Partial commit of the greater MDEV-34348 scope.
MDEV-34348: MariaDB is violating clang-16 -Wcast-function-type-strict
Reviewed By:
============
Marko Mäkelä <marko.makela@mariadb.com>
When a derived table which has distinct values and BLOB fields is
materialized, an index is created over all columns to ensure only
unique values are placed to the result.
This index is created in a special mode HA_UNIQUE_HASH to support BLOBs.
Later the optimizer may incorrectly choose this index to retrieve values
from the derived table, although such type of index cannot be used
for data retrieval.
This commit excludes HA_UNIQUE_HASH indexes from adding to
`JOIN::keyuse` array thus preventing their subsequent usage for
data retrieval
work consistently on replication
Row-based replication does not execute CREATE .. SELECT but instead
CREATE TABLE. CREATE .. SELECT creates implict system fields on
unusual place: in-between declared fields and select fields. That was
done because select_field_pos logic requires select fields go last in
create_list.
So, CREATE .. SELECT on master and CREATE TABLE on slave create system
fields on different positions and replication gets field mismatch.
To fix this we've changed CREATE .. SELECT to create implicit system
fields on usual place in the end and updated select_field_pos for
handling this case.
Fixed by checking handler_stats if it's active instead of
thd->variables.log_slow_verbosity & LOG_SLOW_VERBOSITY_ENGINE.
Reviewed-by: Sergei Petrunia <sergey@mariadb.com>
The method was declared to return an unsigned integer, but it is
really a boolean (and used as such by all callers).
A secondary change is the addition of "const" and "noexcept" to this
method.
In ha_mroonga.cpp, I also added "inline" to the two helper methods of
referenced_by_foreign_key(). This allows the compiler to flatten the
method.
on disable_indexes(HA_KEY_SWITCH_NONUNIQ_SAVE) the engine does
not know that the long unique is logically unique, because on the
engine level it is not. And the engine disables it,
Change the disable_indexes/enable_indexes API. Instead of the enum
mode, send a key_map of indexes that should be enabled. This way the
server will decide what is unique, not the engine.
When HA_DUPLICATE_POS is not supported, the row to replace was navigated by
ha_index_read_idx_map, which uses only hash to navigate.
Suchwise, given a hash collision it may choose an incorrect row.
handler::position would be correct and very convenient to use here.
dup_ref is already set by handler independently of the engine
capabilities, when an extra lookup is made (for long unique or something else,
for example WITHOUT OVERLAPS) such error will be indicated by
file->lookup_errkey != -1.
Some fixes related to commit f838b2d799 and
Rows_log_event::do_apply_event() and Update_rows_log_event::do_exec_row()
for system-versioned tables were provided by Nikita Malyavin.
This was required by test versioning.rpl,trx_id,row.
Problem:
REPAIR TABLE executed for a pre-MDEV-29959 table (with the old UUID format)
updated the server version in the FRM file without rewriting the data,
so it created a new FRM for old UUIDs. After that MariaDB could not
read UUIDs correctly.
Fix:
- Adding a new virtual method in class Type_handler:
virtual bool type_handler_for_implicit_upgrade() const;
* For the up-to-date data types it returns "this".
* For the data types which need to be implicitly upgraded
during REPAIR TABLE or ALTER TABLE, it returns a pointer
to a new replacement data type handler.
Old VARCHAR and old UUID type handlers override this method.
See more comments below.
- Changing the semantics of the method
Type_handler::Column_definition_implicit_upgrade(Column_definition *c)
to the opposite, so now:
* c->type_handler() references the old data type (to upgrade from)
* "this" references the new data type (to upgrade to).
Before this change Column_definition_implicit_upgrade() was supposed
to be called with the old data type handler (to upgrade from).
Renaming the method to Column_definition_implicit_upgrade_to_this(),
to avoid automatic merges in this method.
Reflecting this change in Create_field::upgrade_data_types().
- Replacing the hard-coded data type tests inside handler::check_old_types()
to a call for the new virtual method
Type_handler::type_handler_for_implicit_upgrade()
- Overriding Type_handler_fbt::type_handler_for_implicit_upgrade()
to call a new method FbtImpl::type_handler_for_implicit_upgrade().
Reasoning:
Type_handler_fbt is a template, so it has access only to "this".
So in case of UUID data types, the type handler for old UUID
knows nothing about the type handler of new UUID inside sql_type_fixedbin.h.
So let's have Type_handler_fbt delegate type_handler_for_implicit_upgrade()
to its Type_collection, which knows both new UUID and old UUID.
- Adding Type_collection_uuid::type_handler_for_implicit_upgrade().
It returns a pointer to the new UUID type handler.
- Overriding Type_handler_var_string::type_handler_for_implicit_upgrade()
to return a pointer to type_handler_varchar (true VARCHAR).
- Cleanup: these two methods:
handler::check_old_types()
handler::ha_check_for_upgrade()
were always called consequently.
So moving the call for check_old_types() inside ha_check_for_upgrade(),
and making check_old_types() private.
- Cleanup: removing the "bool varchar" parameter from fill_alter_inplace_info(),
as its not used any more.
Aria temporary tables account allocated memory as specific to the current
THD. But this fails for slave threads, where the temporary tables need to be
detached from any specific THD.
Introduce a new flag to mark temporary tables in replication as "global",
and use that inside Aria to not account memory allocations as thread
specific for such tables.
Based on original suggestion by Monty.
Reviewed-by: Monty <monty@mariadb.org>
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
Two new information_schema views are added:
* PERIOD table -- columns TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
PERIOD_NAME, START_COLUMN_NAME, END_COLUMN_NAME.
* KEY_PERIOD_USAGE -- works similar to KEY_COLUMN_USAGE, but for periods.
Columns CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, PERIOD_NAME
Two new columns are added to the COLUMNS view:
IS_SYSTEM_TIME_PERIOD_START, IS_SYSTEM_TIME_PERIOD_END - contain YES/NO.