mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 12:02:42 +01:00
Bug#50939: Loose Index Scan unduly relies on engine to
remember range endpoints The Loose Index Scan optimization keeps track of a sequence of intervals. For the current interval it maintains the current interval's endpoints. But the maximum endpoint was not stored in the SQL layer; rather, it relied on the storage engine to retain this value in-between reads. By coincidence this holds for MyISAM and InnoDB. Not for the partitioning engine, however. Fixed by making the key values iterator (QUICK_RANGE_SELECT) keep track of the current maximum endpoint. This is also more efficient as we save a call through the handler API in case of open-ended intervals. The code to calculate endpoints was extracted into separate methods in QUICK_RANGE_SELECT, and it was possible to get rid of some code duplication as part of fix.
This commit is contained in:
parent
bea068326f
commit
1c5200f67d
4 changed files with 199 additions and 62 deletions
|
@ -1653,4 +1653,48 @@ a b
|
|||
0 0
|
||||
1 1
|
||||
DROP TABLE t1;
|
||||
#
|
||||
# Bug#50939: Loose Index Scan unduly relies on engine to remember range
|
||||
# endpoints
|
||||
#
|
||||
CREATE TABLE t1 (
|
||||
a INT,
|
||||
b INT,
|
||||
KEY ( a, b )
|
||||
) PARTITION BY HASH (a) PARTITIONS 1;
|
||||
CREATE TABLE t2 (
|
||||
a INT,
|
||||
b INT,
|
||||
KEY ( a, b )
|
||||
);
|
||||
INSERT INTO t1 VALUES (1, 1), (2, 2), (3, 3), (4, 4), (5, 5);
|
||||
INSERT INTO t1 SELECT a + 5, b + 5 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 10, b + 10 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 20, b + 20 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 40, b + 40 FROM t1;
|
||||
INSERT INTO t2 SELECT * FROM t1;
|
||||
# plans should be identical
|
||||
EXPLAIN SELECT a, MAX(b) FROM t1 WHERE a IN (10,100) GROUP BY a;
|
||||
id select_type table type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t1 range a a 5 NULL 1 Using where; Using index for group-by
|
||||
EXPLAIN SELECT a, MAX(b) FROM t2 WHERE a IN (10,100) GROUP BY a;
|
||||
id select_type table type possible_keys key key_len ref rows Extra
|
||||
1 SIMPLE t2 range a a 5 NULL 2 Using where; Using index for group-by
|
||||
FLUSH status;
|
||||
SELECT a, MAX(b) FROM t1 WHERE a IN (10, 100) GROUP BY a;
|
||||
a MAX(b)
|
||||
10 10
|
||||
# Should be no more than 4 reads.
|
||||
SHOW status LIKE 'handler_read_key';
|
||||
Variable_name Value
|
||||
Handler_read_key 4
|
||||
FLUSH status;
|
||||
SELECT a, MAX(b) FROM t2 WHERE a IN (10, 100) GROUP BY a;
|
||||
a MAX(b)
|
||||
10 10
|
||||
# Should be no more than 4 reads.
|
||||
SHOW status LIKE 'handler_read_key';
|
||||
Variable_name Value
|
||||
Handler_read_key 4
|
||||
DROP TABLE t1, t2;
|
||||
End of 5.1 tests
|
||||
|
|
|
@ -1313,4 +1313,45 @@ SELECT * FROM t1 FORCE INDEX (PRIMARY)
|
|||
|
||||
DROP TABLE t1;
|
||||
|
||||
--echo #
|
||||
--echo # Bug#50939: Loose Index Scan unduly relies on engine to remember range
|
||||
--echo # endpoints
|
||||
--echo #
|
||||
CREATE TABLE t1 (
|
||||
a INT,
|
||||
b INT,
|
||||
KEY ( a, b )
|
||||
) PARTITION BY HASH (a) PARTITIONS 1;
|
||||
|
||||
CREATE TABLE t2 (
|
||||
a INT,
|
||||
b INT,
|
||||
KEY ( a, b )
|
||||
);
|
||||
|
||||
INSERT INTO t1 VALUES (1, 1), (2, 2), (3, 3), (4, 4), (5, 5);
|
||||
|
||||
INSERT INTO t1 SELECT a + 5, b + 5 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 10, b + 10 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 20, b + 20 FROM t1;
|
||||
INSERT INTO t1 SELECT a + 40, b + 40 FROM t1;
|
||||
|
||||
INSERT INTO t2 SELECT * FROM t1;
|
||||
|
||||
--echo # plans should be identical
|
||||
EXPLAIN SELECT a, MAX(b) FROM t1 WHERE a IN (10,100) GROUP BY a;
|
||||
EXPLAIN SELECT a, MAX(b) FROM t2 WHERE a IN (10,100) GROUP BY a;
|
||||
|
||||
FLUSH status;
|
||||
SELECT a, MAX(b) FROM t1 WHERE a IN (10, 100) GROUP BY a;
|
||||
--echo # Should be no more than 4 reads.
|
||||
SHOW status LIKE 'handler_read_key';
|
||||
|
||||
FLUSH status;
|
||||
SELECT a, MAX(b) FROM t2 WHERE a IN (10, 100) GROUP BY a;
|
||||
--echo # Should be no more than 4 reads.
|
||||
SHOW status LIKE 'handler_read_key';
|
||||
|
||||
DROP TABLE t1, t2;
|
||||
|
||||
--echo End of 5.1 tests
|
||||
|
|
|
@ -8532,8 +8532,6 @@ int QUICK_RANGE_SELECT::get_next()
|
|||
{
|
||||
int result;
|
||||
KEY_MULTI_RANGE *mrange;
|
||||
key_range *start_key;
|
||||
key_range *end_key;
|
||||
DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
|
||||
DBUG_ASSERT(multi_range_length && multi_range &&
|
||||
(cur_range >= (QUICK_RANGE**) ranges.buffer) &&
|
||||
|
@ -8573,26 +8571,9 @@ int QUICK_RANGE_SELECT::get_next()
|
|||
mrange_slot < mrange_end;
|
||||
mrange_slot++)
|
||||
{
|
||||
start_key= &mrange_slot->start_key;
|
||||
end_key= &mrange_slot->end_key;
|
||||
last_range= *(cur_range++);
|
||||
|
||||
start_key->key= (const uchar*) last_range->min_key;
|
||||
start_key->length= last_range->min_length;
|
||||
start_key->flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
||||
(last_range->flag & EQ_RANGE) ?
|
||||
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
||||
start_key->keypart_map= last_range->min_keypart_map;
|
||||
end_key->key= (const uchar*) last_range->max_key;
|
||||
end_key->length= last_range->max_length;
|
||||
/*
|
||||
We use HA_READ_AFTER_KEY here because if we are reading on a key
|
||||
prefix. We want to find all keys with this prefix.
|
||||
*/
|
||||
end_key->flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
|
||||
HA_READ_AFTER_KEY);
|
||||
end_key->keypart_map= last_range->max_keypart_map;
|
||||
|
||||
last_range->make_min_endpoint(&mrange_slot->start_key);
|
||||
last_range->make_max_endpoint(&mrange_slot->end_key);
|
||||
mrange_slot->range_flag= last_range->flag;
|
||||
}
|
||||
|
||||
|
@ -8616,49 +8597,52 @@ end:
|
|||
/*
|
||||
Get the next record with a different prefix.
|
||||
|
||||
SYNOPSIS
|
||||
QUICK_RANGE_SELECT::get_next_prefix()
|
||||
prefix_length length of cur_prefix
|
||||
cur_prefix prefix of a key to be searched for
|
||||
@param prefix_length length of cur_prefix
|
||||
@param group_key_parts The number of key parts in the group prefix
|
||||
@param cur_prefix prefix of a key to be searched for
|
||||
|
||||
DESCRIPTION
|
||||
Each subsequent call to the method retrieves the first record that has a
|
||||
prefix with length prefix_length different from cur_prefix, such that the
|
||||
record with the new prefix is within the ranges described by
|
||||
this->ranges. The record found is stored into the buffer pointed by
|
||||
this->record.
|
||||
The method is useful for GROUP-BY queries with range conditions to
|
||||
discover the prefix of the next group that satisfies the range conditions.
|
||||
Each subsequent call to the method retrieves the first record that has a
|
||||
prefix with length prefix_length and which is different from cur_prefix,
|
||||
such that the record with the new prefix is within the ranges described by
|
||||
this->ranges. The record found is stored into the buffer pointed by
|
||||
this->record. The method is useful for GROUP-BY queries with range
|
||||
conditions to discover the prefix of the next group that satisfies the range
|
||||
conditions.
|
||||
|
||||
@todo
|
||||
|
||||
TODO
|
||||
This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
|
||||
methods should be unified into a more general one to reduce code
|
||||
duplication.
|
||||
|
||||
RETURN
|
||||
0 on success
|
||||
HA_ERR_END_OF_FILE if returned all keys
|
||||
other if some error occurred
|
||||
@retval 0 on success
|
||||
@retval HA_ERR_END_OF_FILE if returned all keys
|
||||
@retval other if some error occurred
|
||||
*/
|
||||
|
||||
int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
|
||||
key_part_map keypart_map,
|
||||
uint group_key_parts,
|
||||
uchar *cur_prefix)
|
||||
{
|
||||
DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");
|
||||
const key_part_map keypart_map= make_prev_keypart_map(group_key_parts);
|
||||
|
||||
for (;;)
|
||||
{
|
||||
int result;
|
||||
key_range start_key, end_key;
|
||||
if (last_range)
|
||||
{
|
||||
/* Read the next record in the same range with prefix after cur_prefix. */
|
||||
DBUG_ASSERT(cur_prefix != 0);
|
||||
DBUG_ASSERT(cur_prefix != NULL);
|
||||
result= file->index_read_map(record, cur_prefix, keypart_map,
|
||||
HA_READ_AFTER_KEY);
|
||||
if (result || (file->compare_key(file->end_range) <= 0))
|
||||
if (result || last_range->max_keypart_map == 0)
|
||||
DBUG_RETURN(result);
|
||||
|
||||
key_range previous_endpoint;
|
||||
last_range->make_max_endpoint(&previous_endpoint, prefix_length, keypart_map);
|
||||
if (file->compare_key(&previous_endpoint) <= 0)
|
||||
DBUG_RETURN(0);
|
||||
}
|
||||
|
||||
uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
|
||||
|
@ -8670,21 +8654,9 @@ int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
|
|||
}
|
||||
last_range= *(cur_range++);
|
||||
|
||||
start_key.key= (const uchar*) last_range->min_key;
|
||||
start_key.length= min(last_range->min_length, prefix_length);
|
||||
start_key.keypart_map= last_range->min_keypart_map & keypart_map;
|
||||
start_key.flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
||||
(last_range->flag & EQ_RANGE) ?
|
||||
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
||||
end_key.key= (const uchar*) last_range->max_key;
|
||||
end_key.length= min(last_range->max_length, prefix_length);
|
||||
end_key.keypart_map= last_range->max_keypart_map & keypart_map;
|
||||
/*
|
||||
We use READ_AFTER_KEY here because if we are reading on a key
|
||||
prefix we want to find all keys with this prefix
|
||||
*/
|
||||
end_key.flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
|
||||
HA_READ_AFTER_KEY);
|
||||
key_range start_key, end_key;
|
||||
last_range->make_min_endpoint(&start_key, prefix_length, keypart_map);
|
||||
last_range->make_max_endpoint(&end_key, prefix_length, keypart_map);
|
||||
|
||||
result= file->read_range_first(last_range->min_keypart_map ? &start_key : 0,
|
||||
last_range->max_keypart_map ? &end_key : 0,
|
||||
|
@ -8779,9 +8751,9 @@ bool QUICK_RANGE_SELECT::row_in_ranges()
|
|||
}
|
||||
|
||||
/*
|
||||
This is a hack: we inherit from QUICK_SELECT so that we can use the
|
||||
This is a hack: we inherit from QUICK_RANGE_SELECT so that we can use the
|
||||
get_next() interface, but we have to hold a pointer to the original
|
||||
QUICK_SELECT because its data are used all over the place. What
|
||||
QUICK_RANGE_SELECT because its data are used all over the place. What
|
||||
should be done is to factor out the data that is needed into a base
|
||||
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
|
||||
which handle the ranges and implement the get_next() function. But
|
||||
|
@ -10903,7 +10875,8 @@ int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
|
|||
{
|
||||
uchar *cur_prefix= seen_first_key ? group_prefix : NULL;
|
||||
if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
|
||||
make_prev_keypart_map(group_key_parts), cur_prefix)))
|
||||
group_key_parts,
|
||||
cur_prefix)))
|
||||
DBUG_RETURN(result);
|
||||
seen_first_key= TRUE;
|
||||
}
|
||||
|
|
|
@ -65,6 +65,85 @@ class QUICK_RANGE :public Sql_alloc {
|
|||
dummy=0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
Initalizes a key_range object for communication with storage engine.
|
||||
|
||||
This function facilitates communication with the Storage Engine API by
|
||||
translating the minimum endpoint of the interval represented by this
|
||||
QUICK_RANGE into an index range endpoint specifier for the engine.
|
||||
|
||||
@param Pointer to an uninitialized key_range C struct.
|
||||
|
||||
@param prefix_length The length of the search key prefix to be used for
|
||||
lookup.
|
||||
|
||||
@param keypart_map A set (bitmap) of keyparts to be used.
|
||||
*/
|
||||
void make_min_endpoint(key_range *kr, uint prefix_length,
|
||||
key_part_map keypart_map) {
|
||||
make_min_endpoint(kr);
|
||||
kr->length= min(kr->length, prefix_length);
|
||||
kr->keypart_map&= keypart_map;
|
||||
}
|
||||
|
||||
/**
|
||||
Initalizes a key_range object for communication with storage engine.
|
||||
|
||||
This function facilitates communication with the Storage Engine API by
|
||||
translating the minimum endpoint of the interval represented by this
|
||||
QUICK_RANGE into an index range endpoint specifier for the engine.
|
||||
|
||||
@param Pointer to an uninitialized key_range C struct.
|
||||
*/
|
||||
void make_min_endpoint(key_range *kr) {
|
||||
kr->key= (const uchar*)min_key;
|
||||
kr->length= min_length;
|
||||
kr->keypart_map= min_keypart_map;
|
||||
kr->flag= ((flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
||||
(flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
||||
}
|
||||
|
||||
/**
|
||||
Initalizes a key_range object for communication with storage engine.
|
||||
|
||||
This function facilitates communication with the Storage Engine API by
|
||||
translating the maximum endpoint of the interval represented by this
|
||||
QUICK_RANGE into an index range endpoint specifier for the engine.
|
||||
|
||||
@param Pointer to an uninitialized key_range C struct.
|
||||
|
||||
@param prefix_length The length of the search key prefix to be used for
|
||||
lookup.
|
||||
|
||||
@param keypart_map A set (bitmap) of keyparts to be used.
|
||||
*/
|
||||
void make_max_endpoint(key_range *kr, uint prefix_length,
|
||||
key_part_map keypart_map) {
|
||||
make_max_endpoint(kr);
|
||||
kr->length= min(kr->length, prefix_length);
|
||||
kr->keypart_map&= keypart_map;
|
||||
}
|
||||
|
||||
/**
|
||||
Initalizes a key_range object for communication with storage engine.
|
||||
|
||||
This function facilitates communication with the Storage Engine API by
|
||||
translating the maximum endpoint of the interval represented by this
|
||||
QUICK_RANGE into an index range endpoint specifier for the engine.
|
||||
|
||||
@param Pointer to an uninitialized key_range C struct.
|
||||
*/
|
||||
void make_max_endpoint(key_range *kr) {
|
||||
kr->key= (const uchar*)max_key;
|
||||
kr->length= max_length;
|
||||
kr->keypart_map= max_keypart_map;
|
||||
/*
|
||||
We use READ_AFTER_KEY here because if we are reading on a key
|
||||
prefix we want to find all keys with this prefix
|
||||
*/
|
||||
kr->flag= (flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
@ -331,7 +410,7 @@ public:
|
|||
int reset(void);
|
||||
int get_next();
|
||||
void range_end();
|
||||
int get_next_prefix(uint prefix_length, key_part_map keypart_map,
|
||||
int get_next_prefix(uint prefix_length, uint group_key_parts,
|
||||
uchar *cur_prefix);
|
||||
bool reverse_sorted() { return 0; }
|
||||
bool unique_key_range();
|
||||
|
@ -611,7 +690,7 @@ private:
|
|||
uchar *record; /* Buffer where the next record is returned. */
|
||||
uchar *tmp_record; /* Temporary storage for next_min(), next_max(). */
|
||||
uchar *group_prefix; /* Key prefix consisting of the GROUP fields. */
|
||||
uint group_prefix_len; /* Length of the group prefix. */
|
||||
const uint group_prefix_len; /* Length of the group prefix. */
|
||||
uint group_key_parts; /* A number of keyparts in the group prefix */
|
||||
uchar *last_prefix; /* Prefix of the last group for detecting EOF. */
|
||||
bool have_min; /* Specify whether we are computing */
|
||||
|
|
Loading…
Reference in a new issue