2003-09-09 20:06:50 +03:00
|
|
|
drop table if exists t1, t2;
|
2003-12-10 04:31:42 +00:00
|
|
|
create table t1 (a int) engine=innodb;
|
|
|
|
create table t2 (a int) engine=myisam;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(1);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(1)
|
|
|
|
master-bin.000001 253 Query 1 # use `test`; insert into t2 select * from t1
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 347 Xid 1 # COMMIT /* xid=8 */
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(2);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback;
|
2003-09-12 05:54:12 +03:00
|
|
|
Warnings:
|
|
|
|
Warning 1196 Some non-transactional changed tables couldn't be rolled back
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(2)
|
|
|
|
master-bin.000001 253 Query 1 # use `test`; insert into t2 select * from t1
|
|
|
|
master-bin.000001 347 Query 1 # use `test`; ROLLBACK
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(3);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
savepoint my_savepoint;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(4);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback to savepoint my_savepoint;
|
2003-09-12 05:54:12 +03:00
|
|
|
Warnings:
|
|
|
|
Warning 1196 Some non-transactional changed tables couldn't be rolled back
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(3)
|
|
|
|
master-bin.000001 253 Query 1 # use `test`; savepoint my_savepoint
|
|
|
|
master-bin.000001 338 Query 1 # use `test`; insert into t1 values(4)
|
|
|
|
master-bin.000001 425 Query 1 # use `test`; insert into t2 select * from t1
|
|
|
|
master-bin.000001 519 Query 1 # use `test`; rollback to savepoint my_savepoint
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 616 Xid 1 # COMMIT /* xid=25 */
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(5);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
savepoint my_savepoint;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(6);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback to savepoint my_savepoint;
|
2003-09-12 05:54:12 +03:00
|
|
|
Warnings:
|
|
|
|
Warning 1196 Some non-transactional changed tables couldn't be rolled back
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(7);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2003-09-09 20:06:50 +03:00
|
|
|
select a from t1 order by a;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
a
|
|
|
|
5
|
|
|
|
7
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(5)
|
|
|
|
master-bin.000001 253 Query 1 # use `test`; savepoint my_savepoint
|
|
|
|
master-bin.000001 338 Query 1 # use `test`; insert into t1 values(6)
|
|
|
|
master-bin.000001 425 Query 1 # use `test`; insert into t2 select * from t1
|
|
|
|
master-bin.000001 519 Query 1 # use `test`; rollback to savepoint my_savepoint
|
|
|
|
master-bin.000001 616 Query 1 # use `test`; insert into t1 values(7)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 703 Xid 1 # COMMIT /* xid=37 */
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
select get_lock("a",10);
|
|
|
|
get_lock("a",10)
|
|
|
|
1
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(8);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
select get_lock("a",10);
|
|
|
|
get_lock("a",10)
|
|
|
|
1
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(8)
|
|
|
|
master-bin.000001 253 Query 1 # use `test`; insert into t2 select * from t1
|
|
|
|
master-bin.000001 347 Query 1 # use `test`; ROLLBACK
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(9);
|
|
|
|
insert into t2 select * from t1;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; insert into t1 values(9)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 185 Xid 1 # COMMIT /* xid=60 */
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 212 Query 1 # use `test`; insert into t2 select * from t1
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(10);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t2 select * from t1;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; insert into t1 values(10)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 186 Xid 1 # COMMIT /* xid=66 */
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 213 Query 1 # use `test`; insert into t2 select * from t1
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(11);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; insert into t1 values(10)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 186 Xid 1 # COMMIT /* xid=66 */
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 213 Query 1 # use `test`; insert into t2 select * from t1
|
|
|
|
master-bin.000001 307 Query 1 # use `test`; BEGIN
|
|
|
|
master-bin.000001 375 Query 1 # use `test`; insert into t1 values(11)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 463 Xid 1 # COMMIT /* xid=68 */
|
2003-12-10 04:31:42 +00:00
|
|
|
alter table t2 engine=INNODB;
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(12);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(12)
|
|
|
|
master-bin.000001 254 Query 1 # use `test`; insert into t2 select * from t1
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 348 Xid 1 # COMMIT /* xid=78 */
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(13);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(14);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
savepoint my_savepoint;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(15);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback to savepoint my_savepoint;
|
|
|
|
commit;
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2003-12-20 00:38:30 +01:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(14)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 254 Xid 1 # COMMIT /* xid=94 */
|
2003-09-09 20:06:50 +03:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
reset master;
|
|
|
|
begin;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(16);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
savepoint my_savepoint;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(17);
|
|
|
|
insert into t2 select * from t1;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
rollback to savepoint my_savepoint;
|
2003-09-09 20:06:50 +03:00
|
|
|
insert into t1 values(18);
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
commit;
|
2003-09-09 20:06:50 +03:00
|
|
|
select a from t1 order by a;
|
2 minor edits, plus
fix for BUG#1113 "INSERT into non-trans table SELECT ; ROLLBACK" does not send warning"
and
fix for BUG#873 "In transaction, INSERT to non-trans table is written too early to binlog".
Now we don't always write the non-trans update immediately to the binlog;
if there is something in the binlog cache we write it to the binlog cache
(because the non-trans update could depend on a trans table which was modified
earlier in the transaction); then in case of ROLLBACK, we write the binlog
cache to the binlog, wrapped with BEGIN/ROLLBACK.
This guarantees that the slave does the same updates.
For ROLLBACK TO SAVEPOINT: when we execute a SAVEPOINT command we write it
to the binlog cache. At ROLLBACK TO SAVEPOINT, if some non-trans table was updated,
we write ROLLBACK TO SAVEPOINT to the binlog cache; when the transaction
terminates (COMMIT/ROLLBACK), the binlog cache will be flushed to the binlog
(because of the non-trans update) so we'll have SAVEPOINT and ROLLBACK TO
SAVEPOINT in the binlog.
Apart from this rare case of updates of mixed table types in transaction, the
usual way is still clear the binlog cache at ROLLBACK, or chop it at
ROLLBACK TO SAVEPOINT (meaning the SAVEPOINT command is also chopped, which
is fine).
Note that BUG#873 encompasses subbugs 1) and 2) of BUG#333 "3 binlogging bugs when doing INSERT with mixed InnoDB/MyISAM".
2003-08-22 15:39:24 +02:00
|
|
|
a
|
|
|
|
16
|
|
|
|
18
|
2005-03-16 04:32:47 +03:00
|
|
|
show binlog events from 98;
|
2004-11-12 21:24:16 +02:00
|
|
|
Log_name Pos Event_type Server_id End_log_pos Info
|
2005-03-16 04:32:47 +03:00
|
|
|
master-bin.000001 98 Query 1 # use `test`; BEGIN
|
2005-03-25 14:51:17 +01:00
|
|
|
master-bin.000001 166 Query 1 # use `test`; insert into t1 values(16)
|
|
|
|
master-bin.000001 254 Query 1 # use `test`; insert into t1 values(18)
|
2005-04-04 12:43:58 -07:00
|
|
|
master-bin.000001 342 Xid 1 # COMMIT /* xid=105 */
|
2004-11-04 19:19:23 +01:00
|
|
|
delete from t1;
|
|
|
|
delete from t2;
|
|
|
|
alter table t2 type=MyISAM;
|
|
|
|
insert into t1 values (1);
|
|
|
|
begin;
|
|
|
|
select * from t1 for update;
|
|
|
|
a
|
|
|
|
1
|
|
|
|
select (@before:=unix_timestamp())*0;
|
|
|
|
(@before:=unix_timestamp())*0
|
|
|
|
0
|
|
|
|
begin;
|
|
|
|
select * from t1 for update;
|
|
|
|
insert into t2 values (20);
|
2004-11-12 17:44:17 +02:00
|
|
|
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
|
2004-11-04 19:19:23 +01:00
|
|
|
select (@after:=unix_timestamp())*0;
|
|
|
|
(@after:=unix_timestamp())*0
|
|
|
|
0
|
|
|
|
select (@after-@before) >= 2;
|
|
|
|
(@after-@before) >= 2
|
|
|
|
1
|
2003-09-09 20:06:50 +03:00
|
|
|
drop table t1,t2;
|