This crash happens on a combination of multiple conditions:
- There is a thead#1 running an "ANALYZE FORMAT=JSON" query for a
"SELECT .. FROM INFORMATION_SCHEMA.COLUMNS WHERE .. "
- The WHERE clause contains a stored function call, say f1().
- The WHERE clause is built in the way so that the function f1()
is never actually called, e.g.
WHERE .. AND (TRUE OR f1()=expr)
- The database contains multiple VIEWs that have the function f1() call,
e.g. in their <select list>
- The WHERE clause is built in the way so that these VIEWs match
the condition.
- There is a parallel thread#2 running. It creates or drops or recreates
some other stored routine, say f2(), which is not used in the ANALYZE query.
It effectively invalidates the stored routine cache for thread#1
without locking.
Note, it is important that f2() is NOT used by ANALYZE query.
Otherwise, thread#2 would be locked until the ANALYZE query
finishes.
When all of the above conditions are met, the following happens:
1. thread#1 starts the ANALYZE query. It notices a call for the stored function
f1() in the WHERE condition. The function f1() gets parsed and cached
to the SP cache. Its address also gets assigned to Item_func_sp::m_sp.
2. thread#1 starts iterating through all tables that
match the WHERE condition to find the information about their columns.
3. thread#1 processes columns of the VIEW v1.
It notices a call for f1() in the VIEW v1 definition.
But f1() is already cached in the step#1 and it is up to date.
So nothing happens with the SP cache.
4. thread#2 re-creates f2() in a non-locking mode.
It effectively invalidates the SP cache in thread#1.
5. thread#1 processes columns of the VIEW v2.
It notices a call for f1() in the VIEW v2 definition.
It also notices that the cached version of f1() is not up to date.
It frees the old definition of f1(), parses it again, and puts a
new version of f1() to the SP cache.
6. thread#1 finishes processing rows and generates the JSON output.
When printing the "attached_condition" value, it calls
Item_func_sp::print() for f1(). But this Item_func_sp links
to the old (freed) version of f1().
The above scenario demonstrates that Item_func_sp::m_sp can point to an
alredy freed instance when Item_func_sp::func_name() is called,
so accessing to Item_sp::m_sp->m_handler is not safe.
This patch rewrites the code to use Item_func_sp::m_handler instead,
which is always reliable.
Note, this patch is only a cleanup for MDEV-28166 to quickly fix the regression.
It fixes MDEV-28267. But it does not fix the core problem:
The code behind I_S does not take into account that the SP
cache can be updated while evaluating rows of the COLUMNS table.
This is a corner case and it never happens with any other tables.
I_S.COLUMNS is very special.
Another example of the core problem is reported in MDEV-25243.
The code accesses to Item_sp::m_sp->m_chistics of an
already freed m_sp, again. It will be addressed separately.
This patch reverts the fixes of the bugs MDEV-24454 and MDEV-25631 from
the commit 3690c549c6.
It leaves the changes in plugin/feedback/feedback.cc and corresponding
test files introduced in this commit intact.
Proper fixes for the bug MDEV-24454 and MDEV-25631 will follow immediately.
Use in_sum_func (and so nest_level) only in LEX to which SELECT lex belong to
Reduce usage of current_select (because it does not always point on the correct
SELECT_LEX, for example with prepare.
Change context for all classes inherited from Item_ident (was only for Item_field) in case of pushing down it to HAVING.
Now name resolution context have to have SELECT_LEX reference if the context is present.
Fixed feedback plugin stack usage.
- Better, easier to read code (no used of 'random' constants).
- All defines are now unique, so it is easier to find bugs if
somethings goes wrong.
Other things:
- Created sub function of common code in Aggregator_distinct::setup() and
Item_func_group_concat::setup() that set item->marker
- More documentation
- Folded a few long lines.
- Allmost all changes in item.cc, sql_lex.cc and sql_window.cc are done
with 'replace'.
- Moved out creating StringBuffers in loops and instead create them
outside and just reset the buffer if it was not allocated (to avoid
a possible malloc/free for every entry)
Other things related to set_buffer_if_not_allocated()
- Changed Valuebuffer to not call set_buffer_if_not_allocated() when
it is created.
- Fixed geometry functions to reset string length before calling
String::reserve(). This is because one should not access length()
of an undefined.
- Added Item_func_conv_charset::save_in_field() as the item is using
str_value to store cached values, which conflicts with
Item::save_str_in_field().
- Changed Item_proc_string to not store the string value in sql_string
as this clashes with Item::save_str_in_field().
- Locally store value of full_name_cstring() in analyse::end_of_records()
as Item::save_str_in_field() may overwrite it.
- Marked some strings as set_thread_specific()
- Added String::free_buffer() to be used internally in String functions
to just free the buffer but not reset other String values.
- Fixed uses_buffer_owned_by() to check for allocated length instead of
strlength, which could be marked MEM_UNDEFINED().
Changes:
- To detect automatic strlen() I removed the methods in String that
uses 'const char *' without a length:
- String::append(const char*)
- Binary_string(const char *str)
- String(const char *str, CHARSET_INFO *cs)
- append_for_single_quote(const char *)
All usage of append(const char*) is changed to either use
String::append(char), String::append(const char*, size_t length) or
String::append(LEX_CSTRING)
- Added STRING_WITH_LEN() around constant string arguments to
String::append()
- Added overflow argument to escape_string_for_mysql() and
escape_quotes_for_mysql() instead of returning (size_t) -1 on overflow.
This was needed as most usage of the above functions never tested the
result for -1 and would have given wrong results or crashes in case
of overflows.
- Added Item_func_or_sum::func_name_cstring(), which returns LEX_CSTRING.
Changed all Item_func::func_name()'s to func_name_cstring()'s.
The old Item_func_or_sum::func_name() is now an inline function that
returns func_name_cstring().str.
- Changed Item::mode_name() and Item::func_name_ext() to return
LEX_CSTRING.
- Changed for some functions the name argument from const char * to
to const LEX_CSTRING &:
- Item::Item_func_fix_attributes()
- Item::check_type_...()
- Type_std_attributes::agg_item_collations()
- Type_std_attributes::agg_item_set_converter()
- Type_std_attributes::agg_arg_charsets...()
- Type_handler_hybrid_field_type::aggregate_for_result()
- Type_handler_geometry::check_type_geom_or_binary()
- Type_handler::Item_func_or_sum_illegal_param()
- Predicant_to_list_comparator::add_value_skip_null()
- Predicant_to_list_comparator::add_value()
- cmp_item_row::prepare_comparators()
- cmp_item_row::aggregate_row_elements_for_comparison()
- Cursor_ref::print_func()
- Removes String_space() as it was only used in one cases and that
could be simplified to not use String_space(), thanks to the fixed
my_vsnprintf().
- Added some const LEX_CSTRING's for common strings:
- NULL_clex_str, DATA_clex_str, INDEX_clex_str.
- Changed primary_key_name to a LEX_CSTRING
- Renamed String::set_quick() to String::set_buffer_if_not_allocated() to
clarify what the function really does.
- Rename of protocol function:
bool store(const char *from, CHARSET_INFO *cs) to
bool store_string_or_null(const char *from, CHARSET_INFO *cs).
This was done to both clarify the difference between this 'store' function
and also to make it easier to find unoptimal usage of store() calls.
- Added Protocol::store(const LEX_CSTRING*, CHARSET_INFO*)
- Changed some 'const char*' arrays to instead be of type LEX_CSTRING.
- class Item_func_units now used LEX_CSTRING for name.
Other things:
- Fixed a bug in mysql.cc:construct_prompt() where a wrong escape character
in the prompt would cause some part of the prompt to be duplicated.
- Fixed a lot of instances where the length of the argument to
append is known or easily obtain but was not used.
- Removed some not needed 'virtual' definition for functions that was
inherited from the parent. I added override to these.
- Fixed Ordered_key::print() to preallocate needed buffer. Old code could
case memory overruns.
- Simplified some loops when adding char * to a String with delimiters.
This was done to simplify copying of with_* flags
Other things:
- Changed Flags to C++ enums, which enables gdb to print
out bit values for the flags. This also enables compiler
errors if one tries to manipulate a non existing bit in
a variable.
- Added set_maybe_null() as a shortcut as setting the
MAYBE_NULL flags was used in a LOT of places.
- Renamed PARAM flag to SP_VAR to ensure it's not confused with persistent
statement parameters.
One should instead use Item::fixed() and Item::with_subquery()
Removed Item::is_fixed() and has_subquery() and did the following replace:
replace is_fixed() fixed() -- *.*
replace 'has_subquery()' 'with_subquery()' -- *.*
- Added THD argument to functions that calls current_thd() or
new without a mem_root argument:
make_same(), set_comparator_func(), set_cmp_func(), set_cmp_func*(),
set_aggregator() and prepare_sum_aggregators()
- Changed "new Class" to "new (thd->mem_root) Class"
Almost all changes mechanical, no logic changes.
The reason for the change is that neither clang or gcc can do efficient
code when several bit fields are change at the same time or when copying
one or more bits between identical bit fields.
Updated bits explicitely with & and | is MUCH more efficient than what
current compilers can do.
Added back variable 'with_subquery' to Item class as a bit field.
This made the code shorter, faster (removed some virtual methods,
less code to create an initialized item etc) and made many Item's 7 bytes
smaller.
This is the last set of my patches the decreases the size of Item.
Some examples from gdb:
sizeof(Item): 144 -> 120
sizeof(Item_func) 208 -> 184
sizeof(Item_sum_max) 368 -> 344
Added back variable 'with_sum_func' to Item class as a bit field.
This made the code shorter, faster (removed some virtual methods,
less code to create an initialized item etc) and made many Item's 7 bytes
smaller.
The code is also easier to understand as 'with_sum_func' is threated as any
other Item variable when creating or copying items.
- Changed order of class fields to remove dead alignment space.
- Changed bool fields in Item to bit fields.
- Used packed enum's for some fields in common classes
- Removed not used Item::rsize.
- Changed some class variables from uint/int to smaller type int's.
- Ensured that field_index is uint16 in all classes and functions. Fixed
also that we proparly compare with NO_CACHED_FIELD_INDEX when checking
if variable is not set.
- Removed checking of highest bit of unireg_check (has not been used in
a long time)
- Fixed wrong arguments to make_cond_for_table() for join_tab_idx_arg
from false to 0.
One of the result was reducing the size if class Item with ~24 bytes
The easiest way to compile and test the server with UBSAN is to run:
./BUILD/compile-pentium64-ubsan
and then run mysql-test-run.
After this commit, one should be able to run this without any UBSAN
warnings. There is still a few compiler warnings that should be fixed
at some point, but these do not expose any real bugs.
The 'special' cases where we disable, suppress or circumvent UBSAN are:
- ref10 source (as here we intentionally do some shifts that UBSAN
complains about.
- x86 version of optimized int#korr() methods. UBSAN do not like unaligned
memory access of integers. Fixed by using byte_order_generic.h when
compiling with UBSAN
- We use smaller thread stack with ASAN and UBSAN, which forced me to
disable a few tests that prints the thread stack size.
- Verifying class types does not work for shared libraries. I added
suppression in mysql-test-run.pl for this case.
- Added '#ifdef WITH_UBSAN' when using integer arithmetic where it is
safe to have overflows (two cases, in item_func.cc).
Things fixed:
- Don't left shift signed values
(byte_order_generic.h, mysqltest.c, item_sum.cc and many more)
- Don't assign not non existing values to enum variables.
- Ensure that bool and enum values are properly initialized in
constructors. This was needed as UBSAN checks that these types has
correct values when one copies an object.
(gcalc_tools.h, ha_partition.cc, item_sum.cc, partition_element.h ...)
- Ensure we do not called handler functions on unallocated objects or
deleted objects.
(events.cc, sql_acl.cc).
- Fixed bugs in Item_sp::Item_sp() where we did not call constructor
on Query_arena object.
- Fixed several cast of objects to an incompatible class!
(Item.cc, Item_buff.cc, item_timefunc.cc, opt_subselect.cc, sql_acl.cc,
sql_select.cc ...)
- Ensure we do not do integer arithmetic that causes over or underflows.
This includes also ++ and -- of integers.
(Item_func.cc, Item_strfunc.cc, item_timefunc.cc, sql_base.cc ...)
- Added JSON_VALUE_UNITIALIZED to json_value_types and ensure that
value_type is initialized to this instead of to -1, which is not a valid
enum value for json_value_types.
- Ensure we do not call memcpy() when second argument could be null.
- Fixed that Item_func_str::make_empty_result() creates an empty string
instead of a null string (safer as it ensures we do not do arithmetic
on null strings).
Other things:
- Changed struct st_position to an OBJECT and added an initialization
function to it to ensure that we do not copy or use uninitialized
members. The change to a class was also motived that we used "struct
st_position" and POSITION randomly trough the code which was
confusing.
- Notably big rewrite in sql_acl.cc to avoid using deleted objects.
- Changed in sql_partition to use '^' instead of '-'. This is safe as
the operator is either 0 or 0x8000000000000000ULL.
- Added check for select_nr < INT_MAX in JOIN::build_explain() to
avoid bug when get_select() could return NULL.
- Reordered elements in POSITION for better alignment.
- Changed sql_test.cc::print_plan() to use pointers instead of objects.
- Fixed bug in find_set() where could could execute '1 << -1'.
- Added variable have_sanitizer, used by mtr. (This variable was before
only in 10.5 and up). It can now have one of two values:
ASAN or UBSAN.
- Moved ~Archive_share() from ha_archive.cc to ha_archive.h and marked
it virtual. This was an effort to get UBSAN to work with loaded storage
engines. I kept the change as the new place is better.
- Added in CONNECT engine COLBLK::SetName(), to get around a wrong cast
in tabutil.cpp.
- Added HAVE_REPLICATION around usage of rgi_slave, to get embedded
server to compile with UBSAN. (Patch from Marko).
- Added #ifdef for powerpc64 to avoid a bug in old gcc versions related
to integer arithmetic.
Changes that should not be needed but had to be done to suppress warnings
from UBSAN:
- Added static_cast<<uint16_t>> around shift to get rid of a LOT of
compiler warnings when using UBSAN.
- Had to change some '/' of 2 base integers to shift to get rid of
some compile time warnings.
Reviewed by:
- Json changes: Alexey Botchkov
- Charset changes in ctype-uca.c: Alexander Barkov
- InnoDB changes & Embedded server: Marko Mäkelä
- sql_acl.cc changes: Vicențiu Ciorbaru
- build_explain() changes: Sergey Petrunia
This follows up commit
commit 94a520ddbe and
commit 7c5519c12d.
After these changes, the default test suites on a
cmake -DWITH_UBSAN=ON build no longer fail due to passing
null pointers as parameters that are declared to never be null,
but plenty of other runtime errors remain.
The problem here is similar to the case with DISTINCT, the tree used for ORDER BY
needs to also hold the null bytes of the record. This was not done for GROUP_CONCAT
as NULLS are rejected by GROUP_CONCAT.
Also introduced a comparator function for the order by tree to handle null
values with JSON_ARRAYAGG.
For DISTINCT to be handled with JSON_ARRAYAGG, we need to make sure
that the Unique tree also holds the NULL bytes of a table record
inside the node of the tree. This behaviour for JSON_ARRAYAGG is
different from GROUP_CONCAT because in GROUP_CONCAT we just reject
NULL values for columns.
Also introduced a comparator function for the unique tree to handle null
values for distinct inside JSON_ARRAYAGG.
Backported from MYSQL
Bug #25331425: DISTINCT CLAUSE DOES NOT WORK IN GROUP_CONCAT
Issue:
------
The problem occurs when:
1) GROUP_CONCAT (DISTINCT ....) is used in the query.
2) Data size greater than value of system variable:
tmp_table_size.
The result would contain values that are non-unique.
Root cause:
-----------
An in-memory structure is used to filter out non-unique
values. When the data size exceeds tmp_table_size, the
overflow is written to disk as a separate file. The
expectation here is that when all such files are merged,
the full set of unique values can be obtained.
But the Item_func_group_concat::add function is in a bit of
hurry. Even as it is adding values to the tree, it wants to
decide if a value is unique and write it to the result
buffer. This works fine if the configured maximum size is
greater than the size of the data. But since tmp_table_size
is set to a low value, the size of the tree is smaller and
hence requires the creation of multiple copies on disk.
Item_func_group_concat currently has no mechanism to merge
all the copies on disk and then generate the result. This
results in duplicate values.
Solution:
---------
In case of the DISTINCT clause, don't write to the result
buffer immediately. Do the merge and only then put the
unique values in the result buffer. This has be done in
Item_func_group_concat::val_str.
Note regarding result file changes:
-----------------------------------
Earlier when a unique value was seen in
Item_func_group_concat::add, it was dumped to the output.
So result is in the order stored in SE. But with this fix,
we wait until all the data is read and the final set of
unique values are written to output buffer. So the data
appears in the sorted order.
This only fixes the cases when we have DISTINCT without ORDER BY clause
in GROUP_CONCAT.
Backported from MYSQL
Bug #25331425: DISTINCT CLAUSE DOES NOT WORK IN GROUP_CONCAT
Issue:
------
The problem occurs when:
1) GROUP_CONCAT (DISTINCT ....) is used in the query.
2) Data size greater than value of system variable:
tmp_table_size.
The result would contain values that are non-unique.
Root cause:
-----------
An in-memory structure is used to filter out non-unique
values. When the data size exceeds tmp_table_size, the
overflow is written to disk as a separate file. The
expectation here is that when all such files are merged,
the full set of unique values can be obtained.
But the Item_func_group_concat::add function is in a bit of
hurry. Even as it is adding values to the tree, it wants to
decide if a value is unique and write it to the result
buffer. This works fine if the configured maximum size is
greater than the size of the data. But since tmp_table_size
is set to a low value, the size of the tree is smaller and
hence requires the creation of multiple copies on disk.
Item_func_group_concat currently has no mechanism to merge
all the copies on disk and then generate the result. This
results in duplicate values.
Solution:
---------
In case of the DISTINCT clause, don't write to the result
buffer immediately. Do the merge and only then put the
unique values in the result buffer. This has be done in
Item_func_group_concat::val_str.
Note regarding result file changes:
-----------------------------------
Earlier when a unique value was seen in
Item_func_group_concat::add, it was dumped to the output.
So result is in the order stored in SE. But with this fix,
we wait until all the data is read and the final set of
unique values are written to output buffer. So the data
appears in the sorted order.
This only fixes the cases when we have DISTINCT without ORDER BY clause
in GROUP_CONCAT.
We have to include NULL in the result which the GOUP_CONCAT doesn't
always do. Also converting should be done into another String instance
as these can be same.