mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 13:02:28 +01:00
Merge jbruehe@bk-internal.mysql.com:/home/bk/mysql-5.1-new
into debian.(none):/M51/mysql-5.1
This commit is contained in:
commit
d1b9042d25
20 changed files with 1110 additions and 269 deletions
|
@ -218,7 +218,7 @@ t2 CREATE TABLE `t2` (
|
|||
`b2` int(11) NOT NULL,
|
||||
`c2` int(11) NOT NULL,
|
||||
PRIMARY KEY (`pk2`)
|
||||
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1
|
||||
) ENGINE=ndbcluster DEFAULT CHARSET=latin1 PARTITION BY KEY ()
|
||||
SHOW CREATE TABLE test.t1;
|
||||
Table Create Table
|
||||
t1 CREATE TABLE `t1` (
|
||||
|
@ -226,7 +226,7 @@ t1 CREATE TABLE `t1` (
|
|||
`b` int(11) NOT NULL,
|
||||
`c` int(11) NOT NULL,
|
||||
PRIMARY KEY (`pk1`)
|
||||
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1
|
||||
) ENGINE=ndbcluster DEFAULT CHARSET=latin1 PARTITION BY KEY ()
|
||||
ALTER TABLE test.t2 TABLESPACE table_space1 STORAGE DISK
|
||||
ENGINE=NDB;
|
||||
SHOW CREATE TABLE test.t2;
|
||||
|
@ -236,7 +236,7 @@ t2 CREATE TABLE `t2` (
|
|||
`b2` int(11) NOT NULL,
|
||||
`c2` int(11) NOT NULL,
|
||||
PRIMARY KEY (`pk2`)
|
||||
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1
|
||||
) ENGINE=ndbcluster DEFAULT CHARSET=latin1 PARTITION BY KEY ()
|
||||
ALTER TABLE test.t1 ENGINE=NDBCLUSTER;
|
||||
SHOW CREATE TABLE test.t1;
|
||||
Table Create Table
|
||||
|
@ -245,7 +245,7 @@ t1 CREATE TABLE `t1` (
|
|||
`b` int(11) NOT NULL,
|
||||
`c` int(11) NOT NULL,
|
||||
PRIMARY KEY (`pk1`)
|
||||
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1
|
||||
) ENGINE=ndbcluster DEFAULT CHARSET=latin1 PARTITION BY KEY ()
|
||||
|
||||
DROP TABLE test.t1;
|
||||
DROP TABLE test.t2;
|
||||
|
|
|
@ -271,3 +271,10 @@ t1 CREATE TABLE `t1` (
|
|||
`b` int(11) default NULL
|
||||
) ENGINE=MyISAM DEFAULT CHARSET=latin1 PARTITION BY RANGE (a) (PARTITION x1 VALUES LESS THAN (6) ENGINE = MyISAM, PARTITION x3 VALUES LESS THAN (8) ENGINE = MyISAM, PARTITION x4 VALUES LESS THAN (10) ENGINE = MyISAM, PARTITION x5 VALUES LESS THAN (12) ENGINE = MyISAM, PARTITION x6 VALUES LESS THAN (14) ENGINE = MyISAM, PARTITION x7 VALUES LESS THAN (16) ENGINE = MyISAM, PARTITION x8 VALUES LESS THAN (18) ENGINE = MyISAM, PARTITION x9 VALUES LESS THAN (20) ENGINE = MyISAM)
|
||||
drop table t1;
|
||||
create table t1 (a int not null, b int not null) partition by LIST (a+b) (
|
||||
partition p0 values in (12),
|
||||
partition p1 values in (14)
|
||||
);
|
||||
insert into t1 values (10,1);
|
||||
ERROR HY000: Table has no partition for value 11
|
||||
drop table t1;
|
||||
|
|
|
@ -259,3 +259,48 @@ explain partitions select * from t1 where a is not null;
|
|||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p0,p1 ALL NULL NULL NULL NULL 2 Using where
|
||||
drop table t1;
|
||||
create table t1 (a int not null, b int not null, key(a), key(b))
|
||||
partition by hash(a) partitions 4;
|
||||
insert into t1 values (1,1),(2,2),(3,3),(4,4);
|
||||
explain partitions
|
||||
select * from t1 X, t1 Y
|
||||
where X.b = Y.b and (X.a=1 or X.a=2) and (Y.a=2 or Y.a=3);
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE X p1,p2 ALL a,b NULL NULL NULL 4 Using where
|
||||
1 SIMPLE Y p2,p3 ref a,b b 4 test.X.b 2 Using where
|
||||
explain partitions
|
||||
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE X p1,p2 ALL a NULL NULL NULL 4 Using where
|
||||
1 SIMPLE Y p1,p2 ref a a 4 test.X.a 2
|
||||
drop table t1;
|
||||
create table t1 (a int) partition by hash(a) partitions 20;
|
||||
insert into t1 values (1),(2),(3);
|
||||
explain partitions select * from t1 where a > 1 and a < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a >= 1 and a < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1,p2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a > 1 and a <= 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p2,p3 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where a >= 1 and a <= 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1,p2,p3 ALL NULL NULL NULL NULL 3 Using where
|
||||
drop table t1;
|
||||
create table t1 (a int, b int)
|
||||
partition by list(a) subpartition by hash(b) subpartitions 20
|
||||
(
|
||||
partition p0 values in (0),
|
||||
partition p1 values in (1),
|
||||
partition p2 values in (2),
|
||||
partition p3 values in (3)
|
||||
);
|
||||
insert into t1 values (1,1),(2,2),(3,3);
|
||||
explain partitions select * from t1 where b > 1 and b < 3;
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p0_sp2,p1_sp2,p2_sp2,p3_sp2 ALL NULL NULL NULL NULL 3 Using where
|
||||
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
|
||||
id select_type table partitions type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 p1_sp2,p2_sp2 ALL NULL NULL NULL NULL 3 Using where
|
||||
|
|
|
@ -24,7 +24,7 @@ partition_03ndb : Bug#16385
|
|||
ndb_binlog_basic : Results are not deterministic, Tomas will fix
|
||||
rpl_ndb_basic : Bug#16228
|
||||
rpl_sp : Bug #16456
|
||||
ndb_dd_disk2memory : Bug #16466 & 16736
|
||||
#ndb_dd_disk2memory : Bug #16466
|
||||
ndb_autodiscover : Needs to be fixed w.r.t binlog
|
||||
ndb_autodiscover2 : Needs to be fixed w.r.t binlog
|
||||
system_mysql_db : Needs fixing
|
||||
|
|
|
@ -343,3 +343,13 @@ ALTER TABLE t1 REORGANIZE PARTITION x0,x1,x2 INTO
|
|||
show create table t1;
|
||||
drop table t1;
|
||||
|
||||
# Testcase for BUG#15819
|
||||
create table t1 (a int not null, b int not null) partition by LIST (a+b) (
|
||||
partition p0 values in (12),
|
||||
partition p1 values in (14)
|
||||
);
|
||||
--error ER_NO_PARTITION_FOR_GIVEN_VALUE
|
||||
insert into t1 values (10,1);
|
||||
|
||||
drop table t1;
|
||||
|
||||
|
|
|
@ -230,9 +230,45 @@ create table t1 (a int) partition by hash(a) partitions 2;
|
|||
insert into t1 values (1),(2);
|
||||
explain partitions select * from t1 where a is null;
|
||||
|
||||
# this selects both
|
||||
# this uses both partitions
|
||||
explain partitions select * from t1 where a is not null;
|
||||
drop table t1;
|
||||
|
||||
# Join tests
|
||||
create table t1 (a int not null, b int not null, key(a), key(b))
|
||||
partition by hash(a) partitions 4;
|
||||
insert into t1 values (1,1),(2,2),(3,3),(4,4);
|
||||
|
||||
explain partitions
|
||||
select * from t1 X, t1 Y
|
||||
where X.b = Y.b and (X.a=1 or X.a=2) and (Y.a=2 or Y.a=3);
|
||||
|
||||
explain partitions
|
||||
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
|
||||
|
||||
drop table t1;
|
||||
|
||||
# Tests for "short ranges"
|
||||
create table t1 (a int) partition by hash(a) partitions 20;
|
||||
insert into t1 values (1),(2),(3);
|
||||
explain partitions select * from t1 where a > 1 and a < 3;
|
||||
explain partitions select * from t1 where a >= 1 and a < 3;
|
||||
explain partitions select * from t1 where a > 1 and a <= 3;
|
||||
explain partitions select * from t1 where a >= 1 and a <= 3;
|
||||
drop table t1;
|
||||
|
||||
create table t1 (a int, b int)
|
||||
partition by list(a) subpartition by hash(b) subpartitions 20
|
||||
(
|
||||
partition p0 values in (0),
|
||||
partition p1 values in (1),
|
||||
partition p2 values in (2),
|
||||
partition p3 values in (3)
|
||||
);
|
||||
insert into t1 values (1,1),(2,2),(3,3);
|
||||
|
||||
explain partitions select * from t1 where b > 1 and b < 3;
|
||||
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
|
||||
|
||||
# No tests for NULLs in RANGE(monotonic_expr()) - they depend on BUG#15447
|
||||
# being fixed.
|
||||
|
|
|
@ -43,7 +43,7 @@ c_tzn="" c_tz="" c_tzt="" c_tztt="" c_tzls="" c_pl=""
|
|||
i_tzn="" i_tz="" i_tzt="" i_tztt="" i_tzls="" i_pl=""
|
||||
c_p="" c_pp=""
|
||||
c_gl="" c_sl=""
|
||||
c_ev= ""
|
||||
c_ev=""
|
||||
|
||||
# Check for old tables
|
||||
if test ! -f $mdata/db.frm
|
||||
|
|
169
sql/handler.h
169
sql/handler.h
|
@ -620,6 +620,8 @@ typedef struct {
|
|||
uint32 end_part;
|
||||
bool use_bit_array;
|
||||
} part_id_range;
|
||||
|
||||
|
||||
/**
|
||||
* An enum and a struct to handle partitioning and subpartitioning.
|
||||
*/
|
||||
|
@ -699,7 +701,109 @@ typedef int (*get_part_id_func)(partition_info *part_info,
|
|||
longlong *func_value);
|
||||
typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
|
||||
|
||||
class partition_info :public Sql_alloc {
|
||||
|
||||
struct st_partition_iter;
|
||||
#define NOT_A_PARTITION_ID ((uint32)-1)
|
||||
|
||||
/*
|
||||
A "Get next" function for partition iterator.
|
||||
SYNOPSIS
|
||||
partition_iter_func()
|
||||
part_iter Partition iterator, you call only "iter.get_next(&iter)"
|
||||
|
||||
RETURN
|
||||
NOT_A_PARTITION_ID if there are no more partitions.
|
||||
[sub]partition_id of the next partition
|
||||
*/
|
||||
|
||||
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
|
||||
|
||||
|
||||
/*
|
||||
Partition set iterator. Used to enumerate a set of [sub]partitions
|
||||
obtained in partition interval analysis (see get_partitions_in_range_iter).
|
||||
|
||||
For the user, the only meaningful field is get_next, which may be used as
|
||||
follows:
|
||||
part_iterator.get_next(&part_iterator);
|
||||
|
||||
Initialization is done by any of the following calls:
|
||||
- get_partitions_in_range_iter-type function call
|
||||
- init_single_partition_iterator()
|
||||
- init_all_partitions_iterator()
|
||||
Cleanup is not needed.
|
||||
*/
|
||||
|
||||
typedef struct st_partition_iter
|
||||
{
|
||||
partition_iter_func get_next;
|
||||
|
||||
union {
|
||||
struct {
|
||||
uint32 start_part_num;
|
||||
uint32 end_part_num;
|
||||
};
|
||||
struct {
|
||||
longlong start_val;
|
||||
longlong end_val;
|
||||
};
|
||||
bool null_returned;
|
||||
};
|
||||
partition_info *part_info;
|
||||
} PARTITION_ITERATOR;
|
||||
|
||||
|
||||
/*
|
||||
Get an iterator for set of partitions that match given field-space interval
|
||||
|
||||
SYNOPSIS
|
||||
get_partitions_in_range_iter()
|
||||
part_info Partitioning info
|
||||
is_subpart
|
||||
min_val Left edge, field value in opt_range_key format.
|
||||
max_val Right edge, field value in opt_range_key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Functions with this signature are used to perform "Partitioning Interval
|
||||
Analysis". This analysis is applicable for any type of [sub]partitioning
|
||||
by some function of a single fieldX. The idea is as follows:
|
||||
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
|
||||
that may contain records with value of fieldX within the given interval.
|
||||
|
||||
The min_val, max_val and flags parameters specify the interval.
|
||||
The set of partitions is returned by initializing an iterator in *part_iter
|
||||
|
||||
NOTES
|
||||
There are currently two functions of this type:
|
||||
- get_part_iter_for_interval_via_walking
|
||||
- get_part_iter_for_interval_via_mapping
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions, iterator not initialized
|
||||
1 - Some partitions would match, iterator intialized for traversing them
|
||||
-1 - All partitions would match, iterator not initialized
|
||||
*/
|
||||
|
||||
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_val, byte *max_val,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
|
||||
/* Initialize the iterator to return a single partition with given part_id */
|
||||
inline void init_single_partition_iterator(uint32 part_id,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
/* Initialize the iterator to enumerate all partitions */
|
||||
inline void init_all_partitions_iterator(partition_info *part_info,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
|
||||
class partition_info : public Sql_alloc
|
||||
{
|
||||
public:
|
||||
/*
|
||||
* Here comes a set of definitions needed for partitioned table handlers.
|
||||
|
@ -728,10 +832,10 @@ public:
|
|||
same in all subpartitions
|
||||
*/
|
||||
get_subpart_id_func get_subpartition_id;
|
||||
|
||||
/* NULL-terminated list of fields used in partitioned expression */
|
||||
|
||||
/* NULL-terminated array of fields used in partitioned expression */
|
||||
Field **part_field_array;
|
||||
/* NULL-terminated list of fields used in subpartitioned expression */
|
||||
/* NULL-terminated array of fields used in subpartitioned expression */
|
||||
Field **subpart_field_array;
|
||||
|
||||
/*
|
||||
|
@ -748,11 +852,10 @@ public:
|
|||
/*
|
||||
A bitmap of partitions used by the current query.
|
||||
Usage pattern:
|
||||
* It is guaranteed that all partitions are set to be unused on query start.
|
||||
* The handler->extra(HA_EXTRA_RESET) call at query start/end sets all
|
||||
partitions to be unused.
|
||||
* Before index/rnd_init(), partition pruning code sets the bits for used
|
||||
partitions.
|
||||
* The handler->extra(HA_EXTRA_RESET) call at query end sets all partitions
|
||||
to be unused.
|
||||
*/
|
||||
MY_BITMAP used_partitions;
|
||||
|
||||
|
@ -760,6 +863,39 @@ public:
|
|||
longlong *range_int_array;
|
||||
LIST_PART_ENTRY *list_array;
|
||||
};
|
||||
|
||||
/********************************************
|
||||
* INTERVAL ANALYSIS
|
||||
********************************************/
|
||||
/*
|
||||
Partitioning interval analysis function for partitioning, or NULL if
|
||||
interval analysis is not supported for this kind of partitioning.
|
||||
*/
|
||||
get_partitions_in_range_iter get_part_iter_for_interval;
|
||||
/*
|
||||
Partitioning interval analysis function for subpartitioning, or NULL if
|
||||
interval analysis is not supported for this kind of partitioning.
|
||||
*/
|
||||
get_partitions_in_range_iter get_subpart_iter_for_interval;
|
||||
|
||||
/*
|
||||
Valid iff
|
||||
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
|
||||
controls how we'll process "field < C" and "field > C" intervals.
|
||||
If the partitioning function F is strictly increasing, then for any x, y
|
||||
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
|
||||
we can perform partition pruning on the equivalent "F(field) < F(C)".
|
||||
|
||||
If the partitioning function not strictly increasing (it is simply
|
||||
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
|
||||
i.e. for interval "field < C" we can perform partition pruning for
|
||||
"F(field) <= F(C)".
|
||||
*/
|
||||
bool range_analysis_include_bounds;
|
||||
/********************************************
|
||||
* INTERVAL ANALYSIS ENDS
|
||||
********************************************/
|
||||
|
||||
char* part_info_string;
|
||||
|
||||
char *part_func_string;
|
||||
|
@ -863,6 +999,25 @@ public:
|
|||
|
||||
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
|
||||
|
||||
inline void init_single_partition_iterator(uint32 part_id,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
part_iter->start_part_num= part_id;
|
||||
part_iter->end_part_num= part_id+1;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
|
||||
inline
|
||||
void init_all_partitions_iterator(partition_info *part_info,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
part_iter->start_part_num= 0;
|
||||
part_iter->end_part_num= part_info->no_parts;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
|
||||
/*
|
||||
Answers the question if subpartitioning is used for a certain table
|
||||
SYNOPSIS
|
||||
|
|
11
sql/item.h
11
sql/item.h
|
@ -381,13 +381,20 @@ public:
|
|||
put values of field_i into table record buffer;
|
||||
return item->val_int();
|
||||
}
|
||||
|
||||
NOTE
|
||||
At the moment function monotonicity is not well defined (and so may be
|
||||
incorrect) for Item trees with parameters/return types that are different
|
||||
from INT_RESULT, may be NULL, or are unsigned.
|
||||
It will be possible to address this issue once the related partitioning bugs
|
||||
(BUG#16002, BUG#15447, BUG#13436) are fixed.
|
||||
*/
|
||||
|
||||
typedef enum monotonicity_info
|
||||
{
|
||||
NON_MONOTONIC, /* none of the below holds */
|
||||
MONOTONIC_INCREASING, /* F() is unary and "x < y" => "F(x) < F(y)" */
|
||||
MONOTONIC_STRICT_INCREASING /* F() is unary and "x < y" => "F(x) <= F(y)" */
|
||||
MONOTONIC_INCREASING, /* F() is unary and (x < y) => (F(x) <= F(y)) */
|
||||
MONOTONIC_STRICT_INCREASING /* F() is unary and (x < y) => (F(x) < F(y)) */
|
||||
} enum_monotonicity_info;
|
||||
|
||||
/*************************************************************************/
|
||||
|
|
|
@ -885,6 +885,21 @@ longlong Item_func_to_days::val_int()
|
|||
return (longlong) calc_daynr(ltime.year,ltime.month,ltime.day);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Get information about this Item tree monotonicity
|
||||
|
||||
SYNOPSIS
|
||||
Item_func_to_days::get_monotonicity_info()
|
||||
|
||||
DESCRIPTION
|
||||
Get information about monotonicity of the function represented by this item
|
||||
tree.
|
||||
|
||||
RETURN
|
||||
See enum_monotonicity_info.
|
||||
*/
|
||||
|
||||
enum_monotonicity_info Item_func_to_days::get_monotonicity_info() const
|
||||
{
|
||||
if (args[0]->type() == Item::FIELD_ITEM)
|
||||
|
@ -1080,6 +1095,21 @@ longlong Item_func_year::val_int()
|
|||
return (longlong) ltime.year;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Get information about this Item tree monotonicity
|
||||
|
||||
SYNOPSIS
|
||||
Item_func_to_days::get_monotonicity_info()
|
||||
|
||||
DESCRIPTION
|
||||
Get information about monotonicity of the function represented by this item
|
||||
tree.
|
||||
|
||||
RETURN
|
||||
See enum_monotonicity_info.
|
||||
*/
|
||||
|
||||
enum_monotonicity_info Item_func_year::get_monotonicity_info() const
|
||||
{
|
||||
if (args[0]->type() == Item::FIELD_ITEM &&
|
||||
|
|
|
@ -6523,24 +6523,24 @@ static int show_ssl_ctx_get_session_cache_mode(THD *thd, SHOW_VAR *var, char *bu
|
|||
{
|
||||
var->type= SHOW_CHAR;
|
||||
if (!ssl_acceptor_fd)
|
||||
var->value= "NONE";
|
||||
var->value= const_cast<char*>("NONE");
|
||||
else
|
||||
switch (SSL_CTX_get_session_cache_mode(ssl_acceptor_fd->ssl_context))
|
||||
{
|
||||
case SSL_SESS_CACHE_OFF:
|
||||
var->value= "OFF"; break;
|
||||
var->value= const_cast<char*>("OFF"); break;
|
||||
case SSL_SESS_CACHE_CLIENT:
|
||||
var->value= "CLIENT"; break;
|
||||
var->value= const_cast<char*>("CLIENT"); break;
|
||||
case SSL_SESS_CACHE_SERVER:
|
||||
var->value= "SERVER"; break;
|
||||
var->value= const_cast<char*>("SERVER"); break;
|
||||
case SSL_SESS_CACHE_BOTH:
|
||||
var->value= "BOTH"; break;
|
||||
var->value= const_cast<char*>("BOTH"); break;
|
||||
case SSL_SESS_CACHE_NO_AUTO_CLEAR:
|
||||
var->value= "NO_AUTO_CLEAR"; break;
|
||||
var->value= const_cast<char*>("NO_AUTO_CLEAR"); break;
|
||||
case SSL_SESS_CACHE_NO_INTERNAL_LOOKUP:
|
||||
var->value= "NO_INTERNAL_LOOKUP"; break;
|
||||
var->value= const_cast<char*>("NO_INTERNAL_LOOKUP"); break;
|
||||
default:
|
||||
var->value= "Unknown"; break;
|
||||
var->value= const_cast<char*>("Unknown"); break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -6561,6 +6561,7 @@ static int show_ssl_session_reused(THD *thd, SHOW_VAR *var, char *buff)
|
|||
*((long *)buff)= (long)thd->net.vio->ssl_arg ?
|
||||
SSL_session_reused((SSL*) thd->net.vio->ssl_arg) :
|
||||
0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int show_ssl_get_default_timeout(THD *thd, SHOW_VAR *var, char *buff)
|
||||
|
|
520
sql/opt_range.cc
520
sql/opt_range.cc
|
@ -313,11 +313,46 @@ public:
|
|||
}
|
||||
SEL_ARG *clone_tree();
|
||||
|
||||
/* Return TRUE if this represents "keypartK = const" or "keypartK IS NULL" */
|
||||
|
||||
/*
|
||||
Check if this SEL_ARG object represents a single-point interval
|
||||
|
||||
SYNOPSIS
|
||||
is_singlepoint()
|
||||
|
||||
DESCRIPTION
|
||||
Check if this SEL_ARG object (not tree) represents a single-point
|
||||
interval, i.e. if it represents a "keypart = const" or
|
||||
"keypart IS NULL".
|
||||
|
||||
RETURN
|
||||
TRUE This SEL_ARG object represents a singlepoint interval
|
||||
FALSE Otherwise
|
||||
*/
|
||||
|
||||
bool is_singlepoint()
|
||||
{
|
||||
return !min_flag && !max_flag &&
|
||||
!field->key_cmp((byte*) min_value, (byte*)max_value);
|
||||
/*
|
||||
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
|
||||
flags, and the same for right edge.
|
||||
*/
|
||||
if (min_flag || max_flag)
|
||||
return FALSE;
|
||||
byte *min_val= min_value;
|
||||
byte *max_val= min_value;
|
||||
|
||||
if (maybe_null)
|
||||
{
|
||||
/* First byte is a NULL value indicator */
|
||||
if (*min_val != *max_val)
|
||||
return FALSE;
|
||||
|
||||
if (*min_val)
|
||||
return TRUE; /* This "x IS NULL" */
|
||||
min_val++;
|
||||
max_val++;
|
||||
}
|
||||
return !field->key_cmp(min_val, max_val);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -2035,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
|||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Partition pruning starts
|
||||
* Partition pruning module
|
||||
****************************************************************************/
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
|
||||
|
@ -2080,7 +2115,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
|||
The list of intervals we'll obtain will look like this:
|
||||
((t1.a, t1.b) = (1,'foo')),
|
||||
((t1.a, t1.b) = (2,'bar')),
|
||||
((t1,a, t1.b) > (10,'zz')) (**)
|
||||
((t1,a, t1.b) > (10,'zz'))
|
||||
|
||||
2. for each interval I
|
||||
{
|
||||
|
@ -2110,7 +2145,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
|||
Putting it all together, partitioning module works as follows:
|
||||
|
||||
prune_partitions() {
|
||||
call create_partition_index_descrition();
|
||||
call create_partition_index_description();
|
||||
|
||||
call get_mm_tree(); // invoke the RangeAnalysisModule
|
||||
|
||||
|
@ -2124,10 +2159,6 @@ struct st_part_prune_param;
|
|||
struct st_part_opt_info;
|
||||
|
||||
typedef void (*mark_full_part_func)(partition_info*, uint32);
|
||||
typedef uint32 (*part_num_to_partition_id_func)(struct st_part_prune_param*,
|
||||
uint32);
|
||||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
bool include_endpoint);
|
||||
|
||||
/*
|
||||
Partition pruning operation context
|
||||
|
@ -2135,7 +2166,7 @@ typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
|||
typedef struct st_part_prune_param
|
||||
{
|
||||
RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
|
||||
|
||||
|
||||
/***************************************************************
|
||||
Following fields are filled in based solely on partitioning
|
||||
definition and not modified after that:
|
||||
|
@ -2164,32 +2195,6 @@ typedef struct st_part_prune_param
|
|||
int last_part_partno;
|
||||
int last_subpart_partno; /* Same as above for supartitioning */
|
||||
|
||||
/*
|
||||
Function to be used to analyze non-singlepoint intervals (Can be pointer
|
||||
to one of two functions - for RANGE and for LIST types). NULL means
|
||||
partitioning type and/or expression doesn't allow non-singlepoint interval
|
||||
analysis.
|
||||
See get_list_array_idx_for_endpoint (or get_range_...) for description of
|
||||
what the function does.
|
||||
*/
|
||||
get_endpoint_func get_endpoint;
|
||||
|
||||
/* Maximum possible value that can be returned by get_endpoint function */
|
||||
uint32 max_endpoint_val;
|
||||
|
||||
/*
|
||||
For RANGE partitioning, part_num_to_part_id_range, for LIST partitioning,
|
||||
part_num_to_part_id_list. Just to avoid the if-else clutter.
|
||||
*/
|
||||
part_num_to_partition_id_func endpoints_walk_func;
|
||||
|
||||
/*
|
||||
If true, process "key < const" as "part_func(key) < part_func(const)",
|
||||
otherwise as "part_func(key) <= part_func(const)". Same for '>' and '>='.
|
||||
This is defined iff get_endpoint != NULL.
|
||||
*/
|
||||
bool force_include_bounds;
|
||||
|
||||
/*
|
||||
is_part_keypart[i] == test(keypart #i in partitioning index is a member
|
||||
used in partitioning)
|
||||
|
@ -2208,28 +2213,15 @@ typedef struct st_part_prune_param
|
|||
uint cur_part_fields;
|
||||
/* Same as cur_part_fields, but for subpartitioning */
|
||||
uint cur_subpart_fields;
|
||||
|
||||
/***************************************************************
|
||||
Following fields are used to store an 'iterator' that can be
|
||||
used to obtain a set of used artitions.
|
||||
**************************************************************/
|
||||
/*
|
||||
Start and end+1 partition "numbers". They can have two meanings depending
|
||||
depending of the value of part_num_to_part_id:
|
||||
part_num_to_part_id_range - numbers are partition ids
|
||||
part_num_to_part_id_list - numbers are indexes in part_info->list_array
|
||||
*/
|
||||
uint32 start_part_num;
|
||||
uint32 end_part_num;
|
||||
|
||||
/*
|
||||
A function that should be used to convert two above "partition numbers"
|
||||
to partition_ids.
|
||||
*/
|
||||
part_num_to_partition_id_func part_num_to_part_id;
|
||||
/* Iterator to be used to obtain the "current" set of used partitions */
|
||||
PARTITION_ITERATOR part_iter;
|
||||
|
||||
/* Initialized bitmap of no_subparts size */
|
||||
MY_BITMAP subparts_bitmap;
|
||||
} PART_PRUNE_PARAM;
|
||||
|
||||
static bool create_partition_index_descrition(PART_PRUNE_PARAM *prune_par);
|
||||
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
|
||||
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
|
||||
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
|
||||
SEL_IMERGE *imerge);
|
||||
|
@ -2243,7 +2235,7 @@ static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* prune_par,
|
|||
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
|
||||
static void dbug_print_field(Field *field);
|
||||
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
|
||||
static void dbug_print_onepoint_range(SEL_ARG **start, uint num);
|
||||
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -2297,7 +2289,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
|||
range_par->mem_root= &alloc;
|
||||
range_par->old_root= thd->mem_root;
|
||||
|
||||
if (create_partition_index_descrition(&prune_param))
|
||||
if (create_partition_index_description(&prune_param))
|
||||
{
|
||||
mark_all_partitions_as_used(part_info);
|
||||
free_root(&alloc,MYF(0)); // Return memory & allocator
|
||||
|
@ -2335,15 +2327,14 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
|||
|
||||
if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
|
||||
goto all_used;
|
||||
|
||||
|
||||
if (tree->merges.is_empty())
|
||||
{
|
||||
/* Range analysis has produced a single list of intervals. */
|
||||
prune_param.arg_stack_end= prune_param.arg_stack;
|
||||
prune_param.cur_part_fields= 0;
|
||||
prune_param.cur_subpart_fields= 0;
|
||||
prune_param.part_num_to_part_id= part_num_to_part_id_range;
|
||||
prune_param.start_part_num= 0;
|
||||
prune_param.end_part_num= prune_param.part_info->no_parts;
|
||||
init_all_partitions_iterator(part_info, &prune_param.part_iter);
|
||||
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
|
||||
tree->keys[0]))))
|
||||
goto all_used;
|
||||
|
@ -2352,14 +2343,30 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
|||
{
|
||||
if (tree->merges.elements == 1)
|
||||
{
|
||||
if (-1 == (res |= find_used_partitions_imerge(&prune_param,
|
||||
tree->merges.head())))
|
||||
/*
|
||||
Range analysis has produced a "merge" of several intervals lists, a
|
||||
SEL_TREE that represents an expression in form
|
||||
sel_imerge = (tree1 OR tree2 OR ... OR treeN)
|
||||
that cannot be reduced to one tree. This can only happen when
|
||||
partitioning index has several keyparts and the condition is OR of
|
||||
conditions that refer to different key parts. For example, we'll get
|
||||
here for "partitioning_field=const1 OR subpartitioning_field=const2"
|
||||
*/
|
||||
if (-1 == (res= find_used_partitions_imerge(&prune_param,
|
||||
tree->merges.head())))
|
||||
goto all_used;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (-1 == (res |= find_used_partitions_imerge_list(&prune_param,
|
||||
tree->merges)))
|
||||
/*
|
||||
Range analysis has produced a list of several imerges, i.e. a
|
||||
structure that represents a condition in form
|
||||
imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
|
||||
This is produced for complicated WHERE clauses that range analyzer
|
||||
can't really analyze properly.
|
||||
*/
|
||||
if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
|
||||
tree->merges)))
|
||||
goto all_used;
|
||||
}
|
||||
}
|
||||
|
@ -2384,15 +2391,22 @@ end:
|
|||
|
||||
|
||||
/*
|
||||
Store key image to table record
|
||||
Store field key image to table record
|
||||
|
||||
SYNOPSIS
|
||||
field Field which key image should be stored.
|
||||
ptr Field value in key format.
|
||||
len Length of the value, in bytes.
|
||||
store_key_image_to_rec()
|
||||
field Field which key image should be stored
|
||||
ptr Field value in key format
|
||||
len Length of the value, in bytes
|
||||
|
||||
DESCRIPTION
|
||||
Copy the field value from its key image to the table record. The source
|
||||
is the value in key image format, occupying len bytes in buffer pointed
|
||||
by ptr. The destination is table record, in "field value in table record"
|
||||
format.
|
||||
*/
|
||||
|
||||
static void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
{
|
||||
/* Do the same as print_key() does */
|
||||
if (field->real_maybe_null())
|
||||
|
@ -2414,8 +2428,12 @@ static void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
|||
SYNOPSIS
|
||||
store_selargs_to_rec()
|
||||
ppar Partition pruning context
|
||||
start Array SEL_ARG* for which the minimum values should be stored
|
||||
start Array of SEL_ARG* for which the minimum values should be stored
|
||||
num Number of elements in the array
|
||||
|
||||
DESCRIPTION
|
||||
For each SEL_ARG* interval in the specified array, store the left edge
|
||||
field value (sel_arg->min, key image format) into the table record.
|
||||
*/
|
||||
|
||||
static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
|
||||
|
@ -2449,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info,
|
|||
bitmap_set_bit(&part_info->used_partitions, start);
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return num;
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return ppar->part_info->list_array[num].partition_id;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Find the set of used partitions for List<SEL_IMERGE>
|
||||
SYNOPSIS
|
||||
|
@ -2473,7 +2478,7 @@ static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
|
|||
List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
|
||||
The set of used partitions is an intersection of used partitions sets
|
||||
for imerge_{i}.
|
||||
We accumulate this intersection a separate bitmap.
|
||||
We accumulate this intersection in a separate bitmap.
|
||||
|
||||
RETURN
|
||||
See find_used_partitions()
|
||||
|
@ -2491,7 +2496,7 @@ static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
|
|||
bitmap_bytes)))
|
||||
{
|
||||
/*
|
||||
Fallback, process just first SEL_IMERGE. This can leave us with more
|
||||
Fallback, process just the first SEL_IMERGE. This can leave us with more
|
||||
partitions marked as used then actually needed.
|
||||
*/
|
||||
return find_used_partitions_imerge(ppar, merges.head());
|
||||
|
@ -2549,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
|||
ppar->arg_stack_end= ppar->arg_stack;
|
||||
ppar->cur_part_fields= 0;
|
||||
ppar->cur_subpart_fields= 0;
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0])))
|
||||
return -1;
|
||||
}
|
||||
|
@ -2560,41 +2563,106 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
|||
|
||||
|
||||
/*
|
||||
Recursively walk the SEL_ARG tree, find/mark partitions that need to be used
|
||||
Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
|
||||
|
||||
SYNOPSIS
|
||||
find_used_partitions()
|
||||
ppar Partition pruning context.
|
||||
key_tree Intervals tree to perform pruning for.
|
||||
key_tree SEL_ARG range tree to perform pruning for
|
||||
|
||||
DESCRIPTION
|
||||
This function
|
||||
* recursively walks the SEL_ARG* tree, collecting partitioning
|
||||
"intervals";
|
||||
* finds the partitions one needs to use to get rows in these intervals;
|
||||
* recursively walks the SEL_ARG* tree collecting partitioning "intervals"
|
||||
* finds the partitions one needs to use to get rows in these intervals
|
||||
* marks these partitions as used.
|
||||
|
||||
WHAT IS CONSIDERED TO BE "INTERVALS"
|
||||
A partition pruning "interval" is equivalent to condition in one of the
|
||||
forms:
|
||||
|
||||
"partition_field1=const1 AND ... partition_fieldN=constN" (1)
|
||||
"subpartition_field1=const1 AND ... subpartition_fieldN=constN" (2)
|
||||
"(1) AND (2)" (3)
|
||||
|
||||
In (1) and (2) all [sub]partitioning fields must be used, and "x=const"
|
||||
includes "x IS NULL".
|
||||
|
||||
If partitioning is performed using
|
||||
|
||||
PARTITION BY RANGE(unary_monotonic_func(single_partition_field)),
|
||||
|
||||
then the following is also an interval:
|
||||
The next session desribes the process in greater detail.
|
||||
|
||||
IMPLEMENTATION
|
||||
TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
|
||||
We can find out which [sub]partitions to use if we obtain restrictions on
|
||||
[sub]partitioning fields in the following form:
|
||||
1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
|
||||
1.1 Same as (1) but for subpartition fields
|
||||
|
||||
" const1 OP1 single_partition_field OR const2" (4)
|
||||
|
||||
where OP1 and OP2 are '<' OR '<=', and const_i can be +/- inf.
|
||||
Everything else is not a partition pruning "interval".
|
||||
If partitioning supports interval analysis (i.e. partitioning is a
|
||||
function of a single table field, and partition_info::
|
||||
get_part_iter_for_interval != NULL), then we can also use condition in
|
||||
this form:
|
||||
2. "const1 <=? partition_field <=? const2"
|
||||
2.1 Same as (2) but for subpartition_field
|
||||
|
||||
INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
|
||||
|
||||
The below is an example of what SEL_ARG tree may represent:
|
||||
|
||||
(start)
|
||||
| $
|
||||
| Partitioning keyparts $ subpartitioning keyparts
|
||||
| $
|
||||
| ... ... $
|
||||
| | | $
|
||||
| +---------+ +---------+ $ +-----------+ +-----------+
|
||||
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
|
||||
+---------+ +---------+ $ +-----------+ +-----------+
|
||||
| $ | |
|
||||
| $ | +-----------+
|
||||
| $ | | subpar2=c6|
|
||||
| $ | +-----------+
|
||||
| $ |
|
||||
| $ +-----------+ +-----------+
|
||||
| $ | subpar1=c4|--| subpar2=c8|
|
||||
| $ +-----------+ +-----------+
|
||||
| $
|
||||
| $
|
||||
+---------+ $ +------------+ +------------+
|
||||
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
|
||||
+---------+ $ +------------+ +------------+
|
||||
| $
|
||||
... $
|
||||
|
||||
The up-down connections are connections via SEL_ARG::left and
|
||||
SEL_ARG::right. A horizontal connection to the right is the
|
||||
SEL_ARG::next_key_part connection.
|
||||
|
||||
find_used_partitions() traverses the entire tree via recursion on
|
||||
* SEL_ARG::next_key_part (from left to right on the picture)
|
||||
* SEL_ARG::left|right (up/down on the pic). Left-right recursion is
|
||||
performed for each depth level.
|
||||
|
||||
Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
|
||||
ppar->arg_stack) constraints on partitioning and subpartitioning fields.
|
||||
For the example in the above picture, one of stack states is:
|
||||
in find_used_partitions(key_tree = "subpar2=c5") (***)
|
||||
in find_used_partitions(key_tree = "subpar1=c3")
|
||||
in find_used_partitions(key_tree = "par2=c2") (**)
|
||||
in find_used_partitions(key_tree = "par1=c1")
|
||||
in prune_partitions(...)
|
||||
We apply partitioning limits as soon as possible, e.g. when we reach the
|
||||
depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
|
||||
and save them in ppar->part_iter.
|
||||
When we reach the depth (***), we find which subpartition(s) correspond to
|
||||
"subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
|
||||
appropriate subpartitions as used.
|
||||
|
||||
It is possible that constraints on some partitioning fields are missing.
|
||||
For the above example, consider this stack state:
|
||||
in find_used_partitions(key_tree = "subpar2=c12") (***)
|
||||
in find_used_partitions(key_tree = "subpar1=c10")
|
||||
in find_used_partitions(key_tree = "par1=c2")
|
||||
in prune_partitions(...)
|
||||
Here we don't have constraints for all partitioning fields. Since we've
|
||||
never set the ppar->part_iter to contain used set of partitions, we use
|
||||
its default "all partitions" value. We get subpartition id for
|
||||
"subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
|
||||
partition.
|
||||
|
||||
The inverse is also possible: we may get constraints on partitioning
|
||||
fields, but not constraints on subpartitioning fields. In that case,
|
||||
calls to find_used_partitions() with depth below (**) will return -1,
|
||||
and we will mark entire partition as used.
|
||||
|
||||
TODO
|
||||
Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
|
||||
|
||||
RETURN
|
||||
1 OK, one or more [sub]partitions are marked as used.
|
||||
|
@ -2620,58 +2688,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
|
||||
if (key_tree->type == SEL_ARG::KEY_RANGE)
|
||||
{
|
||||
if (partno == 0 && (NULL != ppar->get_endpoint))
|
||||
if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
|
||||
{
|
||||
/*
|
||||
Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
|
||||
we got "const1 < fieldX < const2" interval.
|
||||
we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
|
||||
*/
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
/* Find minimum */
|
||||
if (key_tree->min_flag & NO_MIN_RANGE)
|
||||
ppar->start_part_num= 0;
|
||||
else
|
||||
res= ppar->part_info->
|
||||
get_part_iter_for_interval(ppar->part_info,
|
||||
FALSE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&ppar->part_iter);
|
||||
if (!res)
|
||||
goto go_right; /* res=0 --> no satisfying partitions */
|
||||
if (res == -1)
|
||||
{
|
||||
/*
|
||||
Store the interval edge in the record buffer, and call the
|
||||
function that maps the edge in table-field space to an edge
|
||||
in ordered-set-of-partitions (for RANGE partitioning) or
|
||||
indexes-in-ordered-array-of-list-constants (for LIST) space.
|
||||
*/
|
||||
store_key_image_to_rec(key_tree->field, key_tree->min_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->min_flag & NEAR_MIN);
|
||||
ppar->start_part_num= ppar->get_endpoint(ppar->part_info, 1,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->max_endpoint_val)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
//get a full range iterator
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
/* Find maximum, do the same as above but for right interval bound */
|
||||
if (key_tree->max_flag & NO_MAX_RANGE)
|
||||
ppar->end_part_num= ppar->max_endpoint_val;
|
||||
else
|
||||
{
|
||||
store_key_image_to_rec(key_tree->field, key_tree->max_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->max_flag & NEAR_MAX);
|
||||
ppar->end_part_num= ppar->get_endpoint(ppar->part_info, 0,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->end_part_num)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
}
|
||||
ppar->part_num_to_part_id= ppar->endpoints_walk_func;
|
||||
|
||||
/*
|
||||
Save our intent to mark full partition as used if we will not be able
|
||||
to obtain further limits on subpartitions
|
||||
|
@ -2680,6 +2719,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
(NULL != ppar->part_info->get_subpart_iter_for_interval))
|
||||
{
|
||||
PARTITION_ITERATOR subpart_iter;
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
res= ppar->part_info->
|
||||
get_subpart_iter_for_interval(ppar->part_info,
|
||||
TRUE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&subpart_iter);
|
||||
DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
|
||||
if (res == -1)
|
||||
return -1; /* all subpartitions satisfy */
|
||||
|
||||
uint32 subpart_id;
|
||||
bitmap_clear_all(&ppar->subparts_bitmap);
|
||||
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) != NOT_A_PARTITION_ID)
|
||||
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
|
||||
|
||||
/* Mark each partition as used in each subpartition. */
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
for (uint i= 0; i < ppar->part_info->no_subparts; i++)
|
||||
if (bitmap_is_set(&ppar->subparts_bitmap, i))
|
||||
bitmap_set_bit(&ppar->part_info->used_partitions,
|
||||
part_id * ppar->part_info->no_subparts + i);
|
||||
}
|
||||
goto go_right;
|
||||
}
|
||||
|
||||
if (key_tree->is_singlepoint())
|
||||
{
|
||||
pushed= TRUE;
|
||||
|
@ -2695,11 +2770,11 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
fields. Save all constN constants into table record buffer.
|
||||
*/
|
||||
store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
|
||||
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack,
|
||||
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
|
||||
ppar->part_fields););
|
||||
uint32 part_id;
|
||||
longlong func_value;
|
||||
/* then find in which partition the {const1, ...,constN} tuple goes */
|
||||
/* Find in which partition the {const1, ...,constN} tuple goes */
|
||||
if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
|
||||
&func_value))
|
||||
{
|
||||
|
@ -2707,9 +2782,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
goto pop_and_go_right;
|
||||
}
|
||||
/* Rembember the limit we got - single partition #part_id */
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= part_id;
|
||||
ppar->end_part_num= part_id + 1;
|
||||
init_single_partition_iterator(part_id, &ppar->part_iter);
|
||||
|
||||
/*
|
||||
If there are no subpartitions/we fail to get any limit for them,
|
||||
|
@ -2719,7 +2792,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno)
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
ppar->cur_subpart_fields == ppar->subpart_fields)
|
||||
{
|
||||
/*
|
||||
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
|
||||
|
@ -2727,7 +2801,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
*/
|
||||
store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
|
||||
ppar->subpart_fields);
|
||||
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack_end -
|
||||
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end-
|
||||
ppar->subpart_fields,
|
||||
ppar->subpart_fields););
|
||||
/* Find the subpartition (it's HASH/KEY so we always have one) */
|
||||
|
@ -2735,12 +2809,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
uint32 subpart_id= part_info->get_subpartition_id(part_info);
|
||||
|
||||
/* Mark this partition as used in each subpartition. */
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
bitmap_set_bit(&part_info->used_partitions,
|
||||
ppar->part_num_to_part_id(ppar, num) *
|
||||
part_info->no_subparts + subpart_id);
|
||||
part_id * part_info->no_subparts + subpart_id);
|
||||
}
|
||||
res= 1; /* Some partitions were marked as used */
|
||||
goto pop_and_go_right;
|
||||
|
@ -2761,31 +2835,28 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|||
process_next_key_part:
|
||||
if (key_tree->next_key_part)
|
||||
res= find_used_partitions(ppar, key_tree->next_key_part);
|
||||
else
|
||||
else
|
||||
res= -1;
|
||||
|
||||
if (res == -1) /* Got "full range" for key_tree->next_key_part call */
|
||||
{
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info,
|
||||
ppar->part_num_to_part_id(ppar, num));
|
||||
}
|
||||
res= 1;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
/* Restore the "used partition iterator" to its default */
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
if (res == -1)
|
||||
{
|
||||
/* Got "full range" for subpartitioning fields */
|
||||
uint32 part_id;
|
||||
bool found= FALSE;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) != NOT_A_PARTITION_ID)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info, part_id);
|
||||
found= TRUE;
|
||||
}
|
||||
res= test(found);
|
||||
}
|
||||
/*
|
||||
Restore the "used partitions iterator" to the default setting that
|
||||
specifies iteration over all partitions.
|
||||
*/
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
if (pushed)
|
||||
|
@ -2796,7 +2867,10 @@ pop_and_go_right:
|
|||
ppar->cur_part_fields-= ppar->is_part_keypart[partno];
|
||||
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
|
||||
}
|
||||
|
||||
|
||||
if (res == -1)
|
||||
return -1;
|
||||
go_right:
|
||||
if (key_tree->right != &null_element)
|
||||
{
|
||||
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
|
||||
|
@ -2854,7 +2928,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
|
|||
struct
|
||||
|
||||
SYNOPSIS
|
||||
create_partition_index_descrition()
|
||||
create_partition_index_description()
|
||||
prune_par INOUT Partition pruning context
|
||||
|
||||
DESCRIPTION
|
||||
|
@ -2871,7 +2945,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
|
|||
FALSE OK
|
||||
*/
|
||||
|
||||
static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
||||
static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
||||
{
|
||||
RANGE_OPT_PARAM *range_par= &(ppar->range_param);
|
||||
partition_info *part_info= ppar->part_info;
|
||||
|
@ -2903,38 +2977,6 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
|||
ppar->get_top_partition_id_func= part_info->get_partition_id;
|
||||
}
|
||||
|
||||
enum_monotonicity_info minfo;
|
||||
ppar->get_endpoint= NULL;
|
||||
if (part_info->part_expr &&
|
||||
(minfo= part_info->part_expr->get_monotonicity_info()) != NON_MONOTONIC)
|
||||
{
|
||||
/*
|
||||
ppar->force_include_bounds controls how we'll process "field < C" and
|
||||
"field > C" intervals.
|
||||
If the partitioning function F is strictly increasing, then for any x, y
|
||||
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
|
||||
we can perform partition pruning on the equivalent "F(field) < F(C)".
|
||||
|
||||
If the partitioning function not strictly increasing (it is simply
|
||||
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
|
||||
i.e. for interval "field < C" we can perform partition pruning for
|
||||
"F(field) <= F(C)".
|
||||
*/
|
||||
ppar->force_include_bounds= test(minfo == MONOTONIC_INCREASING);
|
||||
if (part_info->part_type == RANGE_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_partition_id_range_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_range;
|
||||
ppar->max_endpoint_val= part_info->no_parts;
|
||||
}
|
||||
else if (part_info->part_type == LIST_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_list_array_idx_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_list;
|
||||
ppar->max_endpoint_val= part_info->no_list_values;
|
||||
}
|
||||
}
|
||||
|
||||
KEY_PART *key_part;
|
||||
MEM_ROOT *alloc= range_par->mem_root;
|
||||
if (!total_parts ||
|
||||
|
@ -2947,11 +2989,19 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
|||
!(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
|
||||
total_parts)))
|
||||
return TRUE;
|
||||
|
||||
|
||||
if (ppar->subpart_fields)
|
||||
{
|
||||
uint32 *buf;
|
||||
uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
|
||||
if (!(buf= (uint32*)alloc_root(alloc, bufsize)))
|
||||
return TRUE;
|
||||
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts, FALSE);
|
||||
}
|
||||
range_par->key_parts= key_part;
|
||||
Field **field= (ppar->part_fields)? part_info->part_field_array :
|
||||
part_info->subpart_field_array;
|
||||
bool subpart_fields= FALSE;
|
||||
bool in_subpart_fields= FALSE;
|
||||
for (uint part= 0; part < total_parts; part++, key_part++)
|
||||
{
|
||||
key_part->key= 0;
|
||||
|
@ -2972,13 +3022,13 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
|||
key_part->image_type = Field::itRAW;
|
||||
/* We don't set key_parts->null_bit as it will not be used */
|
||||
|
||||
ppar->is_part_keypart[part]= !subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= subpart_fields;
|
||||
ppar->is_part_keypart[part]= !in_subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= in_subpart_fields;
|
||||
|
||||
if (!*(++field))
|
||||
{
|
||||
field= part_info->subpart_field_array;
|
||||
subpart_fields= TRUE;
|
||||
in_subpart_fields= TRUE;
|
||||
}
|
||||
}
|
||||
range_par->key_parts_end= key_part;
|
||||
|
@ -3058,7 +3108,7 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
|
|||
Print a singlepoint multi-keypart range interval to debug trace
|
||||
|
||||
SYNOPSIS
|
||||
dbug_print_onepoint_range()
|
||||
dbug_print_singlepoint_range()
|
||||
start Array of SEL_ARG* ptrs representing conditions on key parts
|
||||
num Number of elements in the array.
|
||||
|
||||
|
@ -3067,9 +3117,9 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
|
|||
interval to debug trace.
|
||||
*/
|
||||
|
||||
static void dbug_print_onepoint_range(SEL_ARG **start, uint num)
|
||||
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
|
||||
{
|
||||
DBUG_ENTER("dbug_print_onepoint_range");
|
||||
DBUG_ENTER("dbug_print_singlepoint_range");
|
||||
DBUG_LOCK_FILE;
|
||||
SEL_ARG **end= start + num;
|
||||
|
||||
|
|
|
@ -721,6 +721,7 @@ uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit);
|
|||
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
|
||||
void store_key_image_to_rec(Field *field, char *ptr, uint len);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -224,7 +224,8 @@ sql_create_definition_file(const LEX_STRING *dir, const LEX_STRING *file_name,
|
|||
File_option *param;
|
||||
DBUG_ENTER("sql_create_definition_file");
|
||||
DBUG_PRINT("enter", ("Dir: %s, file: %s, base 0x%lx",
|
||||
dir->str, file_name->str, (ulong) base));
|
||||
dir ? dir->str : "(null)",
|
||||
file_name->str, (ulong) base));
|
||||
|
||||
if (dir)
|
||||
{
|
||||
|
|
|
@ -785,7 +785,10 @@ int THD::send_explain_fields(select_result *result)
|
|||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
if (lex->describe & DESCRIBE_PARTITIONS)
|
||||
{
|
||||
field_list.push_back(item= new Item_empty_string("partitions", 10, cs));
|
||||
/* Maximum length of string that make_used_partitions_str() can produce */
|
||||
item= new Item_empty_string("partitions", MAX_PARTITIONS * (1 + FN_LEN),
|
||||
cs);
|
||||
field_list.push_back(item);
|
||||
item->maybe_null= 1;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -112,7 +112,7 @@ enum enum_sql_command {
|
|||
#define DESCRIBE_NORMAL 1
|
||||
#define DESCRIBE_EXTENDED 2
|
||||
/*
|
||||
This is not #ifdef'ed because we want "EXPLAIN PARTITIONS ..." to produce
|
||||
This is not within #ifdef because we want "EXPLAIN PARTITIONS ..." to produce
|
||||
additional "partitions" column even if partitioning is not compiled in.
|
||||
*/
|
||||
#define DESCRIBE_PARTITIONS 4
|
||||
|
|
|
@ -110,6 +110,21 @@ uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
|
|||
uint32 get_partition_id_linear_key_sub(partition_info *part_info);
|
||||
#endif
|
||||
|
||||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
|
||||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
|
||||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
|
||||
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
|
||||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter);
|
||||
static void set_up_range_analysis_info(partition_info *part_info);
|
||||
|
||||
/*
|
||||
A routine used by the parser to decide whether we are specifying a full
|
||||
|
@ -1866,8 +1881,8 @@ static void set_up_partition_func_pointers(partition_info *part_info)
|
|||
}
|
||||
DBUG_VOID_RETURN;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
For linear hashing we need a mask which is on the form 2**n - 1 where
|
||||
2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
|
||||
|
@ -2101,6 +2116,7 @@ bool fix_partition_func(THD *thd, const char* name, TABLE *table,
|
|||
set_up_partition_key_maps(table, part_info);
|
||||
set_up_partition_func_pointers(part_info);
|
||||
part_info->fixed= TRUE;
|
||||
set_up_range_analysis_info(part_info);
|
||||
result= FALSE;
|
||||
end:
|
||||
thd->set_query_id= save_set_query_id;
|
||||
|
@ -5494,13 +5510,21 @@ void mem_alloc_error(size_t size)
|
|||
my_error(ER_OUTOFMEMORY, MYF(0), size);
|
||||
}
|
||||
|
||||
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
/*
|
||||
Fill the string comma-separated line of used partitions names
|
||||
Return comma-separated list of used partitions in the provided given string
|
||||
|
||||
SYNOPSIS
|
||||
make_used_partitions_str()
|
||||
part_info IN Partitioning info
|
||||
parts_str OUT The string to fill
|
||||
|
||||
DESCRIPTION
|
||||
Generate a list of used partitions (from bits in part_info->used_partitions
|
||||
bitmap), asd store it into the provided String object.
|
||||
|
||||
NOTE
|
||||
The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
|
||||
*/
|
||||
|
||||
void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
||||
|
@ -5510,7 +5534,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
|||
uint partition_id= 0;
|
||||
List_iterator<partition_element> it(part_info->partitions);
|
||||
|
||||
if (part_info->subpart_type != NOT_A_PARTITION)
|
||||
if (is_sub_partitioned(part_info))
|
||||
{
|
||||
partition_element *head_pe;
|
||||
while ((head_pe= it++))
|
||||
|
@ -5549,4 +5573,445 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
|||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/****************************************************************************
|
||||
* Partition interval analysis support
|
||||
***************************************************************************/
|
||||
|
||||
/*
|
||||
Setup partition_info::* members related to partitioning range analysis
|
||||
|
||||
SYNOPSIS
|
||||
set_up_partition_func_pointers()
|
||||
part_info Partitioning info structure
|
||||
|
||||
DESCRIPTION
|
||||
Assuming that passed partition_info structure already has correct values
|
||||
for members that specify [sub]partitioning type, table fields, and
|
||||
functions, set up partition_info::* members that are related to
|
||||
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
|
||||
definition)
|
||||
|
||||
IMPLEMENTATION
|
||||
There are two available interval analyzer functions:
|
||||
(1) get_part_iter_for_interval_via_mapping
|
||||
(2) get_part_iter_for_interval_via_walking
|
||||
|
||||
They both have limited applicability:
|
||||
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
|
||||
func is a monotonic function.
|
||||
|
||||
(2) is applicable for
|
||||
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
|
||||
|
||||
If both are applicable, (1) is preferred over (2).
|
||||
|
||||
This function sets part_info::get_part_iter_for_interval according to
|
||||
this criteria, and also sets some auxilary fields that the function
|
||||
uses.
|
||||
*/
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
static void set_up_range_analysis_info(partition_info *part_info)
|
||||
{
|
||||
enum_monotonicity_info minfo;
|
||||
|
||||
/* Set the catch-all default */
|
||||
part_info->get_part_iter_for_interval= NULL;
|
||||
part_info->get_subpart_iter_for_interval= NULL;
|
||||
|
||||
/*
|
||||
Check if get_part_iter_for_interval_via_mapping() can be used for
|
||||
partitioning
|
||||
*/
|
||||
switch (part_info->part_type) {
|
||||
case RANGE_PARTITION:
|
||||
case LIST_PARTITION:
|
||||
minfo= part_info->part_expr->get_monotonicity_info();
|
||||
if (minfo != NON_MONOTONIC)
|
||||
{
|
||||
part_info->range_analysis_include_bounds=
|
||||
test(minfo == MONOTONIC_INCREASING);
|
||||
part_info->get_part_iter_for_interval=
|
||||
get_part_iter_for_interval_via_mapping;
|
||||
goto setup_subparts;
|
||||
}
|
||||
default:
|
||||
;
|
||||
}
|
||||
|
||||
/*
|
||||
Check get_part_iter_for_interval_via_walking() can be used for
|
||||
partitioning
|
||||
*/
|
||||
if (part_info->no_part_fields == 1)
|
||||
{
|
||||
Field *field= part_info->part_field_array[0];
|
||||
switch (field->type()) {
|
||||
case MYSQL_TYPE_TINY:
|
||||
case MYSQL_TYPE_SHORT:
|
||||
case MYSQL_TYPE_LONG:
|
||||
case MYSQL_TYPE_LONGLONG:
|
||||
part_info->get_part_iter_for_interval=
|
||||
get_part_iter_for_interval_via_walking;
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
setup_subparts:
|
||||
/*
|
||||
Check get_part_iter_for_interval_via_walking() can be used for
|
||||
subpartitioning
|
||||
*/
|
||||
if (part_info->no_subpart_fields == 1)
|
||||
{
|
||||
Field *field= part_info->subpart_field_array[0];
|
||||
switch (field->type()) {
|
||||
case MYSQL_TYPE_TINY:
|
||||
case MYSQL_TYPE_SHORT:
|
||||
case MYSQL_TYPE_LONG:
|
||||
case MYSQL_TYPE_LONGLONG:
|
||||
part_info->get_subpart_iter_for_interval=
|
||||
get_part_iter_for_interval_via_walking;
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
bool include_endpoint);
|
||||
|
||||
/*
|
||||
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
|
||||
|
||||
SYNOPSIS
|
||||
get_part_iter_for_interval_via_mapping()
|
||||
part_info Partition info
|
||||
is_subpart TRUE - act for subpartitioning
|
||||
FALSE - act for partitioning
|
||||
min_value minimum field value, in opt_range key format.
|
||||
max_value minimum field value, in opt_range key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Initialize partition set iterator to walk over the interval in
|
||||
ordered-array-of-partitions (for RANGE partitioning) or
|
||||
ordered-array-of-list-constants (for LIST partitioning) space.
|
||||
|
||||
IMPLEMENTATION
|
||||
This function is used when partitioning is done by
|
||||
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
|
||||
t.field space into a sub-array of partition_info::range_int_array or
|
||||
partition_info::list_array (see get_partition_id_range_for_endpoint,
|
||||
get_list_array_idx_for_endpoint for details).
|
||||
|
||||
The function performs this interval mapping, and sets the iterator to
|
||||
traverse the sub-array and return appropriate partitions.
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions (iterator not initialized)
|
||||
1 - Ok, iterator intialized for traversal of matching partitions.
|
||||
-1 - All partitions would match (iterator not initialized)
|
||||
*/
|
||||
|
||||
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
DBUG_ASSERT(!is_subpart);
|
||||
Field *field= part_info->part_field_array[0];
|
||||
uint32 max_endpoint_val;
|
||||
get_endpoint_func get_endpoint;
|
||||
uint field_len= field->pack_length_in_rec();
|
||||
|
||||
if (part_info->part_type == RANGE_PARTITION)
|
||||
{
|
||||
get_endpoint= get_partition_id_range_for_endpoint;
|
||||
max_endpoint_val= part_info->no_parts;
|
||||
part_iter->get_next= get_next_partition_id_range;
|
||||
}
|
||||
else if (part_info->part_type == LIST_PARTITION)
|
||||
{
|
||||
get_endpoint= get_list_array_idx_for_endpoint;
|
||||
max_endpoint_val= part_info->no_list_values;
|
||||
part_iter->get_next= get_next_partition_id_list;
|
||||
part_iter->part_info= part_info;
|
||||
}
|
||||
else
|
||||
DBUG_ASSERT(0);
|
||||
|
||||
/* Find minimum */
|
||||
if (flags & NO_MIN_RANGE)
|
||||
part_iter->start_part_num= 0;
|
||||
else
|
||||
{
|
||||
/*
|
||||
Store the interval edge in the record buffer, and call the
|
||||
function that maps the edge in table-field space to an edge
|
||||
in ordered-set-of-partitions (for RANGE partitioning) or
|
||||
index-in-ordered-array-of-list-constants (for LIST) space.
|
||||
*/
|
||||
store_key_image_to_rec(field, min_value, field_len);
|
||||
bool include_endp= part_info->range_analysis_include_bounds ||
|
||||
!test(flags & NEAR_MIN);
|
||||
part_iter->start_part_num= get_endpoint(part_info, 1, include_endp);
|
||||
if (part_iter->start_part_num == max_endpoint_val)
|
||||
return 0; /* No partitions */
|
||||
}
|
||||
|
||||
/* Find maximum, do the same as above but for right interval bound */
|
||||
if (flags & NO_MAX_RANGE)
|
||||
part_iter->end_part_num= max_endpoint_val;
|
||||
else
|
||||
{
|
||||
store_key_image_to_rec(field, max_value, field_len);
|
||||
bool include_endp= part_info->range_analysis_include_bounds ||
|
||||
!test(flags & NEAR_MAX);
|
||||
part_iter->end_part_num= get_endpoint(part_info, 0, include_endp);
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return 0; /* No partitions */
|
||||
}
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
|
||||
|
||||
/* See get_part_iter_for_interval_via_walking for definition of what this is */
|
||||
#define MAX_RANGE_TO_WALK 10
|
||||
|
||||
|
||||
/*
|
||||
Partitioning Interval Analysis: Initialize iterator to walk field interval
|
||||
|
||||
SYNOPSIS
|
||||
get_part_iter_for_interval_via_walking()
|
||||
part_info Partition info
|
||||
is_subpart TRUE - act for subpartitioning
|
||||
FALSE - act for partitioning
|
||||
min_value minimum field value, in opt_range key format.
|
||||
max_value minimum field value, in opt_range key format.
|
||||
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
||||
NO_MAX_RANGE.
|
||||
part_iter Iterator structure to be initialized
|
||||
|
||||
DESCRIPTION
|
||||
Initialize partition set iterator to walk over interval in integer field
|
||||
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
|
||||
the iterator to return a set of [sub]partitions obtained with the
|
||||
following procedure:
|
||||
get partition id for t.field = const1, return it
|
||||
get partition id for t.field = const1+1, return it
|
||||
... t.field = const1+2, ...
|
||||
... ... ...
|
||||
... t.field = const2 ...
|
||||
|
||||
IMPLEMENTATION
|
||||
See get_partitions_in_range_iter for general description of interval
|
||||
analysis. We support walking over the following intervals:
|
||||
"t.field IS NULL"
|
||||
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
|
||||
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
|
||||
that is more tricky and I don't have time to do it right now.
|
||||
|
||||
Additionally we have these requirements:
|
||||
* number of values in the interval must be less then number of
|
||||
[sub]partitions, and
|
||||
* Number of values in the interval must be less then MAX_RANGE_TO_WALK.
|
||||
|
||||
The rationale behind these requirements is that if they are not met
|
||||
we're likely to hit most of the partitions and traversing the interval
|
||||
will only add overhead. So it's better return "all partitions used" in
|
||||
that case.
|
||||
|
||||
RETURN
|
||||
0 - No matching partitions, iterator not initialized
|
||||
1 - Some partitions would match, iterator intialized for traversing them
|
||||
-1 - All partitions would match, iterator not initialized
|
||||
*/
|
||||
|
||||
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
||||
bool is_subpart,
|
||||
byte *min_value, byte *max_value,
|
||||
uint flags,
|
||||
PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
Field *field;
|
||||
uint total_parts;
|
||||
partition_iter_func get_next_func;
|
||||
if (is_subpart)
|
||||
{
|
||||
field= part_info->subpart_field_array[0];
|
||||
total_parts= part_info->no_subparts;
|
||||
get_next_func= get_next_subpartition_via_walking;
|
||||
}
|
||||
else
|
||||
{
|
||||
field= part_info->part_field_array[0];
|
||||
total_parts= part_info->no_parts;
|
||||
get_next_func= get_next_partition_via_walking;
|
||||
}
|
||||
|
||||
/* Handle the "t.field IS NULL" interval, it is a special case */
|
||||
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
|
||||
*min_value && *max_value)
|
||||
{
|
||||
/*
|
||||
We don't have a part_iter->get_next() function that would find which
|
||||
partition "t.field IS NULL" belongs to, so find partition that contains
|
||||
NULL right here, and return an iterator over singleton set.
|
||||
*/
|
||||
uint32 part_id;
|
||||
field->set_null();
|
||||
if (is_subpart)
|
||||
{
|
||||
part_id= part_info->get_subpartition_id(part_info);
|
||||
init_single_partition_iterator(part_id, part_iter);
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
else
|
||||
{
|
||||
longlong dummy;
|
||||
if (!part_info->get_partition_id(part_info, &part_id, &dummy))
|
||||
{
|
||||
init_single_partition_iterator(part_id, part_iter);
|
||||
return 1; /* Ok, iterator initialized */
|
||||
}
|
||||
}
|
||||
return 0; /* No partitions match */
|
||||
}
|
||||
|
||||
if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
|
||||
return -1; /* Can't handle this interval, have to use all partitions */
|
||||
|
||||
/* Get integers for left and right interval bound */
|
||||
longlong a, b;
|
||||
uint len= field->pack_length_in_rec();
|
||||
store_key_image_to_rec(field, min_value, len);
|
||||
a= field->val_int();
|
||||
|
||||
store_key_image_to_rec(field, max_value, len);
|
||||
b= field->val_int();
|
||||
|
||||
a += test(flags & NEAR_MIN);
|
||||
b += test(!(flags & NEAR_MAX));
|
||||
uint n_values= b - a;
|
||||
|
||||
if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
|
||||
return -1;
|
||||
|
||||
part_iter->start_val= a;
|
||||
part_iter->end_val= b;
|
||||
part_iter->part_info= part_info;
|
||||
part_iter->get_next= get_next_func;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_id_list()
|
||||
part_iter Partition set iterator structure
|
||||
|
||||
DESCRIPTION
|
||||
This is implementation of PARTITION_ITERATOR::get_next() that returns
|
||||
[sub]partition ids in [min_partition_id, max_partition_id] range.
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitions
|
||||
*/
|
||||
|
||||
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
|
||||
{
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return NOT_A_PARTITION_ID;
|
||||
else
|
||||
return part_iter->start_part_num++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation for LIST partitioning
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_id_list()
|
||||
part_iter Partition set iterator structure
|
||||
|
||||
DESCRIPTION
|
||||
This implementation of PARTITION_ITERATOR::get_next() is special for
|
||||
LIST partitioning: it enumerates partition ids in
|
||||
part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitions
|
||||
*/
|
||||
|
||||
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
if (part_iter->start_part_num == part_iter->end_part_num)
|
||||
return NOT_A_PARTITION_ID;
|
||||
else
|
||||
return part_iter->part_info->list_array[part_iter->
|
||||
start_part_num++].partition_id;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
PARTITION_ITERATOR::get_next implementation: walk over field-space interval
|
||||
|
||||
SYNOPSIS
|
||||
get_next_partition_via_walking()
|
||||
part_iter Partitioning iterator
|
||||
|
||||
DESCRIPTION
|
||||
This implementation of PARTITION_ITERATOR::get_next() returns ids of
|
||||
partitions that contain records with partitioning field value within
|
||||
[start_val, end_val] interval.
|
||||
|
||||
RETURN
|
||||
partition id
|
||||
NOT_A_PARTITION_ID if there are no more partitioning.
|
||||
*/
|
||||
|
||||
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
uint32 part_id;
|
||||
Field *field= part_iter->part_info->part_field_array[0];
|
||||
while (part_iter->start_val != part_iter->end_val)
|
||||
{
|
||||
field->store(part_iter->start_val, FALSE);
|
||||
part_iter->start_val++;
|
||||
longlong dummy;
|
||||
if (!part_iter->part_info->get_partition_id(part_iter->part_info,
|
||||
&part_id, &dummy))
|
||||
return part_id;
|
||||
}
|
||||
return NOT_A_PARTITION_ID;
|
||||
}
|
||||
|
||||
|
||||
/* Same as get_next_partition_via_walking, but for subpartitions */
|
||||
|
||||
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
|
||||
{
|
||||
uint32 part_id;
|
||||
Field *field= part_iter->part_info->subpart_field_array[0];
|
||||
if (part_iter->start_val == part_iter->end_val)
|
||||
return NOT_A_PARTITION_ID;
|
||||
field->store(part_iter->start_val, FALSE);
|
||||
part_iter->start_val++;
|
||||
return part_iter->part_info->get_subpartition_id(part_iter->part_info);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -639,6 +639,11 @@ JOIN::optimize()
|
|||
TABLE_LIST *tbl;
|
||||
for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
|
||||
{
|
||||
/*
|
||||
If tbl->embedding!=NULL that means that this table is in the inner
|
||||
part of the nested outer join, and we can't do partition pruning
|
||||
(TODO: check if this limitation can be lifted)
|
||||
*/
|
||||
if (!tbl->embedding)
|
||||
{
|
||||
Item *prune_cond= tbl->on_expr? tbl->on_expr : conds;
|
||||
|
|
|
@ -1415,7 +1415,7 @@ bool multi_update::send_data(List<Item> ¬_used_values)
|
|||
memcpy((char*) tmp_table->field[0]->ptr,
|
||||
(char*) table->file->ref, table->file->ref_length);
|
||||
/* Write row, ignoring duplicated updates to a row */
|
||||
if (error= tmp_table->file->ha_write_row(tmp_table->record[0]))
|
||||
if ((error= tmp_table->file->ha_write_row(tmp_table->record[0])))
|
||||
{
|
||||
if (error != HA_ERR_FOUND_DUPP_KEY &&
|
||||
error != HA_ERR_FOUND_DUPP_UNIQUE &&
|
||||
|
|
27
sql/table.cc
27
sql/table.cc
|
@ -270,7 +270,32 @@ int open_table_def(THD *thd, TABLE_SHARE *share, uint db_flags)
|
|||
|
||||
strxmov(path, share->normalized_path.str, reg_ext, NullS);
|
||||
if ((file= my_open(path, O_RDONLY | O_SHARE, MYF(0))) < 0)
|
||||
goto err_not_open;
|
||||
{
|
||||
/* Try unecoded 5.0 name */
|
||||
uint length;
|
||||
strxnmov(path, sizeof(path)-1,
|
||||
mysql_data_home, "/", share->db.str, "/",
|
||||
share->table_name.str, reg_ext, NullS);
|
||||
length= unpack_filename(path, path) - reg_ext_length;
|
||||
/*
|
||||
The following is a safety test and should never fail
|
||||
as the old file name should never be longer than the new one.
|
||||
*/
|
||||
DBUG_ASSERT(length <= share->normalized_path.length);
|
||||
/*
|
||||
If the old and the new names have the same length,
|
||||
then table name does not have tricky characters,
|
||||
so no need to check the old file name.
|
||||
*/
|
||||
if (length == share->normalized_path.length ||
|
||||
((file= my_open(path, O_RDONLY | O_SHARE, MYF(0))) < 0))
|
||||
goto err_not_open;
|
||||
|
||||
/* Unencoded 5.0 table name found */
|
||||
path[length]= '\0'; // Remove .frm extension
|
||||
strmov(share->normalized_path.str, path);
|
||||
share->normalized_path.length= length;
|
||||
}
|
||||
|
||||
error= 4;
|
||||
if (my_read(file,(byte*) head, 64, MYF(MY_NABP)))
|
||||
|
|
Loading…
Reference in a new issue