mirror of
https://github.com/MariaDB/server.git
synced 2025-01-17 20:42:30 +01:00
New qsort implementation
This commit is contained in:
parent
ab9c0df7f8
commit
c32ee4ee35
2 changed files with 160 additions and 204 deletions
362
mysys/mf_qsort.c
362
mysys/mf_qsort.c
|
@ -15,245 +15,201 @@
|
|||
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
MA 02111-1307, USA */
|
||||
|
||||
/* Plug-compatible replacement for UNIX qsort.
|
||||
Copyright (C) 1989 Free Software Foundation, Inc.
|
||||
Written by Douglas C. Schmidt (schmidt@ics.uci.edu)
|
||||
Optimized and modyfied for mysys by monty.
|
||||
/*
|
||||
qsort implementation optimized for comparison of pointers
|
||||
Inspired by the qsort implementations by Douglas C. Schmidt,
|
||||
and Bentley & McIlroy's "Engineering a Sort Function".
|
||||
*/
|
||||
|
||||
This file is part of GNU CC.
|
||||
|
||||
GNU QSORT is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 1, or (at your option)
|
||||
any later version.
|
||||
|
||||
GNU QSORT is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU QSORT; see the file COPYING. If not, write to
|
||||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||||
|
||||
#include "mysys_priv.h"
|
||||
|
||||
/* Envoke the comparison function, returns either 0, < 0, or > 0. */
|
||||
/* We need to use qsort with 2 different compare functions */
|
||||
#ifdef QSORT_EXTRA_CMP_ARGUMENT
|
||||
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
|
||||
#else
|
||||
#define CMP(A,B) ((*cmp)((A),(B)))
|
||||
#endif
|
||||
|
||||
/* Byte-wise swap two items of size SIZE. */
|
||||
#define SWAP(A,B,SIZE) do {int sz=(int)(SIZE); char *a = (A); char *b = (B); \
|
||||
do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0)
|
||||
#define SWAP(A, B, size,swap_ptrs) \
|
||||
do { \
|
||||
if (swap_ptrs) \
|
||||
{ \
|
||||
reg1 char **a = (char**) (A), **b = (char**) (B); \
|
||||
char *tmp = *a; *a++ = *b; *b++ = tmp; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
reg1 char *a = (A), *b = (B); \
|
||||
reg3 char *end= a+size; \
|
||||
do \
|
||||
{ \
|
||||
char tmp = *a; *a++ = *b; *b++ = tmp; \
|
||||
} while (a < end); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* Copy SIZE bytes from item B to item A. */
|
||||
#define COPY(A,B,SIZE) {int sz = (int) (SIZE); do { *(A)++ = *(B)++; } while (--sz); }
|
||||
/* Put the median in the middle argument */
|
||||
#define MEDIAN(low, mid, high) \
|
||||
{ \
|
||||
if (CMP(high,low) < 0) \
|
||||
SWAP(high, low, size, ptr_cmp); \
|
||||
if (CMP(mid, low) < 0) \
|
||||
SWAP(mid, low, size, ptr_cmp); \
|
||||
else if (CMP(high, mid) < 0) \
|
||||
SWAP(mid, high, size, ptr_cmp); \
|
||||
}
|
||||
|
||||
/* This should be replaced by a standard ANSI macro. */
|
||||
#define BYTES_PER_WORD 8
|
||||
/* The following node is used to store ranges to avoid recursive calls */
|
||||
|
||||
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
||||
#define STACK_SIZE (BYTES_PER_WORD * sizeof (long))
|
||||
#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
|
||||
#define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
|
||||
#define STACK_NOT_EMPTY (stack < top)
|
||||
|
||||
/* Discontinue quicksort algorithm when partition gets below this size.
|
||||
This particular magic number was chosen to work best on a Sparc SLC. */
|
||||
#define MAX_THRESH 12
|
||||
|
||||
/* Stack node declarations used to store unfulfilled partition obligations. */
|
||||
typedef struct
|
||||
typedef struct st_stack
|
||||
{
|
||||
char *lo;
|
||||
char *hi;
|
||||
} stack_node;
|
||||
char *low,*high;
|
||||
} STACK;
|
||||
|
||||
/* Order size using quicksort. This implementation incorporates
|
||||
four optimizations discussed in Sedgewick:
|
||||
|
||||
1. Non-recursive, using an explicit stack of pointer that store the
|
||||
next array partition to sort. To save time, this maximum amount
|
||||
of space required to store an array of MAX_INT is allocated on the
|
||||
stack. Assuming a 32-bit integer, this needs only 32 *
|
||||
sizeof (stack_node) == 136 bits. Pretty cheap, actually.
|
||||
|
||||
2. Chose the pivot element using a median-of-three decision tree.
|
||||
This reduces the probability of selecting a bad pivot value and
|
||||
eliminates certain extraneous comparisons.
|
||||
|
||||
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
||||
insertion sort to order the MAX_THRESH items within each partition.
|
||||
This is a big win, since insertion sort is faster for small, mostly
|
||||
sorted array segements.
|
||||
|
||||
4. The larger of the two sub-partitions is always pushed onto the
|
||||
stack first, with the algorithm then concentrating on the
|
||||
smaller partition. This *guarantees* no more than log (n)
|
||||
stack size is needed (actually O(1) in this case)! */
|
||||
#define PUSH(LOW,HIGH) {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
|
||||
#define POP(LOW,HIGH) {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}
|
||||
|
||||
/* The following stack size is enough for ulong ~0 elements */
|
||||
#define STACK_SIZE (8 * sizeof(unsigned long int))
|
||||
#define THRESHOLD_FOR_INSERT_SORT 10
|
||||
#if defined(QSORT_TYPE_IS_VOID)
|
||||
#define SORT_RETURN return
|
||||
#else
|
||||
#define SORT_RETURN return 0
|
||||
#endif
|
||||
|
||||
/****************************************************************************
|
||||
** 'standard' quicksort with the following extensions:
|
||||
**
|
||||
** Can be compiled with the qsort2_cmp compare function
|
||||
** Store ranges on stack to avoid recursion
|
||||
** Use insert sort on small ranges
|
||||
** Optimize for sorting of pointers (used often by MySQL)
|
||||
** Use median comparison to find partition element
|
||||
*****************************************************************************/
|
||||
|
||||
#ifdef QSORT_EXTRA_CMP_ARGUMENT
|
||||
qsort_t qsort2(void *base_ptr, size_t total_elems, size_t size, qsort2_cmp cmp,
|
||||
qsort_t qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
|
||||
void *cmp_argument)
|
||||
#else
|
||||
qsort_t qsort(void *base_ptr, size_t total_elems, size_t size, qsort_cmp cmp)
|
||||
qsort_t qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
|
||||
#endif
|
||||
{
|
||||
/* Allocating SIZE bytes for a pivot buffer facilitates a better
|
||||
algorithm below since we can do comparisons directly on the pivot.
|
||||
*/
|
||||
int max_thresh = (int) (MAX_THRESH * size);
|
||||
if (total_elems <= 1)
|
||||
SORT_RETURN; /* Crashes on MSDOS if continues */
|
||||
char *low, *high, *pivot;
|
||||
STACK stack[STACK_SIZE], *stack_ptr;
|
||||
my_bool ptr_cmp;
|
||||
/* Handle the simple case first */
|
||||
/* This will also make the rest of the code simpler */
|
||||
if (count <= 1)
|
||||
SORT_RETURN;
|
||||
|
||||
if (total_elems > MAX_THRESH)
|
||||
{
|
||||
char *lo = base_ptr;
|
||||
char *hi = lo + size * (total_elems - 1);
|
||||
stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
|
||||
stack_node *top = stack + 1;
|
||||
char *pivot_buffer = (char *) my_alloca ((int) size);
|
||||
low = (char*) base_ptr;
|
||||
high = low+ size * (count - 1);
|
||||
stack_ptr = stack + 1;
|
||||
#ifdef HAVE_purify
|
||||
stack[0].lo=stack[0].hi=0;
|
||||
/* The first element in the stack will be accessed for the last POP */
|
||||
stack[0].lo=stack[0].hi=0;
|
||||
#endif
|
||||
pivot = (char *) my_alloca((int) size);
|
||||
ptr_cmp= size == sizeof(char*) && !((low - (char*) 0)& (sizeof(char*)-1));
|
||||
|
||||
while (STACK_NOT_EMPTY)
|
||||
{
|
||||
char *left_ptr;
|
||||
char *right_ptr;
|
||||
{
|
||||
char *pivot = pivot_buffer;
|
||||
{
|
||||
/* Select median value from among LO, MID, and HI. Rearrange
|
||||
LO and HI so the three values are sorted. This lowers the
|
||||
probability of picking a pathological pivot value and
|
||||
skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
|
||||
|
||||
char *mid = lo + size * (((uint) (hi - lo) / (uint) size) >> 1);
|
||||
|
||||
if (CMP(hi,lo) < 0)
|
||||
SWAP (hi, lo, size);
|
||||
if (CMP (mid, lo) < 0)
|
||||
SWAP (mid, lo, size);
|
||||
else if (CMP (hi, mid) < 0)
|
||||
SWAP (mid, hi, size);
|
||||
COPY (pivot, mid, size);
|
||||
pivot = pivot_buffer;
|
||||
}
|
||||
left_ptr = lo + size;
|
||||
right_ptr = hi - size;
|
||||
|
||||
/* Here's the famous ``collapse the walls'' section of quicksort.
|
||||
Gotta like those tight inner loops! They are the main reason
|
||||
that this algorithm runs much faster than others. */
|
||||
do
|
||||
{
|
||||
while (CMP (left_ptr, pivot) < 0)
|
||||
left_ptr += size;
|
||||
|
||||
while (CMP (pivot, right_ptr) < 0)
|
||||
right_ptr -= size;
|
||||
|
||||
if (left_ptr < right_ptr)
|
||||
{
|
||||
SWAP (left_ptr, right_ptr, size);
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
}
|
||||
else if (left_ptr == right_ptr)
|
||||
{
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (left_ptr <= right_ptr);
|
||||
}
|
||||
|
||||
/* Set up pointers for next iteration. First determine whether
|
||||
left and right partitions are below the threshold size. If so,
|
||||
ignore one or both. Otherwise, push the larger partition's
|
||||
bounds on the stack and continue sorting the smaller one. */
|
||||
|
||||
if ((right_ptr - lo) <= max_thresh)
|
||||
{
|
||||
if ((hi - left_ptr) <= max_thresh) /* Ignore both small parts. */
|
||||
POP (lo, hi);
|
||||
else /* Ignore small left part. */
|
||||
lo = left_ptr;
|
||||
}
|
||||
else if ((hi - left_ptr) <= max_thresh) /* Ignore small right part. */
|
||||
hi = right_ptr;
|
||||
else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left part */
|
||||
{
|
||||
PUSH (lo, right_ptr);
|
||||
lo = left_ptr;
|
||||
}
|
||||
else /* Push larger right part */
|
||||
{
|
||||
PUSH (left_ptr, hi);
|
||||
hi = right_ptr;
|
||||
}
|
||||
}
|
||||
my_afree(pivot_buffer);
|
||||
}
|
||||
|
||||
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
||||
is completely sorted using insertion sort, since this is efficient
|
||||
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
||||
of the array to sort, and END_PTR points at the very last element in
|
||||
the array (*not* one beyond it!). */
|
||||
|
||||
/* The following loop sorts elements between high and low */
|
||||
do
|
||||
{
|
||||
char *end_ptr = (char*) base_ptr + size * (total_elems - 1);
|
||||
char *run_ptr;
|
||||
char *tmp_ptr = (char*) base_ptr;
|
||||
char *thresh = min (end_ptr, (char*) base_ptr + max_thresh);
|
||||
char *low_ptr, *high_ptr, *mid;
|
||||
|
||||
/* Find smallest element in first threshold and place it at the
|
||||
array's beginning. This is the smallest array element,
|
||||
and the operation speeds up insertion sort's inner loop. */
|
||||
|
||||
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
||||
if (CMP (run_ptr, tmp_ptr) < 0)
|
||||
tmp_ptr = run_ptr;
|
||||
|
||||
if (tmp_ptr != (char*) base_ptr)
|
||||
SWAP (tmp_ptr, (char*) base_ptr, size);
|
||||
|
||||
/* Insertion sort, running from left-hand-side up to `right-hand-side.'
|
||||
Pretty much straight out of the original GNU qsort routine. */
|
||||
|
||||
for (run_ptr = (char*) base_ptr + size;
|
||||
(tmp_ptr = run_ptr += size) <= end_ptr; )
|
||||
count=((size_t) (high - low) / size)+1;
|
||||
/* If count is small, then an insert sort is faster than qsort */
|
||||
if (count < THRESHOLD_FOR_INSERT_SORT)
|
||||
{
|
||||
while (CMP (run_ptr, tmp_ptr -= size) < 0) ;
|
||||
|
||||
if ((tmp_ptr += size) != run_ptr)
|
||||
for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
|
||||
{
|
||||
char *trav;
|
||||
|
||||
for (trav = run_ptr + size; --trav >= run_ptr;)
|
||||
{
|
||||
char c = *trav;
|
||||
char *hi, *lo;
|
||||
|
||||
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
||||
*hi = *lo;
|
||||
*hi = c;
|
||||
}
|
||||
char *ptr;
|
||||
for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
|
||||
ptr -= size)
|
||||
SWAP(ptr, ptr - size, size, ptr_cmp);
|
||||
}
|
||||
|
||||
POP(low, high);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/* Try to find a good middle element */
|
||||
mid= low + size * (count >> 1);
|
||||
if (count > 40) /* Must be bigger than 24 */
|
||||
{
|
||||
size_t step = size* (count / 8);
|
||||
MEDIAN(low, low + step, low+step*2);
|
||||
MEDIAN(mid - step, mid, mid+step);
|
||||
MEDIAN(high - 2 * step, high-step, high);
|
||||
/* Put best median in 'mid' */
|
||||
MEDIAN(low+step, mid, high-step);
|
||||
low_ptr = low;
|
||||
high_ptr = high;
|
||||
}
|
||||
else
|
||||
{
|
||||
MEDIAN(low, mid, high);
|
||||
/* The low and high argument are already in sorted against 'pivot' */
|
||||
low_ptr = low + size;
|
||||
high_ptr = high - size;
|
||||
}
|
||||
memcpy(pivot, mid, size);
|
||||
|
||||
do
|
||||
{
|
||||
while (CMP(low_ptr, pivot) < 0)
|
||||
low_ptr += size;
|
||||
while (CMP(pivot, high_ptr) < 0)
|
||||
high_ptr -= size;
|
||||
|
||||
if (low_ptr < high_ptr)
|
||||
{
|
||||
SWAP(low_ptr, high_ptr, size, ptr_cmp);
|
||||
low_ptr += size;
|
||||
high_ptr -= size;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (low_ptr == high_ptr)
|
||||
{
|
||||
low_ptr += size;
|
||||
high_ptr -= size;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (low_ptr <= high_ptr);
|
||||
|
||||
/*
|
||||
Prepare for next iteration.
|
||||
Skip partitions of size 1 as these doesn't have to be sorted
|
||||
Push the larger partition and sort the smaller one first.
|
||||
This ensures that the stack is keept small.
|
||||
*/
|
||||
|
||||
if ((int) (high_ptr - low) <= 0)
|
||||
{
|
||||
if ((int) (high - low_ptr) <= 0)
|
||||
{
|
||||
POP(low, high); /* Nothing more to sort */
|
||||
}
|
||||
else
|
||||
low = low_ptr; /* Ignore small left part. */
|
||||
}
|
||||
else if ((int) (high - low_ptr) <= 0)
|
||||
high = high_ptr; /* Ignore small right part. */
|
||||
else if ((high_ptr - low) > (high - low_ptr))
|
||||
{
|
||||
PUSH(low, high_ptr); /* Push larger left part */
|
||||
low = low_ptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
PUSH(low_ptr, high); /* Push larger right part */
|
||||
high = high_ptr;
|
||||
}
|
||||
} while (stack_ptr > stack);
|
||||
my_afree(pivot);
|
||||
SORT_RETURN;
|
||||
}
|
||||
|
|
|
@ -104,7 +104,7 @@ int mysql_ha_read(THD *thd, TABLE_LIST *tables,
|
|||
List_iterator<Item> it(list);
|
||||
it++;
|
||||
|
||||
insert_fields(thd,tables,tables->name,&it);
|
||||
insert_fields(thd,tables,tables->db,tables->name,&it);
|
||||
|
||||
table->file->index_init(keyno);
|
||||
|
||||
|
|
Loading…
Reference in a new issue