* Let GCC `-Wformat` check formats sent to these `my_vsnprintf_ex` users
* Migrate them from the old extension specifiers
to the new `-Wformat`-compatible suffixes
[Breaking]
The `my_print_error` service passes formats and args directly
to `my_vsnprintf`. Just like the `my_snprintf` service,
I increased this service’s major version because:
* Custom suffixes are now a thing
(and custom specifiers will soon no longer be).
* GCC `-Wformat` now checks formats sent to them.
* rpl.rpl_system_versioning_partitions updated for MDEV-32188
* innodb.row_size_error_log_warnings_3 changed error for MDEV-33658
(checks are done in a different order)
normalize_cond() translated `WHERE col` into `WHERE col<>0`
But the opetator "not equal to 0" does not necessarily exists
for all data types.
For example, the query:
SELECT * FROM t1 WHERE inet6col;
was translated to:
SELECT * FROM t1 WHERE inet6col<>0;
which further failed with this error:
ERROR : Illegal parameter data types inet6 and bigint for operation '<>'
This patch changes the translation from `col<>0` to `col IS TRUE`.
So now
SELECT * FROM t1 WHERE inet6col;
gets translated to:
SELECT * FROM t1 WHERE inet6col IS TRUE;
Details:
1. Implementing methods:
- Field_longstr::val_bool()
- Field_string::val_bool()
- Item::val_int_from_val_str()
If the input contains bad data,
these methods raise a better error message:
Truncated incorrect BOOLEAN value
Before the change, the error was:
Truncated incorrect DOUBLE value
2. Fixing normalize_cond() to generate Item_func_istrue/Item_func_isfalse
instances instead of Item_func_ne/Item_func_eq
3. Making Item_func_truth sargable, so it uses the range optimizer.
Implementing the following methods:
- get_mm_tree(), get_mm_leaf(), add_key_fields() in Item_func_truth.
- get_func_mm_tree(), for all Item_func_truth descendants.
4. Implementing the method negated_item() for all Item_func_truth
descendants, so the negated item has a chance to be sargable:
For example,
WHERE NOT col IS NOT FALSE -- this notation is not sargable
is now translated to:
WHERE col IS FALSE -- this notation is sargable
The val_buffer variable can come to Field_set::val_str()
with the Ptr member equal to nullptr. This caused UBSAN errors
"applying zero offset to null pointer" in my_strnncollsp_simple()
and other strnncollsp() virtual implementations. Fixing the code to
make sure its Ptr is not equal to nullptr.
This is done by mapping most of the existing MySQL unicode 0900 collations
to MariadB 1400 unicode collations. The assumption is that 1400 is a super
set of 0900 for all practical purposes.
I also added a new function 'compare_collations()' and changed most code
to use this instead of comparing character sets directly.
This enables one to seamlessly mix-and-match the corresponding 0900 and
1400 sets. Field comparision and alter table treats the character sets
as identical.
All MySQL 8.0 0900 collations are supported except:
- utf8mb4_ja_0900_as_cs
- utf8mb4_ja_0900_as_cs_ks
- utf8mb4_ru_0900_as_cs
- utf8mb4_zh_0900_as_cs
These do not have corresponding entries in the MariadB 01400 collations.
Other things:
- Added COMMENT colum to information_schema.collations. For utf8mb4_0900
colletions it contains the corresponding alias collation.
Limit only signed integer fields fields to LONGLONG_MAX.
Double and decimal fields do not need this limit, as they
can store integers up to ULONGLONG_MAX without problems.
During a query execution some sorting and grouping operations
on strings may be involved. System variable max_sort_length defines
the maximum number of bytes to use when comparing strings during
sorting/grouping. Thus, the comparable parts of strings may be less
than their actual size, so the results of the query may be not
sorted/grouped properly.
To indicate that some comparisons were done on a truncated lengths,
a new warning has been introduced with this commit.
Step#1: fixing the return type of strnxfrm() from size_t to this structure:
typedef struct
{
size_t m_output_length;
size_t m_source_length_used;
uint m_warnings;
} my_strnxfrm_ret_t;
Adding support for the ROW data type in the stored function RETURNS clause:
- explicit ROW(..members...) for both sql_mode=DEFAULT and sql_mode=ORACLE
CREATE FUNCTION f1() RETURNS ROW(a INT, b VARCHAR(32)) ...
- anchored "ROW TYPE OF [db1.]table1" declarations for sql_mode=DEFAULT
CREATE FUNCTION f1() RETURNS ROW TYPE OF test.t1 ...
- anchored "[db1.]table1%ROWTYPE" declarations for sql_mode=ORACLE
CREATE FUNCTION f1() RETURN test.t1%ROWTYPE ...
Adding support for anchored scalar data types in RETURNS clause:
- "TYPE OF [db1.]table1.column1" for sql_mode=DEFAULT
CREATE FUNCTION f1() RETURNS TYPE OF test.t1.column1;
- "[db1.]table1.column1" for sql_mode=ORACLE
CREATE FUNCTION f1() RETURN test.t1.column1%TYPE;
Details:
- Adding a new sql_mode_t parameter to
sp_head::create()
sp_head::sp_head()
sp_package::create()
sp_package::sp_package()
to guarantee early initialization of sp_head::m_sql_mode.
Before this change, this member was not initialized at all during
CREATE FUNCTION/PROCEDURE/PACKAGE statements, and was not used.
Now it needs to be initialized to write properly the
mysql.proc.returns column, according to the create time sql_mode.
- Code refactoring to make the things simpler and functions smaller:
* Adding a new method
Field_row::row_create_fields(THD *thd, List<Spvar_definition> *list)
to make a Virtual_tmp_table with Fields for ROW members
from an explicit definition.
* Adding a new method
Field_row::row_create_fields(THD *thd, const Spvar_definition &def)
to make a Virtual_tmp_table with Fields for ROW members
from an explicit or a table anchored definition.
* Adding a new method
Item_args::add_array_of_item_field(THD *thd, const Virtual_tmp_table &vtable)
to create and array of Item_field corresponding to all Field instances
in a Virtual_tmp_table
* Removing Item_field_row::row_create_items(). It was decomposed
into the new methods described above.
* Moving the code from the loop body in sp_rcontext::init_var_items()
into a separate method Spvar_definition::make_item_field_row(),
to make the code clearer (smaller functions).
make_item_field_row() itself uses the new methods described above.
- Changing the data type of sp_head::m_return_field_def
from Column_definition to Spvar_definition.
So now it supports not only SQL column field types,
but also explicit ROW and anchored ROW data types,
as well as anchored column types.
- Adding a new Column_definition parameter to sp_head::create_result_field().
Before this patch, create_result_field() took the definition only
from m_return_field_def. Now it's also called with a local Column_definition
variable which contains the explicit definition resolved from an
anchored defition.
- Modifying sql_yacc.yy to support the new grammar.
Adding new helper methods:
* sf_return_fill_definition_row()
* sf_return_fill_definition_rowtype_of()
* sf_return_fill_definition_type_of()
- Fixing tests in:
* Virtual_tmp_table::setup_field_pointers() in sql_select.cc
* Send_field::normalize() in field.h
* store_column_type()
to prevent calling Type_handler_row::field_type(),
which is implemented a DBUG_ASSERT(0).
Before this patch the affected methods and functions were called only
for scalar data types. Now ROW is also possible.
- Adding a new virtual method Field::cols()
- Overriding methods:
Item_func_sp::cols()
Item_func_sp::element_index()
Item_func_sp::check_cols()
Item_func_sp::bring_value()
to support the ROW data type.
- Extending the rule sp_return_type to support
* explicit ROW and anchored ROW data types
* anchored scalar data types
- Overriding Field_row::sql_type() to print
the data type of an explicit ROW.
Field_blob::store() has special code for GROUP_CONCAT temporary table
(to store blob values in Blob_mem_storage - this prevents them
from being freed/overwritten when a next row is read).
Field_geom and Field_blob_compressed inherit from Field_blob but they
have their own ::store() method without this special Blob_mem_storage
support.
Considering that non-grouping CONCAT() of such fields converts
them to plain BLOB, let's do the same for GROUP_CONCAT. To do it,
Item_func_group_concat::setup will signal that it's creating
a temporary table for GROUP_CONCAT, and Field_blog::make_new_field()
override will create base Field_blob when under group concat.
Field_string::val_int(), Field_string::val_real(), Field_string::val_decimal()
passed the whole buffer of field_length bytes to data type conversion routines.
This made conversion routines to print redundant trailing spaces in case of warnings.
Adding a method Field_string::to_lex_cstring() and using it inside
val_int(), val_real(), val_decimal(), val_str().
After this change conversion routines get the same value with what val_str() returns,
and no redundant trailing spaces are displayed.
MDEV-32188 make TIMESTAMP use whole 32-bit unsigned range
- Changed usage of timeval to my_timeval as the timeval parts on windows
are 32-bit long, which causes some compiler issues on windows.
This patch extends the timestamp from
2038-01-19 03:14:07.999999 to 2106-02-07 06:28:15.999999
for 64 bit hardware and OS where 'long' is 64 bits.
This is true for 64 bit Linux but not for Windows.
This is done by treating the 32 bit stored int as unsigned instead of
signed. This is safe as MariaDB has never accepted dates before the epoch
(1970).
The benefit of this approach that for normal timestamp the storage is
compatible with earlier version.
However for tables using system versioning we before stored a
timestamp with the year 2038 as the 'max timestamp', which is used to
detect current values. This patch stores the new 2106 year max value
as the max timestamp. This means that old tables using system
versioning needs to be updated with mariadb-upgrade when moving them
to 11.4. That will be done in a separate commit.
In strict mode a timestamp(0) column could be directly assigned from
another timestamp(N>0) column with the value '1970-01-01 00:00:00.1'
(at time zone '+00:00'), or with any other value '1970-01-01 00:00:00.XXXXXX'
with non-zero microsecond value XXXXXX.
This assignment happened silently without warnings or errors.
It worked as follows:
- The value {tv_sec=0, tv_usec=100000}, which is '1970-01-01 00:00:00.1'
was rounded to {tv_sec=0, tv_usec=0}, which is '1970-01-01 00:00:00.0'
- Then {tv_sec=0, tv_usec=0} was silently re-interpreted as zero datetime.
After the fix this assignment always raises a warning,
which in case of the strict mode is escalated to an error.
The problem in this scenario is that '1970-01-01 00:00:00' cannot be stored,
because its timeval value {tv_sec=0, tv_usec=0} is reserved for zero datetimes.
Thus the warning should be raised no matter if sql_mode allows or disallows
zero dates.
Field_timestampf::val_native() checked only the
first four bytes to detect zero dates.
That was not enough. Fixing the code to check all packed_length()
bytes to detect zero dates.
The code in Field_timestamp::save_in_field() did not catch
zero datetime and stored it to the other field like a usual value
using store_timestamp_dec(), which knows nothing about zero date and
treats {tv_sec=0, tv_usec=0} as a normal timeval value corresponding to
'1970-01-01 00:00:00 +00:00'.
Fixing the code to catch the special combination (ts==0 && sec_pat==0) and
store it using store_time_dec() with a zero datetime passed as an argument.
Fixing the problem that an operation involving a mix of
two or more GEOMETRY operands did not preserve their SRIDs.
Now SRIDs are preserved by hybrid functions, subqueries, TVCs, UNIONs, VIEWs.
Incompatible change:
An attempt to mix two different SRIDs now raises an error.
Details:
- Adding a new class Type_extra_attributes. It's a generic
container which can store very specific data type attributes.
For now it can store one uint32 and one const pointer attribute
(for GEOMETRY's SRID and for ENUM/SET TYPELIB respectively).
In the future it can grow as needed.
Type_extra_attributes will also be reused soon to store "const Type_zone*"
pointers for the TIMESTAMP's "WITH TIME ZONE 'tz'" attribute
(a timestamp data type with a fixed time zone independent from @@time_zone).
The time zone attribute will be stored in exactly the same way like
a TYPELIB pointer is stored by ENUM/SET.
- Removing Column_definition_attributes members "interval" and "srid".
Deriving Column_definition_attributes from the generic attribute container
Type_extra_attributes instead.
- Adding a new class Type_typelib_attributes, to store
the TYPELIB of the ENUM and SET data types. Deriving Field_enum from it.
Removing the member Field_enum::typelib.
- Adding a new class Type_geom_attributes, to store
the GEOMETRY related attributes. Deriving Field_geom from it.
Removing the member Field_geom::srid.
- Removing virtual methods:
Field::get_typelib()
Type_all_attributes::get_typelib() and
Type_all_attributes::set_typelib()
They were very specific to TYPELIB.
Adding more generic virtual methods instead:
* Field::type_extra_attributes() - to get extra attributes
* Type_all_attributes::type_extra_attributes() - to get extra attributes
* Type_all_attributes::type_extra_attributes_addr() - to set extra attributes
- Removing Item_type_holder::enum_set_typelib. Deriving Item_type_holder
from the generic attribute container Type_extra_attributes instead.
This makes it possible for UNION to preserve SRID
(in addition to preserving TYPELIB).
- Deriving Item_hybrid_func from Type_extra_attributes.
This makes it possible for hybrid functions (e.g. CASE, COALESCE,
LEAST, GREATEST etc) to preserve SRID.
- Deriving Item_singlerow_subselect from Type_extra_attributes and
overriding methods:
* Item_cache::type_extra_attributes()
* subselect_single_select_engine::fix_length_and_dec()
* Item_singlerow_subselect::type_extra_attributes()
* Item_singlerow_subselect::type_extra_attributes_addr()
This is needed to preserve SRID in subqueries and TVCs
- Cleanup: fixing the data type of members
* Binlog_type_info::m_enum_typelib
* Binlog_type_info::m_set_typelib
from "TYPELIB *" to "const TYPELIB *"
This patch also fixes:
MDEV-33050 Build-in schemas like oracle_schema are accent insensitive
MDEV-33084 LASTVAL(t1) and LASTVAL(T1) do not work well with lower-case-table-names=0
MDEV-33085 Tables T1 and t1 do not work well with ENGINE=CSV and lower-case-table-names=0
MDEV-33086 SHOW OPEN TABLES IN DB1 -- is case insensitive with lower-case-table-names=0
MDEV-33088 Cannot create triggers in the database `MYSQL`
MDEV-33103 LOCK TABLE t1 AS t2 -- alias is not case sensitive with lower-case-table-names=0
MDEV-33109 DROP DATABASE MYSQL -- does not drop SP with lower-case-table-names=0
MDEV-33110 HANDLER commands are case insensitive with lower-case-table-names=0
MDEV-33119 User is case insensitive in INFORMATION_SCHEMA.VIEWS
MDEV-33120 System log table names are case insensitive with lower-cast-table-names=0
- Removing the virtual function strnncoll() from MY_COLLATION_HANDLER
- Adding a wrapper function CHARSET_INFO::streq(), to compare
two strings for equality. For now it calls strnncoll() internally.
In the future it will turn into a virtual function.
- Adding new accent sensitive case insensitive collations:
- utf8mb4_general1400_as_ci
- utf8mb3_general1400_as_ci
They implement accent sensitive case insensitive comparison.
The weight of a character is equal to the code point of its
upper case variant. These collations use Unicode-14.0.0 casefolding data.
The result of
my_charset_utf8mb3_general1400_as_ci.strcoll()
is very close to the former
my_charset_utf8mb3_general_ci.strcasecmp()
There is only a difference in a couple dozen rare characters, because:
- the switch from "tolower" to "toupper" comparison, to make
utf8mb3_general1400_as_ci closer to utf8mb3_general_ci
- the switch from Unicode-3.0.0 to Unicode-14.0.0
This difference should be tolarable. See the list of affected
characters in the MDEV description.
Note, utf8mb4_general1400_as_ci correctly handles non-BMP characters!
Unlike utf8mb4_general_ci, it does not treat all BMP characters
as equal.
- Adding classes representing names of the file based database objects:
Lex_ident_db
Lex_ident_table
Lex_ident_trigger
Their comparison collation depends on the underlying
file system case sensitivity and on --lower-case-table-names
and can be either my_charset_bin or my_charset_utf8mb3_general1400_as_ci.
- Adding classes representing names of other database objects,
whose names have case insensitive comparison style,
using my_charset_utf8mb3_general1400_as_ci:
Lex_ident_column
Lex_ident_sys_var
Lex_ident_user_var
Lex_ident_sp_var
Lex_ident_ps
Lex_ident_i_s_table
Lex_ident_window
Lex_ident_func
Lex_ident_partition
Lex_ident_with_element
Lex_ident_rpl_filter
Lex_ident_master_info
Lex_ident_host
Lex_ident_locale
Lex_ident_plugin
Lex_ident_engine
Lex_ident_server
Lex_ident_savepoint
Lex_ident_charset
engine_option_value::Name
- All the mentioned Lex_ident_xxx classes implement a method streq():
if (ident1.streq(ident2))
do_equal();
This method works as a wrapper for CHARSET_INFO::streq().
- Changing a lot of "LEX_CSTRING name" to "Lex_ident_xxx name"
in class members and in function/method parameters.
- Replacing all calls like
system_charset_info->coll->strcasecmp(ident1, ident2)
to
ident1.streq(ident2)
- Taking advantage of the c++11 user defined literal operator
for LEX_CSTRING (see m_strings.h) and Lex_ident_xxx (see lex_ident.h)
data types. Use example:
const Lex_ident_column primary_key_name= "PRIMARY"_Lex_ident_column;
is now a shorter version of:
const Lex_ident_column primary_key_name=
Lex_ident_column({STRING_WITH_LEN("PRIMARY")});