must
not contain / as path component separators. Previously, such paths
did work in the DATA DIRECTORY argument of InnoDB tables.
Reviewed by: Vladislav Vaintroub
The mariabackup interface currently supports passing a password
through an explicit command line variable, but does not support
passing a password through the MYSQL_PWD environment variable.
At the same time, the Galera SST script for mariabackup uses
the environment variable to pass the password, which leads
(in some cases) to an unsuccessful launch of mariabackup and
to the inability to start the cluster. This patch fixes this
issue. It does not need a separate test, as the problem is
visible in general testing on buildbot.
During the prepare phase of restoring backups, "mariabackup" does
not seem to allow (or recognize) the option "innodb_force_recovery"
for the embedded InnoDB server instance that it starts.
If page corruption observed during page recovery, the prepare step
fails. While this is indeed the correct behavior ideally, allowing
this option to be set in case of emergencies might be useful when
the current backup is the only copy available. Some error messages
during "--prepare" suggest to set "innodb_force_recovery" to 1:
[ERROR] InnoDB: Set innodb_force_recovery=1 to ignore corruption.
For backwards compatibility, "mariabackup --innobackupex --apply-log"
should also have this option.
Signed-off-by: Srinidhi Kaushik <shrinidhi.kaushik@gmail.com>
std version has an advantage of a more convenient units implementation from
std::chrono. Now it's no need to multipy/divide to bring anything to
micro seconds.
liburing is a new optional dependency (WITH_URING=auto|yes|no)
that replaces libaio when it is available.
aio_uring: class which wraps io_uring stuff
aio_uring::bind()/unbind(): optional optimization
aio_uring::submit_io(): mutex prevents data race. liburing calls are
thread-unsafe. But if you look into it's implementation you'll see
atomic operations. They're used for synchronization between kernel and
user-space only. That's why our own synchronization is still needed.
For systemd, we add LimitMEMLOCK=524288 (ulimit -l 524288)
because the io_uring_setup system call that is invoked
by io_uring_queue_init() requests locked memory. The value
was found empirically; with 262144, we would occasionally
fail to enable io_uring when using the maximum values of
innodb_read_io_threads=64 and innodb_write_io_threads=64.
aio_uring::thread_routine(): Tolerate -EINTR return from
io_uring_wait_cqe(), because it may occur on shutdown
on Ubuntu 20.10 (Groovy Gorilla).
This was mostly implemented by Eugene Kosov. Systemd integration
and improved startup/shutdown error handling by Marko Mäkelä.
Historically, InnoDB supported a buggy page checksum algorithm that did not
compute a checksum over the full page. Later, well before MySQL 4.1
introduced .ibd files and the innodb_file_per_table option, the algorithm
was corrected and the first 4 bytes of each page were redefined to be
a checksum.
The original checksum was so slow that an option to disable page checksum
was introduced for benchmarketing purposes.
The Intel Nehalem microarchitecture introduced the SSE4.2 instruction set
extension, which includes instructions for faster computation of CRC-32C.
In MySQL 5.6 (and MariaDB 10.0), innodb_checksum_algorithm=crc32 was
implemented to make of that. As that option was changed to be the default
in MySQL 5.7, a bug was found on big-endian platforms and some work-around
code was added to weaken that checksum further. MariaDB disables that
work-around by default since MDEV-17958.
Later, SIMD-accelerated CRC-32C has been implemented in MariaDB for POWER
and ARM and also for IA-32/AMD64, making use of carry-less multiplication
where available.
Long story short, innodb_checksum_algorithm=crc32 is faster and more secure
than the pre-MySQL 5.6 checksum, called innodb_checksum_algorithm=innodb.
It should have removed any need to use innodb_checksum_algorithm=none.
The setting innodb_checksum_algorithm=crc32 is the default in
MySQL 5.7 and MariaDB Server 10.2, 10.3, 10.4. In MariaDB 10.5,
MDEV-19534 made innodb_checksum_algorithm=full_crc32 the default.
It is even faster and more secure.
The default settings in MariaDB do allow old data files to be read,
no matter if a worse checksum algorithm had been used.
(Unfortunately, before innodb_checksum_algorithm=full_crc32,
the data files did not identify which checksum algorithm is being used.)
The non-default settings innodb_checksum_algorithm=strict_crc32 or
innodb_checksum_algorithm=strict_full_crc32 would only allow CRC-32C
checksums. The incompatibility with old data files is why they are
not the default.
The newest server not to support innodb_checksum_algorithm=crc32
were MySQL 5.5 and MariaDB 5.5. Both have reached their end of life.
A valid reason for using innodb_checksum_algorithm=innodb could have
been the ability to downgrade. If it is really needed, data files
can be converted with an older version of the innochecksum utility.
Because there is no good reason to allow data files to be written
with insecure checksums, we will reject those option values:
innodb_checksum_algorithm=none
innodb_checksum_algorithm=innodb
innodb_checksum_algorithm=strict_none
innodb_checksum_algorithm=strict_innodb
Furthermore, the following innochecksum options will be removed,
because only strict crc32 will be supported:
innochecksum --strict-check=crc32
innochecksum -C crc32
innochecksum --write=crc32
innochecksum -w crc32
If a user wishes to convert a data file to use a different checksum
(so that it might be used with the no-longer-supported
MySQL 5.5 or MariaDB 5.5, which do not support IMPORT TABLESPACE
nor system tablespace format changes that were made in MariaDB 10.3),
then the innochecksum tool from MariaDB 10.2, 10.3, 10.4, 10.5 or
MySQL 5.7 can be used.
Reviewed by: Thirunarayanan Balathandayuthapani
We have innodb_use_native_aio=ON by default since the introduction of
that parameter in commit 2f9fb41b05
(MySQL 5.5 and MariaDB 5.5).
However, to really benefit from the setting, the files should be
opened in O_DIRECT mode, to bypass the file system cache.
In this way, the reads and writes can be submitted with DMA, using
the InnoDB buffer pool directly, and no processor cycles need to be
used for copying data. The use of O_DIRECT benefits not only the
current libaio implementation, but also liburing.
os_file_set_nocache(): Test innodb_flush_method in the function,
not in the callers.
One should not change the program arguments!
This change also reduces warnings from the icc compiler.
Almost all changes are just syntax changes (adding const to
'get_one_option function' declarations).
Other changes:
- Added a few cast of 'argument' from 'const char*' to 'char *'. This
was mainly in calls to 'external' functions we don't have control of.
- Ensure that all reset of 'password command line argument' are similar.
(In almost all cases it was just adding a comment and a cast)
- In mysqlbinlog.cc and mysqld.cc there was a few cases that changed
the command line argument. These places where changed to instead allocate
the option in a MEM_ROOT to avoid changing the argument. Some of this
code was changed to ensure that different programs did parsing the
same way. Added a test case for the changes in mysqlbinlog.cc
- Changed a few variables that took their value from command line options
from 'char *' to 'const char *'.
In commit 3a9a3be1c6 (MDEV-23855)
some previous logic was replaced with the condition
dirty_pct < srv_max_dirty_pages_pct_lwm, which caused
the default value of the parameter innodb_max_dirty_pages_pct_lwm=0
to lose its special meaning: 'refer to innodb_max_dirty_pages_pct instead'.
This implicit special meaning was visible in the function
af_get_pct_for_dirty(), which was removed in
commit f0c295e2de (MDEV-24369).
page_cleaner_flush_pages_recommendation(): Restore the special
meaning that was removed in MDEV-24369.
buf_flush_page_cleaner(): If srv_max_dirty_pages_pct_lwm==0.0,
refer to srv_max_buf_pool_modified_pct. This fixes the observed
performance regression due to excessive page flushing.
buf_pool_t::page_cleaner_wakeup(): Revise the wakeup condition.
innodb_init(): Do initialize srv_max_io_capacity in Mariabackup.
It was previously constantly 0, which caused mariadb-backup --prepare
to hang in buf_flush_sync(), making no progress.
SHOW ENGINE INNODB MUTEX functionality is completely removed,
as are the InnoDB latching order checks.
We will enforce innodb_fatal_semaphore_wait_threshold
only for dict_sys.mutex and lock_sys.mutex.
dict_sys_t::mutex_lock(): A single entry point for dict_sys.mutex.
lock_sys_t::mutex_lock(): A single entry point for lock_sys.mutex.
FIXME: srv_sys should be removed altogether; it is duplicating tpool
functionality.
fil_crypt_threads_init(): To prevent SAFE_MUTEX warnings, we must
not hold fil_system.mutex.
fil_close_all_files(): To prevent SAFE_MUTEX warnings for
fil_space_destroy_crypt_data(), we must not hold fil_system.mutex
while invoking fil_space_free_low() on a detached tablespace.
Let us replace os_event_t with mysql_cond_t, and replace the
necessary ib_mutex_t with mysql_mutex_t so that they can be
used with condition variables.
Also, let us replace polling (os_thread_sleep() or timed waits)
with plain mysql_cond_wait() wherever possible.
Furthermore, we will use the lightweight srw_mutex for trx_t::mutex,
to hopefully reduce contention on lock_sys.mutex.
FIXME: Add test coverage of
mariabackup --backup --kill-long-queries-timeout
In commit 5e62b6a5e0 (MDEV-16264)
the logic of os_aio_init() was changed so that it will never fail,
but instead automatically disable innodb_use_native_aio (which is
enabled by default) if the io_setup() system call would fail due
to resource limits being exceeded. This is questionable, especially
because falling back to simulated AIO may lead to significantly
reduced performance.
srv_n_file_io_threads, srv_n_read_io_threads, srv_n_write_io_threads:
Change the data type from ulong to uint.
os_aio_init(): Remove the parameters, and actually return an error code.
thread_pool::configure_aio(): Do not silently fall back to simulated AIO.
Reviewed by: Vladislav Vaintroub
We observed a race condition that involved two threads
executing fil_flush_file_spaces() and one thread
executing fil_delete_tablespace(). After one of the
fil_flush_file_spaces() observed that
space.needs_flush_not_stopping() is set and was
releasing the fil_system.mutex, the other fil_flush_file_spaces()
would complete the execution of fil_space_t::flush_low() on
the same tablespace. Then, fil_delete_tablespace() would
destroy the object, because the value of fil_space_t::n_pending
did not prevent that. Finally, the fil_flush_file_spaces() would
resume execution and invoke fil_space_t::flush_low() on the freed
object.
This race condition was introduced in
commit 118e258aaa of MDEV-23855.
fil_space_t::flush(): Add a template parameter that indicates
whether the caller is holding a reference to prevent the
tablespace from being freed.
buf_dblwr_t::flush_buffered_writes_completed(),
row_quiesce_table_start(): Acquire a reference for the duration
of the fil_space_t::flush_low() operation. It should be impossible
for the object to be freed in these code paths, but we want to
satisfy the debug assertions.
fil_space_t::flush_low(): Do not increment or decrement the
reference count, but instead assert that the caller is holding
a reference.
fil_space_extend_must_retry(), fil_flush_file_spaces():
Acquire a reference before releasing fil_system.mutex.
This is what will fix the race condition.
innobase_space_shutdown(): Remove. We want this step to be executed
before the message "InnoDB: Shutdown completed; log sequence number "
is output by innodb_shutdown(). It used to be executed after that step.
innodb_shutdown(): Duplicate the code that used to live in
innobase_space_shutdown().
innobase_init_abort(): Merge with innobase_space_shutdown().
The new option --log-innodb-page-corruption is introduced.
When this option is set, backup is not interrupted if innodb corrupted
page is detected. Instead it logs all found corrupted pages in
innodb_corrupted_pages file in backup directory and finishes with error.
For incremental backup corrupted pages are also copied to .delta file,
because we can't do LSN check for such pages during backup,
innodb_corrupted_pages will also be created in incremental backup
directory.
During --prepare, corrupted pages list is read from the file just after
redo log is applied, and each page from the list is checked if it is allocated
in it's tablespace or not. If it is not allocated, then it is zeroed out,
flushed to the tablespace and removed from the list. If all pages are removed
from the list, then --prepare is finished successfully and
innodb_corrupted_pages file is removed from backup directory. Otherwise
--prepare is finished with error message and innodb_corrupted_pages contains
the list of the pages, which are detected as corrupted during backup, and are
allocated in their tablespaces, what means backup directory contains corrupted
innodb pages, and backup can not be considered as consistent.
For incremental --prepare corrupted pages from .delta files are applied
to the base backup, innodb_corrupted_pages is read from both base in
incremental directories, and the same action is proceded for corrupted
pages list as for full --prepare. innodb_corrupted_pages file is
modified or removed only in base directory.
If DDL happens during backup, it is also processed at the end of backup
to have correct tablespace names in innodb_corrupted_pages.
mariabackup deallocated uninitialized
write_filt_ctxt.u.wf_incremental_ctxt in xtrabackup_copy_datafile() when
some table should be skipped due to parsed DDL redo log record.
With an unreasonably small innodb_log_file_size, the page cleaner
thread would frequently acquire log_sys.flush_order_mutex and spend
a significant portion of CPU time spinning on that mutex when
determining the checkpoint LSN.
Merge n_pending_ios, n_pending_ops to std::atomic<uint32_t> n_pending.
Change some more fil_space_t members to uint32_t to reduce
the memory footprint.
fil_space_t::add(), fil_ibd_create(): Attach the already opened
handle to the tablespace, and enforce the fil_system.n_open limit.
dict_boot(): Initialize fil_system.max_assigned_id.
srv_boot(): Call srv_thread_pool_init() before anything else,
so that files should be opened in the correct mode on Windows.
fil_ibd_create(): Create the file in OS_FILE_AIO mode, just like
fil_node_open_file_low() does it.
dict_table_t::is_accessible(): Replaces fil_table_accessible().
Reviewed by: Vladislav Vaintroub
Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored
for system tablespace on SSD
When the maximum configured number of file is exceeded, InnoDB will
close data files. We used to maintain a fil_system.LRU list and
a counter fil_node_t::n_pending to achieve this, at the huge cost
of multiple fil_system.mutex operations per I/O operation.
fil_node_open_file_low(): Implement a FIFO replacement policy:
The last opened file will be moved to the end of fil_system.space_list,
and files will be closed from the start of the list. However, we will
not move tablespaces in fil_system.space_list while
i_s_tablespaces_encryption_fill_table() is executing
(producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION)
because it may cause information of some tablespaces to go missing.
We also avoid this in mariabackup --backup because datafiles_iter_next()
assumes that the ordering is not changed.
IORequest: Fold more parameters to IORequest::type.
fil_space_t::io(): Replaces fil_io().
fil_space_t::flush(): Replaces fil_flush().
OS_AIO_IBUF: Remove. We will always issue synchronous reads of the
change buffer pages in buf_read_page_low().
We will always ignore some errors for background reads.
This should reduce fil_system.mutex contention a little.
fil_node_t::complete_write(): Replaces fil_node_t::complete_io().
On both read and write completion, fil_space_t::release_for_io()
will have to be called.
fil_space_t::io(): Do not acquire fil_system.mutex in the normal
code path.
xb_delta_open_matching_space(): Do not try to open the system tablespace
which was already opened. This fixes a file sharing violation in
mariabackup --prepare --incremental.
Reviewed by: Vladislav Vaintroub
After MDEV-15053, MDEV-22871, MDEV-23399 shifted the scalability
bottleneck, log checkpoints became a new bottleneck.
If innodb_io_capacity is set low or innodb_max_dirty_pct_lwm is
set high and the workload fits in the buffer pool, the page cleaner
thread will perform very little flushing. When we reach the capacity
of the circular redo log file ib_logfile0 and must initiate a checkpoint,
some 'furious flushing' will be necessary. (If innodb_flush_sync=OFF,
then flushing would continue at the innodb_io_capacity rate, and
writers would be throttled.)
We have the best chance of advancing the checkpoint LSN immediately
after a page flush batch has been completed. Hence, it is best to
perform checkpoints after every batch in the page cleaner thread,
attempting to run once per second.
By initiating high-priority flushing in the page cleaner as early
as possible, we aim to make the throughput more stable.
The function buf_flush_wait_flushed() used to sleep for 10ms, hoping
that the page cleaner thread would do something during that time.
The observed end result was that a large number of threads that call
log_free_check() would end up sleeping while nothing useful is happening.
We will revise the design so that in the default innodb_flush_sync=ON
mode, buf_flush_wait_flushed() will wake up the page cleaner thread
to perform the necessary flushing, and it will wait for a signal from
the page cleaner thread.
If innodb_io_capacity is set to a low value (causing the page cleaner to
throttle its work), a write workload would initially perform well, until
the capacity of the circular ib_logfile0 is reached and log_free_check()
will trigger checkpoints. At that point, the extra waiting in
buf_flush_wait_flushed() will start reducing throughput.
The page cleaner thread will also initiate log checkpoints after each
buf_flush_lists() call, because that is the best point of time for
the checkpoint LSN to advance by the maximum amount.
Even in 'furious flushing' mode we invoke buf_flush_lists() with
innodb_io_capacity_max pages at a time, and at the start of each
batch (in the log_flush() callback function that runs in a separate
task) we will invoke os_aio_wait_until_no_pending_writes(). This
tweak allows the checkpoint to advance in smaller steps and
significantly reduces the maximum latency. On an Intel Optane 960
NVMe SSD on Linux, it reduced from 4.6 seconds to 74 milliseconds.
On Microsoft Windows with a slower SSD, it reduced from more than
180 seconds to 0.6 seconds.
We will make innodb_adaptive_flushing=OFF simply flush innodb_io_capacity
per second whenever the dirty proportion of buffer pool pages exceeds
innodb_max_dirty_pages_pct_lwm. For innodb_adaptive_flushing=ON we try
to make page_cleaner_flush_pages_recommendation() more consistent and
predictable: if we are below innodb_adaptive_flushing_lwm, let us flush
pages according to the return value of af_get_pct_for_dirty().
innodb_max_dirty_pages_pct_lwm: Revert the change of the default value
that was made in MDEV-23399. The value innodb_max_dirty_pages_pct_lwm=0
guarantees that a shutdown of an idle server will be fast. Users might
be surprised if normal shutdown suddenly became slower when upgrading
within a GA release series.
innodb_checkpoint_usec: Remove. The master task will no longer perform
periodic log checkpoints. It is the duty of the page cleaner thread.
log_sys.max_modified_age: Remove. The current span of the
buf_pool.flush_list expressed in LSN only matters for adaptive
flushing (outside the 'furious flushing' condition).
For the correctness of checkpoints, the only thing that matters is
the checkpoint age (log_sys.lsn - log_sys.last_checkpoint_lsn).
This run-time constant was also reported as log_max_modified_age_sync.
log_sys.max_checkpoint_age_async: Remove. This does not serve any
purpose, because the checkpoints will now be triggered by the page
cleaner thread. We will retain the log_sys.max_checkpoint_age limit
for engaging 'furious flushing'.
page_cleaner.slot: Remove. It turns out that
page_cleaner_slot.flush_list_time was duplicating
page_cleaner.slot.flush_time and page_cleaner.slot.flush_list_pass
was duplicating page_cleaner.flush_pass.
Likewise, there were some redundant monitor counters, because the
page cleaner thread no longer performs any buf_pool.LRU flushing, and
because there only is one buf_flush_page_cleaner thread.
buf_flush_sync_lsn: Protect writes by buf_pool.flush_list_mutex.
buf_pool_t::get_oldest_modification(): Add a parameter to specify the
return value when no persistent data pages are dirty. Require the
caller to hold buf_pool.flush_list_mutex.
log_buf_pool_get_oldest_modification(): Take the fall-back LSN
as a parameter. All callers will also invoke log_sys.get_lsn().
log_preflush_pool_modified_pages(): Replaced with buf_flush_wait_flushed().
buf_flush_wait_flushed(): Implement two limits. If not enough buffer pool
has been flushed, signal the page cleaner (unless innodb_flush_sync=OFF)
and wait for the page cleaner to complete. If the page cleaner
thread is not running (which can be the case durign shutdown),
initiate the flush and wait for it directly.
buf_flush_ahead(): If innodb_flush_sync=ON (the default),
submit a new buf_flush_sync_lsn target for the page cleaner
but do not wait for the flushing to finish.
log_get_capacity(), log_get_max_modified_age_async(): Remove, to make
it easier to see that af_get_pct_for_lsn() is not acquiring any mutexes.
page_cleaner_flush_pages_recommendation(): Protect all access to
buf_pool.flush_list with buf_pool.flush_list_mutex. Previously there
were some race conditions in the calculation.
buf_flush_sync_for_checkpoint(): New function to process
buf_flush_sync_lsn in the page cleaner thread. At the end of
each batch, we try to wake up any blocked buf_flush_wait_flushed().
If everything up to buf_flush_sync_lsn has been flushed, we will
reset buf_flush_sync_lsn=0. The page cleaner thread will keep
'furious flushing' until the limit is reached. Any threads that
are waiting in buf_flush_wait_flushed() will be able to resume
as soon as their own limit has been satisfied.
buf_flush_page_cleaner: Prioritize buf_flush_sync_lsn and do not
sleep as long as it is set. Do not update any page_cleaner statistics
for this special mode of operation. In the normal mode
(buf_flush_sync_lsn is not set for innodb_flush_sync=ON),
try to wake up once per second. No longer check whether
srv_inc_activity_count() has been called. After each batch,
try to perform a log checkpoint, because the best chances for
the checkpoint LSN to advance by the maximum amount are upon
completing a flushing batch.
log_t: Move buf_free, max_buf_free possibly to the same cache line
with log_sys.mutex.
log_margin_checkpoint_age(): Simplify the logic, and replace
a 0.1-second sleep with a call to buf_flush_wait_flushed() to
initiate flushing. Moved to the same compilation unit
with the only caller.
log_close(): Clean up the calculations. (Should be no functional
change.) Return whether flush-ahead is needed. Moved to the same
compilation unit with the only caller.
mtr_t::finish_write(): Return whether flush-ahead is needed.
mtr_t::commit(): Invoke buf_flush_ahead() when needed. Let us avoid
external calls in mtr_t::commit() and make the logic easier to follow
by having related code in a single compilation unit. Also, we will
invoke srv_stats.log_write_requests.inc() only once per
mini-transaction commit, while not holding mutexes.
log_checkpoint_margin(): Only care about log_sys.max_checkpoint_age.
Upon reaching log_sys.max_checkpoint_age where we must wait to prevent
the log from getting corrupted, let us wait for at most 1MiB of LSN
at a time, before rechecking the condition. This should allow writers
to proceed even if the redo log capacity has been reached and
'furious flushing' is in progress. We no longer care about
log_sys.max_modified_age_sync or log_sys.max_modified_age_async.
The log_sys.max_modified_age_sync could be a relic from the time when
there was a srv_master_thread that wrote dirty pages to data files.
Also, we no longer have any log_sys.max_checkpoint_age_async limit,
because log checkpoints will now be triggered by the page cleaner
thread upon completing buf_flush_lists().
log_set_capacity(): Simplify the calculations of the limit
(no functional change).
log_checkpoint_low(): Split from log_checkpoint(). Moved to the
same compilation unit with the caller.
log_make_checkpoint(): Only wait for everything to be flushed until
the current LSN.
create_log_file(): After checkpoint, invoke log_write_up_to()
to ensure that the FILE_CHECKPOINT record has been written.
This avoids ut_ad(!srv_log_file_created) in create_log_file_rename().
srv_start(): Do not call recv_recovery_from_checkpoint_start()
if the log has just been created. Set fil_system.space_id_reuse_warned
before dict_boot() has been executed, and clear it after recovery
has finished.
dict_boot(): Initialize fil_system.max_assigned_id.
srv_check_activity(): Remove. The activity count is counting transaction
commits and therefore mostly interesting for the purge of history.
BtrBulk::insert(): Do not explicitly wake up the page cleaner,
but do invoke srv_inc_activity_count(), because that counter is
still being used in buf_load_throttle_if_needed() for some
heuristics. (It might be cleaner to execute buf_load() in the
page cleaner thread!)
Reviewed by: Vladislav Vaintroub
innodb_preshutdown(): Terminate the encryption threads before
the page cleaner thread can be shut down.
innodb_shutdown(): Always wait for the encryption threads and
page cleaner to shut down.
srv_shutdown_all_bg_threads(): Wait for the encryption threads and
the page cleaner to shut down. (After an aborted startup,
innodb_shutdown() would not be called.)
row_get_background_drop_list_len_low(): Remove.
os_thread_count: Remove. Alternatively, at the end of
srv_shutdown_all_bg_threads() we could try to wait longer
for the count to reach 0. On some platforms, an assertion
os_thread_count==0 could fail even after a small delay,
even though in the core dump all threads would have exited.
srv_shutdown_threads(): Renamed from srv_shutdown_all_bg_threads().
Do not wait for the page cleaner to shut down, because the later
innodb_shutdown(), which may invoke
logs_empty_and_mark_files_at_shutdown(), assumes that it exists.
The problem:
When incremental backup is taken, delta files are created for innodb tables
which are marked as new tables during innodb ddl tracking. When such
tablespace is tried to be opened during prepare in
xb_delta_open_matching_space(), it is "created", i.e.
xb_space_create_file() is invoked, instead of opening, even if
a tablespace with the same name exists in the base backup directory.
xb_space_create_file() writes page 0 header the tablespace.
This header does not contain crypt data, as mariabackup does not have
any information about crypt data in delta file metadata for
tablespaces.
After delta file is applied, recovery process is started. As the
sequence of recovery for different pages is not defined, there can be
the situation when crypt data redo log event is executed after some
other page is read for recovery. When some page is read for recovery, it's
decrypted using crypt data stored in tablespace header in page 0, if
there is no crypt data, the page is not decryped and does not pass corruption
test.
This causes error for incremental backup --prepare for encrypted
tablespaces.
The error is not stable because crypt data redo log event updates crypt
data on page 0, and recovery for different pages can be executed in
undefined order.
The fix:
When delta file is created, the corresponding write filter copies only
the pages which LSN is greater then some incremental LSN. When new file
is created during incremental backup, the LSN of all it's pages must be
greater then incremental LSN, so there is no need to create delta for
such table, we can just copy it completely.
The fix is to copy the whole file which was tracked during incremental backup
with innodb ddl tracker, and copy it to base directory during --prepare
instead of delta applying.
There is also DBUG_EXECUTE_IF() in innodb code to avoid writing redo log
record for crypt data updating on page 0 to make the test case stable.
Note:
The issue is not reproducible in 10.5 as optimized DDL's are deprecated
in 10.5. But the fix is still useful because it allows to decrease
data copy size during backup, as delta file contains some extra info.
The test case should be removed for 10.5 as it will always pass.
To fix this, it is necessary to add an option to exclude the
database with the name "lost+found" from processing (the database
name will be checked by the check_if_skip_database_by_path() or
by the check_if_skip_database() function, and as a result
"lost+found" will be skipped).
In addition, it is necessary to slightly modify the verification
logic in the check_if_skip_database() function.
Also added a new test galera_sst_mariabackup_lost_found.test
MDEV-13318 introduced a condition to Mariabackup that can cause it to
hang if the server goes idle after writing a log block that has no
payload after the 12-byte header. Normal recovery in log0recv.cc would
allow blocks with exactly 12 bytes of length, and only reject blocks
where the length field is shorter than that.
InnoDB stores a 32-bit page number in page headers and in some
data structures, such as FIL_ADDR (consisting of a 32-bit page number
and a 16-bit byte offset within a page). For better compile-time
error detection and to reduce the memory footprint in some data
structures, let us use a uint32_t for the page number, instead
of ulint (size_t) which can be 64 bits.
The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted
the performance bottleneck to the page flushing.
The configuration parameters will be changed as follows:
innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction)
innodb_lru_scan_depth=1536 (old: 1024)
innodb_max_dirty_pages_pct=90 (old: 75)
innodb_max_dirty_pages_pct_lwm=75 (old: 0)
Note: The parameter innodb_lru_scan_depth will only affect LRU
eviction of buffer pool pages when a new page is being allocated. The
page cleaner thread will no longer evict any pages. It used to
guarantee that some pages will remain free in the buffer pool. Now, we
perform that eviction 'on demand' in buf_LRU_get_free_block().
The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows:
* When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks()
* As a buf_pool.free limit in buf_LRU_list_batch() for terminating
the flushing that is initiated e.g., by buf_LRU_get_free_block()
The parameter also used to serve as an initial limit for unzip_LRU
eviction (evicting uncompressed page frames while retaining
ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit
of 100 or unlimited for invoking buf_LRU_scan_and_free_block().
The status variables will be changed as follows:
innodb_buffer_pool_pages_flushed: This includes also the count of
innodb_buffer_pool_pages_LRU_flushed and should work reliably,
updated one by one in buf_flush_page() to give more real-time
statistics. The function buf_flush_stats(), which we are removing,
was not called in every code path. For both counters, we will use
regular variables that are incremented in a critical section of
buf_pool.mutex. Note that show_innodb_vars() directly links to the
variables, and reads of the counters will *not* be protected by
buf_pool.mutex, so you cannot get a consistent snapshot of both variables.
The following INFORMATION_SCHEMA.INNODB_METRICS counters will be
removed, because the page cleaner no longer deals with writing or
evicting least recently used pages, and because the single-page writes
have been removed:
* buffer_LRU_batch_flush_avg_time_slot
* buffer_LRU_batch_flush_avg_time_thread
* buffer_LRU_batch_flush_avg_time_est
* buffer_LRU_batch_flush_avg_pass
* buffer_LRU_single_flush_scanned
* buffer_LRU_single_flush_num_scan
* buffer_LRU_single_flush_scanned_per_call
When moving to a single buffer pool instance in MDEV-15058, we missed
some opportunity to simplify the buf_flush_page_cleaner thread. It was
unnecessarily using a mutex and some complex data structures, even
though we always have a single page cleaner thread.
Furthermore, the buf_flush_page_cleaner thread had separate 'recovery'
and 'shutdown' modes where it was waiting to be triggered by some
other thread, adding unnecessary latency and potential for hangs in
relatively rarely executed startup or shutdown code.
The page cleaner was also running two kinds of batches in an
interleaved fashion: "LRU flush" (writing out some least recently used
pages and evicting them on write completion) and the normal batches
that aim to increase the MIN(oldest_modification) in the buffer pool,
to help the log checkpoint advance.
The buf_pool.flush_list flushing was being blocked by
buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN
of a page is ahead of log_sys.get_flushed_lsn(), that is, what has
been persistently written to the redo log, we would trigger a log
flush and then resume the page flushing. This would unnecessarily
limit the performance of the page cleaner thread and trigger the
infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms.
The settings might not be optimal" that were suppressed in
commit d1ab89037a unless log_warnings>2.
Our revised algorithm will make log_sys.get_flushed_lsn() advance at
the start of buf_flush_lists(), and then execute a 'best effort' to
write out all pages. The flush batches will skip pages that were modified
since the log was written, or are are currently exclusively locked.
The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message
will be removed, because by design, the buf_flush_page_cleaner() should
not be blocked during a batch for extended periods of time.
We will remove the single-page flushing altogether. Related to this,
the debug parameter innodb_doublewrite_batch_size will be removed,
because all of the doublewrite buffer will be used for flushing
batches. If a page needs to be evicted from the buffer pool and all
100 least recently used pages in the buffer pool have unflushed
changes, buf_LRU_get_free_block() will execute buf_flush_lists() to
write out and evict innodb_lru_flush_size pages. At most one thread
will execute buf_flush_lists() in buf_LRU_get_free_block(); other
threads will wait for that LRU flushing batch to finish.
To improve concurrency, we will replace the InnoDB ib_mutex_t and
os_event_t native mutexes and condition variables in this area of code.
Most notably, this means that the buffer pool mutex (buf_pool.mutex)
is no longer instrumented via any InnoDB interfaces. It will continue
to be instrumented via PERFORMANCE_SCHEMA.
For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be
declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical
sections of buf_pool.flush_list_mutex should be shorter than those for
buf_pool.mutex, because in the worst case, they cover a linear scan of
buf_pool.flush_list, while the worst case of a critical section of
buf_pool.mutex covers a linear scan of the potentially much longer
buf_pool.LRU list.
mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable
with SAFE_MUTEX. Some InnoDB debug assertions need this predicate
instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner().
buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list:
Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[].
The number of active flush operations.
buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t
instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA
and SAFE_MUTEX instrumentation.
buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU.
buf_pool_t::done_flush_list: Condition variable for !n_flush_list.
buf_pool_t::do_flush_list: Condition variable to wake up the
buf_flush_page_cleaner when a log checkpoint needs to be written
or the server is being shut down. Replaces buf_flush_event.
We will keep using timed waits (the page cleaner thread will wake
_at least_ once per second), because the calculations for
innodb_adaptive_flushing depend on fixed time intervals.
buf_dblwr: Allocate statically, and move all code to member functions.
Use a native mutex and condition variable. Remove code to deal with
single-page flushing.
buf_dblwr_check_block(): Make the check debug-only. We were spending
a significant amount of execution time in page_simple_validate_new().
flush_counters_t::unzip_LRU_evicted: Remove.
IORequest: Make more members const. FIXME: m_fil_node should be removed.
buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex
(which we are removing).
page_cleaner_slot_t, page_cleaner_t: Remove many redundant members.
pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot().
recv_writer_thread: Remove. Recovery works just fine without it, if we
simply invoke buf_flush_sync() at the end of each batch in
recv_sys_t::apply().
recv_recovery_from_checkpoint_finish(): Remove. We can simply call
recv_sys.debug_free() directly.
srv_started_redo: Replaces srv_start_state.
SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown()
can communicate with the normal page cleaner loop via the new function
flush_buffer_pool().
buf_flush_remove(): Assert that the calling thread is holding
buf_pool.flush_list_mutex. This removes unnecessary mutex operations
from buf_flush_remove_pages() and buf_flush_dirty_pages(),
which replace buf_LRU_flush_or_remove_pages().
buf_flush_lists(): Renamed from buf_flush_batch(), with simplified
interface. Return the number of flushed pages. Clarified comments and
renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions
buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this
function, which was their only caller, and remove 2 unnecessary
buf_pool.mutex release/re-acquisition that we used to perform around
the buf_flush_batch() call. At the start, if not all log has been
durably written, wait for a background task to do it, or start a new
task to do it. This allows the log write to run concurrently with our
page flushing batch. Any pages that were skipped due to too recent
FIL_PAGE_LSN or due to them being latched by a writer should be flushed
during the next batch, unless there are further modifications to those
pages. It is possible that a page that we must flush due to small
oldest_modification also carries a recent FIL_PAGE_LSN or is being
constantly modified. In the worst case, all writers would then end up
waiting in log_free_check() to allow the flushing and the checkpoint
to complete.
buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_flush_space(): Auxiliary function to look up a tablespace for
page flushing.
buf_flush_page(): Defer the computation of space->full_crc32(). Never
call log_write_up_to(), but instead skip persistent pages whose latest
modification (FIL_PAGE_LSN) is newer than the redo log. Also skip
pages on which we cannot acquire a shared latch without waiting.
buf_flush_try_neighbors(): Do not bother checking buf_fix_count
because buf_flush_page() will no longer wait for the page latch.
Take the tablespace as a parameter, and only execute this function
when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold().
buf_flush_relocate_on_flush_list(): Declare as cold, and push down
a condition from the callers.
buf_flush_check_neighbor(): Take id.fold() as a parameter.
buf_flush_sync(): Ensure that the buf_pool.flush_list is empty,
because the flushing batch will skip pages whose modifications have
not yet been written to the log or were latched for modification.
buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables.
buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize
the counters, and report n->evicted.
Cache the last looked up tablespace. If neighbor flushing is not applicable,
invoke buf_flush_page() directly, avoiding a page lookup in between.
buf_do_LRU_batch(): Return the number of pages flushed.
buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if
adaptive hash index entries are pointing to the block.
buf_LRU_get_free_block(): Do not wake up the page cleaner, because it
will no longer perform any useful work for us, and we do not want it
to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0)
writes out and evicts at most innodb_lru_flush_size pages. (The
function buf_do_LRU_batch() may complete after writing fewer pages if
more than innodb_lru_scan_depth pages end up in buf_pool.free list.)
Eliminate some mutex release-acquire cycles, and wait for the LRU
flush batch to complete before rescanning.
buf_LRU_check_size_of_non_data_objects(): Simplify the code.
buf_page_write_complete(): Remove the parameter evict, and always
evict pages that were part of an LRU flush.
buf_page_create(): Take a pre-allocated page as a parameter.
buf_pool_t::free_block(): Free a pre-allocated block.
recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block
while not holding recv_sys.mutex. During page allocation, we may
initiate a page flush, which in turn may initiate a log flush, which
would require acquiring log_sys.mutex, which should always be acquired
before recv_sys.mutex in order to avoid deadlocks. Therefore, we must
not be holding recv_sys.mutex while allocating a buffer pool block.
BtrBulk::logFreeCheck(): Skip a redundant condition.
row_undo_step(): Do not invoke srv_inc_activity_count() for every row
that is being rolled back. It should suffice to invoke the function in
trx_flush_log_if_needed() during trx_t::commit_in_memory() when the
rollback completes.
sync_check_enable(): Remove. We will enable innodb_sync_debug from the
very beginning.
Reviewed by: Vladislav Vaintroub
LATCH_ID_OS_AIO_READ_MUTEX,
LATCH_ID_OS_AIO_WRITE_MUTEX,
LATCH_ID_OS_AIO_LOG_MUTEX,
LATCH_ID_OS_AIO_IBUF_MUTEX,
LATCH_ID_OS_AIO_SYNC_MUTEX: Remove. The tpool is not instrumented.
lock_set_timeout_event(): Remove.
srv_sys_mutex_key, srv_sys_t::mutex, SYNC_THREADS: Remove.
srv_slot_t::suspended: Remove. We only ever assigned this data member
true, so it is redundant.
ib_wqueue_wait(), ib_wqueue_timedwait(): Remove.
os_thread_join(): Remove.
os_thread_create(), os_thread_exit(): Remove redundant parameters.
These were missed in commit 5e62b6a5e0.
log_group_read_log_seg() returns error when:
1) Calculated log block number does not correspond to read log block
number. This can be caused by:
a) Garbage or an incompletely written log block. We can exclude this
case by checking log block checksum if it's enabled(see innodb-log-checksums,
encrypted log block contains checksum always).
b) The log block is overwritten. In this case checksum will be correct and
read log block number will be greater then requested one.
2) When log block length is wrong. In this case recv_sys->found_corrupt_log
is set.
3) When redo log block checksum is wrong. In this case innodb code
writes messages to error log with the following prefix: "Invalid log
block checksum."
The fix processes all the cases above.
Add CRC32C code to mysys. The x86-64 implementation uses PCMULQDQ in addition to CRC32 instruction
after Intel whitepaper, and is ported from rocksdb code.
Optimized ARM and POWER CRC32 were already present in mysys.
Parse SHOW SLAVE STATUS output for the "Using_Gtid" column. If the value
is "No", then old log file and position is backed up, otherwise gtid_slave_pos
is backed up.
In commit fe39d02f51 (MDEV-20638)
we removed some wake-up signaling of the master thread that should
have been there, to ensure a steady log checkpointing workload.
Common sense suggests that the commit omitted some necessary calls
to srv_inc_activity_count(). But, an attempt to add the call to
trx_flush_log_if_needed_low() as well as to reinstate the function
innobase_active_small() did not restore the performance for the
case where sync_binlog=1 is set.
Therefore, we will revert the entire commit in MariaDB Server 10.2.
In MariaDB Server 10.5, adding a srv_inc_activity_count() call to
trx_flush_log_if_needed_low() did restore the performance, so we
will not revert MDEV-20638 across all versions.
Regretfully, the parameter innodb_log_checksums was introduced
in MySQL 5.7.9 (the first GA release of that series) by
mysql/mysql-server@af0acedd88
which partly replaced a parameter that had been introduced in 5.7.8
mysql/mysql-server@22ba38218e
as innodb_log_checksum_algorithm.
Given that the CRC-32C operations are accelerated on many processor
implementations (AMD64 with SSE4.2; since MDEV-22669 also on IA-32
with SSE4.2, POWER 8 and later, ARMv8 with some extensions)
and by lookup tables when only generic SISD instructions are available,
there should be no valid reason to disable checksums.
In MariaDB 10.5.2, as a preparation for MDEV-12353, MDEV-19543 deprecated
and ignored the parameter innodb_log_checksums altogether. This should
imply that after a clean shutdown with innodb_log_checksums=OFF one
cannot upgrade to MariaDB Server 10.5 at all.
Due to these problems, let us deprecate the parameter innodb_log_checksums
and honor it only during server startup.
The command SET GLOBAL innodb_log_checksums will always set the
parameter to ON.
The parameters innodb_thread_concurrency and innodb_commit_concurrency
were useful years ago when both computing resources and the implementation
of some shared data structures were limited. MySQL 5.0 or 5.1 had trouble
scaling beyond 8 concurrent connections. Most of the scalability bottlenecks
have been removed since then, and the transactions per second delivered
by MariaDB Server 10.5 should not dramatically drop upon exceeding the
'optimal' number of connections.
Hence, enabling any concurrency throttling for InnoDB actually makes
things worse. We have seen many customers mistakenly setting this to a
small value like 16 or 64 and then complaining the server was slow.
Ignoring the parameters allows us to remove some normally unused code
and data structures, which could slightly improve performance.
innodb_thread_concurrency, innodb_commit_concurrency,
innodb_replication_delay, innodb_concurrency_tickets,
innodb_thread_sleep_delay, innodb_adaptive_max_sleep_delay:
Deprecate and ignore; hard-wire to 0.
The column INFORMATION_SCHEMA.INNODB_TRX.trx_concurrency_tickets
will always report 0.
- Due to commit fe95cb2e40 (MDEV-16125),
InnoDB master thread does not need to call srv_resume_thread()
and therefore there is no need to wake up the thread.
Due to the above patch, InnoDB should remove the following dead code.
srv_check_activity(): Makes the parameter as in,out and returns the
recent activity value
innobase_active_small(): Removed
srv_active_wake_master_thread(): Removed
srv_wake_master_thread(): Removed
srv_active_wake_master_thread_low(): Removed
Simplify srv_master_thread() and remove switch cases, added the assert.
Replace srv_wake_master_thread() with srv_inc_activity_count()
INNOBASE_WAKE_INTERVAL: Removed
Removed the existing nt_service classes - they provide little
abstraction, and only obscure a relatively simple service handling.
This replaces by similar code inspired by MS docs samples.
Service handling is now moved into winmain.cc, which contains
the main() function for Windows.
winmain provides reporting callbacks, which should be used by external code
,to report transitions from starting to running to shutting down to stopped.
Removed a do-nothing ServiceMain thread, and the
non-working service "pause/continue". Removed a lot of #ifdef __WIN__
code from mysqld.cc
MDEV-21298: mariabackup doesn't read from the [mariadbd] and [mariadbd-X.Y]
server option groups from configuration files
MDEV-21301: mariabackup doesn't read [mariadb-backup] option group in
configuration file
All three issues require to change the same code, that is why their
fixes are joined in one commit.
The fix is in invoking load_defaults_or_exit() and handle_options() for
backup-specific groups separately from client-server groups to let the last
handle_options() call fail on unknown backup-specific options.
The order of options procesing is the following:
1) Load server groups and process server options, ignore unknown
options
2) Load client groups and process client options, ignore unknown
options
3) Load backup groups and process client-server options, exit on
unknown option
4) Process --mysqld-args command line options, ignore unknown options
New global flag my_handle_options_init_variables was added to have
ability to invoke handle_options() for the same allowed options set
several times without re-initialising previously set option values.
--password value destroying is moved from option processing callback to
mariabackup's handle_options() function to have ability to invoke server's
handle_options() several times for the same possible allowed options
set.
Galera invokes wsrep_sst_mariabackup.sh with mysqld command line
options to configure mariabackup as close to the server as possible.
It is not known what server options are supported by mariabackup when the
script is invoked. That is why new mariabackup option "--mysqld-args" is added,
all unknown options that follow this option will be silently ignored.
wsrep_sst_mariabackup.sh was also changed to:
- use "--mysqld-args" mariabackup option to pass mysqld options,
- remove deprecated innobackupex mode,
- remove unsupported mariabackup options:
--encrypt
--encrypt-key
--rebuild-indexes
--rebuild-threads
Existing implementation used my_checksum (from mysys)
for calculating table checksum and binlog checksum.
This implementation was optimized for powerpc only and lacked
SIMD implementation for x86 (using clmul) and ARM
(using ACLE) instead used zlib-crc32.
mariabackup had its own copy of the crc32 implementation
using hardware optimized implementation only for x86 and lagged
hardware based implementation for powerpc and ARM.
Patch helps unifies all such calls and help aggregate all of them
using an unified interface my_checksum().
Said unification also enables hardware optimized calls for all
architecture viz. x86, ARM, POWERPC.
Default always fallback to zlib crc32.
Thanks to Daniel Black for reviewing, fixing and testing
PowerPC changes. Thanks to Marko and Daniel for early code feedback.
error is logged
The fix is to set flag in ib::error::~error() and check it in
mariabackup.
ib::error::error() is replaced with ib::warn::warn() in
AIO::linux_create_io_ctx() because of two reasons:
1) if we leave it as is, then mariabackup MTR tests will fail with --mem
option, because Linux AIO can not be used on tmpfs,
2) when Linux AIO can not be initialized, InnoDB falls back to simulated
AIO, so such sutiation is not fatal error, it should be treated as warning.
This ensures that directory permissions are correct in all cases, even if
boostrap is passed non-standard locations for innodb.
Directory permissions are copied from the datadir.
Change mysql_install_db.exe to run service under virtual account.
Set directory permissions so that service has full access to data files.
mariabackup --copy-back permission handling (MDEV-17008) needs to be
changed as well.
Now, whenever a directory is created in course of copy-back,
its permissions are copied from the datadir. This handling assumes,
that datadir already has the correct permissions for the Windows service.
lock
--ftwrl-wait-timeout does not finish mariabackup execution when acquired
backup lock can't be grabbed for the certain amount of time, it just
waits for a long queries finishing before acquiring the lock to avoid
unnecessary locking.
This commit extends --ftwrl-wait-timeout so, that mariabackup execution
is finished if it waits for backup lock during certain amount of time.
config.
The solution is to read the system variable value on startup and to fill
databases_exclude_hash.
xb_load_list_string() became non-static and was reformatted. The system
variable value is read and processed in get_mysql_vars(), which was also
reformatted.
In main.index_merge_myisam we remove the test that was added in
commit a2d24def8c because
it duplicates the test case that was added in
commit 5af12e4635.
- InnoDB is doing un-necessary redo log page initialisation during
recovery and unnecessary traversal of redo log during last phase.
This patch does the optimization of removing unnecessary redo log page
initialisation and detects the memory exhaust earlier.
was restored.
Optionally rollback prepared XA's on "mariabackup --prepare".
The fix MUST NOT be ported on 10.5+, as MDEV-742 fix solves the issue for
slaves.
recv_sys.recovery_on: Replaces recv_recovery_on.
recv_sys_t::apply(): Replaces recv_apply_hashed_log_recs().
recv_sys_var_init(): Remove.
recv_sys_t::recover_low(): Attempt to initialize a page based
on buffered redo log records.
To change all executables to have a mariadb name I had to:
- Do name changes in every CMakeLists.txt that produces executables
- CREATE_MARIADB_SYMLINK was removed and GET_SYMLINK added by Wlad to reuse the function in other places also
- The scripts/CMakeLists.txt could make use of GET_SYMLINK instead of introducing redundant code, but I thought I'll leave that for next release
- A lot of changes to debian/.install and debian/.links files due to swapping of real executable and symlink. I did not however change the name of the manpages, so the real name is still mysql there and mariadb are symlinks.
- The Windows part needed a change now when we made the executables mariadb -named. MSI (and ZIP) do not support symlinks and to not break backward compatibility we had to include mysql named binaries also. Done by Wlad
The -Wconversion in GCC seems to be stricter than in clang.
GCC at least since version 4.4.7 issues truncation warnings for
assignments to bitfields, while clang 10 appears to only issue
warnings when the sizes in bytes rounded to the nearest integer
powers of 2 are different.
Before GCC 10.0.0, -Wconversion required more casts and would not
allow some operations, such as x<<=1 or x+=1 on a data type that
is narrower than int.
GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining
about x|=y even when x and y are compatible types that are narrower
than int. Hence, we must rewrite some x|=y as
x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion.
In GCC 6 and later, the warning for assigning wider to bitfields
that are narrower than 8, 16, or 32 bits can be suppressed by
applying a bitwise & with the exact bitmask of the bitfield.
For older GCC, we must disable -Wconversion for GCC 4 or 5 in such
cases.
The bitwise negation operator appears to promote short integers
to a wider type, and hence we must add explicit truncation casts
around them. Microsoft Visual C does not allow a static_cast to
truncate a constant, such as static_cast<byte>(1) truncating int.
Hence, we will use the constructor-style cast byte(~1) for such cases.
This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0,
clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019)
on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
The function log_header_read() was only used during server startup,
and it will mostly be used only for reading checkpoint information
from pre-MDEV-14425 format redo log files.
Let us replace the function with more direct calls, so that
it is clearer what is going on. It is not strictly necessary to
hold any mutex during this operation, and because there will be
only a limited number of operations during early server startup,
it is not necessary to increment any I/O counters.
Now there can be only one log file instead of several which
logically work as a single file.
Possible names of redo log files: ib_logfile0,
ib_logfile101 (for just created one)
innodb_log_fiels_in_group: value of this variable is not used
by InnoDB. Possible values are still 1..100, to not break upgrade
LOG_FILE_NAME: add constant of value "ib_logfile0"
LOG_FILE_NAME_PREFIX: add constant of value "ib_logfile"
get_log_file_path(): convenience function that returns full
path of a redo log file
SRV_N_LOG_FILES_MAX: removed
srv_n_log_files: we can't remove this for compatibility reasons,
but now server doesn't use this variable
log_sys_t::file::fd: now just one, not std::vector
log_sys_t::log_capacity: removed word 'group'
find_and_check_log_file(): part of logic from huge srv_start()
moved here
recv_sys_t::files: file descriptors of redo log files.
There can be several of those in case we're upgrading
from older MariaDB version.
recv_sys_t::remove_extra_log_files: whether to remove
ib_logfile{1,2,3...} after successfull upgrade.
recv_sys_t::read(): open if needed and read from one
of several log files
recv_sys_t::files_size(): open if needed and return files count
redo_file_sizes_are_correct(): check that redo log files
sizes are equal. Just to log an error for a user.
Corresponding check was moved from srv0start.cc
namespace deprecated: put all deprecated variables here to
prevent usage of it by us, developers
log_t::FORMAT_10_5: physical redo log format tag
log_phys_t: Buffered records in the physical format.
The log record bytes will follow the last data field,
making use of alignment padding that would otherwise be wasted.
If there are multiple records for the same page, also those
may be appended to an existing log_phys_t object if the memory
is available.
In the physical format, the first byte of a record identifies the
record and its length (up to 15 bytes). For longer records, the
immediately following bytes will encode the remaining length
in a variable-length encoding. Usually, a variable-length-encoded
page identifier will follow, followed by optional payload, whose
length is included in the initially encoded total record length.
When a mini-transaction is updating multiple fields in a page,
it can avoid repeating the tablespace identifier and page number
by setting the same_page flag (most significant bit) in the first
byte of the log record. The byte offset of the record will be
relative to where the previous record for that page ended.
Until MDEV-14425 introduces a separate file-level log for
redo log checkpoints and file operations, we will write the
file-level records in the page-level redo log file.
The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT)
will be removed in MDEV-14425, and one sequential scan of the
page recovery log will suffice.
Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags.
If the information is needed, it can be parsed from WRITE records that
modify FSP_SPACE_FLAGS.
MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily
as part of this work, before being replaced with WRITE (along with
MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES).
mtr_buf_t::empty(): Check if the buffer is empty.
mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty.
mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record,
for the same_page encoding.
page_recv_t::last_offset: Reflects mtr_t::m_last_offset.
Valid values for last_offset during recovery should be 0 or above 8.
(The first 8 bytes of a page are the checksum and the page number,
and neither are ever updated directly by log records.)
Internally, the special value 1 indicates that the same_page form
will not be allowed for the subsequent record.
mtr_t::page_create(): Take the block descriptor as parameter,
so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE
record will always followed by a subtype byte, because same_page
records must be longer than 1 byte.
trx_undo_page_init(): Combine the writes in WRITE record.
trx_undo_header_create(): Write 4 bytes using a special MEMSET
record that includes 1 bytes of length and 2 bytes of payload.
flst_write_addr(): Define as a static function. Combine the writes.
flst_zero_both(): Replaces two flst_zero_addr() calls.
flst_init(): Do not inline the function.
fsp_free_seg_inode(): Zerofill the whole inode.
fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT
to FIL_NULL when using the physical format.
btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page()
must have been invoked.
fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE.
fil_names_dirty_and_write(): Remove the parameter mtr.
Write the records using a separate mini-transaction object,
because any FILE_ records must be at the start of a mini-transaction log.
recv_recover_page(): Add a fil_space_t* parameter.
After applying log to the a ROW_FORMAT=COMPRESSED page,
invoke buf_zip_decompress() to restore the uncompressed page.
buf_page_io_complete(): Remove the temporary hack to discard the
uncompressed page of a ROW_FORMAT=COMPRESSED page.
page_zip_write_header(): Remove. Use mtr_t::write() or
mtr_t::memset() instead, and update the compressed page frame
separately.
trx_undo_header_add_space_for_xid(): Remove.
trx_undo_seg_create(): Perform the changes that were previously
made by trx_undo_header_add_space_for_xid().
btr_reset_instant(): New function: Reset the table to MariaDB 10.2
or 10.3 format when rolling back an instant ALTER TABLE operation.
page_rec_find_owner_rec(): Merge with the only callers.
page_cur_insert_rec_low(): Combine writes by using a local buffer.
MEMMOVE data from the preceding record whenever feasible
(copying at least 3 bytes).
page_cur_insert_rec_zip(): Combine writes to page header fields.
PageBulk::insertPage(): Issue MEMMOVE records to copy a matching
part from the preceding record.
PageBulk::finishPage(): Combine the writes to the page header
and to the sparse page directory slots.
mtr_t::write(): Only log the least significant (last) bytes
of multi-byte fields that actually differ.
For updating FSP_SIZE, we must always write all 4 bytes to the
redo log, so that the fil_space_set_recv_size() logic in
recv_sys_t::parse() will work.
mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument
instead of a numeric offset to the page frame. Only log the
last bytes of multi-byte fields that actually differ.
In fil_space_crypt_t::write_page0(), we must log also any
unchanged bytes, so that recovery will recognize the record
and invoke fil_crypt_parse().
Future work:
MDEV-21724 Optimize page_cur_insert_rec_low() redo logging
MDEV-21725 Optimize btr_page_reorganize_low() redo logging
MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
NOTE: This may break crash-upgrade from a dataset that was
created with innodb_log_optimize_ddl=ON. Also due to
ROW_FORMAT=COMPRESSED pages, it will be easiest to disallow
crash-upgrade.
It would be more robust to disable the MDEV-12699 logic when
crash-upgrading from old redo log format.
log_optimized_ddl_op: Remove.
fil_space_t::enable_lsn, file_name_t::enable_lsn: Remove.
ddl_tracker_t::optimized_ddl: Remove.
TODO: Remove ddl_tracker
Our benchmarking efforts indicate that the reasons for splitting the
buf_pool in commit c18084f71b
have mostly gone away, possibly as a result of
mysql/mysql-server@ce6109ebfd
or similar work.
Only in one write-heavy benchmark where the working set size is
ten times the buffer pool size, the buf_pool->mutex would be
less contended with 4 buffer pool instances than with 1 instance,
in buf_page_io_complete(). That contention could be alleviated
further by making more use of std::atomic and by splitting
buf_pool_t::mutex further (MDEV-15053).
We will deprecate and ignore the following parameters:
innodb_buffer_pool_instances
innodb_page_cleaners
There will be only one buffer pool and one page cleaner task.
In a number of INFORMATION_SCHEMA views, columns that indicated
the buffer pool instance will be removed:
information_schema.innodb_buffer_page.pool_id
information_schema.innodb_buffer_page_lru.pool_id
information_schema.innodb_buffer_pool_stats.pool_id
information_schema.innodb_cmpmem.buffer_pool_instance
information_schema.innodb_cmpmem_reset.buffer_pool_instance
InnoDB crash recovery used a special type of mem_heap_t that
allocates backing store from the buffer pool. That incurred
a significant overhead, leading to underutilization of memory,
and limiting the maximum contiguous allocated size of a log record.
recv_sys_t::blocks: A linked list of buf_block_t that are allocated
by buf_block_alloc() for redo log records. Replaces recv_sys_t::heap.
We repurpose buf_block_t::unzip_LRU for linking the elements.
recv_sys_t::max_log_blocks: Renamed from recv_n_pool_free_frames.
recv_sys_t::max_blocks(): Accessor for max_log_blocks.
recv_sys_t::alloc(): Allocate memory from the current recv_sys_t::blocks
element, or allocate another block. In debug builds, various free()
member functions must be invoked, because we repurpose
buf_page_t::buf_fix_count for tracking allocations.
recv_sys_t::free_corrupted_page(): Renamed from recv_recover_corrupt_page()
recv_sys_t::is_memory_exhausted(): Renamed from recv_sys_heap_check()
recv_sys_t::pages and its elements are allocated directly by the
system memory allocator.
recv_parse_log_recs(): Remove the parameter available_memory.
We rename some variables 'store_to_hash' to 'store', because
recv_sys.pages is not actually a hash table.
This is joint work with Thirunarayanan Balathandayuthapani.
Setting "streamfmt=mbstream" in the "[sst]" section causes SST to fail
because the format automatically switches to 'tar' by default (insead
of mbstream).
To fix this, we need to add mbstream to the list of valid values for
the format, making it synonymous with xbstream. This must be done both
in the SST script and when parsing the options of the corresponding
utilities.
Debian is apparently offended that pcre2-posix implements POSIX API,
thus it renames all posix-compatible symbols in libpcre2-posix to have the
PCRE2 prefix. But Debian doesn't do anything to pcre2posix.h header,
so any unaware application will get POSIX compatible type names
and function prototypes from pcre2, but actual symbols will come
from libc.
To remedy this enormous incongruity we have to redefine POSIX-compatible
function names in pcre2posix to match Debian's hack.
Redo log subsystem was decoupled from tablespace subsystem. It now manages file
descriptors for redo log files by itself.
FIL_TYPE_LOG: removed, code in various places was simplified
SRV_LOG_SPACE_FIRST_ID: renamed to SRV_SPACE_ID_UPPER_BOUND
to better match its purpose. Code in various places was simplified
fil_n_log_flushes: replaced with log_sys::flushes
fil_n_pending_log_flushes: replaced with log_sys::pending_flushes
log_t::files::files: redo log file descriptors
log_t::files::file_names: redo log file names
log_t::files::set_file_names(): set file names without opening them
log_t::files::open_files(): opens redo log files
log_t::files::read(): treats several files as one big
log_t::files::write(): treats several files as one big
log_t::files::fsync(): flushes page cache to disk
log_t::files::close_files(): closes redo log files
fil_open_log_and_system_tablespace_files(): renamed to
fil_open_system_tablespace_files()
and obviously it now doesn't open redo log files
global files[1000]: removed. Why it was needed at all?
- Moved the recv_sys->heap memory condition inside recv_parse_log_recs().
So that, InnoDB can mark the status as STORE_NO earlier.
- InnoDB uses one third of buffer pool chunk size for reading the redo
log records. In that case, we can avoid the scenario where buffer ran
out of memory issue during recovery.
copy thread)
mariabackup hangs waiting until innodb redo log thread read log till certain
LSN, and it waits under FTWRL. If there is redo log read error in the thread,
it is finished, and main thread knows nothing about it, what leads to hanging.
As it hangs under FTWRL, slave threads on server side can be blocked due
to MDL lock conflict.
The fix is to finish mariabackup with error message on innodb redo log read
failure.
Before commit 90c52e5291 introduced
aligned_malloc(), InnoDB always used a pattern of over-allocating
memory and invoking ut_align() to guarantee the desired alignment.
It is cleaner to invoke aligned_malloc() and aligned_free() directly.
ut_align(): Remove. In assertions, ut_align_down() can be used instead.
executing undo undo_key_delete" upon startup on datadir restored from
incremental backup
aria_log* files were not copied on --prepare --incremental-dir step from
incremental to destination backup directory.
At each mini-transaction commit, the log sequence number of the
mini-transaction must be written to each modified page, so that
it will be available in the FIL_PAGE_LSN field when the page is
being read in crash recovery.
InnoDB was unnecessarily allocating redundant storage for the
field, in buf_page_t::newest_modification. Let us access
FIL_PAGE_LSN directly.
Furthermore, on ALTER TABLE...IMPORT TABLESPACE, let us write
0 to FIL_PAGE_LSN instead of using log_sys.lsn.
buf_flush_init_for_writing(), buf_flush_update_zip_checksum(),
fil_encrypt_buf_for_full_crc32(), fil_encrypt_buf(),
fil_space_encrypt(): Remove the parameter lsn.
buf_page_get_newest_modification(): Merge with the only caller.
buf_tmp_reserve_compression_buf(), buf_tmp_page_encrypt(),
buf_page_encrypt(): Define static in the same compilation unit
with the only caller.
PageConverter::m_current_lsn: Remove. Write 0 to FIL_PAGE_LSN
on ALTER TABLE...IMPORT TABLESPACE.
Almost all threads have gone
- the "ticking" threads, that sleep a while then do some work)
(srv_monitor_thread, srv_error_monitor_thread, srv_master_thread)
were replaced with timers. Some timers are periodic,
e.g the "master" timer.
- The btr_defragment_thread is also replaced by a timer , which
reschedules it self when current defragment "item" needs throttling
- the buf_resize_thread and buf_dump_threads are substitutes with tasks
Ditto with page cleaner workers.
- purge workers threads are not tasks as well, and purge cleaner
coordinator is a combination of a task and timer.
- All AIO is outsourced to tpool, Innodb just calls thread_pool::submit_io()
and provides the callback.
- The srv_slot_t was removed, and innodb_debug_sync used in purge
is currently not working, and needs reimplementation.
The function mach_read_ulint() is a wrapper for the lower-level
functions mach_read_from_1(), mach_read_from_2(), mach_read_from_8().
Invoke those functions directly, for better readability of the code.
mtr_t::read_ulint(), mtr_read_ulint(): Remove. Yes, we will lose the
ability to assert that the read is covered by the mini-transaction.
We would still check that on writes, and any writes that
wrongly bypass mini-transaction logging would likely be caught by
stress testing with Mariabackup.
A conflict between MDEV-19514 (b42294bc64)
and MDEV-20934 (d7a2401750)
was resolved. We will not invoke the function ibuf_delete_recs()
from ibuf_merge_or_delete_for_page(). Instead, we will add that
logic to the function ibuf_read_merge_pages().
dict_table_rename_in_cache(): Use strcpy() instead of strncpy(),
because they are known to be equivalent in this case (the length
of old_name was already validated).
mariabackup: Invoke strncpy() with one less than the buffer size,
and explicitly add NUL as the last byte of the buffer.
Based on the performance testing that was conducted in MDEV-17492,
the InnoDB adaptive hash index could only help performance in specific,
almost-read-only workloads. It could slow down all kinds of workloads
(especially DROP TABLE, TRUNCATE TABLE, ALTER TABLE, or DROP INDEX
operations), and it can become corrupted, causing crashes (such as
MDEV-18815, MDEV-20203) and possibly data corruption. Furthermore,
the adaptive hash index consumes space from the InnoDB buffer pool,
which could hurt performance when the working set would almost fit
in the buffer pool.
Given all this, it is best to disable the adaptive hash index by default.
When "--export" mariabackup option is used, mariabackup starts the server in
bootstrap mode to generate *.cfg files for the certain innodb tables.
The started instance of the server reads options from the file, pointed
out in "--defaults-file" mariabackup option.
If the server uses the same config file as mariabackup, and binlog is
switched on in that config file, then "mariabackup --prepare --export"
will create binary log files in the server's binary log directory, what
can cause issues.
The fix is to add "--skip-log-bin" in mysld options when the server is
started to generate *.cfg files.
The general reason why innodb redo log file is limited by 512G is that
log_block_convert_lsn_to_no() returns value limited by 1G. But there is no
need to have unique log block numbers in log group. The fix removes 512G
limit and limits log group size by
(uint32_t maximum value) * (minimum page size), which, in turns, can be
removed if fil_io() is no longer used for innodb redo log io.
cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Debug
Maintainer mode makes all warnings errors. This patch fix warnings. Mostly about
deprecated `register` keyword.
Too much warnings came from Mroonga and I gave up on it.
Server and command line tools now support option --tls_version to specify the
TLS version between client and server. Valid values are TLSv1.0, TLSv1.1, TLSv1.2, TLSv1.3
or a combination of them. E.g.
--tls_version=TLSv1.3
--tls_version=TLSv1.2,TLSv1.3
In case there is a gap between versions, the lowest version will be used:
--tls_version=TLSv1.1,TLSv1.3 -> Only TLSv1.1 will be available.
If the used TLS library doesn't support the specified TLS version, it will use
the default configuration.
Limitations:
SSLv3 is not supported. The default configuration doesn't support TLSv1.0 anymore.
TLSv1.3 protocol currently is only supported by OpenSSL 1.1.0 (client and server) and
GnuTLS 3.6.5 (client only).
Overview of TLS implementations and protocols
Server:
+-----------+-----------------------------------------+
| Library | Supported TLS versions |
+-----------+-----------------------------------------+
| WolfSSL | TLSv1.1, TLSv1,2 |
+-----------+-----------------------------------------+
| OpenSSL | (TLSv1.0), TLSv1.1, TLSv1,2, TLSv1.3 |
+-----------+-----------------------------------------+
| LibreSSL | (TLSv1.0), TLSv1.1, TLSv1,2, TLSv1.3 |
+-----------+-----------------------------------------+
Client (MariaDB Connector/C)
+-----------+-----------------------------------------+
| Library | Supported TLS versions |
+-----------+-----------------------------------------+
| GnuTLS | (TLSv1.0), TLSv1.1, TLSv1.2, TLSv1.3 |
+-----------+-----------------------------------------+
| Schannel | (TLSv1.0), TLSv1.1, TLSv1.2 |
+-----------+-----------------------------------------+
| OpenSSL | (TLSv1.0), TLSv1.1, TLSv1,2, TLSv1.3 |
+-----------+-----------------------------------------+
| LibreSSL | (TLSv1.0), TLSv1.1, TLSv1,2, TLSv1.3 |
+-----------+-----------------------------------------+
There is only one InnoDB crash recovery subsystem.
Allocating recv_sys statically removes one level of pointer indirection
and makes code more readable, and removes the awkward initialization of
recv_sys->dblwr.
recv_sys_t::create(): Replaces recv_sys_init().
recv_sys_t::debug_free(): Replaces recv_sys_debug_free().
recv_sys_t::close(): Replaces recv_sys_close().
recv_sys_t::add(): Replaces recv_add_to_hash_table().
recv_sys_t::empty(): Replaces recv_sys_empty_hash().
In some cases it's possible that InnoDB redo log file header is re-written so,
that checkpoint lsn and checkpoint lsn offset are updated, but checkpoint
number stays the same. The fix is to re-read redo log header if at least one
of those three parametes is changed at backup start.
Repeat the logic of log_group_checkpoint() on choosing InnoDB checkpoint info
field on backup start. This does not influence backup correctness, but
simplifies bugs analysis.
The option innodb_rollback_segments was deprecated already in
MariaDB Server 10.0. Its misleadingly named replacement innodb_undo_logs
is of very limited use. It makes sense to always create and use the
maximum number of rollback segments.
Let us remove the deprecated parameter innodb_rollback_segments and
deprecate&ignore the parameter innodb_undo_logs (to be removed in a
later major release).
This work involves some cleanup of InnoDB startup. Similar to other
write operations, DROP TABLE will no longer be allowed if
innodb_force_recovery is set to a value larger than 3.
The transaction isolation levels READ COMMITTED and READ UNCOMMITTED
should behave similarly to the old deprecated setting
innodb_locks_unsafe_for_binlog=1, that is, avoid acquiring gap locks.
row_search_mvcc(): Reduce the scope of some variables, and clean up
the initialization and use of the variable set_also_gap_locks.
The parameter innodb_log_checksums that was introduced in MariaDB 10.2.2
via mysql/mysql-server@af0acedd88
does not make much sense. The original motivation of introducing this
parameter (initially called innodb_log_checksum_algorithm in
mysql/mysql-server@22ba38218e)
was that the InnoDB redo log used the slow and insecure innodb algorithm.
With hardware or SIMD accelerated CRC-32C, there should be no reason to
allow checksums to be disabled on the redo log.
The parameter innodb_encrypt_log already implies innodb_log_checksums=ON.
Let us deprecate the parameter innodb_log_checksums and always compute
redo log checksums, even if innodb_log_checksums=OFF is specified.
An upgrade from MariaDB 10.2.2 or later will only be possible after
using the default value innodb_log_checksums=ON. If the non-default
value innodb_log_checksums=OFF was in effect when the server was shut down,
a log block checksum mismatch will be reported and the upgraded server
will fail to start up.
- Add new submodule for WolfSSL
- Build and use wolfssl and wolfcrypt instead of yassl/taocrypt
- Use HAVE_WOLFSSL instead of HAVE_YASSL
- Increase MY_AES_CTX_SIZE, to avoid compile time asserts in my_crypt.cc
(sizeof(EVP_CIPHER_CTX) is larger on WolfSSL)
If required privilege is missing, dump the output from "SHOW GRANTS"
into mariabackup log.
This will help troubleshooting, and make the bug reproducible.
It's a micro optimization. On most platforms CPUs has instructions to
compare with 0 fast. DB_SUCCESS is the most popular outcome of functions
and this patch optimized code like (err == DB_SUCCESS)
BtrBulk::finish(): bogus assertion fixed
fil_node_t::read_page0(): corrected usage of os_file_read()
que_eval_sql(): bugus assertion removed. Apparently it checked that
the field was assigned after having been zero-initialized at
object creation.
It turns out that the return type of os_file_read_func() was changed
in mysql/mysql-server@98909cefbc (MySQL 5.7)
from ibool to dberr_t. The reviewer (if there was any) failed to
point out that because of future merges, it could be a bad idea to
change the return type of a function without changing the function name.
This change was applied to MariaDB 10.2.2 in
commit 2e814d4702 but the
MariaDB-specific code was not fully adjusted accordingly,
e.g. in fil_node_open_file(). Essentially, code like
!os_file_read(...) became dead code in MariaDB and later
in Mariabackup 10.2, and we could be dealing with an uninitialized
buffer after a failed page read.
os_mem_alloc_large(): Invoke the macro ut_2pow_round() with the
correct argument type.
innobase_large_page_size, innobase_use_large_pages,
os_use_large_pages, os_large_page_size: Remove.
Simply refer to opt_large_page_size, my_use_large_pages.
xtrabackup_backup_func(): If the log checkpoint header changed
since we last read it, search for the most recent checkpoint again.
Otherwise, we could corrupt the backup of the redo log, because the
least significant bits of checkpoint_lsn_start would not match
log_sys->log.lsn.
The recv_sys data structures are accessed not only from the thread
that executes InnoDB plugin initialization, but also from the
InnoDB I/O threads, which can invoke recv_recover_page().
Assert that sufficient concurrency control is in place.
Some code was accessing recv_sys data structures without
holding recv_sys->mutex.
recv_recover_page(bpage): Refactor the call from buf_page_io_complete()
into a separate function that performs necessary steps. The
main thread was unnecessarily releasing and reacquiring recv_sys->mutex.
recv_recover_page(block,mtr,recv_addr): Pass more parameters from
the caller. Avoid redundant lookups and computations. Eliminate some
redundant variables.
recv_get_fil_addr_struct(): Assert that recv_sys->mutex is being held.
That was not always the case!
recv_scan_log_recs(): Acquire recv_sys->mutex for the whole duration
of the function. (While we are scanning and buffering redo log records,
no pages can be read in.)
recv_read_in_area(): Properly protect access with recv_sys->mutex.
recv_apply_hashed_log_recs(): Check recv_addr->state only once,
and continuously hold recv_sys->mutex. The mutex will be released
and reacquired inside recv_recover_page() and recv_read_in_area(),
allowing concurrent processing by buf_page_io_complete() in I/O threads.
The MDEV-17262 commit 26432e49d3
was skipped. In Galera 4, the implementation would seem to require
changes to the streaming replication.
In the tests archive.rnd_pos main.profiling, disable_ps_protocol
for SHOW STATUS and SHOW PROFILE commands until MDEV-18974
has been fixed.
This is a follow-up task to MDEV-12026, which introduced
innodb_checksum_algorithm=full_crc32 and a simpler page format.
MDEV-12026 did not enable full_crc32 for page_compressed tables,
which we will be doing now.
This is joint work with Thirunarayanan Balathandayuthapani.
For innodb_checksum_algorithm=full_crc32 we change the
page_compressed format as follows:
FIL_PAGE_TYPE: The most significant bit will be set to indicate
page_compressed format. The least significant bits will contain
the compressed page size, rounded up to a multiple of 256 bytes.
The checksum will be stored in the last 4 bytes of the page
(whether it is the full page or a page_compressed page whose
size is determined by FIL_PAGE_TYPE), covering all preceding
bytes of the page. If encryption is used, then the page will
be encrypted between compression and computing the checksum.
For page_compressed, FIL_PAGE_LSN will not be repeated at
the end of the page.
FSP_SPACE_FLAGS (already implemented as part of MDEV-12026):
We will store the innodb_compression_algorithm that may be used
to compress pages. Previously, the choice of algorithm was written
to each compressed data page separately, and one would be unable
to know in advance which compression algorithm(s) are used.
fil_space_t::full_crc32_page_compressed_len(): Determine if the
page_compressed algorithm of the tablespace needs to know the
exact length of the compressed data. If yes, we will reserve and
write an extra byte for this right before the checksum.
buf_page_is_compressed(): Determine if a page uses page_compressed
(in any innodb_checksum_algorithm).
fil_page_decompress(): Pass also fil_space_t::flags so that the
format can be determined.
buf_page_is_zeroes(): Check if a page is full of zero bytes.
buf_page_full_crc32_is_corrupted(): Renamed from
buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32,
we always simply validate the checksum to the page contents,
while the physical page size is explicitly specified by an
unencrypted part of the page header.
buf_page_full_crc32_size(): Determine the size of a full_crc32 page.
buf_dblwr_check_page_lsn(): Make this a debug-only function, because
it involves potentially costly lookups of fil_space_t.
create_table_info_t::check_table_options(),
ha_innobase::check_if_supported_inplace_alter(): Do allow the creation
of SPATIAL INDEX with full_crc32 also when page_compressed is used.
commit_cache_norebuild(): Preserve the compression algorithm when
updating the page_compression_level.
dict_tf_to_fsp_flags(): Set the flags for page compression algorithm.
FIXME: Maybe there should be a table option page_compression_algorithm
and a session variable to back it?
- Fetch innodb_compression_level from the running server.Add the value
of innodb_compression_level in backup-my.cnf file during backup phase.
So that prepare can use the innodb_compression_level variable from
backup-my.cnf
Fix the warnings issued by GCC 8 -Wstringop-truncation
and -Wstringop-overflow in InnoDB and XtraDB.
This work is motivated by Jan Lindström. The patch mainly differs
from his original one as follows:
(1) We remove explicit initialization of stack-allocated string buffers.
The minimum amount of initialization that is needed is a terminating
NUL character.
(2) GCC issues a warning for invoking strncpy(dest, src, sizeof dest)
because if strlen(src) >= sizeof dest, there would be no terminating
NUL byte in dest. We avoid this problem by invoking strncpy() with
a limit that is 1 less than the buffer size, and by always writing
NUL to the last byte of the buffer.
(3) We replace strncpy() with memcpy() or strcpy() in those cases
when the result is functionally equivalent.
Note: fts_fetch_index_words() never deals with len==UNIV_SQL_NULL.
This was enforced by an assertion that limits the maximum length
to FTS_MAX_WORD_LEN. Also, the encoding that InnoDB uses for
the compressed fulltext index is not byte-order agnostic, that is,
InnoDB data files that use FULLTEXT INDEX are not portable between
big-endian and little-endian systems.
MariaDB data-at-rest encryption (innodb_encrypt_tables)
had repurposed the same unused data field that was repurposed
in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN)
field of SPATIAL INDEX. Because of this, MariaDB was unable to
support encryption on SPATIAL INDEX pages.
Furthermore, InnoDB page checksums skipped some bytes, and there
are multiple variations and checksum algorithms. By default,
InnoDB accepts all variations of all algorithms that ever existed.
This unnecessarily weakens the page checksums.
We hereby introduce two more innodb_checksum_algorithm variants
(full_crc32, strict_full_crc32) that are special in a way:
When either setting is active, newly created data files will
carry a flag (fil_space_t::full_crc32()) that indicates that
all pages of the file will use a full CRC-32C checksum over the
entire page contents (excluding the bytes where the checksum
is stored, at the very end of the page). Such files will always
use that checksum, no matter what the parameter
innodb_checksum_algorithm is assigned to.
For old files, the old checksum algorithms will continue to be
used. The value strict_full_crc32 will be equivalent to strict_crc32
and the value full_crc32 will be equivalent to crc32.
ROW_FORMAT=COMPRESSED tables will only use the old format.
These tables do not support new features, such as larger
innodb_page_size or instant ADD/DROP COLUMN. They may be
deprecated in the future. We do not want an unnecessary
file format change for them.
The new full_crc32() format also cleans up the MariaDB tablespace
flags. We will reserve flags to store the page_compressed
compression algorithm, and to store the compressed payload length,
so that checksum can be computed over the compressed (and
possibly encrypted) stream and can be validated without
decrypting or decompressing the page.
In the full_crc32 format, there no longer are separate before-encryption
and after-encryption checksums for pages. The single checksum is
computed on the page contents that is written to the file.
We do not make the new algorithm the default for two reasons.
First, MariaDB 10.4.2 was a beta release, and the default values
of parameters should not change after beta. Second, we did not
yet implement the full_crc32 format for page_compressed pages.
This will be fixed in MDEV-18644.
This is joint work with Marko Mäkelä.
log_group_read_log_seg(): Always return false when returning
before reading end_lsn.
xtrabackup_copy_logfile(): On error, indicate whether
a corrupt log record was encountered.
Only xtrabackup_copy_logfile() in Mariabackup cared about the
return value of the function. InnoDB crash recovery was not
affected by this bug.
The assertion happens under BACKUP STAGE BLOCK_COMMIT, when a DDL on a
temporary table (#sql-xxx) is found.
Apparently, assumption that all DDLs are blocked under FTWRL does not
hold for BACKUP STAGE, and temporary tables can still have ALTERs
The fix is to relax the assertion, and only check for opt_no_lock if
backup is *really* inconsistent, i.e either optimized DDL or CREATE/RENAME
are done on the tables that were not skipped during backup.
The variable is obsolete.
In mariabackup --backup, encryption plugin loading code sets the value
this parameter to the same as in server.
In mariabackup --prepare, no new redo log is generated,
and xtrabackup_logfile is removed after it anyway.
MySQL 5.7 introduced the class page_size_t and increased the size of
buffer pool page descriptors by introducing this object to them.
Maybe the intention of this exercise was to prepare for a future
where the buffer pool could accommodate multiple page sizes.
But that future never arrived, not even in MySQL 8.0. It is much
easier to manage a pool of a single page size, and typically all
storage devices of an InnoDB instance benefit from using the same
page size.
Let us remove page_size_t from MariaDB Server. This will make it
easier to remove support for ROW_FORMAT=COMPRESSED (or make it a
compile-time option) in the future, just by removing various
occurrences of zip_size.
Fix one more bug in "DDL redo" phase in prepare
If table was renamed, and then new table was created with the old name,
prepare can be confused, and .ibd can end up with wrong name.
Fix the order of how DDL fixup is applied , once again - ".new" files
should be processed after renames.
If, during backup
1) Innodb table is dropped (after being copied to backup) and then
2) Before backup finished, another Innodb table is renamed, and new name
is the name of the dropped table in 1)
then, --prepare fails with assertion, as DDL fixup code in prepare
did not handle this specific case.
The fix is to process drops before renames, in prepare DDL-"redo" phase.
If an encrypted table is created during backup, then
mariabackup --backup could wrongly fail.
This caused a failure of the test mariabackup.huge_lsn once on buildbot.
This is due to the way how InnoDB creates .ibd files. It would first
write a dummy page 0 with no encryption information. Due to this,
xb_fil_cur_open() could wrongly interpret that the table is not encrypted.
Subsequently, page_is_corrupted() would compare the computed page
checksum to the wrong checksum. (There are both "before" and "after"
checksums for encrypted pages.)
To work around this problem, we introduce a Boolean option
--backup-encrypted that is enabled by default. With this option,
Mariabackup will assume that a nonzero key_version implies that the
page is encrypted. We need this option in order to be able to copy
encrypted tables from MariaDB 10.1 or 10.2, because unencrypted pages
that were originally created before MySQL 5.1.48 could contain nonzero
garbage in the fields that were repurposed for encryption.
Later, MDEV-18128 would clean up the way how .ibd files are created,
to remove the need for this option.
page_is_corrupted(): Add missing const qualifiers, and do not check
space->crypt_data unless --skip-backup-encrypted has been specified.
xb_fil_cur_read(): After a failed page read, output a page dump.
would not hide more interesting information, like invalid memory accesses.
some "leaks" are expected
- partly this is due to weird options parsing, that runs twice, and
does not free memory after the first run.
- also we do not mind to exit() whenever it makes sense, without full
cleanup.
- Refactor code to isolate page validation in page_is_corrupted() function.
- Introduce --extended-validation parameter(default OFF) for mariabackup
--backup to enable decryption of encrypted uncompressed pages during
backup.
- mariabackup would still always check checksum on encrypted data,
it is needed to detect partially written pages.
Write a test case that computes valid crc32 checksums for
an encrypted page, but zeroes out the payload area, so
that the checksum after decryption fails.
xb_fil_cur_read(): Validate the page number before trying
any checksum calculation or decrypting or decompression.
Also, skip zero-filled pages. For page_compressed pages,
ensure that the FIL_PAGE_TYPE was changed. Also, reject
FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED if no decryption was attempted.
Problem:
=======
Mariabackup seems to fail to verify the pages of compressed tables.
The reason is that both fil_space_verify_crypt_checksum() and
buf_page_is_corrupted() will skip the validation for compressed pages.
Fix:
====
Mariabackup should call fil_page_decompress() for compressed and encrypted
compressed page. After that, call buf_page_is_corrupted() to
check the page corruption.
The initial fix only covered a part of Mariabackup.
This fix hardens InnoDB and XtraDB in a similar way, in order
to reduce the probability of mistaking a corrupted encrypted page
for a valid unencrypted one.
This is based on work by Thirunarayanan Balathandayuthapani.
fil_space_verify_crypt_checksum(): Assert that key_version!=0.
Let the callers guarantee that. Now that we have this assertion,
we also know that buf_page_is_zeroes() cannot hold.
Also, remove all diagnostic output and related parameters,
and let the relevant callers emit such messages.
Last but not least, validate the post-encryption checksum
according to the innodb_checksum_algorithm (only accepting
one checksum for the strict variants), and no longer
try to validate the page as if it was unencrypted.
buf_page_is_zeroes(): Move to the compilation unit of the only callers,
and declare static.
xb_fil_cur_read(), buf_page_check_corrupt(): Add a condition before
calling fil_space_verify_crypt_checksum(). This is a non-functional
change.
buf_dblwr_process(): Validate the page only as encrypted or unencrypted,
but not both.
ported privilege checking from xtrabackup.
Now, mariabackup would terminate early if either RELOAD or PROCESS privilege
is not held, not at the very end of backup
The behavior can be disabled with nre setting --check-privileges=0.
Also , --no-lock does not need all of these privileges, since it skips
FTWRL and SHOW ENGINE STATUS INNODB.
After validating the post-encryption checksum on an encrypted page,
Mariabackup should decrypt the page and validate the pre-encryption
checksum as well. This should reduce the probability of accepting
invalid pages as valid ones.
This is a backport and refactoring of a patch that was
originally written by Thirunarayanan Balathandayuthapani
for the 10.2 branch.
Also, related to MDEV-15522, MDEV-17304, MDEV-17835,
remove the Galera xtrabackup tests, because xtrabackup never worked
with MariaDB Server 10.3 due to InnoDB redo log format changes.
fil_space_t::add(): Replaces fil_node_create(), fil_node_create_low().
Let the caller pass fil_node_t::handle, to avoid having to close and
re-open files.
fil_node_t::read_page0(): Refactored from fil_node_open_file().
Read the first page of a data file.
fil_node_open_file(): Open the file only once.
srv_undo_tablespace_open(): Set the file handle for the opened
undo tablespace. This should ensure that ut_ad(file->is_open())
no longer fails in recv_add_trim().
xtrabackup_backup_func(): Remove some dead code.
xb_fil_cur_open(): Open files only if needed. Undo tablespaces
should already have been opened.
main.derived_cond_pushdown: Move all 10.3 tests to the end,
trim trailing white space, and add an "End of 10.3 tests" marker.
Add --sorted_result to tests where the ordering is not deterministic.
main.win_percentile: Add --sorted_result to tests where the
ordering is no longer deterministic.
Query INFORMATION_SCHEMA.INNODB_SYS_TABLES only once, and cache results.
As a small cleanup, remove mdl_lock_con_mutex, the MDL handling
connection is never accessed by multiple threads at the same time.