mariadb/sql/opt_histogram_json.cc

1199 lines
31 KiB
C++
Raw Normal View History

/*
Copyright (c) 2021, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "sql_base.h"
#include "my_json_writer.h"
#include "sql_statistics.h"
#include "opt_histogram_json.h"
/*
@brief
Un-escape a JSON string and save it into *out.
@detail
There's no way to tell how much space is needed for the output.
Start with a small string and increase its size until json_unescape()
succeeds.
*/
static bool json_unescape_to_string(const char *val, int val_len, String* out)
{
// Make sure 'out' has some memory allocated.
if (!out->alloced_length() && out->alloc(128))
return true;
while (1)
{
uchar *buf= (uchar*)out->ptr();
out->length(out->alloced_length());
int res= json_unescape(&my_charset_utf8mb4_bin,
(const uchar*)val,
(const uchar*)val + val_len,
out->charset(),
buf, buf + out->length());
if (res >= 0)
{
out->length(res);
return false; // Ok
}
// We get here if the unescaped string didn't fit into memory.
if (out->alloc(out->alloced_length()*2))
return true;
}
}
/*
@brief
Escape a JSON string and save it into *out.
@detail
There's no way to tell how much space is needed for the output.
Start with a small string and increase its size until json_escape()
succeeds.
*/
static int json_escape_to_string(const String *str, String* out)
{
// Make sure 'out' has some memory allocated.
if (!out->alloced_length() && out->alloc(128))
return JSON_ERROR_OUT_OF_SPACE;
while (1)
{
uchar *buf= (uchar*)out->ptr();
out->length(out->alloced_length());
const uchar *str_ptr= (const uchar*)str->ptr();
int res= json_escape(str->charset(),
str_ptr,
str_ptr + str->length(),
&my_charset_utf8mb4_bin,
buf, buf + out->length());
if (res >= 0)
{
out->length(res);
return 0; // Ok
}
if (res != JSON_ERROR_OUT_OF_SPACE)
return res; // Some conversion error
// Out of space error. Try with a bigger buffer
if (out->alloc(out->alloced_length()*2))
return JSON_ERROR_OUT_OF_SPACE;
}
}
class Histogram_json_builder : public Histogram_builder
{
Histogram_json_hb *histogram;
/* Number of buckets in the histogram */
uint hist_width;
/*
Number of rows that we intend to have in the bucket. That is, this is
n_rows_in_table / hist_width
Actual number of rows in the buckets we produce may vary because of
"popular values" and rounding.
*/
longlong bucket_capacity;
/* Number of the buckets already collected */
uint n_buckets_collected;
/*
TRUE means do not try to represent values as UTF-8 text in histogram
storage. Use start_hex/end_hex for all values.
*/
bool force_binary;
/* Data about the bucket we are filling now */
struct CurBucket
{
/* Number of values in the bucket so far. */
longlong size;
/* Number of distinct values in the bucket */
int ndv;
};
CurBucket bucket;
/* Used to create the JSON representation of the histogram. */
Json_writer writer;
public:
Histogram_json_builder(Histogram_json_hb *hist, Field *col, uint col_len,
ha_rows rows)
: Histogram_builder(col, col_len, rows), histogram(hist)
{
/*
When computing number of rows in the bucket, round it UP. This way, we
will not end up with a histogram that has more buckets than intended.
We may end up producing a histogram with fewer buckets than intended, but
this is considered tolerable.
*/
bucket_capacity= (longlong)round(rows2double(records) / histogram->get_width() + 0.5);
2021-09-11 18:43:08 +02:00
if (bucket_capacity == 0)
bucket_capacity= 1;
hist_width= histogram->get_width();
n_buckets_collected= 0;
bucket.ndv= 0;
bucket.size= 0;
force_binary= (col->type() == MYSQL_TYPE_BIT);
writer.start_object();
append_histogram_params();
writer.add_member(Histogram_json_hb::JSON_NAME).start_array();
}
~Histogram_json_builder() override = default;
private:
bool bucket_is_empty() { return bucket.ndv == 0; }
void append_histogram_params()
{
char buf[128];
String str(buf, sizeof(buf), system_charset_info);
THD *thd= current_thd;
timeval tv= {thd->query_start(), 0}; // we do not need microseconds
Timestamp(tv).to_datetime(thd).to_string(&str, 0);
writer.add_member("target_histogram_size").add_ull(hist_width);
writer.add_member("collected_at").add_str(str.ptr());
writer.add_member("collected_by").add_str(server_version);
}
/*
Flush the current bucket out (to JSON output), and set it to be empty.
*/
void finalize_bucket()
{
double fract= (double) bucket.size / records;
writer.add_member("size").add_double(fract);
writer.add_member("ndv").add_ll(bucket.ndv);
writer.end_object();
n_buckets_collected++;
bucket.ndv= 0;
bucket.size= 0;
}
/*
Same as finalize_bucket() but also provide the bucket's end value.
*/
bool finalize_bucket_with_end_value(void *elem)
{
if (append_column_value(elem, false))
return true;
finalize_bucket();
return false;
}
/*
Write the first value group to the bucket.
@param elem The value we are writing
@param cnt The number of such values.
*/
bool start_bucket(void *elem, longlong cnt)
{
DBUG_ASSERT(bucket.size == 0);
writer.start_object();
if (append_column_value(elem, true))
return true;
bucket.ndv= 1;
bucket.size= cnt;
return false;
}
/*
Append the passed value into the JSON writer as string value
*/
bool append_column_value(void *elem, bool is_start)
{
StringBuffer<MAX_FIELD_WIDTH> val;
// Get the text representation of the value
column->store_field_value((uchar*) elem, col_length);
String *str= column->val_str(&val);
// Escape the value for JSON
StringBuffer<MAX_FIELD_WIDTH> escaped_val;
int rc= JSON_ERROR_ILLEGAL_SYMBOL;
if (!force_binary)
{
rc= json_escape_to_string(str, &escaped_val);
if (!rc)
{
writer.add_member(is_start? "start": "end");
writer.add_str(escaped_val.c_ptr_safe());
return false;
}
}
if (rc == JSON_ERROR_ILLEGAL_SYMBOL)
{
escaped_val.set_hex(val.ptr(), val.length());
writer.add_member(is_start? "start_hex": "end_hex");
writer.add_str(escaped_val.c_ptr_safe());
return false;
}
return true;
}
/*
Append a value group of cnt values.
*/
2021-09-10 18:49:33 +02:00
void append_to_bucket(longlong cnt)
{
bucket.ndv++;
bucket.size += cnt;
}
public:
/*
@brief
Add data to the histogram.
@detail
The call signals to add a "value group" of elem_cnt rows, each of which
has the same value that is provided in *elem.
Subsequent next() calls will add values that are greater than the
current one.
@return
0 - OK
*/
int next(void *elem, element_count elem_cnt) override
{
counters.next(elem, elem_cnt);
ulonglong count= counters.get_count();
/*
Ok, we've got a "value group" of elem_cnt identical values.
If we take the values from the value group and put them into
the current bucket, how many values will be left after we've
filled the bucket?
*/
longlong overflow= bucket.size + elem_cnt - bucket_capacity;
/*
Case #1: This value group should be put into a separate bucket, if
A. It fills the current bucket and also fills the next bucket, OR
B. It fills the current bucket, which was empty.
*/
if (overflow >= bucket_capacity || (bucket_is_empty() && overflow >= 0))
{
// Finalize the current bucket
if (!bucket_is_empty())
finalize_bucket();
// Start/end the separate bucket for this value group.
if (start_bucket(elem, elem_cnt))
return 1; // OOM
if (records == count)
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
else
finalize_bucket();
}
else if (overflow >= 0)
{
/*
Case #2: is when Case#1 doesn't hold, but we can still fill the
current bucket.
*/
// If the bucket was empty, it would have been case #1.
DBUG_ASSERT(!bucket_is_empty());
/*
Finalize the current bucket. Put there enough values to make it hold
bucket_capacity values.
*/
append_to_bucket(bucket_capacity - bucket.size);
if (records == count && !overflow)
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
else
finalize_bucket();
if (overflow > 0)
{
// Then, start the new bucket with the remaining values.
if (start_bucket(elem, overflow))
return 1;
}
}
else
{
// Case #3: there's not enough values to fill the current bucket.
if (bucket_is_empty())
{
if (start_bucket(elem, elem_cnt))
return 1;
}
else
append_to_bucket(elem_cnt);
}
if (records == count)
{
// This is the final value group.
if (!bucket_is_empty())
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
}
return 0;
}
/*
@brief
Finalize the creation of histogram
*/
void finalize() override
{
writer.end_array();
writer.end_object();
Binary_string *json_string= (Binary_string *) writer.output.get_string();
histogram->set_json_text(n_buckets_collected,
2021-09-11 18:43:08 +02:00
json_string->c_ptr(),
(size_t)json_string->length());
}
};
Histogram_builder *Histogram_json_hb::create_builder(Field *col, uint col_len,
ha_rows rows)
{
return new Histogram_json_builder(this, col, col_len, rows);
}
void Histogram_json_hb::init_for_collection(MEM_ROOT *mem_root,
Histogram_type htype_arg,
ulonglong size_arg)
{
DBUG_ASSERT(htype_arg == JSON_HB);
size= (size_t)size_arg;
}
/*
A syntax sugar interface to json_string_t
*/
class Json_string
{
json_string_t str;
public:
explicit Json_string(const char *name)
{
json_string_set_str(&str, (const uchar*)name,
(const uchar*)name + strlen(name));
json_string_set_cs(&str, system_charset_info);
}
json_string_t *get() { return &str; }
};
/*
This [partially] saves the JSON parser state and then can rollback the parser
to it.
The goal of this is to be able to make multiple json_key_matches() calls:
Json_saved_parser_state save(je);
if (json_key_matches(je, KEY_NAME_1)) {
...
return;
}
save.restore_to(je);
if (json_key_matches(je, KEY_NAME_2)) {
...
}
This allows one to parse JSON objects where [optional] members come in any
order.
*/
class Json_saved_parser_state
{
const uchar *c_str;
my_wc_t c_next;
int state;
public:
explicit Json_saved_parser_state(const json_engine_t *je) :
c_str(je->s.c_str),
c_next(je->s.c_next),
state(je->state)
{}
void restore_to(json_engine_t *je)
{
je->s.c_str= c_str;
je->s.c_next= c_next;
je->state= state;
}
};
/*
@brief
Read a constant from JSON document and save it in *out.
@detail
The JSON document stores constant in text form, we need to save it in
KeyTupleFormat. String constants in JSON may be escaped.
*/
bool read_bucket_endpoint(json_engine_t *je, Field *field, String *out,
const char **err)
{
if (json_read_value(je))
return true;
if (je->value_type != JSON_VALUE_STRING &&
je->value_type != JSON_VALUE_NUMBER)
{
*err= "String or number expected";
return true;
}
const char* je_value= (const char*)je->value;
if (je->value_type == JSON_VALUE_STRING && je->value_escaped)
{
StringBuffer<128> unescape_buf;
if (json_unescape_to_string(je_value, je->value_len, &unescape_buf))
{
*err= "Un-escape error";
return true;
}
field->store_text(unescape_buf.ptr(), unescape_buf.length(),
unescape_buf.charset());
}
else
field->store_text(je_value, je->value_len, &my_charset_utf8mb4_bin);
out->alloc(field->pack_length());
uint bytes= field->get_key_image((uchar*)out->ptr(),
field->key_length(), Field::itRAW);
out->length(bytes);
return false;
}
bool read_hex_bucket_endpoint(json_engine_t *je, Field *field, String *out,
const char **err)
{
if (json_read_value(je))
return true;
if (je->value_type != JSON_VALUE_STRING || je->value_escaped ||
(je->value_len & 1))
{
*err= "Expected a hex string";
return true;
}
StringBuffer<128> buf;
for (auto pc= je->value; pc < je->value + je->value_len; pc+=2)
{
int hex_char1= hexchar_to_int(pc[0]);
int hex_char2= hexchar_to_int(pc[1]);
if (hex_char1 == -1 || hex_char2 == -1)
{
*err= "Expected a hex string";
return true;
}
buf.append((hex_char1 << 4) | hex_char2);
}
field->store_text(buf.ptr(), buf.length(), field->charset());
out->alloc(field->pack_length());
uint bytes= field->get_key_image((uchar*)out->ptr(),
field->key_length(), Field::itRAW);
out->length(bytes);
return false;
}
/*
@brief Parse a JSON reprsentation for one histogram bucket
@param je The JSON parser object
@param field Table field we are using histogram (used to convert
endpoints from text representation to binary)
@param total_size INOUT Fraction of the table rows in the buckets parsed so
far.
@param assigned_last_end OUT TRUE<=> The bucket had "end" members, the
function has saved it in
this->last_bucket_end_endp
@param err OUT If function returns 1, this *may* be set to point to text
describing the error.
@detail
Parse a JSON object in this form:
{ "start": "value", "size":nnn.nn, "ndv": nnn, "end": "value"}
Unknown members are ignored.
@return
0 OK
1 Parse Error
-1 EOF
*/
int Histogram_json_hb::parse_bucket(json_engine_t *je, Field *field,
double *total_size,
bool *assigned_last_end,
const char **err)
{
*assigned_last_end= false;
if (json_scan_next(je))
return 1;
if (je->state != JST_VALUE)
{
if (je->state == JST_ARRAY_END)
return -1; // EOF
else
return 1; // An error
}
if (json_scan_next(je) || je->state != JST_OBJ_START)
{
*err= "Expected an object in the buckets array";
return 1;
}
bool have_start= false;
bool have_size= false;
bool have_ndv= false;
double size_d;
longlong ndv_ll= 0;
StringBuffer<128> value_buf;
int rc;
while (!(rc= json_scan_next(je)) && je->state != JST_OBJ_END)
{
Json_saved_parser_state save1(je);
Json_string start_str("start");
if (json_key_matches(je, start_str.get()))
{
if (read_bucket_endpoint(je, field, &value_buf, err))
return 1;
have_start= true;
continue;
}
save1.restore_to(je);
Json_string size_str("size");
if (json_key_matches(je, size_str.get()))
{
if (json_read_value(je))
return 1;
const char *size= (const char*)je->value_begin;
char *size_end= (char*)je->value_end;
int conv_err;
size_d= my_strtod(size, &size_end, &conv_err);
if (conv_err)
{
*err= ".size member must be a floating-point value";
return 1;
}
have_size= true;
continue;
}
save1.restore_to(je);
Json_string ndv_str("ndv");
if (json_key_matches(je, ndv_str.get()))
{
if (json_read_value(je))
return 1;
const char *ndv= (const char*)je->value_begin;
char *ndv_end= (char*)je->value_end;
int conv_err;
ndv_ll= my_strtoll10(ndv, &ndv_end, &conv_err);
if (conv_err)
{
*err= ".ndv member must be an integer value";
return 1;
}
have_ndv= true;
continue;
}
save1.restore_to(je);
Json_string end_str("end");
if (json_key_matches(je, end_str.get()))
{
if (read_bucket_endpoint(je, field, &value_buf, err))
return 1;
last_bucket_end_endp.assign(value_buf.ptr(), value_buf.length());
*assigned_last_end= true;
continue;
}
save1.restore_to(je);
// Less common endoints:
Json_string start_hex_str("start_hex");
if (json_key_matches(je, start_hex_str.get()))
{
if (read_hex_bucket_endpoint(je, field, &value_buf, err))
return 1;
have_start= true;
continue;
}
save1.restore_to(je);
Json_string end_hex_str("end_hex");
if (json_key_matches(je, end_hex_str.get()))
{
if (read_hex_bucket_endpoint(je, field, &value_buf, err))
return 1;
last_bucket_end_endp.assign(value_buf.ptr(), value_buf.length());
*assigned_last_end= true;
continue;
}
save1.restore_to(je);
// Some unknown member. Skip it.
if (json_skip_key(je))
return 1;
}
if (rc)
return 1;
if (!have_start)
{
*err= "\"start\" element not present";
return 1;
}
if (!have_size)
{
*err= "\"size\" element not present";
return 1;
}
if (!have_ndv)
{
*err= "\"ndv\" element not present";
return 1;
}
*total_size += size_d;
buckets.push_back({std::string(value_buf.ptr(), value_buf.length()),
*total_size, ndv_ll});
return 0; // Ok, continue reading
}
/*
@brief
Parse the histogram from its on-disk JSON representation
@detail
See opt_histogram_json.h, class Histogram_json_hb for description of the
data format.
@return
false OK
True Error
*/
bool Histogram_json_hb::parse(MEM_ROOT *mem_root, const char *db_name,
const char *table_name, Field *field,
const char *hist_data, size_t hist_data_len)
{
json_engine_t je;
int rc;
const char *err= "JSON parse error";
double total_size;
int end_element;
bool end_assigned;
DBUG_ENTER("Histogram_json_hb::parse");
json_scan_start(&je, &my_charset_utf8mb4_bin,
(const uchar*)hist_data,
(const uchar*)hist_data+hist_data_len);
if (json_scan_next(&je))
goto err;
if (je.state != JST_OBJ_START)
{
err= "Root JSON element must be a JSON object";
goto err;
}
while (1)
{
if (json_scan_next(&je))
goto err;
if (je.state == JST_OBJ_END)
break; // End of object
if (je.state != JST_KEY)
goto err; // Can' really have this: JSON object has keys in it
Json_string hist_key_name(JSON_NAME);
if (json_key_matches(&je, hist_key_name.get()))
{
total_size= 0.0;
end_element= -1;
if (json_scan_next(&je))
goto err;
if (je.state != JST_ARRAY_START)
{
err= "histogram_hb must contain an array";
goto err;
}
while (!(rc= parse_bucket(&je, field, &total_size, &end_assigned, &err)))
{
if (end_assigned && end_element != -1)
end_element= (int)buckets.size();
}
if (rc > 0) // Got error other than EOF
goto err;
}
else
{
// Some unknown member. Skip it.
if (json_skip_key(&je))
return 1;
}
}
if (buckets.size() < 1)
{
err= "Histogram must have at least one bucket";
goto err;
}
if (end_element == -1)
{
buckets.back().start_value= last_bucket_end_endp;
}
else if (end_element < (int)buckets.size())
{
err= ".end is only allowed in the last bucket";
goto err;
}
DBUG_RETURN(false); // Ok
err:
THD *thd= current_thd;
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_JSON_HISTOGRAM_PARSE_FAILED,
ER_THD(thd, ER_JSON_HISTOGRAM_PARSE_FAILED),
db_name, table_name,
err, (je.s.c_str - (const uchar*)hist_data));
sql_print_error(ER_THD(thd, ER_JSON_HISTOGRAM_PARSE_FAILED),
db_name, table_name, err,
(je.s.c_str - (const uchar*)hist_data));
DBUG_RETURN(true);
}
static
2021-09-07 09:38:36 +02:00
void store_key_image_to_rec_no_null(Field *field, const char *ptr, size_t len)
{
MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table,
&field->table->write_set);
2021-09-07 09:38:36 +02:00
field->set_key_image((const uchar*)ptr, (uint)len);
dbug_tmp_restore_column_map(&field->table->write_set, old_map);
}
static
double position_in_interval(Field *field, const uchar *key, uint key_len,
const std::string& left, const std::string& right)
{
double res;
if (field->pos_through_val_str())
{
StringBuffer<64> buf1, buf2, buf3;
store_key_image_to_rec_no_null(field, left.data(), left.size());
String *min_str= field->val_str(&buf1);
/*
Make sure we've saved a copy of the data, not a pointer into the
field->ptr. We will overwrite the contents of field->ptr with the next
store_key_image_to_rec_no_null call
*/
if (&buf1 != min_str)
buf1.copy(*min_str);
else
buf1.copy();
store_key_image_to_rec_no_null(field, right.data(), right.size());
String *max_str= field->val_str(&buf2);
/* Same as above */
if (&buf2 != max_str)
buf2.copy(*max_str);
else
buf2.copy();
store_key_image_to_rec_no_null(field, (const char*)key, key_len);
String *midp_str= field->val_str(&buf3);
res= pos_in_interval_for_string(field->charset(),
(const uchar*)midp_str->ptr(), midp_str->length(),
(const uchar*)buf1.ptr(), buf1.length(),
(const uchar*)buf2.ptr(), buf2.length());
}
else
{
store_key_image_to_rec_no_null(field, left.data(), field->key_length());
double min_val_real= field->val_real();
store_key_image_to_rec_no_null(field, right.data(), field->key_length());
double max_val_real= field->val_real();
store_key_image_to_rec_no_null(field, (const char*)key, field->key_length());
double midp_val_real= field->val_real();
res= pos_in_interval_for_double(midp_val_real, min_val_real, max_val_real);
}
return res;
}
double Histogram_json_hb::point_selectivity(Field *field, key_range *endpoint,
2022-01-19 16:02:40 +01:00
double avg_sel)
{
const uchar *key = endpoint->key;
if (field->real_maybe_null())
key++;
// If the value is outside of the histogram's range, this will "clip" it to
// first or last bucket.
int endp_cmp;
int idx= find_bucket(field, key, &endp_cmp);
double sel;
if (buckets[idx].ndv == 1 && (endp_cmp!=0))
{
/*
The bucket has a single value and it doesn't match! Return a very
small value.
*/
sel= 0.0;
}
else
{
/*
We get here when:
* The bucket has one value and this is the value we are looking for.
* The bucket has multiple values. Then, assume
*/
sel= (buckets[idx].cum_fract - get_left_fract(idx)) / buckets[idx].ndv;
}
return sel;
}
double Histogram_json_hb::get_left_fract(int idx)
{
if (!idx)
return 0.0;
else
return buckets[idx-1].cum_fract;
}
std::string& Histogram_json_hb::get_end_value(int idx)
{
if (idx == (int)buckets.size()-1)
return last_bucket_end_endp;
else
return buckets[idx+1].start_value;
}
/*
@param field The table field histogram is for. We don't care about the
field's current value, we only need its virtual functions to
perform various operations
@param min_endp Left endpoint, or NULL if there is none
@param max_endp Right endpoint, or NULL if there is none
@param avg_sel Average selectivity of "field=const" equality for this field
@return
Range selectivity: a number between 0.0 and 1.0.
@note
This may return 0.0. Adjustments to avoid multiply-by-zero meltdown are
made elsewhere.
*/
double Histogram_json_hb::range_selectivity(Field *field, key_range *min_endp,
key_range *max_endp, double avg_sel)
{
double min, max;
if (min_endp && !(field->real_maybe_null() && min_endp->key[0]))
{
bool exclusive_endp= (min_endp->flag == HA_READ_AFTER_KEY)? true: false;
const uchar *min_key= min_endp->key;
uint min_key_len= min_endp->length;
if (field->real_maybe_null())
{
min_key++;
min_key_len--;
}
// Find the leftmost bucket that contains the lookup value.
// (If the lookup value is to the left of all buckets, find bucket #0)
int endp_cmp;
int idx= find_bucket(field, min_key, &endp_cmp);
double sel;
// Special handling for buckets with ndv=1:
if (buckets[idx].ndv == 1)
{
if (endp_cmp < 0)
sel= 0.0;
else if (endp_cmp > 0)
sel= 1.0;
else // endp_cmp == 0.0
sel= (exclusive_endp)? 1.0 : 0.0;
}
else
{
sel= position_in_interval(field, min_key, min_key_len,
buckets[idx].start_value,
get_end_value(idx));
}
double left_fract= get_left_fract(idx);
min= left_fract + sel * (buckets[idx].cum_fract - left_fract);
}
else
min= 0.0;
if (max_endp)
{
// The right endpoint cannot be NULL
DBUG_ASSERT(!(field->real_maybe_null() && max_endp->key[0]));
bool inclusive_endp= (max_endp->flag == HA_READ_AFTER_KEY)? true: false;
const uchar *max_key= max_endp->key;
uint max_key_len= max_endp->length;
if (field->real_maybe_null())
{
max_key++;
max_key_len--;
}
int endp_cmp;
int idx= find_bucket(field, max_key, &endp_cmp);
if ((endp_cmp == 0) && !inclusive_endp)
{
/*
The range is "col < $CONST" and we've found a bucket starting with
$CONST.
*/
if (idx > 0)
{
// Move to the previous bucket
endp_cmp= 1;
idx--;
}
else
endp_cmp= -1;
}
double sel;
// Special handling for buckets with ndv=1:
if (buckets[idx].ndv == 1)
{
if (endp_cmp < 0)
sel= 0.0;
else if (endp_cmp > 0)
sel= 1.0;
else // endp_cmp == 0.0
sel= inclusive_endp? 1.0 : 0.0;
}
else
{
sel= position_in_interval(field, max_key, max_key_len,
buckets[idx].start_value,
get_end_value(idx));
}
double left_fract= get_left_fract(idx);
max= left_fract + sel * (buckets[idx].cum_fract - left_fract);
}
else
max= 1.0;
if (min > max)
{
/*
This can happen due to rounding errors.
What is the acceptable error size? Json_writer::add_double() uses
%.11lg format. This gives 9 digits after the dot. A histogram may have
hundreds of buckets, let's multiply the error by 1000. 9-3=6
*/
DBUG_ASSERT(max < min + 1e-6);
max= min;
}
return max - min;
}
void Histogram_json_hb::serialize(Field *field)
{
field->store(json_text.data(), json_text.size(), &my_charset_bin);
}
#ifndef DBUG_OFF
static int SGN(int x)
{
if (!x)
return 0;
return (x < 0)? -1 : 1;
}
#endif
/*
@brief
Find the leftmost histogram bucket such that "lookup_val >= start_value".
@param field Field object (used to do value comparisons)
@param lookup_val The lookup value in KeyTupleFormat.
@param cmp OUT How the lookup_val compares to found_bucket.left_bound:
0 - lookup_val == bucket.left_bound
>0 - lookup_val > bucket.left_bound (the most typical)
<0 - lookup_val < bucket.left_bound. This can only happen
for the first bucket, for all other buckets we would just
pick the previous bucket and have cmp>=0.
@return
The bucket index
*/
int Histogram_json_hb::find_bucket(const Field *field, const uchar *lookup_val,
int *cmp)
{
int res;
int low= 0;
int high= (int)buckets.size() - 1;
*cmp= 1; // By default, (bucket[retval].start_value < *lookup_val)
while (low + 1 < high)
{
int middle= (low + high) / 2;
res= field->key_cmp((uchar*)buckets[middle].start_value.data(), lookup_val);
if (!res)
{
*cmp= res;
low= middle;
goto end;
}
else if (res < 0)
low= middle;
else //res > 0
high= middle;
}
/*
If low and high were assigned a value in the above loop and we got here,
then the following holds:
bucket[low].start_value < lookup_val < bucket[high].start_value
Besides that, there are two special cases: low=0 and high=last_bucket.
Handle them below.
*/
if (low == 0)
{
res= field->key_cmp(lookup_val, (uchar*)buckets[0].start_value.data());
if (res <= 0)
*cmp= res;
else // res>0, lookup_val > buckets[0].start_value
{
res= field->key_cmp(lookup_val, (uchar*)buckets[high].start_value.data());
if (res >= 0) // lookup_val >= buckets[high].start_value
{
// Move to that bucket
low= high;
*cmp= res;
}
else
*cmp= 1;
}
}
else if (high == (int)buckets.size() - 1)
{
res= field->key_cmp(lookup_val, (uchar*)buckets[high].start_value.data());
if (res >= 0)
{
// Ok the value is in the last bucket.
*cmp= res;
low= high;
}
else
{
// The value is in the 'low' bucket.
res= field->key_cmp(lookup_val, (uchar*)buckets[low].start_value.data());
*cmp= res;
}
}
end:
// Verification: *cmp has correct value
DBUG_ASSERT(SGN(*cmp) ==
SGN(field->key_cmp(lookup_val,
(uchar*)buckets[low].start_value.data())));
// buckets[low] <= lookup_val, with one exception of the first bucket.
DBUG_ASSERT(low == 0 ||
field->key_cmp((uchar*)buckets[low].start_value.data(), lookup_val)<= 0);
// buckets[low+1] > lookup_val, with one exception of the last bucket
DBUG_ASSERT(low == (int)buckets.size()-1 ||
field->key_cmp((uchar*)buckets[low+1].start_value.data(), lookup_val)> 0);
return low;
}