This commit updates default memory allocations size used with MEM_ROOT
objects to minimize the number of calls to malloc().
Changes:
- Updated MEM_ROOT block sizes in sql_const.h
- Updated MALLOC_OVERHEAD to also take into account the extra memory
allocated by my_malloc()
- Updated init_alloc_root() to only take MALLOC_OVERHEAD into account as
buffer size, not MALLOC_OVERHEAD + sizeof(USED_MEM).
- Reset mem_root->first_block_usage if and only if first block was used.
- Increase MEM_ROOT buffers sized used by my_load_defaults, plugin_init,
Create_tmp_table, allocate_table_share, TABLE and TABLE_SHARE.
This decreases number of malloc calls during queries.
- Use a small buffer for THD->main_mem_root in THD::THD. This avoids
multiple malloc() call for new connections.
I tried the above changes on a complex select query with 12 tables.
The following shows the number of extra allocations that where used
to increase the size of the MEM_ROOT buffers.
Original code:
- Connection to MariaDB: 9 allocations
- First query run: 146 allocations
- Second query run: 24 allocations
Max memory allocated for thd when using with heap table: 61,262,408
Max memory allocated for thd when using Aria tmp table: 419,464
After changes:
Connection to MariaDB: 0 allocations
- First run: 25 allocations
- Second run: 7 allocations
Max memory allocated for thd when using with heap table: 61,347,424
Max memory allocated for thd when using Aria table: 529,168
The new code uses slightly more memory, but avoids memory fragmentation
and is slightly faster thanks to much fewer calls to malloc().
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Added Query_time (total time spent running queries) to status_variables.
Other things:
- Added SHOW_MICROSECOND_STATUS type that shows an ulonglong variable
in microseconds converted to a double (in seconds).
- Changed Busy_time and Cpu_time to use SHOW_MICROSECOND_STATUS, which
simplified the code and avoids some double divisions for each query.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Partial commit of the greater MDEV-34348 scope.
MDEV-34348: MariaDB is violating clang-16 -Wcast-function-type-strict
Change the type of my_hash_get_key to:
1) Return const
2) Change the context parameter to be const void*
Also fix casting in hash adjacent areas.
Reviewed By:
============
Marko Mäkelä <marko.makela@mariadb.com>
lock_rec_unlock_unmodified() is executed either under lock_sys.wr_lock()
or under a combination of lock_sys.rd_lock() + record locks hash table
cell latch. It also requests page latch to check if locked records were
changed by the current transaction or not.
Usually InnoDB requests page latch to find the certain record on the
page, and then requests lock_sys and/or record lock hash cell latch to
request record lock. lock_rec_unlock_unmodified() requests the latches
in the opposite order, what causes deadlocks. One of the possible
scenario for the deadlock is the following:
thread 1 - lock_rec_unlock_unmodified() is invoked under locks hash table
cell latch, the latch is acquired;
thread 2 - purge thread acquires page latch and tries to remove
delete-marked record, it invokes lock_update_delete(), which
requests locks hash table cell latch, held by thread 1;
thread 1 - requests page latch, held by thread 2.
To fix it we need to release lock_sys.latch and/or lock hash cell latch,
acquire page latch and re-acquire lock_sys related latches.
When lock_sys.latch and/or lock hash cell latch are released in
lock_release_on_prepare() and lock_release_on_prepare_try(), the page on
which the current lock is held, can be merged. In this case the bitmap
of the current lock must be cleared, and the new lock must be added to
the end of trx->lock.trx_locks list, or bitmap of already existing lock
must be changed.
The new field trx_lock_t::set_nth_bit_calls indicates if new locks
(bits in existing lock bitmaps or new lock objects) were created during
the period when lock_sys was released in trx->lock.trx_locks list
iteration loop in lock_release_on_prepare() or
lock_release_on_prepare_try(). And, if so, we traverse the list again.
The block can be freed during pages merging, what causes assertion
failure in buf_page_get_gen(), as btr_block_get() passes BUF_GET as page
get mode to it. That's why page_get_mode parameter was added to
btr_block_get() to pass BUF_GET_POSSIBLY_FREED from
lock_release_on_prepare() and lock_release_on_prepare_try() to
buf_page_get_gen().
As searching for id of trx, which modified secondary index record, is
quite expensive operation, restrict its usage for master. System variable
was added to remove the restriction for testing simplifying. The
variable exists only either for debug build or for build with
-DINNODB_ENABLE_XAP_UNLOCK_UNMODIFIED_FOR_PRIMARY option to increase the
probability of catching bugs for release build with RQG.
Note that the code, which does primary index lookup to find out what
transaction modified secondary index record, is necessary only when
there is no primary key and no unique secondary key on replica with row
based replication, because only in this case extra X locks on unmodified
records can be set during scan phase.
Reviewed by Marko Mäkelä.
If semi-sync is switched off then on while a transaction is
in-between binlogging and waiting for an ACK, the semi-sync state of
the transaction is removed, leading to a debug assertion that
indicates the transaction tried to wait, but cannot receive an ACK
signal. More specifically, when semi-sync is switched off, the
Active_tranx list is cleared (where a transaction adds an entry to
this list during binlogging), and each entry in this list saves the
thread which will wait for an ACK, and the thread has the COND
variable to signal to wake itself. So if the entry is lost, the
Ack_receiver thread won’t be able to find the thread to wake up when
an ACK comes in
The fix is to ensure that the entry exists before awaiting the ACK,
and if there is no entry, skip the wait. In debug builds, an
informative message is written explaining that the transaction is
skipping its wait. Additional debug-build only logic is added to
ensure that the cause of the missing entry is due to semi-sync being
turned off and on
Reviewed By:
============
Kristian Nielsen <knielsen@knielsen-hq.org>
The problem was that when using clang + asan, we do not get a correct value
for the thread stack as some local variables are not allocated at the
normal stack.
It looks like that for example clang 18.1.3, when compiling with
-O2 -fsanitize=addressan it puts local variables and things allocated by
alloca() in other areas than on the stack.
The following code shows the issue
Thread 6 "mariadbd" hit Breakpoint 3, do_handle_one_connection
(connect=0x5080000027b8,
put_in_cache=<optimized out>) at sql/sql_connect.cc:1399
THD *thd;
1399 thd->thread_stack= (char*) &thd;
(gdb) p &thd
(THD **) 0x7fffedee7060
(gdb) p $sp
(void *) 0x7fffef4e7bc0
The address of thd is 24M away from the stack pointer
(gdb) info reg
...
rsp 0x7fffef4e7bc0 0x7fffef4e7bc0
...
r13 0x7fffedee7060 140737185214560
r13 is pointing to the address of the thd. Probably some kind of
"local stack" used by the sanitizer
I have verified this with gdb on a recursive call that calls alloca()
in a loop. In this case all objects was stored in a local heap,
not on the stack.
To solve this issue in a portable way, I have added two functions:
my_get_stack_pointer() returns the address of the current stack pointer.
The code is using asm instructions for intel 32/64 bit, powerpc,
arm 32/64 bit and sparc 32/64 bit.
Supported compilers are gcc, clang and MSVC.
For MSVC 64 bit we are using _AddressOfReturnAddress()
As a fallback for other compilers/arch we use the address of a local
variable.
my_get_stack_bounds() that will return the address of the base stack
and stack size using pthread_attr_getstack() or NtCurrentTed() with
fallback to using the address of a local variable and user provided
stack size.
Server changes are:
- Moving setting of thread_stack to THD::store_globals() using
my_get_stack_bounds().
- Removing setting of thd->thread_stack, except in functions that
allocates a lot on the stack before calling store_globals(). When
using estimates for stack start, we reduce stack_size with
MY_STACK_SAFE_MARGIN (8192) to take into account the stack used
before calling store_globals().
I also added a unittest, stack_allocation-t, to verify the new code.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Implement variable legacy_xa_rollback_at_disconnect to support
backwards compatibility for applications that rely on the pre-10.5
behavior for connection disconnect, which is to rollback the
transaction (in violation of the XA specification).
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
Fixed by checking handler_stats if it's active instead of
thd->variables.log_slow_verbosity & LOG_SLOW_VERBOSITY_ENGINE.
Reviewed-by: Sergei Petrunia <sergey@mariadb.com>
int wsrep_thd_append_key(THD*, const wsrep_key*, int, Wsrep_service_key_type)
CREATE TABLE [SELECT|REPLACE SELECT] is CTAS and idea was that
we force ROW format. However, it was not correctly enforced
and keys were appended before wsrep transaction was started.
At THD::decide_logging_format we should force used stmt binlog
format to ROW in CTAS case and produce a warning if used
binlog format was not ROW.
At ha_innodb::update_row we should not append keys similarly
as in ha_innodb::write_row if sql_command is SQLCOM_CREATE_TABLE.
Improved error logging on ::write_row, ::update_row and ::delete_row
if wsrep key append fails.
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
(With trivial fixes by sergey@mariadb.com)
Added option fix_innodb_cardinality to optimizer_adjust_secondary_key_costs
Using fix_innodb_cardinality disables the 'divide by 2' of rec_per_key_int
in InnoDB that in effect doubles the Cardinality for secondary keys.
This has the biggest effect for indexes where a few rows has the same key
value. Using this may also cause table scans for very small tables (which
in some cases may be better than an index scan).
The user visible effect is that 'SHOW INDEX FROM table_name' will for
InnoDB show the true Cardinality (and not 2x the real value). It will
also allow the optimizer to chose a better index in some cases as the
division by 2 could have a bad effect for tables with 2-5 identical values
per key.
A few notes about using fix_innodb_cardinality:
- It has direct affect for SHOW INDEX FROM table_name. SHOW INDEX
will also update the statistics in table share.
- The effect of fix_innodb_cardinality for query plans or EXPLAIN
is only visible after first open of the table. This is why one must
do a flush tables or use SHOW INDEX for the option to take effect.
- Using fix_innodb_cardinality can thus affect all user in their query
plans if they are using the same tables.
Because of this, it is strongly recommended that one uses
optimizer_adjust_secondary_key_costs=fix_innodb_cardinality mainly
in configuration files to not cause issues for other users.
Improve performance of queries like
SELECT * FROM t1 WHERE field = NAME_CONST('a', 4);
by, in this example, replacing the WHERE clause with field = 4
in the case of ref access.
The rewrite is done during fix_fields and we disambiguate this
case from other cases of NAME_CONST by inspecting where we are
in parsing. We rely on THD::where to accomplish this. To
improve performance there, we change the type of THD::where to
be an enumeration, so we can avoid string comparisons during
Item_name_const::fix_fields. Consequently, this patch also
changes all usages of THD::where to conform likewise.
InnoDB transactions may be reused after committed:
- when taken from the transaction pool
- during a DDL operation execution
In this case wsrep flag on trx object is cleared, which may cause wrong
execution logic afterwards (wsrep-related hooks are not run).
Make trx->wsrep flag initialize from THD object only once on InnoDB transaction
start and don't change it throughout the transaction's lifetime.
The flag is reset at commit time as before.
Unconditionally set wsrep=OFF for THD objects that represent InnoDB background
threads.
Make Wsrep_schema::store_view() operate in its own transaction.
Fix streaming replication transactions' fragments rollback to not switch
THD->wsrep value during transaction's execution
(use THD->wsrep_ignore_table as a workaround).
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
nullptr+0 is an UB (undefined behavior).
- Fixing my_string_metadata_get_mb() to handle {nullptr,0} without UB.
- Fixing THD::copy_with_error() to disallow {nullptr,0} by DBUG_ASSERT().
- Fixing parse_client_handshake_packet() to call THD::copy_with_error()
with an empty string {"",0} instead of NULL string {nullptr,0}.
The patch for MDEV-31340 fixed the following bugs:
MDEV-33084 LASTVAL(t1) and LASTVAL(T1) do not work well with lower-case-table-names=0
MDEV-33085 Tables T1 and t1 do not work well with ENGINE=CSV and lower-case-table-names=0
MDEV-33086 SHOW OPEN TABLES IN DB1 -- is case insensitive with lower-case-table-names=0
MDEV-33088 Cannot create triggers in the database `MYSQL`
MDEV-33103 LOCK TABLE t1 AS t2 -- alias is not case sensitive with lower-case-table-names=0
MDEV-33108 TABLE_STATISTICS and INDEX_STATISTICS are case insensitive with lower-case-table-names=0
MDEV-33109 DROP DATABASE MYSQL -- does not drop SP with lower-case-table-names=0
MDEV-33110 HANDLER commands are case insensitive with lower-case-table-names=0
MDEV-33119 User is case insensitive in INFORMATION_SCHEMA.VIEWS
MDEV-33120 System log table names are case insensitive with lower-cast-table-names=0
Backporting the fixes from 11.5 to 10.5
Don't deadlock kill event groups in other domains if they are not
SPECULATE_OPTIMISTIC. Such event groups may not be able to safely roll back
and retry (eg. DDL).
But do deadlock kill a transaction T2 from a blocked transaction U in another
domain, even if T2 has lower sub_id than U. Otherwise, in case of a cycle
T2->T1->U->T2, we might not break the cycle if U is not SPECULATE_OPTIMISTIC
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
One case is conflicting transactions T1 and T2 with different domain id, in
optimistic parallel replication in non-GTID mode. Then T2 will
wait_for_prior_commit on T1; and if T1 got a row lock wait on T2 it would
hang, as different domains caused the deadlock kill to be skipped in
thd_rpl_deadlock_check().
More generally, if we have transactions T1 and T2 in one domain/master
connection, and independent transactions U in another, then we can
still deadlock like this:
T1 row low wait on U
U row lock wait on T2
T2 wait_for_prior_commit on T1
This commit enforces the deadlock kill in these cases. If the waited-for
transaction is speculatively applied, then it will be deadlock killed in
case of a conflict, even if the two transactions are in different domains
or master connections.
Reviewed-by: Andrei Elkin <andrei.elkin@mariadb.com>
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
Fixed that internal temporary tables are not waiting for freed disk space.
Other things:
- 'kill id' will now kill a query waiting for free disk space instantly.
Before it could take up to 60 seconds for the kill would be noticed.
- Fixed that sorting one index is not using MY_WAIT_IF_FULL for temp files.
- Fixed bug where share->write_flag set MY_WAIT_IF_FULL for temp files.
It is quite hard to do a test case for this. Instead I tested all
combinations interactively.
Some fixes related to commit f838b2d799 and
Rows_log_event::do_apply_event() and Update_rows_log_event::do_exec_row()
for system-versioned tables were provided by Nikita Malyavin.
This was required by test versioning.rpl,trx_id,row.
When using semi-sync replication with
rpl_semi_sync_master_wait_point=AFTER_COMMIT, the performance of the
primary can significantly reduce compared to AFTER_SYNC's
performance for workloads with many concurrent users executing
transactions. This is because all connections on the primary share
the same cond_wait variable/mutex pair, so any time an ACK is
received from a replica, all waiting connections are awoken to check
if the ACK was for itself, which is done in mutual exclusion.
This patch changes this such that the waiting THD will use its own
local condition variable, and the ACK receiver thread only signals
connections which have been ACKed for wakeup. That is, the
THD::LOCK_wakeup_ready condition variable is re-used for this
purpose, and the Active_tranx queue nodes are extended to hold the
waiting thread, so it can be signalled once ACKed.
Additionally:
1) Removed part of MDEV-11853 additions, which allowed suspended
connection threads awaiting their semi-sync ACKs to live until their
ACKs had been received. This part, however, wasn't needed. That is,
all that was needed was for the Ack_thread to survive. So now the
connection threads are killed during phase 1. Thereby
THD::is_awaiting_semisync_ack, and all its related code was removed.
2) COND_binlog_send is repurposed to signal on the condition when
Active_tranx is emptied during clear_active_tranx_nodes.
3) At master shutdown (when waiting for slaves), instead of the
main loop individually waiting for each ACK, await_slave_reply()
(renamed await_all_slave_replies()) just waits once for the
repurposed COND_binlog_send to signal it is empty.
4) Test rpl_semi_sync_shutdown_await_ack is updates as following:
4.1) Added test case (adapted from Kristian Nielsen) to ensure
that if a thread awaiting its ACK is killed while SHUTDOWN WAIT FOR
ALL SLAVES is issued, the primary will still wait for the ACK from
the killed thread.
4.2) As connections which by-passed phase 1 of thread killing no
longer are delayed for kill until phase 2, we can no longer query
yes/no tx after receiving an ACK/timeout. The check for these
variables is removed.
4.3) Comment descriptions are updated which mention that the
connection is alive; and adjusted to be the Ack_thread.
Reviewed By:
============
Kristian Nielsen <knielsen@knielsen-hq.org>
Remove work-around that disables bulk insert optimization in replication
The root cause of the original problem is now fixed (MDEV-33475). Though the
bulk insert optimization will still be disabled in replication, as it is
only enabled in special circumstances meant for loading a mysqldump.
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
In case there is a view that queried from a stored routine or
a prepared statement and this temporary table is dropped between
executions of SP/PS, then it leads to hitting an assertion
at the SELECT_LEX::fix_prepare_information. The fired assertion
was added by the commit 85f2e4f8e8
(MDEV-32466: Potential memory leak on executing of create view statement).
Firing of this assertion means memory leaking on execution of SP/PS.
Moreover, if the added assert be commented out, different result sets
can be produced by the statement SELECT * FROM the hidden table.
Both hitting the assertion and different result sets have the same root
cause. This cause is usage of temporary table's metadata after the table
itself has been dropped. To fix the issue, reload the cache of stored
routines. To do it cache of stored routines is reset at the end of
execution of the function dispatch_command(). Next time any stored routine
be called it will be loaded from the table mysql.proc. This happens inside
the method Sp_handler::sp_cache_routine where loading of a stored routine
is performed in case it missed in cache. Loading is performed unconditionally
while previously it was controlled by the parameter lookup_only. By that
reason the signature of the method Sroutine_hash_entry::sp_cache_routine
was changed by removing unused parameter lookup_only.
Clearing of sp caches affects the test main.lock_sync since it forces
opening and locking the table mysql.proc but the test assumes that each
statement locks its tables once during its execution. To keep this invariant
the debug sync points with names "before_lock_tables_takes_lock" and
"after_lock_tables_takes_lock" are not activated on handling the table
mysql.proc
MDEV-33308 CHECK TABLE is modifying .frm file even if --read-only
As noted in commit d0ef1aaf61,
MySQL as well as older versions of MariaDB server would during
ALTER TABLE ... IMPORT TABLESPACE write bogus values to the
PAGE_MAX_TRX_ID field to pages of the clustered index, instead of
letting that field remain 0.
In commit 8777458a6e this field
was repurposed for PAGE_ROOT_AUTO_INC in the clustered index root page.
To avoid trouble when upgrading from MySQL or older versions of MariaDB,
we will try to detect and correct bogus values of PAGE_ROOT_AUTO_INC
when opening a table for the first time from the SQL layer.
btr_read_autoinc_with_fallback(): Add the parameters to mysql_version,max
to indicate the TABLE_SHARE::mysql_version of the .frm file and the
maximum value allowed for the type of the AUTO_INCREMENT column.
In case the table was originally created in MySQL or an older version of
MariaDB, read also the maximum value of the AUTO_INCREMENT column from
the table and reset the PAGE_ROOT_AUTO_INC if it is above the limit.
dict_table_t::get_index(const dict_col_t &) const: Find an index that
starts with the specified column.
ha_innobase::check_for_upgrade(): Return HA_ADMIN_FAILED if InnoDB
needs upgrading but is in read-only mode. In this way, the call to
update_frm_version() will be skipped.
row_import_autoinc(): Adjust the AUTO_INCREMENT column at the end of
ALTER TABLE...IMPORT TABLESPACE. This refinement was suggested by
Debarun Banerjee.
The changes outside InnoDB were developed by Michael 'Monty' Widenius:
Added print_check_msg() service for easy reporting of check/repair messages
in ENGINE=Aria and ENGINE=InnoDB.
Fixed that CHECK TABLE do not update the .frm file under --read-only.
Added 'handler_flags' to HA_CHECK_OPT as a way for storage engines to
store state from handler::check_for_upgrade().
Reviewed by: Debarun Banerjee
Most things where wrong in the test suite.
The one thing that was a bug was that table_map_id was in some places
defined as ulong and in other places as ulonglong. On Linux 64 bit this
is not a problem as ulong == ulonglong, but on windows this caused failures.
Fixed by ensuring that all instances of table_map_id are ulonglong.
rpl_semi_sync_slave_enabled_consistent.test and the first part of
the commit message comes from Brandon Nesterenko.
A test to show how to induce the "Read semi-sync reply magic number
error" message on a primary. In short, if semi-sync is turned on
during the hand-shake process between a primary and replica, but
later a user negates the rpl_semi_sync_slave_enabled variable while
the replica's IO thread is running; if the io thread exits, the
replica can skip a necessary call to kill_connection() in
repl_semisync_slave.slave_stop() due to its reliance on a global
variable. Then, the replica will send a COM_QUIT packet to the
primary on an active semi-sync connection, causing the magic number
error.
The test in this patch exits the IO thread by forcing an error;
though note a call to STOP SLAVE could also do this, but it ends up
needing more synchronization. That is, the STOP SLAVE command also
tries to kill the VIO of the replica, which makes a race with the IO
thread to try and send the COM_QUIT before this happens (which would
need more debug_sync to get around). See THD::awake_no_mutex for
details as to the killing of the replica’s vio.
Notes:
- The MariaDB documentation does not make it clear that when one
enables semi-sync replication it does not matter if one enables
it first in the master or slave. Any order works.
Changes done:
- The rpl_semi_sync_slave_enabled variable is now a default value for
when semisync is started. The variable does not anymore affect
semisync if it is already running. This fixes the original reported
bug. Internally we now use repl_semisync_slave.get_slave_enabled()
instead of rpl_semi_sync_slave_enabled. To check if semisync is
active on should check the @@rpl_semi_sync_slave_status variable (as
before).
- The semisync protocol conflicts in the way that the original
MySQL/MariaDB client-server protocol was designed (client-server
send and reply packets are strictly ordered and includes a packet
number to allow one to check if a packet is lost). When using
semi-sync the master and slave can send packets at 'any time', so
packet numbering does not work. The 'solution' has been that each
communication starts with packet number 1, but in some cases there
is still a chance that the packet number check can fail. Fixed by
adding a flag (pkt_nr_can_be_reset) in the NET struct that one can
use to signal that packet number checking should not be done. This
is flag is set when semi-sync is used.
- Added Master_info::semi_sync_reply_enabled to allow one to configure
some slaves with semisync and other other slaves without semisync.
Removed global variable semi_sync_need_reply that would not work
with multi-master.
- Repl_semi_sync_master::report_reply_packet() can now recognize
the COM_QUIT packet from semisync slave and not give a
"Read semi-sync reply magic number error" error for this case.
The slave will be removed from the Ack listener.
- On Windows, don't stop semisync Ack listener just because one
slave connection is using socket_id > FD_SETSIZE.
- Removed busy loop in Ack_receiver::run() by using
"Self-pipe trick" to signal new slave and stop Ack_receiver.
- Changed some Repl_semi_sync_slave functions that always returns 0
from int to void.
- Added Repl_semi_sync_slave::slave_reconnect().
- Removed dummy_function Repl_semi_sync_slave::reset_slave().
- Removed some duplicate semisync notes from the error log.
- Add test of "if (get_slave_enabled() && semi_sync_need_reply)"
before calling Repl_semi_sync_slave::slave_reply().
(Speeds up the code as we can skip all initializations).
- If epl_semisync_slave.slave_reply() fails, we disable semisync
for that connection.
- We do not call semisync.switch_off() if there are no active slaves.
Instead we check in Repl_semi_sync_master::commit_trx() if there are
no active threads. This simplices the code.
- Changed assert() to DBUG_ASSERT() to ensure that the DBUG log is
flushed in case of asserts.
- Removed the internal rpl_semi_sync_slave_status as it is not needed
anymore. The @@rpl_semi_sync_slave_status status variable is now
mapped to rpl_semi_sync_enabled.
- Removed rpl_semi_sync_slave_enabled as it is not needed anymore.
Repl_semi_sync_slave::get_slave_enabled() contains the active status.
- Added checking that we do not add a slave twice with
Ack_receiver::add_slave(). This could happen with old code.
- Removed Repl_semi_sync_master::check_and_switch() as it is not
needed anymore.
- Ensure that when we call Ack_receiver::remove_slave() that the slave
is removed from the listener before function returns.
- Call listener.listen_on_sockets() outside of mutex for better
performance and less contested mutex.
- Ensure that listening is ignoring newly added slaves when checking for
responses.
- Fixed the master ack_receiver listener is not killed if there are no
connected slaves (and thus stop semisync handling of future
connections). This could happen if all slaves sockets where would be
marked as unreliable.
- Added unlink() to base_ilist_iterator and remove() to
I_List_iterator. This enables us to remove 'dead' slaves in
Ack_recever::run().
- kill_zombie_dump_threads() now does killing of dump threads properly.
- It can now kill several threads (should be impossible but could
happen if IO slaves reconnects very fast).
- We now wait until the dump thread is done before starting the
dump.
- Added an error if kill_zombie_dump_threads() fails.
- Set thd->variables.server_id before calling
kill_zombie_dump_threads(). This simplies the code.
- Added a lot of comments both in code and tests.
- Removed DBUG_EVALUATE_IF "failed_slave_start" as it is not used.
Test changes:
- rpl.rpl_session_var2 added which runs rpl.rpl_session_var test with
semisync enabled.
- Some timings changed slight with startup of slave which caused
rpl_binlog_dump_slave_gtid_state_info.text to fail as it checked the
error log file before the slave had started properly. Fixed by
adding wait_for_pattern_in_file.inc that allows waiting for the
pattern to appear in the log file.
- Tests have been updated so that we first set
rpl_semi_sync_master_enabled on the master and then set
rpl_semi_sync_slave_enabled on the slaves (this is according to how
the MariaDB documentation document how to setup semi-sync).
- Error text "Master server does not have semi-sync enabled" has been
replaced with "Master server does not support semi-sync" for the
case when the master supports semi-sync but semi-sync is not
enabled.
Other things:
- Some trivial cleanups in Repl_semi_sync_master::update_sync_header().
- We should in 11.3 changed the default value for
rpl-semi-sync-master-wait-no-slave from TRUE to FALSE as the TRUE
does not make much sense as default. The main difference with using
FALSE is that we do not wait for semisync Ack if there are no slave
threads. In the case of TRUE we wait once, which did not bring any
notable benefits except slower startup of master configured for
using semisync.
Co-author: Brandon Nesterenko <brandon.nesterenko@mariadb.com>
This solves the problem reported in MDEV-32960 where a new
slave may not be registered in time and the master disables
semi sync because of that.