Merge janus.mylan:/usr/home/serg/Abk/mysql-5.1

into  janus.mylan:/usr/home/serg/Abk/mysql-maria


include/my_global.h:
  Auto merged
include/my_sys.h:
  Auto merged
sql/ha_myisam.cc:
  Auto merged
sql/item_func.cc:
  Auto merged
sql/mysql_priv.h:
  Auto merged
sql/mysqld.cc:
  Auto merged
sql/set_var.cc:
  Auto merged
sql/sql_parse.cc:
  Auto merged
sql/sql_select.cc:
  Auto merged
storage/myisam/mi_create.c:
  Auto merged
storage/myisam/mi_test2.c:
  Auto merged
storage/myisam/myisamchk.c:
  Auto merged
include/Makefile.am:
  merged
unittest/mysys/my_atomic-t.c:
  merged
This commit is contained in:
unknown 2006-08-10 19:44:57 +02:00
commit 161f79aefa
30 changed files with 1506 additions and 152 deletions

View file

@ -23,7 +23,7 @@ pkginclude_HEADERS = my_dbug.h m_string.h my_sys.h my_list.h my_xml.h \
my_getopt.h sslopt-longopts.h my_dir.h typelib.h \
sslopt-vars.h sslopt-case.h sql_common.h keycache.h \
mysql_time.h mysql/plugin.h $(BUILT_SOURCES)
noinst_HEADERS = config-win.h config-netware.h \
noinst_HEADERS = config-win.h config-netware.h lf.h \
heap.h maria.h myisamchk.h my_bitmap.h my_uctype.h \
myisam.h myisampack.h myisammrg.h ft_global.h\
mysys_err.h my_base.h help_start.h help_end.h \

View file

@ -14,19 +14,20 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#if defined(__i386__) || defined(_M_IX86)
#if defined(__i386__) || defined(_M_IX86) || defined(__x86_64__)
#ifdef MY_ATOMIC_MODE_DUMMY
# define LOCK ""
#else
# define LOCK "lock"
#endif
# ifdef MY_ATOMIC_MODE_DUMMY
# define LOCK ""
# else
# define LOCK "lock"
# endif
#ifdef __GNUC__
#include "x86-gcc.h"
#elif defined(_MSC_VER)
#include "x86-msvc.h"
#endif
# ifdef __GNUC__
# include "x86-gcc.h"
# elif defined(_MSC_VER)
# error Broken!
# include "x86-msvc.h"
# endif
#endif
#ifdef make_atomic_cas_body

View file

@ -14,7 +14,7 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
typedef struct {pthread_rwlock_t rw;} my_atomic_rwlock_t;
typedef struct {pthread_mutex_t rw;} my_atomic_rwlock_t;
#ifdef MY_ATOMIC_MODE_DUMMY
/*
@ -32,13 +32,18 @@ typedef struct {pthread_rwlock_t rw;} my_atomic_rwlock_t;
#define my_atomic_rwlock_wrunlock(name)
#define MY_ATOMIC_MODE "dummy (non-atomic)"
#else
#define my_atomic_rwlock_destroy(name) pthread_rwlock_destroy(& (name)->rw)
#define my_atomic_rwlock_init(name) pthread_rwlock_init(& (name)->rw, 0)
#define my_atomic_rwlock_rdlock(name) pthread_rwlock_rdlock(& (name)->rw)
#define my_atomic_rwlock_wrlock(name) pthread_rwlock_wrlock(& (name)->rw)
#define my_atomic_rwlock_rdunlock(name) pthread_rwlock_unlock(& (name)->rw)
#define my_atomic_rwlock_wrunlock(name) pthread_rwlock_unlock(& (name)->rw)
#define MY_ATOMIC_MODE "rwlocks"
/*
we're using read-write lock macros but map them to mutex locks, and they're
faster. Still, having semantically rich API we can change the
underlying implementation, if necessary.
*/
#define my_atomic_rwlock_destroy(name) pthread_mutex_destroy(& (name)->rw)
#define my_atomic_rwlock_init(name) pthread_mutex_init(& (name)->rw, 0)
#define my_atomic_rwlock_rdlock(name) pthread_mutex_lock(& (name)->rw)
#define my_atomic_rwlock_wrlock(name) pthread_mutex_lock(& (name)->rw)
#define my_atomic_rwlock_rdunlock(name) pthread_mutex_unlock(& (name)->rw)
#define my_atomic_rwlock_wrunlock(name) pthread_mutex_unlock(& (name)->rw)
#define MY_ATOMIC_MODE "mutex"
#endif
#define make_atomic_add_body(S) int ## S sav; sav= *a; *a+= v; v=sav;

View file

@ -20,10 +20,18 @@
architectures support double-word (128-bit) cas.
*/
#ifdef MY_ATOMIC_NO_XADD
#define MY_ATOMIC_MODE "gcc-x86" LOCK "-no-xadd"
#ifdef __x86_64__
# ifdef MY_ATOMIC_NO_XADD
# define MY_ATOMIC_MODE "gcc-amd64" LOCK "-no-xadd"
# else
# define MY_ATOMIC_MODE "gcc-amd64" LOCK
# endif
#else
#define MY_ATOMIC_MODE "gcc-x86" LOCK
# ifdef MY_ATOMIC_NO_XADD
# define MY_ATOMIC_MODE "gcc-x86" LOCK "-no-xadd"
# else
# define MY_ATOMIC_MODE "gcc-x86" LOCK
# endif
#endif
/* fix -ansi errors while maintaining readability */
@ -54,6 +62,9 @@
asm volatile (LOCK "; cmpxchg %2, %0" \
: "+m" (*a), "+a" (ret): "r" (ret))
#define make_atomic_store_body(S) \
asm volatile ("; xchg %0, %1;" : "+m" (*a) : "r" (v))
asm volatile ("; xchg %0, %1;" : "+m" (*a), "+r" (v))
#endif
/* TODO test on intel whether the below helps. on AMD it makes no difference */
//#define LF_BACKOFF ({asm volatile ("rep; nop"); 1; })

238
include/lf.h Normal file
View file

@ -0,0 +1,238 @@
/*
TODO
1. copyright
6. reduce the number of memory barriers
*/
#ifndef _lf_h
#define _lf_h
#include <my_atomic.h>
/*
Generic helpers
*/
#define lock_wrap(f,t,proto_args, args, lock) \
t _ ## f proto_args; \
static inline t f proto_args \
{ \
t ret; \
my_atomic_rwlock_wrlock(lock); \
ret= _ ## f args; \
my_atomic_rwlock_wrunlock(lock); \
return ret; \
}
#define lock_wrap_void(f,proto_args, args, lock) \
void _ ## f proto_args; \
static inline void f proto_args \
{ \
my_atomic_rwlock_wrlock(lock); \
_ ## f args; \
my_atomic_rwlock_wrunlock(lock); \
}
#define nolock_wrap(f,t,proto_args, args) \
t _ ## f proto_args; \
static inline t f proto_args \
{ \
return _ ## f args; \
}
#define nolock_wrap_void(f,proto_args, args) \
void _ ## f proto_args; \
static inline void f proto_args \
{ \
_ ## f args; \
}
/*
dynamic array
4 levels of 256 elements each mean 4311810304 elements in an array - it
should be enough for a while
*/
#define LF_DYNARRAY_LEVEL_LENGTH 256
#define LF_DYNARRAY_LEVELS 4
typedef struct {
void * volatile level[LF_DYNARRAY_LEVELS];
uint size_of_element;
my_atomic_rwlock_t lock;
} LF_DYNARRAY;
typedef int (*lf_dynarray_func)(void *, void *);
void lf_dynarray_init(LF_DYNARRAY *array, uint element_size);
void lf_dynarray_end(LF_DYNARRAY *array);
nolock_wrap(lf_dynarray_nr, int,
(LF_DYNARRAY *array, void *el),
(array,el));
nolock_wrap(lf_dynarray_value, void *,
(LF_DYNARRAY *array, uint idx),
(array,idx));
lock_wrap(lf_dynarray_lvalue, void *,
(LF_DYNARRAY *array, uint idx),
(array,idx),
&array->lock);
nolock_wrap(lf_dynarray_iterate, int,
(LF_DYNARRAY *array, lf_dynarray_func func, void *arg),
(array,func,arg));
/*
pin manager for memory allocator
*/
#define LF_PINBOX_PINS 3
#define LF_PURGATORY_SIZE 11
typedef void lf_pinbox_free_func(void *, void *);
typedef struct {
LF_DYNARRAY pinstack;
lf_pinbox_free_func *free_func;
void * free_func_arg;
uint32 volatile pinstack_top_ver; /* this is a versioned pointer */
uint32 volatile pins_in_stack; /* number of elements in array */
} LF_PINBOX;
/* we want sizeof(LF_PINS) to be close to 128 to avoid false sharing */
typedef struct {
void * volatile pin[LF_PINBOX_PINS];
void * purgatory[LF_PURGATORY_SIZE];
LF_PINBOX *pinbox;
uint32 purgatory_count;
uint32 volatile link;
char pad[128-sizeof(uint32)*2
-sizeof(void *)*(LF_PINBOX_PINS+LF_PURGATORY_SIZE+1)];
} LF_PINS;
#define lf_lock_by_pins(PINS) \
my_atomic_rwlock_wrlock(&(PINS)->pinbox->pinstack.lock)
#define lf_unlock_by_pins(PINS) \
my_atomic_rwlock_wrunlock(&(PINS)->pinbox->pinstack.lock)
/*
compile-time assert, to require "no less than N" pins
it's enough if it'll fail on at least one compiler, so
we'll enable it on GCC only, which supports zero-length arrays.
*/
#if defined(__GNUC__) && defined(MY_LF_EXTRA_DEBUG)
#define LF_REQUIRE_PINS(N) \
static const char require_pins[LF_PINBOX_PINS-N]; \
static const int LF_NUM_PINS_IN_THIS_FILE=N;
#define _lf_pin(PINS, PIN, ADDR) \
( \
my_atomic_storeptr(&(PINS)->pin[PIN], (ADDR)), \
assert(PIN < LF_NUM_PINS_IN_THIS_FILE) \
)
#else
#define LF_REQUIRE_PINS(N)
#define _lf_pin(PINS, PIN, ADDR) my_atomic_storeptr(&(PINS)->pin[PIN], (ADDR))
#endif
#define _lf_unpin(PINS, PIN) _lf_pin(PINS, PIN, NULL)
#define lf_pin(PINS, PIN, ADDR) \
do { \
lf_lock_pins(PINS); \
_lf_pin(PINS, PIN, ADDR); \
lf_unlock_pins(PINS); \
} while (0)
#define lf_unpin(PINS, PIN) lf_pin(PINS, PIN, NULL)
void lf_pinbox_init(LF_PINBOX *pinbox, lf_pinbox_free_func *free_func,
void * free_func_arg);
void lf_pinbox_end(LF_PINBOX *pinbox);
lock_wrap(lf_pinbox_get_pins, LF_PINS *,
(LF_PINBOX *pinbox),
(pinbox),
&pinbox->pinstack.lock);
lock_wrap_void(lf_pinbox_put_pins,
(LF_PINS *pins),
(pins),
&pins->pinbox->pinstack.lock);
#if 0
lock_wrap_void(lf_pinbox_real_free,
(LF_PINS *pins),
(pins),
&pins->pinbox->pinstack.lock);
#endif
lock_wrap_void(lf_pinbox_free,
(LF_PINS *pins, void *addr),
(pins,addr),
&pins->pinbox->pinstack.lock);
/*
memory allocator
*/
typedef struct st_lf_allocator {
LF_PINBOX pinbox;
void * volatile top;
uint element_size;
uint32 volatile mallocs;
} LF_ALLOCATOR;
void lf_alloc_init(LF_ALLOCATOR *allocator, uint size);
void lf_alloc_end(LF_ALLOCATOR *allocator);
uint lf_alloc_in_pool(LF_ALLOCATOR *allocator);
#define _lf_alloc_free(PINS, PTR) _lf_pinbox_free((PINS), (PTR))
#define lf_alloc_free(PINS, PTR) lf_pinbox_free((PINS), (PTR))
#define _lf_alloc_get_pins(ALLOC) _lf_pinbox_get_pins(&(ALLOC)->pinbox)
#define lf_alloc_get_pins(ALLOC) lf_pinbox_get_pins(&(ALLOC)->pinbox)
#define _lf_alloc_put_pins(PINS) _lf_pinbox_put_pins(PINS)
#define lf_alloc_put_pins(PINS) lf_pinbox_put_pins(PINS)
#define lf_alloc_real_free(ALLOC,ADDR) my_free((gptr)(ADDR), MYF(0))
lock_wrap(lf_alloc_new, void *,
(LF_PINS *pins),
(pins),
&pins->pinbox->pinstack.lock);
/*
extendible hash
*/
#include <hash.h>
#define LF_HASH_UNIQUE 1
typedef struct {
LF_DYNARRAY array; /* hash itself */
LF_ALLOCATOR alloc; /* allocator for elements */
hash_get_key get_key; /* see HASH */
CHARSET_INFO *charset; /* see HASH */
uint key_offset, key_length; /* see HASH */
uint element_size, flags; /* LF_HASH_UNIQUE, etc */
int32 volatile size; /* size of array */
int32 volatile count; /* number of elements in the hash */
} LF_HASH;
void lf_hash_init(LF_HASH *hash, uint element_size, uint flags,
uint key_offset, uint key_length, hash_get_key get_key,
CHARSET_INFO *charset);
void lf_hash_end(LF_HASH *hash);
int lf_hash_insert(LF_HASH *hash, LF_PINS *pins, const void *data);
int lf_hash_search(LF_HASH *hash, LF_PINS *pins, const uchar *key, uint keylen);
int lf_hash_delete(LF_HASH *hash, LF_PINS *pins, const uchar *key, uint keylen);
#define _lf_hash_get_pins(HASH) _lf_alloc_get_pins(&(HASH)->alloc)
#define lf_hash_get_pins(HASH) lf_alloc_get_pins(&(HASH)->alloc)
#define _lf_hash_put_pins(PINS) _lf_pinbox_put_pins(PINS)
#define lf_hash_put_pins(PINS) lf_pinbox_put_pins(PINS)
/*
cleanup
*/
#undef lock_wrap_void
#undef lock_wrap
#undef nolock_wrap_void
#undef nolock_wrap
#endif

View file

@ -36,7 +36,7 @@
#ifdef HAVE_INLINE
#define make_atomic_add(S) \
static inline int ## S my_atomic_add ## S( \
STATIC_INLINE int ## S my_atomic_add ## S( \
int ## S volatile *a, int ## S v) \
{ \
make_atomic_add_body(S); \
@ -44,7 +44,7 @@ static inline int ## S my_atomic_add ## S( \
}
#define make_atomic_swap(S) \
static inline int ## S my_atomic_swap ## S( \
STATIC_INLINE int ## S my_atomic_swap ## S( \
int ## S volatile *a, int ## S v) \
{ \
make_atomic_swap_body(S); \
@ -52,7 +52,7 @@ static inline int ## S my_atomic_swap ## S( \
}
#define make_atomic_cas(S) \
static inline int my_atomic_cas ## S(int ## S volatile *a, \
STATIC_INLINE int my_atomic_cas ## S(int ## S volatile *a, \
int ## S *cmp, int ## S set) \
{ \
int8 ret; \
@ -61,7 +61,7 @@ static inline int my_atomic_cas ## S(int ## S volatile *a, \
}
#define make_atomic_load(S) \
static inline int ## S my_atomic_load ## S(int ## S volatile *a) \
STATIC_INLINE int ## S my_atomic_load ## S(int ## S volatile *a) \
{ \
int ## S ret; \
make_atomic_load_body(S); \
@ -69,7 +69,7 @@ static inline int ## S my_atomic_load ## S(int ## S volatile *a) \
}
#define make_atomic_store(S) \
static inline void my_atomic_store ## S( \
STATIC_INLINE void my_atomic_store ## S( \
int ## S volatile *a, int ## S v) \
{ \
make_atomic_store_body(S); \
@ -135,6 +135,10 @@ make_atomic_swap(ptr)
#undef _atomic_h_cleanup_
#endif
#ifndef LF_BACKOFF
#define LF_BACKOFF (1)
#endif
#if SIZEOF_CHARP == SIZEOF_INT
typedef int intptr;
#elif SIZEOF_CHARP == SIZEOF_LONG

107
include/my_bit.h Normal file
View file

@ -0,0 +1,107 @@
/*
Some useful bit functions
*/
#ifdef HAVE_INLINE
extern const char _my_bits_nbits[256];
extern const uchar _my_bits_reverse_table[256];
/*
Find smallest X in 2^X >= value
This can be used to divide a number with value by doing a shift instead
*/
STATIC_INLINE uint my_bit_log2(ulong value)
{
uint bit;
for (bit=0 ; value > 1 ; value>>=1, bit++) ;
return bit;
}
STATIC_INLINE uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
/* The following code is a bit faster on 16 bit machines than if we would
only shift v */
ulong v2=(ulong) (v >> 32);
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)] +
_my_bits_nbits[(uchar) (v2)] +
_my_bits_nbits[(uchar) (v2 >> 8)] +
_my_bits_nbits[(uchar) (v2 >> 16)] +
_my_bits_nbits[(uchar) (v2 >> 24)]);
#else
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)]);
#endif
}
STATIC_INLINE uint my_count_bits_ushort(ushort v)
{
return _my_bits_nbits[v];
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Orignal code public domain)
Comments shows how this works with 01100000000000000000000000001011
*/
STATIC_INLINE uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}
STATIC_INLINE uint32 my_clear_highest_bit(uint32 v)
{
uint32 w=v >> 1;
w|= w >> 1;
w|= w >> 2;
w|= w >> 4;
w|= w >> 8;
w|= w >> 16;
return v & w;
}
STATIC_INLINE uint32 my_reverse_bits(uint key)
{
return
(_my_bits_reverse_table[ key & 255] << 24) |
(_my_bits_reverse_table[(key>> 8) & 255] << 16) |
(_my_bits_reverse_table[(key>>16) & 255] << 8) |
_my_bits_reverse_table[(key>>24) ];
}
#else
extern uint my_bit_log2(ulong value);
extern uint32 my_round_up_to_next_power(uint32 v);
uint32 my_clear_highest_bit(uint32 v);
uint32 my_reverse_bits(uint key);
extern uint my_count_bits(ulonglong v);
extern uint my_count_bits_ushort(ushort v);
#endif

View file

@ -192,6 +192,8 @@
#endif
#undef inline_test_2
#undef inline_test_1
/* helper macro for "instantiating" inline functions */
#define STATIC_INLINE static inline
/*
The following macros are used to control inlining a bit more than

View file

@ -216,6 +216,7 @@ extern int (*error_handler_hook)(uint my_err, const char *str,myf MyFlags);
extern int (*fatal_error_handler_hook)(uint my_err, const char *str,
myf MyFlags);
extern uint my_file_limit;
extern ulong my_thread_stack_size;
#ifdef HAVE_LARGE_PAGES
extern my_bool my_use_large_pages;
@ -821,10 +822,6 @@ extern int packfrm(const void *, uint, const void **, uint *);
extern int unpackfrm(const void **, uint *, const void *);
extern ha_checksum my_checksum(ha_checksum crc, const byte *mem, uint count);
extern uint my_bit_log2(ulong value);
extern uint32 my_round_up_to_next_power(uint32 v);
extern uint my_count_bits(ulonglong v);
extern uint my_count_bits_ushort(ushort v);
extern void my_sleep(ulong m_seconds);
extern ulong crc32(ulong crc, const uchar *buf, uint len);
extern uint my_set_max_open_files(uint files);
@ -840,7 +837,7 @@ extern int my_getncpus();
#ifndef MAP_NOSYNC
#define MAP_NOSYNC 0
#endif
#ifndef MAP_NORESERVE
#ifndef MAP_NORESERVE
#define MAP_NORESERVE 0 /* For irix and AIX */
#endif

View file

@ -31,7 +31,8 @@ libmysys_a_SOURCES = my_init.c my_getwd.c mf_getdate.c my_mmap.c \
mf_tempdir.c my_lock.c mf_brkhant.c my_alarm.c \
my_malloc.c my_realloc.c my_once.c mulalloc.c \
my_alloc.c safemalloc.c my_new.cc \
my_vle.c my_atomic.c \
my_vle.c my_atomic.c lf_hash.c \
lf_dynarray.c lf_alloc-pin.c \
my_fopen.c my_fstream.c my_getsystime.c \
my_error.c errors.c my_div.c my_messnc.c \
mf_format.c mf_same.c mf_dirname.c mf_fn_ext.c \

319
mysys/lf_alloc-pin.c Normal file
View file

@ -0,0 +1,319 @@
/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
concurrent allocator based on pinning addresses
strictly speaking it's not lock-free, as it can be blocked
if a thread's purgatory is full and all addresses from there
are pinned.
But until the above happens, it's wait-free.
It can be made strictly wait-free by increasing purgatory size.
If it's larger than pins_in_stack*LF_PINBOX_PINS, then apocalyptical
condition above will never happen. But than the memory requirements
will be O(pins_in_stack^2).
Note, that for large purgatory sizes it makes sense to remove
purgatory array, and link objects in a list using embedded pointer.
TODO test with more than 256 threads
TODO test w/o alloca
*/
#include <my_global.h>
#include <my_sys.h>
#include <lf.h>
#define LF_PINBOX_MAX_PINS 65536
static void _lf_pinbox_real_free(LF_PINS *pins);
void lf_pinbox_init(LF_PINBOX *pinbox, lf_pinbox_free_func *free_func,
void *free_func_arg)
{
DBUG_ASSERT(sizeof(LF_PINS) == 128);
lf_dynarray_init(&pinbox->pinstack, sizeof(LF_PINS));
pinbox->pinstack_top_ver=0;
pinbox->pins_in_stack=0;
pinbox->free_func=free_func;
pinbox->free_func_arg=free_func_arg;
}
void lf_pinbox_end(LF_PINBOX *pinbox)
{
lf_dynarray_end(&pinbox->pinstack);
}
LF_PINS *_lf_pinbox_get_pins(LF_PINBOX *pinbox)
{
uint32 pins, next, top_ver;
LF_PINS *el;
top_ver=pinbox->pinstack_top_ver;
do
{
if (!(pins=top_ver % LF_PINBOX_MAX_PINS))
{
pins=my_atomic_add32(&pinbox->pins_in_stack, 1)+1;
el=(LF_PINS *)_lf_dynarray_lvalue(&pinbox->pinstack, pins);
break;
}
el=(LF_PINS *)_lf_dynarray_value(&pinbox->pinstack, pins);
next=el->link;
} while (!my_atomic_cas32(&pinbox->pinstack_top_ver, &top_ver,
top_ver-pins+next+LF_PINBOX_MAX_PINS));
el->link=pins;
el->purgatory_count=0;
el->pinbox=pinbox;
return el;
}
void _lf_pinbox_put_pins(LF_PINS *pins)
{
LF_PINBOX *pinbox=pins->pinbox;
uint32 top_ver, nr;
nr=pins->link;
#ifdef MY_LF_EXTRA_DEBUG
{
int i;
for (i=0; i < LF_PINBOX_PINS; i++)
assert(pins->pin[i] == 0);
}
#endif
while (pins->purgatory_count)
{
_lf_pinbox_real_free(pins);
if (pins->purgatory_count && my_getncpus() == 1)
{
my_atomic_rwlock_wrunlock(&pins->pinbox->pinstack.lock);
pthread_yield();
my_atomic_rwlock_wrlock(&pins->pinbox->pinstack.lock);
}
}
top_ver=pinbox->pinstack_top_ver;
if (nr == pinbox->pins_in_stack)
{
int32 tmp=nr;
if (my_atomic_cas32(&pinbox->pins_in_stack, &tmp, tmp-1))
goto ret;
}
do
{
pins->link=top_ver % LF_PINBOX_MAX_PINS;
} while (!my_atomic_cas32(&pinbox->pinstack_top_ver, &top_ver,
top_ver-pins->link+nr+LF_PINBOX_MAX_PINS));
ret:
return;
}
static int ptr_cmp(void **a, void **b)
{
return *a < *b ? -1 : *a == *b ? 0 : 1;
}
void _lf_pinbox_free(LF_PINS *pins, void *addr)
{
while (pins->purgatory_count == LF_PURGATORY_SIZE)
{
_lf_pinbox_real_free(pins);
if (pins->purgatory_count == LF_PURGATORY_SIZE && my_getncpus() == 1)
{
my_atomic_rwlock_wrunlock(&pins->pinbox->pinstack.lock);
pthread_yield();
my_atomic_rwlock_wrlock(&pins->pinbox->pinstack.lock);
}
}
pins->purgatory[pins->purgatory_count++]=addr;
}
struct st_harvester {
void **granary;
int npins;
};
static int harvest_pins(LF_PINS *el, struct st_harvester *hv)
{
int i;
LF_PINS *el_end= el+min(hv->npins, LF_DYNARRAY_LEVEL_LENGTH);
for (; el < el_end; el++)
{
for (i= 0; i < LF_PINBOX_PINS; i++)
{
void *p= el->pin[i];
if (p)
*hv->granary++= p;
}
}
hv->npins-= LF_DYNARRAY_LEVEL_LENGTH;
return 0;
}
static int match_pins(LF_PINS *el, void *addr)
{
int i;
LF_PINS *el_end= el+LF_DYNARRAY_LEVEL_LENGTH;
for (; el < el_end; el++)
for (i= 0; i < LF_PINBOX_PINS; i++)
if (el->pin[i] == addr)
return 1;
return 0;
}
static void _lf_pinbox_real_free(LF_PINS *pins)
{
int npins;
void **addr=0;
void **start, **cur, **end=pins->purgatory+pins->purgatory_count;
LF_PINBOX *pinbox=pins->pinbox;
npins=pinbox->pins_in_stack+1;
#ifdef HAVE_ALLOCA
/* create a sorted list of pinned addresses, to speed up searches */
if (sizeof(void *)*LF_PINBOX_PINS*npins < my_thread_stack_size)
{
struct st_harvester hv;
addr= (void **) alloca(sizeof(void *)*LF_PINBOX_PINS*npins);
hv.granary=addr;
hv.npins=npins;
_lf_dynarray_iterate(&pinbox->pinstack,
(lf_dynarray_func)harvest_pins, &hv);
npins=hv.granary-addr;
if (npins)
qsort(addr, npins, sizeof(void *), (qsort_cmp)ptr_cmp);
}
#endif
start= cur= pins->purgatory;
end= start+pins->purgatory_count;
for (; cur < end; cur++)
{
if (npins)
{
if (addr)
{
void **a,**b,**c;
for (a=addr, b=addr+npins-1, c=a+(b-a)/2; b-a>1; c=a+(b-a)/2)
if (*cur == *c)
a=b=c;
else if (*cur > *c)
a=c;
else
b=c;
if (*cur == *a || *cur == *b)
goto found;
}
else
{
if (_lf_dynarray_iterate(&pinbox->pinstack,
(lf_dynarray_func)match_pins, *cur))
goto found;
}
}
/* not pinned - freeing */
pinbox->free_func(*cur, pinbox->free_func_arg);
continue;
found:
/* pinned - keeping */
*start++=*cur;
}
pins->purgatory_count=start-pins->purgatory;
#ifdef MY_LF_EXTRA_DEBUG
while (start < pins->purgatory + LF_PURGATORY_SIZE)
*start++=0;
#endif
}
static void alloc_free(void *node, LF_ALLOCATOR *allocator)
{
void *tmp;
tmp=allocator->top;
do
{
(*(void **)node)=tmp;
} while (!my_atomic_casptr((void **)&allocator->top, (void **)&tmp, node) &&
LF_BACKOFF);
}
LF_REQUIRE_PINS(1);
void *_lf_alloc_new(LF_PINS *pins)
{
LF_ALLOCATOR *allocator=(LF_ALLOCATOR *)(pins->pinbox->free_func_arg);
void *node;
for (;;)
{
do
{
node=allocator->top;
_lf_pin(pins, 0, node);
} while (node !=allocator->top && LF_BACKOFF);
if (!node)
{
if (!(node=my_malloc(allocator->element_size, MYF(MY_WME|MY_ZEROFILL))))
goto ret;
#ifdef MY_LF_EXTRA_DEBUG
my_atomic_add32(&allocator->mallocs, 1);
#endif
goto ret;
}
if (my_atomic_casptr((void **)&allocator->top,
(void *)&node, *(void **)node))
goto ret;
}
ret:
_lf_unpin(pins, 0);
return node;
}
void lf_alloc_init(LF_ALLOCATOR *allocator, uint size)
{
lf_pinbox_init(&allocator->pinbox,
(lf_pinbox_free_func *)alloc_free, allocator);
allocator->top=0;
allocator->mallocs=0;
allocator->element_size=size;
DBUG_ASSERT(size >= (int)sizeof(void *));
}
void lf_alloc_end(LF_ALLOCATOR *allocator)
{
void *el=allocator->top;
while (el)
{
void *tmp=*(void **)el;
my_free(el, MYF(0));
el=tmp;
}
lf_pinbox_end(&allocator->pinbox);
allocator->top=0;
}
/*
NOTE
this is NOT thread-safe !!!
*/
uint lf_alloc_in_pool(LF_ALLOCATOR *allocator)
{
uint i;
void *node;
for (node=allocator->top, i=0; node; node=*(void **)node, i++) /* no op */;
return i;
}

186
mysys/lf_dynarray.c Normal file
View file

@ -0,0 +1,186 @@
/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
Analog of DYNAMIC_ARRAY that never reallocs
(so no pointer into the array may ever become invalid).
Memory is allocated in non-contiguous chunks.
This data structure is not space efficient for sparce arrays.
The number of elements is limited to 2^16
Every element is aligned to sizeof(element) boundary
(to avoid false sharing if element is big enough).
Actually, it's wait-free, not lock-free ;-)
*/
#undef DBUG_OFF
#include <my_global.h>
#include <strings.h>
#include <my_sys.h>
#include <lf.h>
void lf_dynarray_init(LF_DYNARRAY *array, uint element_size)
{
bzero(array, sizeof(*array));
array->size_of_element=element_size;
my_atomic_rwlock_init(&array->lock);
}
static void recursive_free(void **alloc, int level)
{
if (!alloc) return;
if (level)
{
int i;
for (i=0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
recursive_free(alloc[i], level-1);
my_free((void *)alloc, MYF(0));
}
else
my_free(alloc[-1], MYF(0));
}
void lf_dynarray_end(LF_DYNARRAY *array)
{
int i;
for (i=0; i < LF_DYNARRAY_LEVELS; i++)
recursive_free(array->level[i], i);
my_atomic_rwlock_destroy(&array->lock);
bzero(array, sizeof(*array));
}
static const int dynarray_idxes_in_level[LF_DYNARRAY_LEVELS]=
{
0, /* +1 here to to avoid -1's below */
LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH,
LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH *
LF_DYNARRAY_LEVEL_LENGTH
};
void *_lf_dynarray_lvalue(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr=0;
int i;
for (i=3; i > 0; i--)
{
if (ptr_ptr || idx >= dynarray_idxes_in_level[i])
{
if (!ptr_ptr)
{
ptr_ptr=&array->level[i];
idx-= dynarray_idxes_in_level[i];
}
ptr=*ptr_ptr;
if (!ptr)
{
void *alloc=my_malloc(LF_DYNARRAY_LEVEL_LENGTH * sizeof(void *),
MYF(MY_WME|MY_ZEROFILL));
if (!alloc)
return(NULL);
if (my_atomic_casptr(ptr_ptr, &ptr, alloc))
ptr= alloc;
else
my_free(alloc, MYF(0));
}
ptr_ptr=((void **)ptr) + idx / dynarray_idxes_in_level[i];
idx%= dynarray_idxes_in_level[i];
}
}
if (!ptr_ptr)
ptr_ptr=&array->level[0];
ptr=*ptr_ptr;
if (!ptr)
{
void *alloc, *data;
alloc=my_malloc(LF_DYNARRAY_LEVEL_LENGTH * array->size_of_element +
max(array->size_of_element, sizeof(void *)),
MYF(MY_WME|MY_ZEROFILL));
if (!alloc)
return(NULL);
/* reserve the space for free() address */
data= alloc + sizeof(void *);
{ /* alignment */
intptr mod= ((intptr)data) % array->size_of_element;
if (mod)
data+= array->size_of_element - mod;
}
((void **)data)[-1]=alloc; /* free() will need the original pointer */
if (my_atomic_casptr(ptr_ptr, &ptr, data))
ptr= data;
else
my_free(alloc, MYF(0));
}
return ptr + array->size_of_element * idx;
}
void *_lf_dynarray_value(LF_DYNARRAY *array, uint idx)
{
void * ptr, * volatile * ptr_ptr=0;
int i;
for (i=3; i > 0; i--)
{
if (ptr_ptr || idx >= dynarray_idxes_in_level[i])
{
if (!ptr_ptr)
{
ptr_ptr=&array->level[i];
idx-= dynarray_idxes_in_level[i];
}
ptr=*ptr_ptr;
if (!ptr)
return(NULL);
ptr_ptr=((void **)ptr) + idx / dynarray_idxes_in_level[i];
idx %= dynarray_idxes_in_level[i];
}
}
if (!ptr_ptr)
ptr_ptr=&array->level[0];
ptr=*ptr_ptr;
if (!ptr)
return(NULL);
return ptr + array->size_of_element * idx;
}
static int recursive_iterate(LF_DYNARRAY *array, void *ptr, int level,
lf_dynarray_func func, void *arg)
{
int res, i;
if (!ptr)
return 0;
if (!level)
return func(ptr, arg);
for (i=0; i < LF_DYNARRAY_LEVEL_LENGTH; i++)
if ((res=recursive_iterate(array, ((void **)ptr)[i], level-1, func, arg)))
return res;
return 0;
}
int _lf_dynarray_iterate(LF_DYNARRAY *array, lf_dynarray_func func, void *arg)
{
int i, res;
for (i=0; i < LF_DYNARRAY_LEVELS; i++)
if ((res=recursive_iterate(array, array->level[i], i, func, arg)))
return res;
return 0;
}

370
mysys/lf_hash.c Normal file
View file

@ -0,0 +1,370 @@
/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
extensible hash
TODO
dummy nodes use element_size=0
try to get rid of dummy nodes ?
*/
#include <my_global.h>
#include <my_sys.h>
#include <my_bit.h>
#include <lf.h>
LF_REQUIRE_PINS(3);
typedef struct {
intptr volatile link;
uint32 hashnr;
const uchar *key;
uint keylen;
} LF_SLIST;
typedef struct {
intptr volatile *prev;
LF_SLIST *curr, *next;
} CURSOR;
#define PTR(V) (LF_SLIST *)((V) & (~(intptr)1))
#define DELETED(V) ((V) & 1)
/*
RETURN
0 - not found
1 - found
NOTE
cursor is positioned in either case
pins[0..2] are used, they are NOT removed on return
*/
static int lfind(intptr volatile *head, uint32 hashnr,
const uchar *key, uint keylen, CURSOR *cursor, LF_PINS *pins)
{
uint32 cur_hashnr;
const uchar *cur_key;
uint cur_keylen;
intptr link;
retry:
cursor->prev=head;
do {
cursor->curr=PTR(*cursor->prev);
_lf_pin(pins,1,cursor->curr);
} while(*cursor->prev != (intptr)cursor->curr && LF_BACKOFF);
for (;;)
{
if (!cursor->curr)
return 0;
do { // XXX or goto retry ?
link=cursor->curr->link;
cursor->next=PTR(link);
_lf_pin(pins, 0, cursor->next);
} while(link != cursor->curr->link && LF_BACKOFF);
cur_hashnr=cursor->curr->hashnr;
cur_key=cursor->curr->key;
cur_keylen=cursor->curr->keylen;
if (*cursor->prev != (intptr)cursor->curr)
{
LF_BACKOFF;
goto retry;
}
if (!DELETED(link))
{
if (cur_hashnr >= hashnr)
{
int r=1;
if (cur_hashnr > hashnr || (r=memcmp(cur_key, key, keylen)) >= 0)
return !r;
}
cursor->prev=&(cursor->curr->link);
_lf_pin(pins, 2, cursor->curr);
}
else
{
if (my_atomic_casptr((void **)cursor->prev,
(void **)&cursor->curr, cursor->next))
_lf_alloc_free(pins, cursor->curr);
else
{
LF_BACKOFF;
goto retry;
}
}
cursor->curr=cursor->next;
_lf_pin(pins, 1, cursor->curr);
}
}
/*
RETURN
0 - inserted
not 0 - a pointer to a conflict
NOTE
it uses pins[0..2], on return all pins are removed.
*/
static LF_SLIST *linsert(LF_SLIST * volatile *head, LF_SLIST *node,
LF_PINS *pins, uint flags)
{
CURSOR cursor;
int res=-1;
do
{
if (lfind((intptr*)head, node->hashnr, node->key, node->keylen,
&cursor, pins) &&
(flags & LF_HASH_UNIQUE))
res=0;
else
{
node->link=(intptr)cursor.curr;
assert(node->link != (intptr)node);
assert(cursor.prev != &node->link);
if (my_atomic_casptr((void **)cursor.prev, (void **)&cursor.curr, node))
res=1;
}
} while (res == -1);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
_lf_unpin(pins, 2);
return res ? 0 : cursor.curr;
}
/*
RETURN
0 - ok
1 - not found
NOTE
it uses pins[0..2], on return all pins are removed.
*/
static int ldelete(LF_SLIST * volatile *head, uint32 hashnr,
const uchar *key, uint keylen, LF_PINS *pins)
{
CURSOR cursor;
int res=-1;
do
{
if (!lfind((intptr *)head, hashnr, key, keylen, &cursor, pins))
res= 1;
else
if (my_atomic_casptr((void **)&(cursor.curr->link),
(void **)&cursor.next, 1+(char *)cursor.next))
{
if (my_atomic_casptr((void **)cursor.prev,
(void **)&cursor.curr, cursor.next))
_lf_alloc_free(pins, cursor.curr);
else
lfind((intptr *)head, hashnr, key, keylen, &cursor, pins);
res= 0;
}
} while (res == -1);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
_lf_unpin(pins, 2);
return res;
}
/*
RETURN
0 - not found
node - found
NOTE
it uses pins[0..2], on return the pin[2] keeps the node found
all other pins are removed.
*/
static LF_SLIST *lsearch(LF_SLIST * volatile *head, uint32 hashnr,
const uchar *key, uint keylen, LF_PINS *pins)
{
CURSOR cursor;
int res=lfind((intptr *)head, hashnr, key, keylen, &cursor, pins);
if (res) _lf_pin(pins, 2, cursor.curr);
_lf_unpin(pins, 0);
_lf_unpin(pins, 1);
return res ? cursor.curr : 0;
}
static inline const uchar* hash_key(const LF_HASH *hash,
const uchar *record, uint *length)
{
if (hash->get_key)
return (*hash->get_key)(record,length,0);
*length=hash->key_length;
return record + hash->key_offset;
}
static inline uint calc_hash(LF_HASH *hash, const uchar *key, uint keylen)
{
ulong nr1=1, nr2=4;
hash->charset->coll->hash_sort(hash->charset,key,keylen,&nr1,&nr2);
return nr1 & INT_MAX32;
}
#define MAX_LOAD 1
static void initialize_bucket(LF_HASH *, LF_SLIST * volatile*, uint, LF_PINS *);
void lf_hash_init(LF_HASH *hash, uint element_size, uint flags,
uint key_offset, uint key_length, hash_get_key get_key,
CHARSET_INFO *charset)
{
lf_alloc_init(&hash->alloc,sizeof(LF_SLIST)+element_size);
lf_dynarray_init(&hash->array, sizeof(LF_SLIST **));
hash->size=1;
hash->count=0;
hash->element_size=element_size;
hash->flags=flags;
hash->charset=charset;
hash->key_offset=key_offset;
hash->key_length=key_length;
hash->get_key=get_key;
DBUG_ASSERT(get_key ? !key_offset && !key_length : key_length);
}
void lf_hash_end(LF_HASH *hash)
{
LF_SLIST *el=*(LF_SLIST **)_lf_dynarray_lvalue(&hash->array, 0);
while (el)
{
intptr next=el->link;
lf_alloc_real_free(&hash->alloc, el);
el=(LF_SLIST *)next;
}
lf_alloc_end(&hash->alloc);
lf_dynarray_end(&hash->array);
}
/*
NOTE
see linsert() for pin usage
*/
int lf_hash_insert(LF_HASH *hash, LF_PINS *pins, const void *data)
{
uint csize, bucket, hashnr, keylen;
LF_SLIST *node, * volatile *el;
const uchar *key;
key= hash_key(hash, data, &keylen);
hashnr= calc_hash(hash, key, keylen);
bucket= hashnr % hash->size;
lf_lock_by_pins(pins);
node=(LF_SLIST *)_lf_alloc_new(pins);
memcpy(node+1, data, hash->element_size);
el=_lf_dynarray_lvalue(&hash->array, bucket);
if (*el == NULL)
initialize_bucket(hash, el, bucket, pins);
node->hashnr=my_reverse_bits(hashnr) | 1;
node->key=((char *)(node+1))+(key-(uchar *)data);
node->keylen=keylen;
if (linsert(el, node, pins, hash->flags))
{
_lf_alloc_free(pins, node);
lf_unlock_by_pins(pins);
return 0;
}
csize= hash->size;
if ((my_atomic_add32(&hash->count, 1)+1.0) / csize > MAX_LOAD)
my_atomic_cas32(&hash->size, &csize, csize*2);
#if 0
node=*(LF_SLIST **)_lf_dynarray_lvalue(&hash->array, 0);
hashnr=0;
while (node)
{
assert (node->hashnr >= hashnr);
hashnr=node->hashnr;
node=(LF_SLIST *)node->link;
}
#endif
lf_unlock_by_pins(pins);
return 1;
}
/*
NOTE
see ldelete() for pin usage
*/
int lf_hash_delete(LF_HASH *hash, LF_PINS *pins, const uchar *key, uint keylen)
{
LF_SLIST * volatile *el;
uint bucket, hashnr=calc_hash(hash, key, keylen);
bucket= hashnr % hash->size;
lf_lock_by_pins(pins);
el=_lf_dynarray_lvalue(&hash->array, bucket);
if (*el == NULL)
initialize_bucket(hash, el, bucket, pins);
if (ldelete(el, my_reverse_bits(hashnr) | 1, key, keylen, pins))
{
lf_unlock_by_pins(pins);
return 0;
}
my_atomic_add32(&hash->count, -1);
#if 0
{
LF_SLIST *node=*(LF_SLIST **)_lf_dynarray_lvalue(&hash->array, 0);
hashnr=0;
while (node)
{
assert (node->hashnr >= hashnr);
hashnr=node->hashnr;
node=(LF_SLIST *)node->link;
}
}
#endif
lf_unlock_by_pins(pins);
return 1;
}
/*
NOTE
see lsearch() for pin usage
*/
int lf_hash_search(LF_HASH *hash, LF_PINS *pins, const uchar *key, uint keylen)
{
int res;
LF_SLIST * volatile *el;
uint bucket, hashnr=calc_hash(hash, key, keylen);
bucket= hashnr % hash->size;
lf_lock_by_pins(pins);
el=_lf_dynarray_lvalue(&hash->array, bucket);
if (*el == NULL)
initialize_bucket(hash, el, bucket, pins);
res=NULL != lsearch(el, my_reverse_bits(hashnr) | 1, key, keylen, pins);
lf_unlock_by_pins(pins);
return res;
}
static void initialize_bucket(LF_HASH *hash, LF_SLIST * volatile *node,
uint bucket, LF_PINS *pins)
{
uint parent= my_clear_highest_bit(bucket);
LF_SLIST *dummy=_lf_alloc_new(pins), **tmp=0, *cur;
LF_SLIST * volatile *el=_lf_dynarray_lvalue(&hash->array, parent);
if (*el == NULL && bucket)
initialize_bucket(hash, el, parent, pins);
dummy->hashnr=my_reverse_bits(bucket);
LINT_INIT(dummy->key);
LINT_INIT(dummy->keylen);
if ((cur= linsert(el, dummy, pins, 0)))
{
_lf_alloc_free(pins, dummy);
dummy= cur;
}
my_atomic_casptr((void **)node, (void **)&tmp, dummy);
}

View file

@ -43,6 +43,7 @@
#include <keycache.h>
#include "my_static.h"
#include <m_string.h>
#include <my_bit.h>
#include <errno.h>
#include <stdarg.h>

View file

@ -18,11 +18,10 @@
#include <my_pthread.h>
#ifndef HAVE_INLINE
/*
the following will cause all inline functions to be instantiated
*/
/* the following will cause all inline functions to be instantiated */
#define HAVE_INLINE
#define static extern
#undef STATIC_INLINE
#define STATIC_INLINE extern
#endif
#include <my_atomic.h>

View file

@ -14,23 +14,18 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Some useful bit functions */
#include <my_global.h>
#include "mysys_priv.h"
#ifndef HAVE_INLINE
/* the following will cause all inline functions to be instantiated */
#define HAVE_INLINE
#undef STATIC_INLINE
#define STATIC_INLINE extern
#endif
/*
Find smallest X in 2^X >= value
This can be used to divide a number with value by doing a shift instead
*/
#include <my_bit.h>
uint my_bit_log2(ulong value)
{
uint bit;
for (bit=0 ; value > 1 ; value>>=1, bit++) ;
return bit;
}
static char nbits[256] = {
const char _my_bits_nbits[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
@ -49,60 +44,29 @@ static char nbits[256] = {
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
};
uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
/* The following code is a bit faster on 16 bit machines than if we would
only shift v */
ulong v2=(ulong) (v >> 32);
return (uint) (uchar) (nbits[(uchar) v] +
nbits[(uchar) (v >> 8)] +
nbits[(uchar) (v >> 16)] +
nbits[(uchar) (v >> 24)] +
nbits[(uchar) (v2)] +
nbits[(uchar) (v2 >> 8)] +
nbits[(uchar) (v2 >> 16)] +
nbits[(uchar) (v2 >> 24)]);
#else
return (uint) (uchar) (nbits[(uchar) v] +
nbits[(uchar) (v >> 8)] +
nbits[(uchar) (v >> 16)] +
nbits[(uchar) (v >> 24)]);
#endif
}
uint my_count_bits_ushort(ushort v)
{
return nbits[v];
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Orignal code public domain)
Comments shows how this works with 01100000000000000000000000001011
perl -e 'print map{", 0x".unpack H2,pack B8,unpack b8,chr$_}(0..255)'
*/
const uchar _my_bits_reverse_table[256]={
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30,
0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98,
0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64,
0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC,
0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02,
0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2,
0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A,
0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E,
0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81,
0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71,
0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9,
0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15,
0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD,
0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43,
0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B,
0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97,
0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F,
0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}

View file

@ -39,6 +39,7 @@
#include "mysys_priv.h"
#include <my_bitmap.h>
#include <m_string.h>
#include <my_bit.h>
void create_last_word_mask(MY_BITMAP *map)
{

View file

@ -44,6 +44,7 @@ static void netware_init();
my_bool my_init_done= 0;
uint mysys_usage_id= 0; /* Incremented for each my_init() */
ulong my_thread_stack_size= 65536;
static ulong atoi_octal(const char *str)
{

View file

@ -21,6 +21,7 @@
#include "mysql_priv.h"
#include <m_ctype.h>
#include <my_bit.h>
#include <myisampack.h>
#include "ha_myisam.h"
#include <stdarg.h>

View file

@ -27,6 +27,7 @@
#include <hash.h>
#include <time.h>
#include <ft_global.h>
#include <my_bit.h>
#include "sp_head.h"
#include "sp_rcontext.h"

View file

@ -1516,7 +1516,7 @@ extern ulong max_connections,max_connect_errors, connect_timeout;
extern ulong slave_net_timeout, slave_trans_retries;
extern uint max_user_connections;
extern ulong what_to_log,flush_time;
extern ulong query_buff_size, thread_stack;
extern ulong query_buff_size;
extern ulong max_prepared_stmt_count, prepared_stmt_count;
extern ulong binlog_cache_size, max_binlog_cache_size, open_files_limit;
extern ulong max_binlog_size, max_relay_log_size;

View file

@ -17,6 +17,7 @@
#include "mysql_priv.h"
#include <m_ctype.h>
#include <my_dir.h>
#include <my_bit.h>
#include "slave.h"
#include "sql_repl.h"
#include "rpl_filter.h"
@ -486,7 +487,7 @@ uint volatile thread_count, thread_running;
ulonglong thd_startup_options;
ulong back_log, connect_timeout, concurrency, server_id;
ulong table_cache_size, table_def_size;
ulong thread_stack, what_to_log;
ulong what_to_log;
ulong query_buff_size, slow_launch_time, slave_open_temp_tables;
ulong open_files_limit, max_binlog_size, max_relay_log_size;
ulong slave_net_timeout, slave_trans_retries;
@ -2149,7 +2150,7 @@ the thread stack. Please read http://www.mysql.com/doc/en/Linux.html\n\n",
{
fprintf(stderr,"thd=%p\n",thd);
print_stacktrace(thd ? (gptr) thd->thread_stack : (gptr) 0,
thread_stack);
my_thread_stack_size);
}
if (thd)
{
@ -2281,9 +2282,9 @@ static void start_signal_handler(void)
Peculiar things with ia64 platforms - it seems we only have half the
stack size in reality, so we have to double it here
*/
pthread_attr_setstacksize(&thr_attr,thread_stack*2);
pthread_attr_setstacksize(&thr_attr,my_thread_stack_size*2);
#else
pthread_attr_setstacksize(&thr_attr,thread_stack);
pthread_attr_setstacksize(&thr_attr,my_thread_stack_size);
#endif
#endif
@ -3500,9 +3501,9 @@ int main(int argc, char **argv)
Peculiar things with ia64 platforms - it seems we only have half the
stack size in reality, so we have to double it here
*/
pthread_attr_setstacksize(&connection_attrib,thread_stack*2);
pthread_attr_setstacksize(&connection_attrib,my_thread_stack_size*2);
#else
pthread_attr_setstacksize(&connection_attrib,thread_stack);
pthread_attr_setstacksize(&connection_attrib,my_thread_stack_size);
#endif
#ifdef HAVE_PTHREAD_ATTR_GETSTACKSIZE
{
@ -3513,15 +3514,15 @@ int main(int argc, char **argv)
stack_size/= 2;
#endif
/* We must check if stack_size = 0 as Solaris 2.9 can return 0 here */
if (stack_size && stack_size < thread_stack)
if (stack_size && stack_size < my_thread_stack_size)
{
if (global_system_variables.log_warnings)
sql_print_warning("Asked for %ld thread stack, but got %ld",
thread_stack, stack_size);
my_thread_stack_size, stack_size);
#if defined(__ia64__) || defined(__ia64)
thread_stack= stack_size*2;
my_thread_stack_size= stack_size*2;
#else
thread_stack= stack_size;
my_thread_stack_size= stack_size;
#endif
}
}
@ -6333,8 +6334,8 @@ The minimum value for this variable is 4096.",
(gptr*) &concurrency, (gptr*) &concurrency, 0, GET_ULONG, REQUIRED_ARG,
DEFAULT_CONCURRENCY, 1, 512, 0, 1, 0},
{"thread_stack", OPT_THREAD_STACK,
"The stack size for each thread.", (gptr*) &thread_stack,
(gptr*) &thread_stack, 0, GET_ULONG, REQUIRED_ARG,DEFAULT_THREAD_STACK,
"The stack size for each thread.", (gptr*) &my_thread_stack_size,
(gptr*) &my_thread_stack_size, 0, GET_ULONG, REQUIRED_ARG,DEFAULT_THREAD_STACK,
1024L*128L, ~0L, 0, 1024, 0},
{ "time_format", OPT_TIME_FORMAT,
"The TIME format (for future).",

View file

@ -1069,10 +1069,10 @@ SHOW_VAR init_vars[]= {
#ifdef HAVE_THR_SETCONCURRENCY
{"thread_concurrency", (char*) &concurrency, SHOW_LONG},
#endif
{"thread_stack", (char*) &thread_stack, SHOW_LONG},
{"thread_stack", (char*) &my_thread_stack_size, SHOW_LONG},
{sys_time_format.name, (char*) &sys_time_format, SHOW_SYS},
{"time_zone", (char*) &sys_time_zone, SHOW_SYS},
{sys_timed_mutexes.name, (char*) &sys_timed_mutexes, SHOW_SYS},
{sys_timed_mutexes.name, (char*) &sys_timed_mutexes, SHOW_SYS},
{sys_tmp_table_size.name, (char*) &sys_tmp_table_size, SHOW_SYS},
{sys_tmpdir.name, (char*) &sys_tmpdir, SHOW_SYS},
{sys_trans_alloc_block_size.name, (char*) &sys_trans_alloc_block_size,

View file

@ -5785,10 +5785,10 @@ bool check_stack_overrun(THD *thd, long margin,
long stack_used;
DBUG_ASSERT(thd == current_thd);
if ((stack_used=used_stack(thd->thread_stack,(char*) &stack_used)) >=
(long) (thread_stack - margin))
(long) (my_thread_stack_size - margin))
{
sprintf(errbuff[0],ER(ER_STACK_OVERRUN_NEED_MORE),
stack_used,thread_stack,margin);
stack_used,my_thread_stack_size,margin);
my_message(ER_STACK_OVERRUN_NEED_MORE,errbuff[0],MYF(0));
thd->fatal_error();
return 1;

View file

@ -26,6 +26,7 @@
#include "sql_cursor.h"
#include <m_ctype.h>
#include <my_bit.h>
#include <hash.h>
#include <ft_global.h>

View file

@ -455,7 +455,7 @@ void mysql_print_status()
VOID(my_getwd(current_dir, sizeof(current_dir),MYF(0)));
printf("Current dir: %s\n", current_dir);
printf("Running threads: %d Stack size: %ld\n", thread_count,
(long) thread_stack);
(long) my_thread_stack_size);
thr_print_locks(); // Write some debug info
#ifndef DBUG_OFF
print_cached_tables();
@ -530,7 +530,7 @@ Estimated memory (with thread stack): %ld\n",
(int) info.uordblks,
(int) info.fordblks,
(int) info.keepcost,
(long) (thread_count * thread_stack + info.hblkhd + info.arena));
(long) (thread_count * my_thread_stack_size + info.hblkhd + info.arena));
#endif
puts("");
}

View file

@ -18,6 +18,7 @@
#include "ftdefs.h"
#include "sp_defs.h"
#include <my_bit.h>
#if defined(MSDOS) || defined(__WIN__)
#ifdef __WIN__
@ -432,7 +433,7 @@ int mi_create(const char *name,uint keys,MI_KEYDEF *keydefs,
share.state.rec_per_key_part[key_segs-1]=1L;
length+=key_length;
/* Get block length for key, if defined by user */
block_length= (keydef->block_length ?
block_length= (keydef->block_length ?
my_round_up_to_next_power(keydef->block_length) :
myisam_block_size);
block_length= max(block_length, MI_MIN_KEY_BLOCK_LENGTH);

View file

@ -27,6 +27,7 @@
#endif
#include "myisamdef.h"
#include <m_ctype.h>
#include <my_bit.h>
#define STANDARD_LENGTH 37
#define MYISAM_KEYS 6

View file

@ -20,6 +20,7 @@
#include <m_ctype.h>
#include <stdarg.h>
#include <my_getopt.h>
#include <my_bit.h>
#ifdef HAVE_SYS_VADVICE_H
#include <sys/vadvise.h>
#endif

View file

@ -14,13 +14,20 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <my_global.h>
//#define MY_ATOMIC_MODE_RWLOCKS
//#define MY_ATOMIC_MODE_DUMMY
#include <tap.h>
#include <my_global.h>
#include <my_sys.h>
#include <my_atomic.h>
#include <lf.h>
int32 a32,b32,c32;
volatile uint32 a32,b32,c32;
my_atomic_rwlock_t rwl;
LF_ALLOCATOR lf_allocator;
LF_HASH lf_hash;
pthread_attr_t thr_attr;
pthread_mutex_t mutex;
@ -30,9 +37,9 @@ int N;
/* add and sub a random number in a loop. Must get 0 at the end */
pthread_handler_t test_atomic_add_handler(void *arg)
{
int m=*(int *)arg;
int m=(*(int *)arg)/2;
int32 x;
for (x=((int)(&m)); m ; m--)
for (x=((int)(intptr)(&m)); m ; m--)
{
x=x*m+0x87654321;
my_atomic_rwlock_wrlock(&rwl);
@ -61,15 +68,9 @@ pthread_handler_t test_atomic_add_handler(void *arg)
pthread_handler_t test_atomic_swap_handler(void *arg)
{
int m=*(int *)arg;
int32 x;
uint32 x=my_atomic_add32(&b32, 1);
my_atomic_rwlock_wrlock(&rwl);
x=my_atomic_add32(&b32, 1);
my_atomic_rwlock_wrunlock(&rwl);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, x);
my_atomic_rwlock_wrunlock(&rwl);
for (; m ; m--)
{
@ -98,29 +99,29 @@ pthread_handler_t test_atomic_swap_handler(void *arg)
/*
same as test_atomic_add_handler, but my_atomic_add32 is emulated with
(slower) my_atomic_cas32
my_atomic_cas32 - notice that the slowdown is proportional to the
number of CPUs
*/
pthread_handler_t test_atomic_cas_handler(void *arg)
{
int m=*(int *)arg, ok;
int32 x,y;
for (x=((int)(&m)); m ; m--)
int m=(*(int *)arg)/2, ok=0;
int32 x, y;
for (x=((int)(intptr)(&m)); m ; m--)
{
my_atomic_rwlock_wrlock(&rwl);
y=my_atomic_load32(&a32);
my_atomic_rwlock_wrunlock(&rwl);
x=x*m+0x87654321;
do {
my_atomic_rwlock_wrlock(&rwl);
ok=my_atomic_cas32(&a32, &y, y+x);
my_atomic_rwlock_wrunlock(&rwl);
} while (!ok);
} while (!ok) ;
do {
my_atomic_rwlock_wrlock(&rwl);
ok=my_atomic_cas32(&a32, &y, y-x);
my_atomic_rwlock_wrunlock(&rwl);
} while (!ok);
} while (!ok) ;
}
pthread_mutex_lock(&mutex);
N--;
@ -129,6 +130,128 @@ pthread_handler_t test_atomic_cas_handler(void *arg)
return 0;
}
/*
pin allocator - alloc and release an element in a loop
*/
pthread_handler_t test_lf_pinbox(void *arg)
{
int m=*(int *)arg;
int32 x=0;
LF_PINS *pins;
pins=lf_pinbox_get_pins(&lf_allocator.pinbox);
for (x=((int)(intptr)(&m)); m ; m--)
{
lf_pinbox_put_pins(pins);
pins=lf_pinbox_get_pins(&lf_allocator.pinbox);
}
lf_pinbox_put_pins(pins);
pthread_mutex_lock(&mutex);
N--;
if (!N)
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
return 0;
}
typedef union {
int32 data;
void *not_used; /* to guarantee sizeof(TLA) >= sizeof(void *) */
} TLA;
pthread_handler_t test_lf_alloc(void *arg)
{
int m=(*(int *)arg)/2;
int32 x,y=0;
LF_PINS *pins;
pins=lf_alloc_get_pins(&lf_allocator);
for (x=((int)(intptr)(&m)); m ; m--)
{
TLA *node1, *node2;
x=x*m+0x87654321;
node1=(TLA *)lf_alloc_new(pins);
node1->data=x;
y+=node1->data;
node1->data=0;
node2=(TLA *)lf_alloc_new(pins);
node2->data=x;
y-=node2->data;
node2->data=0;
lf_alloc_free(pins, node1);
lf_alloc_free(pins, node2);
}
lf_alloc_put_pins(pins);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, y);
my_atomic_rwlock_wrunlock(&rwl);
pthread_mutex_lock(&mutex);
N--;
if (!N)
{
diag("%d mallocs, %d pins in stack",
lf_allocator.mallocs, lf_allocator.pinbox.pins_in_stack);
#ifdef MY_LF_EXTRA_DEBUG
a32|=lf_allocator.mallocs - lf_alloc_in_pool(&lf_allocator);
#endif
pthread_cond_signal(&cond);
}
pthread_mutex_unlock(&mutex);
return 0;
}
#define N_TLH 1000
pthread_handler_t test_lf_hash(void *arg)
{
int m=(*(int *)arg)/(2*N_TLH);
int32 x,y,z,sum=0, ins=0;
LF_PINS *pins;
pins=lf_hash_get_pins(&lf_hash);
for (x=((int)(intptr)(&m)); m ; m--)
{
int i;
y=x;
for (i=0; i < N_TLH; i++)
{
x=x*(m+i)+0x87654321;
z=(x<0) ? -x : x;
if (lf_hash_insert(&lf_hash, pins, &z))
{
sum+=z;
ins++;
}
}
for (i=0; i < N_TLH; i++)
{
y=y*(m+i)+0x87654321;
z=(y<0) ? -y : y;
if (lf_hash_delete(&lf_hash, pins, (uchar *)&z, sizeof(z)))
sum-=z;
}
}
lf_hash_put_pins(pins);
my_atomic_rwlock_wrlock(&rwl);
my_atomic_add32(&a32, sum);
my_atomic_add32(&b32, ins);
my_atomic_rwlock_wrunlock(&rwl);
pthread_mutex_lock(&mutex);
N--;
if (!N)
{
diag("%d mallocs, %d pins in stack, %d hash size, %d inserts",
lf_hash.alloc.mallocs, lf_hash.alloc.pinbox.pins_in_stack,
lf_hash.size, b32);
a32|=lf_hash.count;
pthread_cond_signal(&cond);
}
pthread_mutex_unlock(&mutex);
return 0;
}
void test_atomic(const char *test, pthread_handler handler, int n, int m)
{
pthread_t t;
@ -141,23 +264,24 @@ void test_atomic(const char *test, pthread_handler handler, int n, int m)
diag("Testing %s with %d threads, %d iterations... ", test, n, m);
for (N=n ; n ; n--)
pthread_create(&t, &thr_attr, handler, &m);
pthread_mutex_lock(&mutex);
while (N)
pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);
now=my_getsystime()-now;
ok(a32 == 0, "tested %s in %g secs", test, ((double)now)/1e7);
ok(a32 == 0, "tested %s in %g secs (%d)", test, ((double)now)/1e7, a32);
}
int main()
{
int err;
diag("N CPUs: %d", my_getncpus());
my_init();
diag("N CPUs: %d, atomic ops: %s", my_getncpus(), MY_ATOMIC_MODE);
err= my_atomic_initialize();
plan(4);
plan(7);
ok(err == 0, "my_atomic_initialize() returned %d", err);
pthread_attr_init(&thr_attr);
@ -165,15 +289,31 @@ int main()
pthread_mutex_init(&mutex, 0);
pthread_cond_init(&cond, 0);
my_atomic_rwlock_init(&rwl);
lf_alloc_init(&lf_allocator, sizeof(TLA));
lf_hash_init(&lf_hash, sizeof(int), LF_HASH_UNIQUE, 0, sizeof(int), 0,
&my_charset_bin);
test_atomic("my_atomic_add32", test_atomic_add_handler, 100,10000);
test_atomic("my_atomic_swap32", test_atomic_swap_handler, 100,10000);
test_atomic("my_atomic_cas32", test_atomic_cas_handler, 100,10000);
#ifdef MY_ATOMIC_MODE_RWLOCKS
#define CYCLES 10000
#else
#define CYCLES 1000000
#endif
#define THREADS 100
test_atomic("my_atomic_add32", test_atomic_add_handler, THREADS,CYCLES);
test_atomic("my_atomic_swap32", test_atomic_swap_handler, THREADS,CYCLES);
test_atomic("my_atomic_cas32", test_atomic_cas_handler, THREADS,CYCLES);
test_atomic("lf_pinbox", test_lf_pinbox, THREADS,CYCLES);
test_atomic("lf_alloc", test_lf_alloc, THREADS,CYCLES);
test_atomic("lf_hash", test_lf_hash, THREADS,CYCLES);
lf_hash_end(&lf_hash);
lf_alloc_end(&lf_allocator);
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
pthread_attr_destroy(&thr_attr);
my_atomic_rwlock_destroy(&rwl);
my_end(0);
return exit_status();
}