MDEV-6693 - Atomic operations with explicit memory barrier

Added API for atomic operations with explicit memory barrier. Only gcc
atomic builtins are currently supported. If they're unavailable, fall
back to atomic operations with implicit full memory barrier.
This commit is contained in:
Sergey Vojtovich 2014-10-14 14:58:35 +04:00
parent f947f73b2b
commit e813f9b9b3

View file

@ -20,27 +20,86 @@
This header defines five atomic operations:
my_atomic_add#(&var, what)
my_atomic_add#_explicit(&var, what, memory_order)
'Fetch and Add'
add 'what' to *var, and return the old value of *var
All memory orders are valid.
my_atomic_fas#(&var, what)
my_atomic_fas#_explicit(&var, what, memory_order)
'Fetch And Store'
store 'what' in *var, and return the old value of *var
All memory orders are valid.
my_atomic_cas#(&var, &old, new)
my_atomic_cas#_weak_explicit(&var, &old, new, succ, fail)
my_atomic_cas#_strong_explicit(&var, &old, new, succ, fail)
'Compare And Swap'
if *var is equal to *old, then store 'new' in *var, and return TRUE
otherwise store *var in *old, and return FALSE
succ - the memory synchronization ordering for the read-modify-write
operation if the comparison succeeds. All memory orders are valid.
fail - the memory synchronization ordering for the load operation if the
comparison fails. Cannot be MY_MEMORY_ORDER_RELEASE or
MY_MEMORY_ORDER_ACQ_REL and cannot specify stronger ordering than succ.
The weak form is allowed to fail spuriously, that is, act as if *var != *old
even if they are equal. When a compare-and-exchange is in a loop, the weak
version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the
strong one is preferable.
my_atomic_load#(&var)
my_atomic_load#_explicit(&var, memory_order)
return *var
Order must be one of MY_MEMORY_ORDER_RELAXED, MY_MEMORY_ORDER_CONSUME,
MY_MEMORY_ORDER_ACQUIRE, MY_MEMORY_ORDER_SEQ_CST.
my_atomic_store#(&var, what)
my_atomic_store#_explicit(&var, what, memory_order)
store 'what' in *var
Order must be one of MY_MEMORY_ORDER_RELAXED, MY_MEMORY_ORDER_RELEASE,
MY_MEMORY_ORDER_SEQ_CST.
'#' is substituted by a size suffix - 8, 16, 32, 64, or ptr
(e.g. my_atomic_add8, my_atomic_fas32, my_atomic_casptr).
The first version orders memory accesses according to MY_MEMORY_ORDER_SEQ_CST,
the second version (with _explicit suffix) orders memory accesses according to
given memory order.
memory_order specifies how non-atomic memory accesses are to be ordered around
an atomic operation:
MY_MEMORY_ORDER_RELAXED - there are no constraints on reordering of memory
accesses around the atomic variable.
MY_MEMORY_ORDER_CONSUME - no reads in the current thread dependent on the
value currently loaded can be reordered before this
load. This ensures that writes to dependent
variables in other threads that release the same
atomic variable are visible in the current thread.
On most platforms, this affects compiler
optimization only.
MY_MEMORY_ORDER_ACQUIRE - no reads in the current thread can be reordered
before this load. This ensures that all writes in
other threads that release the same atomic variable
are visible in the current thread.
MY_MEMORY_ORDER_RELEASE - no writes in the current thread can be reordered
after this store. This ensures that all writes in
the current thread are visible in other threads that
acquire the same atomic variable.
MY_MEMORY_ORDER_ACQ_REL - no reads in the current thread can be reordered
before this load as well as no writes in the current
thread can be reordered after this store. The
operation is read-modify-write operation. It is
ensured that all writes in another threads that
release the same atomic variable are visible before
the modification and the modification is visible in
other threads that acquire the same atomic variable.
MY_MEMORY_ORDER_SEQ_CST - The operation has the same semantics as
acquire-release operation, and additionally has
sequentially-consistent operation ordering.
NOTE This operations are not always atomic, so they always must be
enclosed in my_atomic_rwlock_rdlock(lock)/my_atomic_rwlock_rdunlock(lock)
or my_atomic_rwlock_wrlock(lock)/my_atomic_rwlock_wrunlock(lock).
@ -50,7 +109,7 @@
On architectures where these operations are really atomic, rwlocks will
be optimized away.
8- and 16-bit atomics aren't implemented for windows (see generic-msvc.h),
but can be added, if necessary.
but can be added, if necessary.
*/
#ifndef my_atomic_rwlock_init
@ -283,4 +342,79 @@ extern int my_atomic_initialize();
#endif
#ifdef __ATOMIC_SEQ_CST
#define MY_MEMORY_ORDER_RELAXED __ATOMIC_RELAXED
#define MY_MEMORY_ORDER_CONSUME __ATOMIC_CONSUME
#define MY_MEMORY_ORDER_ACQUIRE __ATOMIC_ACQUIRE
#define MY_MEMORY_ORDER_RELEASE __ATOMIC_RELEASE
#define MY_MEMORY_ORDER_ACQ_REL __ATOMIC_ACQ_REL
#define MY_MEMORY_ORDER_SEQ_CST __ATOMIC_SEQ_CST
#define my_atomic_store32_explicit(P, D, O) __atomic_store_n((P), (D), (O))
#define my_atomic_store64_explicit(P, D, O) __atomic_store_n((P), (D), (O))
#define my_atomic_storeptr_explicit(P, D, O) __atomic_store_n((P), (D), (O))
#define my_atomic_load32_explicit(P, O) __atomic_load_n((P), (O))
#define my_atomic_load64_explicit(P, O) __atomic_load_n((P), (O))
#define my_atomic_loadptr_explicit(P, O) __atomic_load_n((P), (O))
#define my_atomic_fas32_explicit(P, D, O) __atomic_exchange_n((P), (D), (O))
#define my_atomic_fas64_explicit(P, D, O) __atomic_exchange_n((P), (D), (O))
#define my_atomic_fasptr_explicit(P, D, O) __atomic_exchange_n((P), (D), (O))
#define my_atomic_add32_explicit(P, A, O) __atomic_fetch_add((P), (A), (O))
#define my_atomic_add64_explicit(P, A, O) __atomic_fetch_add((P), (A), (O))
#define my_atomic_cas32_weak_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), true, (S), (F))
#define my_atomic_cas64_weak_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), true, (S), (F))
#define my_atomic_casptr_weak_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), true, (S), (F))
#define my_atomic_cas32_strong_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), false, (S), (F))
#define my_atomic_cas64_strong_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), false, (S), (F))
#define my_atomic_casptr_strong_explicit(P, E, D, S, F) \
__atomic_compare_exchange_n((P), (E), (D), false, (S), (F))
#else
#define MY_MEMORY_ORDER_RELAXED
#define MY_MEMORY_ORDER_CONSUME
#define MY_MEMORY_ORDER_ACQUIRE
#define MY_MEMORY_ORDER_RELEASE
#define MY_MEMORY_ORDER_ACQ_REL
#define MY_MEMORY_ORDER_SEQ_CST
#define my_atomic_store32_explicit(P, D, O) my_atomic_store32((P), (D))
#define my_atomic_store64_explicit(P, D, O) my_atomic_store64((P), (D))
#define my_atomic_storeptr_explicit(P, D, O) my_atomic_storeptr((P), (D))
#define my_atomic_load32_explicit(P, O) my_atomic_load32((P))
#define my_atomic_load64_explicit(P, O) my_atomic_load64((P))
#define my_atomic_loadptr_explicit(P, O) my_atomic_loadptr((P))
#define my_atomic_fas32_explicit(P, D, O) my_atomic_fas32((P), (D))
#define my_atomic_fas64_explicit(P, D, O) my_atomic_fas64((P), (D))
#define my_atomic_fasptr_explicit(P, D, O) my_atomic_fasptr((P), (D))
#define my_atomic_add32_explicit(P, A, O) my_atomic_add32((P), (A))
#define my_atomic_add64_explicit(P, A, O) my_atomic_add64((P), (A))
#define my_atomic_addptr_explicit(P, A, O) my_atomic_addptr((P), (A))
#define my_atomic_cas32_weak_explicit(P, E, D, S, F) \
my_atomic_cas32((P), (E), (D))
#define my_atomic_cas64_weak_explicit(P, E, D, S, F) \
my_atomic_cas64((P), (E), (D))
#define my_atomic_casptr_weak_explicit(P, E, D, S, F) \
my_atomic_casptr((P), (E), (D))
#define my_atomic_cas32_strong_explicit(P, E, D, S, F) \
my_atomic_cas32((P), (E), (D))
#define my_atomic_cas64_strong_explicit(P, E, D, S, F) \
my_atomic_cas64((P), (E), (D))
#define my_atomic_casptr_strong_explicit(P, E, D, S, F) \
my_atomic_casptr((P), (E), (D))
#endif
#endif /* MY_ATOMIC_INCLUDED */