mariadb/storage/innobase/sync/sync0arr.cc

1419 lines
38 KiB
C++
Raw Normal View History

/*****************************************************************************
Copyright (c) 1995, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2008, Google Inc.
Copyright (c) 2013, 2017, MariaDB Corporation.
Portions of this file contain modifications contributed and copyrighted by
Google, Inc. Those modifications are gratefully acknowledged and are described
briefly in the InnoDB documentation. The contributions by Google are
incorporated with their permission, and subject to the conditions contained in
the file COPYING.Google.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file sync/sync0arr.cc
The wait array used in synchronization primitives
Created 9/5/1995 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include "sync0arr.h"
#include <mysqld_error.h>
#include <mysql/plugin.h>
#include <hash.h>
#include <myisampack.h>
#include <sql_acl.h>
#include <mysys_err.h>
#include <my_sys.h>
#include "srv0srv.h"
#include "srv0start.h"
#include "i_s.h"
#include <sql_plugin.h>
#include <innodb_priv.h>
#include "sync0sync.h"
#include "lock0lock.h"
#include "sync0rw.h"
#include "sync0debug.h"
#include "os0event.h"
#include "os0file.h"
#include "srv0srv.h"
/*
WAIT ARRAY
==========
The wait array consists of cells each of which has an an event object created
for it. The threads waiting for a mutex, for example, can reserve a cell
in the array and suspend themselves to wait for the event to become signaled.
When using the wait array, remember to make sure that some thread holding
the synchronization object will eventually know that there is a waiter in
the array and signal the object, to prevent infinite wait. Why we chose
to implement a wait array? First, to make mutexes fast, we had to code
our own implementation of them, which only in usually uncommon cases
resorts to using slow operating system primitives. Then we had the choice of
assigning a unique OS event for each mutex, which would be simpler, or
using a global wait array. In some operating systems, the global wait
array solution is more efficient and flexible, because we can do with
a very small number of OS events, say 200. In NT 3.51, allocating events
seems to be a quadratic algorithm, because 10 000 events are created fast,
but 100 000 events takes a couple of minutes to create.
As of 5.0.30 the above mentioned design is changed. Since now OS can handle
millions of wait events efficiently, we no longer have this concept of each
cell of wait array having one event. Instead, now the event that a thread
wants to wait on is embedded in the wait object (mutex or rw_lock). We still
keep the global wait array for the sake of diagnostics and also to avoid
infinite wait The error_monitor thread scans the global wait array to signal
any waiting threads who have missed the signal. */
typedef SyncArrayMutex::MutexType WaitMutex;
typedef BlockSyncArrayMutex::MutexType BlockWaitMutex;
/** The latch types that use the sync array. */
union sync_object_t {
/** RW lock instance */
rw_lock_t* lock;
/** Mutex instance */
WaitMutex* mutex;
/** Block mutex instance */
BlockWaitMutex* bpmutex;
};
/** A cell where an individual thread may wait suspended until a resource
is released. The suspending is implemented using an operating system
event semaphore. */
struct sync_cell_t {
sync_object_t latch; /*!< pointer to the object the
thread is waiting for; if NULL
the cell is free for use */
ulint request_type; /*!< lock type requested on the
object */
const char* file; /*!< in debug version file where
requested */
ulint line; /*!< in debug version line where
requested, or ULINT_UNDEFINED */
os_thread_id_t thread_id; /*!< thread id of this waiting
thread */
bool waiting; /*!< TRUE if the thread has already
called sync_array_event_wait
on this cell */
int64_t signal_count; /*!< We capture the signal_count
of the latch when we
reset the event. This value is
then passed on to os_event_wait
and we wait only if the event
has not been signalled in the
period between the reset and
wait call. */
time_t reservation_time;/*!< time when the thread reserved
the wait cell */
};
/* NOTE: It is allowed for a thread to wait for an event allocated for
the array without owning the protecting mutex (depending on the case:
OS or database mutex), but all changes (set or reset) to the state of
the event must be made while owning the mutex. */
/** Synchronization array */
struct sync_array_t {
/** Constructor
Creates a synchronization wait array. It is protected by a mutex
which is automatically reserved when the functions operating on it
are called.
@param[in] num_cells Number of cells to create */
sync_array_t(ulint num_cells)
UNIV_NOTHROW;
/** Destructor */
~sync_array_t()
UNIV_NOTHROW;
ulint n_reserved; /*!< number of currently reserved
cells in the wait array */
ulint n_cells; /*!< number of cells in the
wait array */
sync_cell_t* array; /*!< pointer to wait array */
SysMutex mutex; /*!< System mutex protecting the
data structure. As this data
structure is used in constructing
the database mutex, to prevent
infinite recursion in implementation,
we fall back to an OS mutex. */
ulint res_count; /*!< count of cell reservations
since creation of the array */
ulint next_free_slot; /*!< the next free cell in the array */
ulint first_free_slot;/*!< the last slot that was freed */
};
/** User configured sync array size */
ulong srv_sync_array_size = 1;
/** Locally stored copy of srv_sync_array_size */
ulint sync_array_size;
/** The global array of wait cells for implementation of the database's own
mutexes and read-write locks */
sync_array_t** sync_wait_array;
/** count of how many times an object has been signalled */
static ulint sg_count;
#define sync_array_exit(a) mutex_exit(&(a)->mutex)
#define sync_array_enter(a) mutex_enter(&(a)->mutex)
#ifdef UNIV_DEBUG
/******************************************************************//**
This function is called only in the debug version. Detects a deadlock
of one or more threads because of waits of semaphores.
@return TRUE if deadlock detected */
static
bool
sync_array_detect_deadlock(
/*=======================*/
sync_array_t* arr, /*!< in: wait array; NOTE! the caller must
own the mutex to array */
sync_cell_t* start, /*!< in: cell where recursive search started */
sync_cell_t* cell, /*!< in: cell to search */
ulint depth); /*!< in: recursion depth */
#endif /* UNIV_DEBUG */
/** Constructor
Creates a synchronization wait array. It is protected by a mutex
which is automatically reserved when the functions operating on it
are called.
@param[in] num_cells Number of cells to create */
sync_array_t::sync_array_t(ulint num_cells)
UNIV_NOTHROW
:
n_reserved(),
n_cells(num_cells),
array(UT_NEW_ARRAY_NOKEY(sync_cell_t, num_cells)),
mutex(),
res_count(),
next_free_slot(),
first_free_slot(ULINT_UNDEFINED)
{
ut_a(num_cells > 0);
memset(array, 0x0, sizeof(sync_cell_t) * n_cells);
/* Then create the mutex to protect the wait array */
mutex_create(LATCH_ID_SYNC_ARRAY_MUTEX, &mutex);
}
/** Validate the integrity of the wait array. Check
that the number of reserved cells equals the count variable.
@param[in,out] arr sync wait array */
static
void
sync_array_validate(sync_array_t* arr)
{
ulint i;
ulint count = 0;
sync_array_enter(arr);
for (i = 0; i < arr->n_cells; i++) {
sync_cell_t* cell;
cell = sync_array_get_nth_cell(arr, i);
if (cell->latch.mutex != NULL) {
count++;
}
}
ut_a(count == arr->n_reserved);
sync_array_exit(arr);
}
/** Destructor */
sync_array_t::~sync_array_t()
UNIV_NOTHROW
{
ut_a(n_reserved == 0);
sync_array_validate(this);
/* Release the mutex protecting the wait array */
mutex_free(&mutex);
UT_DELETE_ARRAY(array);
}
/*****************************************************************//**
Gets the nth cell in array.
@return cell */
UNIV_INTERN
sync_cell_t*
sync_array_get_nth_cell(
/*====================*/
sync_array_t* arr, /*!< in: sync array */
ulint n) /*!< in: index */
{
ut_a(n < arr->n_cells);
return(arr->array + n);
}
/******************************************************************//**
Frees the resources in a wait array. */
static
void
sync_array_free(
/*============*/
sync_array_t* arr) /*!< in, own: sync wait array */
{
UT_DELETE(arr);
}
/*******************************************************************//**
Returns the event that the thread owning the cell waits for. */
static
os_event_t
sync_cell_get_event(
/*================*/
sync_cell_t* cell) /*!< in: non-empty sync array cell */
{
ulint type = cell->request_type;
if (type == SYNC_MUTEX) {
return(cell->latch.mutex->event());
} else if (type == SYNC_BUF_BLOCK) {
return(cell->latch.bpmutex->event());
} else if (type == RW_LOCK_X_WAIT) {
return(cell->latch.lock->wait_ex_event);
} else { /* RW_LOCK_S and RW_LOCK_X wait on the same event */
return(cell->latch.lock->event);
}
}
/******************************************************************//**
Reserves a wait array cell for waiting for an object.
2014-02-26 19:23:04 +01:00
The event of the cell is reset to nonsignalled state.
@return sync cell to wait on */
sync_cell_t*
sync_array_reserve_cell(
/*====================*/
sync_array_t* arr, /*!< in: wait array */
void* object, /*!< in: pointer to the object to wait for */
ulint type, /*!< in: lock request type */
const char* file, /*!< in: file where requested */
unsigned line) /*!< in: line where requested */
{
sync_cell_t* cell;
sync_array_enter(arr);
if (arr->first_free_slot != ULINT_UNDEFINED) {
/* Try and find a slot in the free list */
ut_ad(arr->first_free_slot < arr->next_free_slot);
cell = sync_array_get_nth_cell(arr, arr->first_free_slot);
arr->first_free_slot = cell->line;
} else if (arr->next_free_slot < arr->n_cells) {
/* Try and find a slot after the currently allocated slots */
cell = sync_array_get_nth_cell(arr, arr->next_free_slot);
++arr->next_free_slot;
} else {
sync_array_exit(arr);
// We should return NULL and if there is more than
// one sync array, try another sync array instance.
return(NULL);
}
++arr->res_count;
ut_ad(arr->n_reserved < arr->n_cells);
ut_ad(arr->next_free_slot <= arr->n_cells);
++arr->n_reserved;
/* Reserve the cell. */
ut_ad(cell->latch.mutex == NULL);
cell->request_type = type;
if (cell->request_type == SYNC_MUTEX) {
cell->latch.mutex = reinterpret_cast<WaitMutex*>(object);
} else if (cell->request_type == SYNC_BUF_BLOCK) {
cell->latch.bpmutex = reinterpret_cast<BlockWaitMutex*>(object);
} else {
cell->latch.lock = reinterpret_cast<rw_lock_t*>(object);
}
cell->waiting = false;
cell->file = file;
cell->line = line;
sync_array_exit(arr);
cell->thread_id = os_thread_get_curr_id();
cell->reservation_time = ut_time();
/* Make sure the event is reset and also store the value of
signal_count at which the event was reset. */
os_event_t event = sync_cell_get_event(cell);
cell->signal_count = os_event_reset(event);
return(cell);
}
/******************************************************************//**
Frees the cell. NOTE! sync_array_wait_event frees the cell
automatically! */
void
sync_array_free_cell(
/*=================*/
sync_array_t* arr, /*!< in: wait array */
sync_cell_t*& cell) /*!< in/out: the cell in the array */
{
sync_array_enter(arr);
ut_a(cell->latch.mutex != NULL);
cell->waiting = false;
cell->signal_count = 0;
cell->latch.mutex = NULL;
/* Setup the list of free slots in the array */
cell->line = arr->first_free_slot;
arr->first_free_slot = cell - arr->array;
ut_a(arr->n_reserved > 0);
arr->n_reserved--;
if (arr->next_free_slot > arr->n_cells / 2 && arr->n_reserved == 0) {
#ifdef UNIV_DEBUG
for (ulint i = 0; i < arr->next_free_slot; ++i) {
cell = sync_array_get_nth_cell(arr, i);
ut_ad(!cell->waiting);
ut_ad(cell->latch.mutex == 0);
ut_ad(cell->signal_count == 0);
}
#endif /* UNIV_DEBUG */
arr->next_free_slot = 0;
arr->first_free_slot = ULINT_UNDEFINED;
}
sync_array_exit(arr);
cell = 0;
}
/******************************************************************//**
This function should be called when a thread starts to wait on
a wait array cell. In the debug version this function checks
if the wait for a semaphore will result in a deadlock, in which
case prints info and asserts. */
void
sync_array_wait_event(
/*==================*/
sync_array_t* arr, /*!< in: wait array */
sync_cell_t*& cell) /*!< in: index of the reserved cell */
{
sync_array_enter(arr);
ut_ad(!cell->waiting);
ut_ad(cell->latch.mutex);
ut_ad(os_thread_get_curr_id() == cell->thread_id);
cell->waiting = true;
#ifdef UNIV_DEBUG
/* We use simple enter to the mutex below, because if
we cannot acquire it at once, mutex_enter would call
recursively sync_array routines, leading to trouble.
rw_lock_debug_mutex freezes the debug lists. */
rw_lock_debug_mutex_enter();
if (sync_array_detect_deadlock(arr, cell, cell, 0)) {
ib::fatal() << "########################################"
" Deadlock Detected!";
}
rw_lock_debug_mutex_exit();
#endif /* UNIV_DEBUG */
sync_array_exit(arr);
os_event_wait_low(sync_cell_get_event(cell), cell->signal_count);
sync_array_free_cell(arr, cell);
cell = 0;
}
/******************************************************************//**
Reports info of a wait array cell. */
static
void
sync_array_cell_print(
/*==================*/
FILE* file, /*!< in: file where to print */
sync_cell_t* cell) /*!< in: sync cell */
{
rw_lock_t* rwlock;
ulint type;
ulint writer;
type = cell->request_type;
fprintf(file,
"--Thread %lu has waited at %s line %lu"
" for %.2f seconds the semaphore:\n",
(ulong) os_thread_pf(cell->thread_id),
innobase_basename(cell->file), (ulong) cell->line,
difftime(time(NULL), cell->reservation_time));
if (type == SYNC_MUTEX) {
WaitMutex* mutex = cell->latch.mutex;
const WaitMutex::MutexPolicy& policy = mutex->policy();
#ifdef UNIV_DEBUG
const char* name = policy.get_enter_filename();
if (name == NULL) {
/* The mutex might have been released. */
name = "NULL";
}
#endif /* UNIV_DEBUG */
if (mutex) {
fprintf(file,
2017-04-28 12:22:32 +03:00
"Mutex at %p, %s, lock var %x\n"
#ifdef UNIV_DEBUG
2017-04-28 12:22:32 +03:00
"Last time reserved in file %s line %u"
#endif /* UNIV_DEBUG */
"\n",
(void*) mutex,
policy.to_string().c_str(),
2017-04-28 12:22:32 +03:00
mutex->state()
#ifdef UNIV_DEBUG
,name,
2017-04-28 12:22:32 +03:00
policy.get_enter_line()
#endif /* UNIV_DEBUG */
);
}
} else if (type == SYNC_BUF_BLOCK) {
BlockWaitMutex* mutex = cell->latch.bpmutex;
const BlockWaitMutex::MutexPolicy& policy =
mutex->policy();
#ifdef UNIV_DEBUG
const char* name = policy.get_enter_filename();
if (name == NULL) {
/* The mutex might have been released. */
name = "NULL";
}
#endif /* UNIV_DEBUG */
fprintf(file,
"Mutex at %p, %s, lock var %lu\n"
#ifdef UNIV_DEBUG
"Last time reserved in file %s line %lu"
#endif /* UNIV_DEBUG */
"\n",
(void*) mutex,
policy.to_string().c_str(),
(ulong) mutex->state()
#ifdef UNIV_DEBUG
,name,
(ulong) policy.get_enter_line()
#endif /* UNIV_DEBUG */
);
} else if (type == RW_LOCK_X
|| type == RW_LOCK_X_WAIT
|| type == RW_LOCK_SX
|| type == RW_LOCK_S) {
fputs(type == RW_LOCK_X ? "X-lock on"
: type == RW_LOCK_X_WAIT ? "X-lock (wait_ex) on"
: type == RW_LOCK_SX ? "SX-lock on"
: "S-lock on", file);
rwlock = cell->latch.lock;
if (rwlock) {
fprintf(file,
2017-04-21 12:24:17 +03:00
" RW-latch at %p created in file %s line %u\n",
(void*) rwlock, innobase_basename(rwlock->cfile_name),
2017-04-21 12:24:17 +03:00
rwlock->cline);
writer = rw_lock_get_writer(rwlock);
if (writer != RW_LOCK_NOT_LOCKED) {
fprintf(file,
2017-04-21 12:24:17 +03:00
"a writer (thread id " ULINTPF ") has"
" reserved it in mode %s",
2017-04-21 12:24:17 +03:00
os_thread_pf(rwlock->writer_thread),
writer == RW_LOCK_X ? " exclusive\n"
: writer == RW_LOCK_SX ? " SX\n"
: " wait exclusive\n");
}
fprintf(file,
"number of readers " ULINTPF
", waiters flag %u, "
"lock_word: " ULINTPFx "\n"
"Last time read locked in file %s line %u\n"
2017-04-28 12:22:32 +03:00
"Last time write locked in file %s line %u"
#if 0 /* JAN: TODO: FIX LATER */
"\nHolder thread " ULINTPF
" file %s line " ULINTPF
#endif
"\n",
rw_lock_get_reader_count(rwlock),
rwlock->waiters,
rwlock->lock_word,
innobase_basename(rwlock->last_s_file_name),
rwlock->last_s_line,
2017-04-21 12:24:17 +03:00
innobase_basename(rwlock->last_x_file_name),
2017-04-28 12:22:32 +03:00
rwlock->last_x_line
#if 0 /* JAN: TODO: FIX LATER */
, os_thread_pf(rwlock->thread_id),
2017-04-21 12:24:17 +03:00
innobase_basename(rwlock->file_name),
2017-04-28 12:22:32 +03:00
rwlock->line
#endif
);
}
} else {
ut_error;
}
if (!cell->waiting) {
fputs("wait has ended\n", file);
}
}
/******************************************************************//**
Looks for a cell with the given thread id.
@return pointer to cell or NULL if not found */
static
sync_cell_t*
sync_array_find_thread(
/*===================*/
sync_array_t* arr, /*!< in: wait array */
os_thread_id_t thread) /*!< in: thread id */
{
ulint i;
for (i = 0; i < arr->n_cells; i++) {
sync_cell_t* cell;
cell = sync_array_get_nth_cell(arr, i);
if (cell->latch.mutex != NULL
&& os_thread_eq(cell->thread_id, thread)) {
return(cell); /* Found */
}
}
return(NULL); /* Not found */
}
#ifdef UNIV_DEBUG
/******************************************************************//**
Recursion step for deadlock detection.
@return TRUE if deadlock detected */
static
ibool
sync_array_deadlock_step(
/*=====================*/
sync_array_t* arr, /*!< in: wait array; NOTE! the caller must
own the mutex to array */
sync_cell_t* start, /*!< in: cell where recursive search
started */
os_thread_id_t thread, /*!< in: thread to look at */
ulint pass, /*!< in: pass value */
ulint depth) /*!< in: recursion depth */
{
sync_cell_t* new_cell;
if (pass != 0) {
/* If pass != 0, then we do not know which threads are
responsible of releasing the lock, and no deadlock can
be detected. */
return(FALSE);
}
new_cell = sync_array_find_thread(arr, thread);
if (new_cell == start) {
/* Deadlock */
fputs("########################################\n"
"DEADLOCK of threads detected!\n", stderr);
return(TRUE);
} else if (new_cell) {
return(sync_array_detect_deadlock(
arr, start, new_cell, depth + 1));
}
return(FALSE);
}
/**
Report an error to stderr.
@param lock rw-lock instance
@param debug rw-lock debug information
@param cell thread context */
static
void
sync_array_report_error(
rw_lock_t* lock,
rw_lock_debug_t* debug,
sync_cell_t* cell)
{
fprintf(stderr, "rw-lock %p ", (void*) lock);
sync_array_cell_print(stderr, cell);
rw_lock_debug_print(stderr, debug);
}
/******************************************************************//**
This function is called only in the debug version. Detects a deadlock
of one or more threads because of waits of semaphores.
@return TRUE if deadlock detected */
static
bool
sync_array_detect_deadlock(
/*=======================*/
sync_array_t* arr, /*!< in: wait array; NOTE! the caller must
own the mutex to array */
sync_cell_t* start, /*!< in: cell where recursive search started */
sync_cell_t* cell, /*!< in: cell to search */
ulint depth) /*!< in: recursion depth */
{
rw_lock_t* lock;
os_thread_id_t thread;
ibool ret;
rw_lock_debug_t*debug;
ut_a(arr);
ut_a(start);
ut_a(cell);
ut_ad(cell->latch.mutex != 0);
ut_ad(os_thread_get_curr_id() == start->thread_id);
ut_ad(depth < 100);
depth++;
if (!cell->waiting) {
/* No deadlock here */
return(false);
}
switch (cell->request_type) {
case SYNC_MUTEX: {
WaitMutex* mutex = cell->latch.mutex;
const WaitMutex::MutexPolicy& policy = mutex->policy();
if (mutex->state() != MUTEX_STATE_UNLOCKED) {
thread = policy.get_thread_id();
/* Note that mutex->thread_id above may be
also OS_THREAD_ID_UNDEFINED, because the
thread which held the mutex maybe has not
yet updated the value, or it has already
released the mutex: in this case no deadlock
can occur, as the wait array cannot contain
a thread with ID_UNDEFINED value. */
ret = sync_array_deadlock_step(
arr, start, thread, 0, depth);
if (ret) {
const char* name;
name = policy.get_enter_filename();
if (name == NULL) {
/* The mutex might have been
released. */
name = "NULL";
}
ib::info()
<< "Mutex " << mutex << " owned by"
" thread " << os_thread_pf(thread)
<< " file " << name << " line "
<< policy.get_enter_line();
sync_array_cell_print(stderr, cell);
return(true);
}
}
/* No deadlock */
return(false);
}
case SYNC_BUF_BLOCK: {
BlockWaitMutex* mutex = cell->latch.bpmutex;
const BlockWaitMutex::MutexPolicy& policy =
mutex->policy();
if (mutex->state() != MUTEX_STATE_UNLOCKED) {
thread = policy.get_thread_id();
/* Note that mutex->thread_id above may be
also OS_THREAD_ID_UNDEFINED, because the
thread which held the mutex maybe has not
yet updated the value, or it has already
released the mutex: in this case no deadlock
can occur, as the wait array cannot contain
a thread with ID_UNDEFINED value. */
ret = sync_array_deadlock_step(
arr, start, thread, 0, depth);
if (ret) {
const char* name;
name = policy.get_enter_filename();
if (name == NULL) {
/* The mutex might have been
released. */
name = "NULL";
}
ib::info()
<< "Mutex " << mutex << " owned by"
" thread " << os_thread_pf(thread)
<< " file " << name << " line "
<< policy.get_enter_line();
return(true);
}
}
/* No deadlock */
return(false);
}
case RW_LOCK_X:
case RW_LOCK_X_WAIT:
lock = cell->latch.lock;
for (debug = UT_LIST_GET_FIRST(lock->debug_list);
debug != NULL;
debug = UT_LIST_GET_NEXT(list, debug)) {
thread = debug->thread_id;
switch (debug->lock_type) {
case RW_LOCK_X:
case RW_LOCK_SX:
case RW_LOCK_X_WAIT:
if (os_thread_eq(thread, cell->thread_id)) {
break;
}
/* fall through */
case RW_LOCK_S:
/* The (wait) x-lock request can block
infinitely only if someone (can be also cell
thread) is holding s-lock, or someone
(cannot be cell thread) (wait) x-lock or
sx-lock, and he is blocked by start thread */
ret = sync_array_deadlock_step(
arr, start, thread, debug->pass,
depth);
if (ret) {
sync_array_report_error(
lock, debug, cell);
rw_lock_debug_print(stderr, debug);
return(TRUE);
}
}
}
return(false);
case RW_LOCK_SX:
lock = cell->latch.lock;
for (debug = UT_LIST_GET_FIRST(lock->debug_list);
debug != 0;
debug = UT_LIST_GET_NEXT(list, debug)) {
thread = debug->thread_id;
switch (debug->lock_type) {
case RW_LOCK_X:
case RW_LOCK_SX:
case RW_LOCK_X_WAIT:
if (os_thread_eq(thread, cell->thread_id)) {
break;
}
/* The sx-lock request can block infinitely
only if someone (can be also cell thread) is
holding (wait) x-lock or sx-lock, and he is
blocked by start thread */
ret = sync_array_deadlock_step(
arr, start, thread, debug->pass,
depth);
if (ret) {
sync_array_report_error(
lock, debug, cell);
return(TRUE);
}
}
}
return(false);
case RW_LOCK_S:
lock = cell->latch.lock;
for (debug = UT_LIST_GET_FIRST(lock->debug_list);
debug != 0;
debug = UT_LIST_GET_NEXT(list, debug)) {
thread = debug->thread_id;
if (debug->lock_type == RW_LOCK_X
|| debug->lock_type == RW_LOCK_X_WAIT) {
/* The s-lock request can block infinitely
only if someone (can also be cell thread) is
holding (wait) x-lock, and he is blocked by
start thread */
ret = sync_array_deadlock_step(
arr, start, thread, debug->pass,
depth);
if (ret) {
sync_array_report_error(
lock, debug, cell);
return(TRUE);
}
}
}
return(false);
default:
ut_error;
}
return(true);
}
#endif /* UNIV_DEBUG */
/**********************************************************************//**
Increments the signalled count. */
void
sync_array_object_signalled()
/*=========================*/
{
++sg_count;
}
/**********************************************************************//**
Prints warnings of long semaphore waits to stderr.
@return TRUE if fatal semaphore wait threshold was exceeded */
static
bool
sync_array_print_long_waits_low(
/*============================*/
sync_array_t* arr, /*!< in: sync array instance */
os_thread_id_t* waiter, /*!< out: longest waiting thread */
const void** sema, /*!< out: longest-waited-for semaphore */
ibool* noticed)/*!< out: TRUE if long wait noticed */
{
ulint fatal_timeout = srv_fatal_semaphore_wait_threshold;
ibool fatal = FALSE;
double longest_diff = 0;
ulint i;
/* For huge tables, skip the check during CHECK TABLE etc... */
if (fatal_timeout > SRV_SEMAPHORE_WAIT_EXTENSION) {
return(false);
}
#ifdef UNIV_DEBUG_VALGRIND
/* Increase the timeouts if running under valgrind because it executes
extremely slowly. UNIV_DEBUG_VALGRIND does not necessary mean that
we are running under valgrind but we have no better way to tell.
See Bug#58432 innodb.innodb_bug56143 fails under valgrind
for an example */
# define SYNC_ARRAY_TIMEOUT 2400
fatal_timeout *= 10;
#else
# define SYNC_ARRAY_TIMEOUT 240
#endif
for (ulint i = 0; i < arr->n_cells; i++) {
sync_cell_t* cell;
void* latch;
cell = sync_array_get_nth_cell(arr, i);
latch = cell->latch.mutex;
if (latch == NULL || !cell->waiting) {
continue;
}
double diff = difftime(time(NULL), cell->reservation_time);
if (diff > SYNC_ARRAY_TIMEOUT) {
ib::warn() << "A long semaphore wait:";
sync_array_cell_print(stderr, cell);
*noticed = TRUE;
}
if (diff > fatal_timeout) {
fatal = TRUE;
}
if (diff > longest_diff) {
longest_diff = diff;
*sema = latch;
*waiter = cell->thread_id;
}
}
/* We found a long semaphore wait, print all threads that are
waiting for a semaphore. */
if (*noticed) {
for (i = 0; i < arr->n_cells; i++) {
void* wait_object;
sync_cell_t* cell;
cell = sync_array_get_nth_cell(arr, i);
wait_object = cell->latch.mutex;
if (wait_object == NULL || !cell->waiting) {
continue;
}
ib::info() << "A semaphore wait:";
sync_array_cell_print(stderr, cell);
}
}
#undef SYNC_ARRAY_TIMEOUT
return(fatal);
}
/**********************************************************************//**
Prints warnings of long semaphore waits to stderr.
@return TRUE if fatal semaphore wait threshold was exceeded */
ibool
sync_array_print_long_waits(
/*========================*/
os_thread_id_t* waiter, /*!< out: longest waiting thread */
const void** sema) /*!< out: longest-waited-for semaphore */
{
ulint i;
ibool fatal = FALSE;
ibool noticed = FALSE;
for (i = 0; i < sync_array_size; ++i) {
sync_array_t* arr = sync_wait_array[i];
sync_array_enter(arr);
if (sync_array_print_long_waits_low(
arr, waiter, sema, &noticed)) {
fatal = TRUE;
}
sync_array_exit(arr);
}
if (noticed) {
ibool old_val;
fprintf(stderr,
"InnoDB: ###### Starts InnoDB Monitor"
" for 30 secs to print diagnostic info:\n");
old_val = srv_print_innodb_monitor;
/* If some crucial semaphore is reserved, then also the InnoDB
Monitor can hang, and we do not get diagnostics. Since in
many cases an InnoDB hang is caused by a pwrite() or a pread()
call hanging inside the operating system, let us print right
now the values of pending calls of these. */
fprintf(stderr,
"InnoDB: Pending reads " UINT64PF
", writes " UINT64PF "\n",
MONITOR_VALUE(MONITOR_OS_PENDING_READS),
MONITOR_VALUE(MONITOR_OS_PENDING_WRITES));
srv_print_innodb_monitor = TRUE;
lock_set_timeout_event();
os_thread_sleep(30000000);
2014-05-06 21:13:16 +02:00
srv_print_innodb_monitor = static_cast<my_bool>(old_val);
fprintf(stderr,
"InnoDB: ###### Diagnostic info printed"
" to the standard error stream\n");
}
return(fatal);
}
/**********************************************************************//**
Prints info of the wait array. */
static
void
sync_array_print_info_low(
/*======================*/
FILE* file, /*!< in: file where to print */
sync_array_t* arr) /*!< in: wait array */
{
ulint i;
ulint count = 0;
fprintf(file,
2015-06-16 10:57:05 +02:00
"OS WAIT ARRAY INFO: reservation count " ULINTPF "\n",
arr->res_count);
for (i = 0; count < arr->n_reserved; ++i) {
sync_cell_t* cell;
cell = sync_array_get_nth_cell(arr, i);
if (cell->latch.mutex != 0) {
count++;
sync_array_cell_print(file, cell);
}
}
}
/**********************************************************************//**
Prints info of the wait array. */
static
void
sync_array_print_info(
/*==================*/
FILE* file, /*!< in: file where to print */
sync_array_t* arr) /*!< in: wait array */
{
sync_array_enter(arr);
sync_array_print_info_low(file, arr);
sync_array_exit(arr);
}
/**********************************************************************//**
Create the primary system wait array(s), they are protected by an OS mutex */
void
sync_array_init(
/*============*/
ulint n_threads) /*!< in: Number of slots to
create in all arrays */
{
ut_a(sync_wait_array == NULL);
ut_a(srv_sync_array_size > 0);
2014-02-26 19:23:04 +01:00
ut_a(n_threads > 0);
sync_array_size = srv_sync_array_size;
sync_wait_array = UT_NEW_ARRAY_NOKEY(sync_array_t*, sync_array_size);
ulint n_slots = 1 + (n_threads - 1) / sync_array_size;
for (ulint i = 0; i < sync_array_size; ++i) {
sync_wait_array[i] = UT_NEW_NOKEY(sync_array_t(n_slots));
}
}
/**********************************************************************//**
Close sync array wait sub-system. */
void
sync_array_close(void)
/*==================*/
{
for (ulint i = 0; i < sync_array_size; ++i) {
sync_array_free(sync_wait_array[i]);
}
UT_DELETE_ARRAY(sync_wait_array);
sync_wait_array = NULL;
}
/**********************************************************************//**
Print info about the sync array(s). */
void
sync_array_print(
/*=============*/
FILE* file) /*!< in/out: Print to this stream */
{
for (ulint i = 0; i < sync_array_size; ++i) {
sync_array_print_info(file, sync_wait_array[i]);
}
fprintf(file,
2015-06-16 10:57:05 +02:00
"OS WAIT ARRAY INFO: signal count " ULINTPF "\n", sg_count);
}
/**********************************************************************//**
Prints info of the wait array without using any mutexes/semaphores. */
UNIV_INTERN
void
2014-11-19 17:23:39 +01:00
sync_array_print_innodb(void)
/*=========================*/
{
ulint i;
sync_array_t* arr = sync_array_get();
2014-11-19 17:23:39 +01:00
fputs("InnoDB: Semaphore wait debug output started for InnoDB:\n", stderr);
for (i = 0; i < arr->n_cells; i++) {
void* wait_object;
sync_cell_t* cell;
cell = sync_array_get_nth_cell(arr, i);
wait_object = cell->latch.mutex;
if (wait_object == NULL || !cell->waiting) {
continue;
}
fputs("InnoDB: Warning: semaphore wait:\n",
stderr);
sync_array_cell_print(stderr, cell);
}
fputs("InnoDB: Semaphore wait debug output ended:\n", stderr);
2014-11-19 17:23:39 +01:00
}
/**********************************************************************//**
Get number of items on sync array. */
UNIV_INTERN
ulint
sync_arr_get_n_items(void)
/*======================*/
{
sync_array_t* sync_arr = sync_array_get();
return (ulint) sync_arr->n_cells;
}
/******************************************************************//**
Get specified item from sync array if it is reserved. Set given
pointer to array item if it is reserved.
@return true if item is reserved, false othervise */
UNIV_INTERN
ibool
sync_arr_get_item(
/*==============*/
ulint i, /*!< in: requested item */
sync_cell_t **cell) /*!< out: cell contents if item
reserved */
{
sync_array_t* sync_arr;
sync_cell_t* wait_cell;
void* wait_object;
ibool found = FALSE;
sync_arr = sync_array_get();
wait_cell = sync_array_get_nth_cell(sync_arr, i);
if (wait_cell) {
wait_object = wait_cell->latch.mutex;
if(wait_object != NULL && wait_cell->waiting) {
found = TRUE;
*cell = wait_cell;
}
}
return found;
}
/*******************************************************************//**
Function to populate INFORMATION_SCHEMA.INNODB_SYS_SEMAPHORE_WAITS table.
Loop through each item on sync array, and extract the column
information and fill the INFORMATION_SCHEMA.INNODB_SYS_SEMAPHORE_WAITS table.
@return 0 on success */
UNIV_INTERN
int
sync_arr_fill_sys_semphore_waits_table(
/*===================================*/
THD* thd, /*!< in: thread */
TABLE_LIST* tables, /*!< in/out: tables to fill */
Item* ) /*!< in: condition (not used) */
{
Field** fields;
ulint n_items;
DBUG_ENTER("i_s_sys_semaphore_waits_fill_table");
RETURN_IF_INNODB_NOT_STARTED(tables->schema_table_name);
/* deny access to user without PROCESS_ACL privilege */
if (check_global_access(thd, PROCESS_ACL)) {
DBUG_RETURN(0);
}
fields = tables->table->field;
n_items = sync_arr_get_n_items();
ulint type;
for(ulint i=0; i < n_items;i++) {
sync_cell_t *cell=NULL;
if (sync_arr_get_item(i, &cell)) {
WaitMutex* mutex;
type = cell->request_type;
/* JAN: FIXME
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_THREAD_ID],
(longlong)os_thread_pf(cell->thread)));
*/
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_FILE], innobase_basename(cell->file)));
OK(fields[SYS_SEMAPHORE_WAITS_LINE]->store(cell->line, true));
fields[SYS_SEMAPHORE_WAITS_LINE]->set_notnull();
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WAIT_TIME], (ulint)difftime(time(NULL), cell->reservation_time)));
if (type == SYNC_MUTEX) {
mutex = static_cast<WaitMutex*>(cell->latch.mutex);
if (mutex) {
// JAN: FIXME
// OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_OBJECT_NAME], mutex->cmutex_name));
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WAIT_OBJECT], (longlong)mutex));
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "MUTEX"));
//OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_HOLDER_THREAD_ID], (longlong)mutex->thread_id));
//OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_HOLDER_FILE], innobase_basename(mutex->file_name)));
//OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->store(mutex->line, true));
//fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->set_notnull();
//OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_CREATED_FILE], innobase_basename(mutex->cfile_name)));
//OK(fields[SYS_SEMAPHORE_WAITS_CREATED_LINE]->store(mutex->cline, true));
//fields[SYS_SEMAPHORE_WAITS_CREATED_LINE]->set_notnull();
//OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WAITERS_FLAG], (longlong)mutex->waiters));
//OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_LOCK_WORD], (longlong)mutex->lock_word));
//OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_FILE], innobase_basename(mutex->file_name)));
//OK(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->store(mutex->line, true));
//fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->set_notnull();
//OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_OS_WAIT_COUNT], mutex->count_os_wait));
}
} else if (type == RW_LOCK_X_WAIT
|| type == RW_LOCK_X
|| type == RW_LOCK_SX
|| type == RW_LOCK_S) {
rw_lock_t* rwlock=NULL;
rwlock = static_cast<rw_lock_t *> (cell->latch.lock);
if (rwlock) {
ulint writer = rw_lock_get_writer(rwlock);
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WAIT_OBJECT], (longlong)rwlock));
if (type == RW_LOCK_X) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_X"));
} else if (type == RW_LOCK_X_WAIT) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_X_WAIT"));
} else if (type == RW_LOCK_S) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_S"));
} else if (type == RW_LOCK_SX) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_WAIT_TYPE], "RW_LOCK_SX"));
}
if (writer != RW_LOCK_NOT_LOCKED) {
// JAN: FIXME
// OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_OBJECT_NAME], rwlock->lock_name));
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WRITER_THREAD], (longlong)os_thread_pf(rwlock->writer_thread)));
if (writer == RW_LOCK_X) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_X"));
} else if (writer == RW_LOCK_X_WAIT) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_X_WAIT"));
} else if (type == RW_LOCK_SX) {
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_RESERVATION_MODE], "RW_LOCK_SX"));
}
//OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_HOLDER_THREAD_ID], (longlong)rwlock->thread_id));
//OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_HOLDER_FILE], innobase_basename(rwlock->file_name)));
//OK(fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->store(rwlock->line, true));
//fields[SYS_SEMAPHORE_WAITS_HOLDER_LINE]->set_notnull();
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_READERS], rw_lock_get_reader_count(rwlock)));
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_WAITERS_FLAG], (longlong)rwlock->waiters));
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_LOCK_WORD], (longlong)rwlock->lock_word));
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_LAST_READER_FILE], innobase_basename(rwlock->last_s_file_name)));
OK(fields[SYS_SEMAPHORE_WAITS_LAST_READER_LINE]->store(rwlock->last_s_line, true));
fields[SYS_SEMAPHORE_WAITS_LAST_READER_LINE]->set_notnull();
OK(field_store_string(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_FILE], innobase_basename(rwlock->last_x_file_name)));
OK(fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->store(rwlock->last_x_line, true));
fields[SYS_SEMAPHORE_WAITS_LAST_WRITER_LINE]->set_notnull();
OK(field_store_ulint(fields[SYS_SEMAPHORE_WAITS_OS_WAIT_COUNT], rwlock->count_os_wait));
}
}
}
OK(schema_table_store_record(thd, tables->table));
}
}
DBUG_RETURN(0);
}