mariadb/sql/ha_ndbcluster.cc

10147 lines
287 KiB
C++
Raw Normal View History

/* Copyright (C) 2000-2003 MySQL AB
2004-04-15 09:14:14 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
2004-04-15 09:14:14 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
2004-04-15 09:14:14 +02:00
*/
/*
This file defines the NDB Cluster handler: the interface between MySQL and
NDB Cluster
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
2004-04-15 09:14:14 +02:00
#endif
#include "mysql_priv.h"
#include <my_dir.h>
#ifdef WITH_NDBCLUSTER_STORAGE_ENGINE
2004-04-15 09:14:14 +02:00
#include "ha_ndbcluster.h"
#include <ndbapi/NdbApi.hpp>
#include "ha_ndbcluster_cond.h"
2005-11-07 12:19:28 +01:00
#include <../util/Bitmask.hpp>
#include <ndbapi/NdbIndexStat.hpp>
2004-04-15 09:14:14 +02:00
2006-01-12 19:51:02 +01:00
#include "ha_ndbcluster_binlog.h"
#include "ha_ndbcluster_tables.h"
2006-01-12 19:51:02 +01:00
#include <mysql/plugin.h>
#ifdef ndb_dynamite
#undef assert
#define assert(x) do { if(x) break; ::printf("%s %d: assert failed: %s\n", __FILE__, __LINE__, #x); ::fflush(stdout); ::signal(SIGABRT,SIG_DFL); ::abort(); ::kill(::getpid(),6); ::kill(::getpid(),9); } while (0)
#endif
// options from from mysqld.cc
extern my_bool opt_ndb_optimized_node_selection;
extern const char *opt_ndbcluster_connectstring;
extern ulong opt_ndb_cache_check_time;
2006-08-30 11:41:21 +02:00
// ndb interface initialization/cleanup
#ifdef __cplusplus
extern "C" {
#endif
extern void ndb_init_internal();
extern void ndb_end_internal();
#ifdef __cplusplus
}
#endif
const char *ndb_distribution_names[]= {"KEYHASH", "LINHASH", NullS};
TYPELIB ndb_distribution_typelib= { array_elements(ndb_distribution_names)-1,
"", ndb_distribution_names, NULL };
const char *opt_ndb_distribution= ndb_distribution_names[ND_KEYHASH];
enum ndb_distribution opt_ndb_distribution_id= ND_KEYHASH;
2004-04-15 09:14:14 +02:00
// Default value for parallelism
static const int parallelism= 0;
2004-04-15 09:14:14 +02:00
// Default value for max number of transactions
// createable against NDB from this handler
static const int max_transactions= 3; // should really be 2 but there is a transaction to much allocated when loch table is used
static uint ndbcluster_partition_flags();
static uint ndbcluster_alter_table_flags(uint flags);
static int ndbcluster_init(void *);
static int ndbcluster_end(handlerton *hton, ha_panic_function flag);
static bool ndbcluster_show_status(handlerton *hton, THD*,
stat_print_fn *,
enum ha_stat_type);
static int ndbcluster_alter_tablespace(handlerton *hton,
THD* thd,
st_alter_tablespace *info);
static int ndbcluster_fill_files_table(handlerton *hton,
THD *thd,
TABLE_LIST *tables,
COND *cond);
handlerton *ndbcluster_hton;
static handler *ndbcluster_create_handler(handlerton *hton,
TABLE_SHARE *table,
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
MEM_ROOT *mem_root)
{
return new (mem_root) ha_ndbcluster(hton, table);
}
static uint ndbcluster_partition_flags()
{
return (HA_CAN_PARTITION | HA_CAN_UPDATE_PARTITION_KEY |
HA_CAN_PARTITION_UNIQUE | HA_USE_AUTO_PARTITION);
}
static uint ndbcluster_alter_table_flags(uint flags)
{
if (flags & ALTER_DROP_PARTITION)
return 0;
else
return (HA_ONLINE_ADD_INDEX | HA_ONLINE_DROP_INDEX |
HA_ONLINE_ADD_UNIQUE_INDEX | HA_ONLINE_DROP_UNIQUE_INDEX |
HA_PARTITION_FUNCTION_SUPPORTED);
}
#define NDB_AUTO_INCREMENT_RETRIES 10
2004-04-15 09:14:14 +02:00
#define ERR_PRINT(err) \
DBUG_PRINT("error", ("%d message: %s", err.code, err.message))
2004-04-15 09:14:14 +02:00
#define ERR_RETURN(err) \
{ \
2004-11-17 10:07:52 +01:00
const NdbError& tmp= err; \
ERR_PRINT(tmp); \
2004-11-17 10:07:52 +01:00
DBUG_RETURN(ndb_to_mysql_error(&tmp)); \
2004-04-15 09:14:14 +02:00
}
#define ERR_BREAK(err, code) \
{ \
const NdbError& tmp= err; \
ERR_PRINT(tmp); \
code= ndb_to_mysql_error(&tmp); \
break; \
}
static int ndbcluster_inited= 0;
static int ndbcluster_terminating= 0;
2004-04-15 09:14:14 +02:00
static Ndb* g_ndb= NULL;
2006-01-12 19:51:02 +01:00
Ndb_cluster_connection* g_ndb_cluster_connection= NULL;
uchar g_node_id_map[max_ndb_nodes];
2004-04-15 09:14:14 +02:00
// Handler synchronization
pthread_mutex_t ndbcluster_mutex;
// Table lock handling
2006-01-12 19:51:02 +01:00
HASH ndbcluster_open_tables;
2004-04-15 09:14:14 +02:00
static byte *ndbcluster_get_key(NDB_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)));
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
static int rename_share(NDB_SHARE *share, const char *new_key);
#endif
static int ndb_get_table_statistics(ha_ndbcluster*, bool, Ndb*, const NDBTAB *,
struct Ndb_statistics *);
2005-02-11 22:33:52 +01:00
// Util thread variables
2006-01-12 19:51:02 +01:00
pthread_t ndb_util_thread;
2006-12-20 22:57:23 +01:00
int ndb_util_thread_running= 0;
2005-02-11 22:33:52 +01:00
pthread_mutex_t LOCK_ndb_util_thread;
pthread_cond_t COND_ndb_util_thread;
pthread_cond_t COND_ndb_util_ready;
pthread_handler_t ndb_util_thread_func(void *arg);
2005-02-11 22:33:52 +01:00
ulong ndb_cache_check_time;
/*
Dummy buffer to read zero pack_length fields
which are mapped to 1 char
*/
2004-12-10 16:55:04 +01:00
static uint32 dummy_buf;
/*
Stats that can be retrieved from ndb
*/
struct Ndb_statistics {
Uint64 row_count;
Uint64 commit_count;
Uint64 row_size;
Uint64 fragment_memory;
};
/* Status variables shown with 'show status like 'Ndb%' */
static long ndb_cluster_node_id= 0;
static const char * ndb_connected_host= 0;
static long ndb_connected_port= 0;
static long ndb_number_of_replicas= 0;
long ndb_number_of_data_nodes= 0;
long ndb_number_of_ready_data_nodes= 0;
long ndb_connect_count= 0;
static int update_status_variables(Ndb_cluster_connection *c)
{
ndb_cluster_node_id= c->node_id();
ndb_connected_port= c->get_connected_port();
ndb_connected_host= c->get_connected_host();
ndb_number_of_replicas= 0;
ndb_number_of_ready_data_nodes= c->get_no_ready();
2006-08-11 18:01:46 +08:00
ndb_number_of_data_nodes= c->no_db_nodes();
ndb_connect_count= c->get_connect_count();
return 0;
}
2006-01-07 16:27:40 +01:00
SHOW_VAR ndb_status_variables[]= {
{"cluster_node_id", (char*) &ndb_cluster_node_id, SHOW_LONG},
{"config_from_host", (char*) &ndb_connected_host, SHOW_CHAR_PTR},
{"config_from_port", (char*) &ndb_connected_port, SHOW_LONG},
// {"number_of_replicas", (char*) &ndb_number_of_replicas, SHOW_LONG},
{"number_of_data_nodes",(char*) &ndb_number_of_data_nodes, SHOW_LONG},
{NullS, NullS, SHOW_LONG}
};
2004-04-15 09:14:14 +02:00
/*
Error handling functions
*/
/* Note for merge: old mapping table, moved to storage/ndb/ndberror.c */
2004-04-15 09:14:14 +02:00
static int ndb_to_mysql_error(const NdbError *ndberr)
2004-04-15 09:14:14 +02:00
{
/* read the mysql mapped error code */
int error= ndberr->mysql_code;
switch (error)
{
/* errors for which we do not add warnings, just return mapped error code
*/
case HA_ERR_NO_SUCH_TABLE:
case HA_ERR_KEY_NOT_FOUND:
case HA_ERR_FOUND_DUPP_KEY:
return error;
/* Mapping missing, go with the ndb error code*/
case -1:
error= ndberr->code;
break;
2004-04-15 09:14:14 +02:00
/* Mapping exists, go with the mapped code */
default:
break;
}
2004-04-15 09:14:14 +02:00
/*
Push the NDB error message as warning
- Used to be able to use SHOW WARNINGS toget more info on what the error is
- Used by replication to see if the error was temporary
*/
if (ndberr->status == NdbError::TemporaryError)
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_GET_TEMPORARY_ERRMSG, ER(ER_GET_TEMPORARY_ERRMSG),
ndberr->code, ndberr->message, "NDB");
else
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_GET_ERRMSG, ER(ER_GET_ERRMSG),
ndberr->code, ndberr->message, "NDB");
return error;
2004-04-15 09:14:14 +02:00
}
int execute_no_commit_ignore_no_key(ha_ndbcluster *h, NdbTransaction *trans)
{
if (trans->execute(NdbTransaction::NoCommit,
NdbOperation::AO_IgnoreError,
h->m_force_send) == -1)
return -1;
const NdbError &err= trans->getNdbError();
if (err.classification != NdbError::NoError &&
err.classification != NdbError::ConstraintViolation &&
err.classification != NdbError::NoDataFound)
return -1;
2004-04-15 09:14:14 +02:00
return 0;
}
2004-09-17 14:58:08 +00:00
inline
int execute_no_commit(ha_ndbcluster *h, NdbTransaction *trans,
bool force_release)
2004-09-17 14:58:08 +00:00
{
#ifdef NOT_USED
int m_batch_execute= 0;
if (m_batch_execute)
2004-09-17 14:58:08 +00:00
return 0;
#endif
h->release_completed_operations(trans, force_release);
return h->m_ignore_no_key ?
execute_no_commit_ignore_no_key(h,trans) :
trans->execute(NdbTransaction::NoCommit,
NdbOperation::AbortOnError,
h->m_force_send);
2004-09-28 19:11:50 +00:00
}
inline
int execute_commit(ha_ndbcluster *h, NdbTransaction *trans)
2004-09-28 19:11:50 +00:00
{
#ifdef NOT_USED
int m_batch_execute= 0;
if (m_batch_execute)
2004-09-28 19:11:50 +00:00
return 0;
#endif
return trans->execute(NdbTransaction::Commit,
NdbOperation::AbortOnError,
h->m_force_send);
}
inline
int execute_commit(THD *thd, NdbTransaction *trans)
{
#ifdef NOT_USED
int m_batch_execute= 0;
if (m_batch_execute)
return 0;
#endif
return trans->execute(NdbTransaction::Commit,
NdbOperation::AbortOnError,
thd->variables.ndb_force_send);
2004-09-28 19:11:50 +00:00
}
inline
int execute_no_commit_ie(ha_ndbcluster *h, NdbTransaction *trans,
bool force_release)
2004-09-28 19:11:50 +00:00
{
#ifdef NOT_USED
int m_batch_execute= 0;
if (m_batch_execute)
2004-09-28 19:11:50 +00:00
return 0;
#endif
h->release_completed_operations(trans, force_release);
return trans->execute(NdbTransaction::NoCommit,
NdbOperation::AO_IgnoreError,
h->m_force_send);
2004-09-17 14:58:08 +00:00
}
2004-12-17 21:13:22 +01:00
/*
Place holder for ha_ndbcluster thread specific data
*/
static
byte *thd_ndb_share_get_key(THD_NDB_SHARE *thd_ndb_share, uint *length,
my_bool not_used __attribute__((unused)))
{
*length= sizeof(thd_ndb_share->key);
return (byte*) &thd_ndb_share->key;
}
Thd_ndb::Thd_ndb()
{
ndb= new Ndb(g_ndb_cluster_connection, "");
lock_count= 0;
count= 0;
all= NULL;
stmt= NULL;
error= 0;
query_state&= NDB_QUERY_NORMAL;
2006-01-12 19:51:02 +01:00
options= 0;
2006-04-19 23:49:51 +02:00
(void) hash_init(&open_tables, &my_charset_bin, 5, 0, 0,
(hash_get_key)thd_ndb_share_get_key, 0, 0);
}
Thd_ndb::~Thd_ndb()
{
if (ndb)
{
#ifndef DBUG_OFF
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (ndb->get_free_list_usage(&tmp))
{
uint leaked= (uint) tmp.m_created - tmp.m_free;
if (leaked)
fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n",
leaked, tmp.m_name,
(leaked == 1)?"":"'s",
(leaked == 1)?"has":"have");
}
#endif
delete ndb;
ndb= NULL;
}
changed_tables.empty();
hash_free(&open_tables);
}
void
Thd_ndb::init_open_tables()
{
count= 0;
error= 0;
my_hash_reset(&open_tables);
}
THD_NDB_SHARE *
Thd_ndb::get_open_table(THD *thd, const void *key)
{
DBUG_ENTER("Thd_ndb::get_open_table");
2006-04-19 21:30:22 +02:00
HASH_SEARCH_STATE state;
THD_NDB_SHARE *thd_ndb_share=
(THD_NDB_SHARE*)hash_first(&open_tables, (byte *)&key, sizeof(key), &state);
2006-04-19 21:30:22 +02:00
while (thd_ndb_share && thd_ndb_share->key != key)
thd_ndb_share= (THD_NDB_SHARE*)hash_next(&open_tables, (byte *)&key, sizeof(key), &state);
if (thd_ndb_share == 0)
{
thd_ndb_share= (THD_NDB_SHARE *) alloc_root(&thd->transaction.mem_root,
sizeof(THD_NDB_SHARE));
thd_ndb_share->key= key;
thd_ndb_share->stat.last_count= count;
thd_ndb_share->stat.no_uncommitted_rows_count= 0;
thd_ndb_share->stat.records= ~(ha_rows)0;
my_hash_insert(&open_tables, (byte *)thd_ndb_share);
}
else if (thd_ndb_share->stat.last_count != count)
{
thd_ndb_share->stat.last_count= count;
thd_ndb_share->stat.no_uncommitted_rows_count= 0;
thd_ndb_share->stat.records= ~(ha_rows)0;
}
DBUG_PRINT("exit", ("thd_ndb_share: 0x%lx key: 0x%lx",
(long) thd_ndb_share, (long) key));
DBUG_RETURN(thd_ndb_share);
}
inline
Ndb *ha_ndbcluster::get_ndb()
{
return get_thd_ndb(current_thd)->ndb;
}
/*
* manage uncommitted insert/deletes during transactio to get records correct
*/
2004-10-03 23:20:05 +00:00
void ha_ndbcluster::set_rec_per_key()
{
DBUG_ENTER("ha_ndbcluster::get_status_const");
for (uint i=0 ; i < table_share->keys ; i++)
2004-10-03 23:20:05 +00:00
{
table->key_info[i].rec_per_key[table->key_info[i].key_parts-1]= 1;
}
DBUG_VOID_RETURN;
}
ha_rows ha_ndbcluster::records()
{
ha_rows retval;
DBUG_ENTER("ha_ndbcluster::records");
struct Ndb_local_table_statistics *local_info= m_table_info;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
Ndb *ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
struct Ndb_statistics stat;
if (ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat) == 0)
{
retval= stat.row_count;
}
else
{
DBUG_RETURN(HA_POS_ERROR);
}
THD *thd= current_thd;
if (get_thd_ndb(thd)->error)
local_info->no_uncommitted_rows_count= 0;
DBUG_RETURN(retval + local_info->no_uncommitted_rows_count);
}
int ha_ndbcluster::records_update()
{
if (m_ha_not_exact_count)
return 0;
DBUG_ENTER("ha_ndbcluster::records_update");
int result= 0;
struct Ndb_local_table_statistics *local_info= m_table_info;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
{
Ndb *ndb= get_ndb();
struct Ndb_statistics stat;
if (ndb->setDatabaseName(m_dbname))
{
return my_errno= HA_ERR_OUT_OF_MEM;
}
result= ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat);
2006-10-24 00:18:57 +10:00
if (result == 0)
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
{
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
local_info->records= stat.row_count;
}
}
{
THD *thd= current_thd;
if (get_thd_ndb(thd)->error)
local_info->no_uncommitted_rows_count= 0;
}
if (result == 0)
stats.records= local_info->records+ local_info->no_uncommitted_rows_count;
DBUG_RETURN(result);
}
void ha_ndbcluster::no_uncommitted_rows_execute_failure()
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_execute_failure");
get_thd_ndb(current_thd)->error= 1;
DBUG_VOID_RETURN;
}
void ha_ndbcluster::no_uncommitted_rows_update(int c)
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_update");
struct Ndb_local_table_statistics *local_info= m_table_info;
local_info->no_uncommitted_rows_count+= c;
DBUG_PRINT("info", ("id=%d, no_uncommitted_rows_count=%d",
((const NDBTAB *)m_table)->getTableId(),
local_info->no_uncommitted_rows_count));
DBUG_VOID_RETURN;
}
void ha_ndbcluster::no_uncommitted_rows_reset(THD *thd)
{
if (m_ha_not_exact_count)
return;
DBUG_ENTER("ha_ndbcluster::no_uncommitted_rows_reset");
Thd_ndb *thd_ndb= get_thd_ndb(thd);
thd_ndb->count++;
thd_ndb->error= 0;
DBUG_VOID_RETURN;
}
int ha_ndbcluster::ndb_err(NdbTransaction *trans)
2004-04-15 09:14:14 +02:00
{
int res;
NdbError err= trans->getNdbError();
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndb_err");
ERR_PRINT(err);
switch (err.classification) {
case NdbError::SchemaError:
{
// TODO perhaps we need to do more here, invalidate also in the cache
m_table->setStatusInvalid();
/* Close other open handlers not used by any thread */
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= m_dbname;
table_list.alias= table_list.table_name= m_tabname;
close_cached_tables(current_thd, 0, &table_list);
2004-04-15 09:14:14 +02:00
break;
}
2004-04-15 09:14:14 +02:00
default:
break;
}
res= ndb_to_mysql_error(&err);
DBUG_PRINT("info", ("transformed ndbcluster error %d to mysql error %d",
err.code, res));
if (res == HA_ERR_FOUND_DUPP_KEY)
{
if (m_rows_to_insert == 1)
{
/*
We can only distinguish between primary and non-primary
violations here, so we need to return MAX_KEY for non-primary
to signal that key is unknown
*/
m_dupkey= err.code == 630 ? table_share->primary_key : MAX_KEY;
}
else
{
/* We are batching inserts, offending key is not available */
m_dupkey= (uint) -1;
}
}
DBUG_RETURN(res);
2004-04-15 09:14:14 +02:00
}
/*
Override the default get_error_message in order to add the
error message of NDB
*/
bool ha_ndbcluster::get_error_message(int error,
String *buf)
{
DBUG_ENTER("ha_ndbcluster::get_error_message");
DBUG_PRINT("enter", ("error: %d", error));
Ndb *ndb= get_ndb();
if (!ndb)
DBUG_RETURN(FALSE);
const NdbError err= ndb->getNdbError(error);
bool temporary= err.status==NdbError::TemporaryError;
buf->set(err.message, strlen(err.message), &my_charset_bin);
DBUG_PRINT("exit", ("message: %s, temporary: %d", buf->ptr(), temporary));
DBUG_RETURN(temporary);
}
#ifndef DBUG_OFF
2004-07-22 12:38:09 +02:00
/*
Check if type is supported by NDB.
*/
static bool ndb_supported_type(enum_field_types type)
2004-07-22 12:38:09 +02:00
{
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
2005-01-07 11:55:20 +01:00
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
2004-12-23 15:28:41 +01:00
case MYSQL_TYPE_BIT:
case MYSQL_TYPE_GEOMETRY:
return TRUE;
2004-07-22 12:38:09 +02:00
case MYSQL_TYPE_NULL:
break;
2004-07-22 12:38:09 +02:00
}
return FALSE;
2004-07-22 12:38:09 +02:00
}
#endif /* !DBUG_OFF */
2004-07-22 12:38:09 +02:00
2004-04-15 09:14:14 +02:00
/*
Instruct NDB to set the value of the hidden primary key
*/
bool ha_ndbcluster::set_hidden_key(NdbOperation *ndb_op,
uint fieldnr, const byte *field_ptr)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("set_hidden_key");
2005-11-07 12:19:28 +01:00
DBUG_RETURN(ndb_op->equal(fieldnr, (char*)field_ptr) != 0);
2004-04-15 09:14:14 +02:00
}
/*
Instruct NDB to set the value of one primary key attribute
*/
int ha_ndbcluster::set_ndb_key(NdbOperation *ndb_op, Field *field,
uint fieldnr, const byte *field_ptr)
{
uint32 pack_len= field->pack_length();
DBUG_ENTER("set_ndb_key");
DBUG_PRINT("enter", ("%d: %s, ndb_type: %u, len=%d",
fieldnr, field->field_name, field->type(),
pack_len));
DBUG_DUMP("key", (char*)field_ptr, pack_len);
DBUG_ASSERT(ndb_supported_type(field->type()));
DBUG_ASSERT(! (field->flags & BLOB_FLAG));
// Common implementation for most field types
DBUG_RETURN(ndb_op->equal(fieldnr, (char*) field_ptr, pack_len) != 0);
2004-04-15 09:14:14 +02:00
}
/*
Instruct NDB to set the value of one attribute
*/
int ha_ndbcluster::set_ndb_value(NdbOperation *ndb_op, Field *field,
uint fieldnr, int row_offset,
bool *set_blob_value)
2004-04-15 09:14:14 +02:00
{
const byte* field_ptr= field->ptr + row_offset;
uint32 pack_len= field->pack_length();
2004-04-15 09:14:14 +02:00
DBUG_ENTER("set_ndb_value");
DBUG_PRINT("enter", ("%d: %s type: %u len=%d is_null=%s",
2004-04-15 09:14:14 +02:00
fieldnr, field->field_name, field->type(),
pack_len, field->is_null(row_offset) ? "Y" : "N"));
2004-04-15 09:14:14 +02:00
DBUG_DUMP("value", (char*) field_ptr, pack_len);
2004-07-22 12:38:09 +02:00
DBUG_ASSERT(ndb_supported_type(field->type()));
2004-04-15 09:14:14 +02:00
{
// ndb currently does not support size 0
2004-12-10 16:55:04 +01:00
uint32 empty_field;
if (pack_len == 0)
{
2004-12-10 16:55:04 +01:00
pack_len= sizeof(empty_field);
field_ptr= (byte *)&empty_field;
if (field->is_null(row_offset))
empty_field= 0;
2004-12-10 16:55:04 +01:00
else
empty_field= 1;
}
2004-07-22 12:38:09 +02:00
if (! (field->flags & BLOB_FLAG))
{
2004-12-23 15:28:41 +01:00
if (field->type() != MYSQL_TYPE_BIT)
{
if (field->is_null(row_offset))
{
DBUG_PRINT("info", ("field is NULL"));
// Set value to NULL
2005-11-07 12:19:28 +01:00
DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0));
}
// Common implementation for most field types
2005-11-07 12:19:28 +01:00
DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)field_ptr) != 0);
2004-12-23 15:28:41 +01:00
}
else // if (field->type() == MYSQL_TYPE_BIT)
{
longlong bits= field->val_int();
2004-12-23 15:28:41 +01:00
// Round up bit field length to nearest word boundry
pack_len= ((pack_len + 3) >> 2) << 2;
2004-12-23 15:28:41 +01:00
DBUG_ASSERT(pack_len <= 8);
if (field->is_null(row_offset))
2004-12-23 15:28:41 +01:00
// Set value to NULL
2005-11-07 12:19:28 +01:00
DBUG_RETURN((ndb_op->setValue(fieldnr, (char*)NULL) != 0));
2004-12-23 15:28:41 +01:00
DBUG_PRINT("info", ("bit field"));
DBUG_DUMP("value", (char*)&bits, pack_len);
2005-01-20 15:50:56 +01:00
#ifdef WORDS_BIGENDIAN
/* store lsw first */
bits = ((bits >> 32) & 0x00000000FFFFFFFF)
| ((bits << 32) & 0xFFFFFFFF00000000);
2005-01-20 15:50:56 +01:00
#endif
2005-11-07 12:19:28 +01:00
DBUG_RETURN(ndb_op->setValue(fieldnr, (char*)&bits) != 0);
2004-12-23 15:28:41 +01:00
}
2004-07-22 12:38:09 +02:00
}
// Blob type
NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr);
2004-07-22 12:38:09 +02:00
if (ndb_blob != NULL)
{
if (field->is_null(row_offset))
2004-07-22 12:38:09 +02:00
DBUG_RETURN(ndb_blob->setNull() != 0);
Field_blob *field_blob= (Field_blob*)field;
// Get length and pointer to data
uint32 blob_len= field_blob->get_length(field_ptr);
char* blob_ptr= NULL;
field_blob->get_ptr(&blob_ptr);
// Looks like NULL ptr signals length 0 blob
if (blob_ptr == NULL) {
DBUG_ASSERT(blob_len == 0);
blob_ptr= (char*)"";
}
2004-07-22 12:38:09 +02:00
DBUG_PRINT("value", ("set blob ptr: 0x%lx len: %u",
(long) blob_ptr, blob_len));
2004-07-22 12:38:09 +02:00
DBUG_DUMP("value", (char*)blob_ptr, min(blob_len, 26));
if (set_blob_value)
*set_blob_value= TRUE;
2004-07-22 12:38:09 +02:00
// No callback needed to write value
DBUG_RETURN(ndb_blob->setValue(blob_ptr, blob_len) != 0);
}
DBUG_RETURN(1);
2004-04-15 09:14:14 +02:00
}
2004-07-22 12:38:09 +02:00
}
/*
Callback to read all blob values.
- not done in unpack_record because unpack_record is valid
after execute(Commit) but reading blobs is not
- may only generate read operations; they have to be executed
somewhere before the data is available
- due to single buffer for all blobs, we let the last blob
process all blobs (last so that all are active)
- null bit is still set in unpack_record
- TODO allocate blob part aligned buffers
*/
NdbBlob::ActiveHook g_get_ndb_blobs_value;
2004-07-22 12:38:09 +02:00
int g_get_ndb_blobs_value(NdbBlob *ndb_blob, void *arg)
2004-07-22 12:38:09 +02:00
{
DBUG_ENTER("g_get_ndb_blobs_value");
2004-07-22 12:38:09 +02:00
if (ndb_blob->blobsNextBlob() != NULL)
DBUG_RETURN(0);
ha_ndbcluster *ha= (ha_ndbcluster *)arg;
int ret= get_ndb_blobs_value(ha->table, ha->m_value,
ha->m_blobs_buffer, ha->m_blobs_buffer_size,
ha->m_blobs_offset);
DBUG_RETURN(ret);
2004-07-22 12:38:09 +02:00
}
/*
This routine is shared by injector. There is no common blobs buffer
so the buffer and length are passed by reference. Injector also
passes a record pointer diff.
*/
int get_ndb_blobs_value(TABLE* table, NdbValue* value_array,
byte*& buffer, uint& buffer_size,
my_ptrdiff_t ptrdiff)
2004-07-22 12:38:09 +02:00
{
DBUG_ENTER("get_ndb_blobs_value");
// Field has no field number so cannot use TABLE blob_field
// Loop twice, first only counting total buffer size
for (int loop= 0; loop <= 1; loop++)
{
uint32 offset= 0;
for (uint i= 0; i < table->s->fields; i++)
2004-07-22 12:38:09 +02:00
{
Field *field= table->field[i];
NdbValue value= value_array[i];
2006-02-05 19:11:11 +01:00
if (! (field->flags & BLOB_FLAG))
continue;
if (value.blob == NULL)
2004-07-22 12:38:09 +02:00
{
2006-02-05 19:11:11 +01:00
DBUG_PRINT("info",("[%u] skipped", i));
continue;
}
Field_blob *field_blob= (Field_blob *)field;
NdbBlob *ndb_blob= value.blob;
int isNull;
if (ndb_blob->getNull(isNull) != 0)
ERR_RETURN(ndb_blob->getNdbError());
if (isNull == 0) {
Uint64 len64= 0;
if (ndb_blob->getLength(len64) != 0)
ERR_RETURN(ndb_blob->getNdbError());
// Align to Uint64
uint32 size= len64;
if (size % 8 != 0)
size+= 8 - size % 8;
if (loop == 1)
2006-01-27 20:27:10 +01:00
{
2006-02-05 19:11:11 +01:00
char *buf= buffer + offset;
uint32 len= 0xffffffff; // Max uint32
if (ndb_blob->readData(buf, len) != 0)
ERR_RETURN(ndb_blob->getNdbError());
DBUG_PRINT("info", ("[%u] offset: %u buf: 0x%lx len=%u [ptrdiff=%d]",
i, offset, (long) buf, len, (int)ptrdiff));
2006-02-05 19:11:11 +01:00
DBUG_ASSERT(len == len64);
// Ugly hack assumes only ptr needs to be changed
field_blob->ptr+= ptrdiff;
field_blob->set_ptr(len, buf);
field_blob->ptr-= ptrdiff;
2006-01-27 20:27:10 +01:00
}
2006-02-05 19:11:11 +01:00
offset+= size;
}
else if (loop == 1) // undefined or null
{
// have to set length even in this case
char *buf= buffer + offset; // or maybe NULL
uint32 len= 0;
field_blob->ptr+= ptrdiff;
field_blob->set_ptr(len, buf);
field_blob->ptr-= ptrdiff;
DBUG_PRINT("info", ("[%u] isNull=%d", i, isNull));
2004-07-22 12:38:09 +02:00
}
}
if (loop == 0 && offset > buffer_size)
2004-07-22 12:38:09 +02:00
{
my_free(buffer, MYF(MY_ALLOW_ZERO_PTR));
buffer_size= 0;
DBUG_PRINT("info", ("allocate blobs buffer size %u", offset));
buffer= my_malloc(offset, MYF(MY_WME));
if (buffer == NULL)
{
sql_print_error("ha_ndbcluster::get_ndb_blobs_value: "
"my_malloc(%u) failed", offset);
2004-07-22 12:38:09 +02:00
DBUG_RETURN(-1);
2007-04-11 19:38:29 +02:00
}
buffer_size= offset;
2004-07-22 12:38:09 +02:00
}
2004-04-15 09:14:14 +02:00
}
2004-07-22 12:38:09 +02:00
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
/*
Instruct NDB to fetch one field
2004-07-22 12:38:09 +02:00
- data is read directly into buffer provided by field
if field is NULL, data is read into memory provided by NDBAPI
2004-04-15 09:14:14 +02:00
*/
2004-07-22 12:38:09 +02:00
int ha_ndbcluster::get_ndb_value(NdbOperation *ndb_op, Field *field,
uint fieldnr, byte* buf)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("get_ndb_value");
2004-07-22 12:38:09 +02:00
DBUG_PRINT("enter", ("fieldnr: %d flags: %o", fieldnr,
(int)(field != NULL ? field->flags : 0)));
if (field != NULL)
{
DBUG_ASSERT(buf);
DBUG_ASSERT(ndb_supported_type(field->type()));
2004-07-22 12:38:09 +02:00
DBUG_ASSERT(field->ptr != NULL);
if (! (field->flags & BLOB_FLAG))
{
2004-12-23 15:28:41 +01:00
if (field->type() != MYSQL_TYPE_BIT)
{
byte *field_buf;
if (field->pack_length() != 0)
field_buf= buf + (field->ptr - table->record[0]);
else
field_buf= (byte *)&dummy_buf;
m_value[fieldnr].rec= ndb_op->getValue(fieldnr,
field_buf);
}
2004-12-23 15:28:41 +01:00
else // if (field->type() == MYSQL_TYPE_BIT)
{
m_value[fieldnr].rec= ndb_op->getValue(fieldnr);
}
2004-07-22 12:38:09 +02:00
DBUG_RETURN(m_value[fieldnr].rec == NULL);
}
// Blob type
NdbBlob *ndb_blob= ndb_op->getBlobHandle(fieldnr);
m_value[fieldnr].blob= ndb_blob;
if (ndb_blob != NULL)
{
// Set callback
m_blobs_offset= buf - (byte*) table->record[0];
2004-07-22 12:38:09 +02:00
void *arg= (void *)this;
DBUG_RETURN(ndb_blob->setActiveHook(g_get_ndb_blobs_value, arg) != 0);
2004-07-22 12:38:09 +02:00
}
DBUG_RETURN(1);
}
// Used for hidden key only
m_value[fieldnr].rec= ndb_op->getValue(fieldnr, m_ref);
2004-07-22 12:38:09 +02:00
DBUG_RETURN(m_value[fieldnr].rec == NULL);
}
/*
Instruct NDB to fetch the partition id (fragment id)
*/
int ha_ndbcluster::get_ndb_partition_id(NdbOperation *ndb_op)
{
DBUG_ENTER("get_ndb_partition_id");
DBUG_RETURN(ndb_op->getValue(NdbDictionary::Column::FRAGMENT,
(char *)&m_part_id) == NULL);
}
2004-07-22 12:38:09 +02:00
/*
Check if any set or get of blob value in current query.
*/
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bool ha_ndbcluster::uses_blob_value()
2004-07-22 12:38:09 +02:00
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
MY_BITMAP *bitmap;
uint *blob_index, *blob_index_end;
if (table_share->blob_fields == 0)
return FALSE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bitmap= m_write_op ? table->write_set : table->read_set;
blob_index= table_share->blob_field;
blob_index_end= blob_index + table_share->blob_fields;
do
2004-07-22 12:38:09 +02:00
{
if (bitmap_is_set(bitmap, table->field[*blob_index]->field_index))
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
return TRUE;
} while (++blob_index != blob_index_end);
return FALSE;
2004-04-15 09:14:14 +02:00
}
/*
Get metadata for this table from NDB
IMPLEMENTATION
- check that frm-file on disk is equal to frm-file
of table accessed in NDB
RETURN
0 ok
-2 Meta data has changed; Re-read data and try again
2004-04-15 09:14:14 +02:00
*/
int cmp_frm(const NDBTAB *ndbtab, const void *pack_data,
uint pack_length)
{
DBUG_ENTER("cmp_frm");
/*
Compare FrmData in NDB with frm file from disk.
*/
if ((pack_length != ndbtab->getFrmLength()) ||
(memcmp(pack_data, ndbtab->getFrmData(), pack_length)))
DBUG_RETURN(1);
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::get_metadata(const char *path)
{
Ndb *ndb= get_ndb();
NDBDICT *dict= ndb->getDictionary();
2004-04-15 09:14:14 +02:00
const NDBTAB *tab;
int error;
DBUG_ENTER("get_metadata");
DBUG_PRINT("enter", ("m_tabname: %s, path: %s", m_tabname, path));
DBUG_ASSERT(m_table == NULL);
DBUG_ASSERT(m_table_info == NULL);
const void *data= NULL, *pack_data= NULL;
uint length, pack_length;
/*
Compare FrmData in NDB with frm file from disk.
*/
error= 0;
if (readfrm(path, &data, &length) ||
packfrm(data, length, &pack_data, &pack_length))
{
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR));
DBUG_RETURN(1);
}
2004-04-15 09:14:14 +02:00
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(tab= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
if (get_ndb_share_state(m_share) != NSS_ALTERED
&& cmp_frm(tab, pack_data, pack_length))
{
DBUG_PRINT("error",
("metadata, pack_length: %d getFrmLength: %d memcmp: %d",
pack_length, tab->getFrmLength(),
memcmp(pack_data, tab->getFrmData(), pack_length)));
DBUG_DUMP("pack_data", (char*)pack_data, pack_length);
DBUG_DUMP("frm", (char*)tab->getFrmData(), tab->getFrmLength());
error= HA_ERR_TABLE_DEF_CHANGED;
}
my_free((char*)data, MYF(0));
my_free((char*)pack_data, MYF(0));
2004-04-15 09:14:14 +02:00
if (error)
goto err;
DBUG_PRINT("info", ("fetched table %s", tab->getName()));
m_table= tab;
if ((error= open_indexes(ndb, table, FALSE)) == 0)
{
ndbtab_g.release();
DBUG_RETURN(0);
}
err:
ndbtab_g.invalidate();
m_table= NULL;
DBUG_RETURN(error);
}
2004-04-15 09:14:14 +02:00
static int fix_unique_index_attr_order(NDB_INDEX_DATA &data,
const NDBINDEX *index,
KEY *key_info)
{
DBUG_ENTER("fix_unique_index_attr_order");
unsigned sz= index->getNoOfIndexColumns();
if (data.unique_index_attrid_map)
my_free((char*)data.unique_index_attrid_map, MYF(0));
data.unique_index_attrid_map= (uchar*)my_malloc(sz,MYF(MY_WME));
if (data.unique_index_attrid_map == 0)
{
sql_print_error("fix_unique_index_attr_order: my_malloc(%u) failure",
(unsigned int)sz);
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
}
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ASSERT(key_info->key_parts == sz);
for (unsigned i= 0; key_part != end; key_part++, i++)
{
const char *field_name= key_part->field->field_name;
#ifndef DBUG_OFF
data.unique_index_attrid_map[i]= 255;
#endif
for (unsigned j= 0; j < sz; j++)
{
const NDBCOL *c= index->getColumn(j);
if (strcmp(field_name, c->getName()) == 0)
{
data.unique_index_attrid_map[i]= j;
break;
}
}
DBUG_ASSERT(data.unique_index_attrid_map[i] != 255);
}
DBUG_RETURN(0);
}
2004-08-19 11:10:35 +02:00
/*
Create all the indexes for a table.
If any index should fail to be created,
the error is returned immediately
*/
int ha_ndbcluster::create_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
2004-08-19 11:10:35 +02:00
int error= 0;
const char *index_name;
2004-08-19 11:10:35 +02:00
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::create_indexes");
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
2004-08-19 11:10:35 +02:00
index_name= *key_name;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
error= create_index(index_name, key_info, idx_type, i);
if (error)
{
DBUG_PRINT("error", ("Failed to create index %u", i));
break;
}
}
DBUG_RETURN(error);
}
static void ndb_init_index(NDB_INDEX_DATA &data)
{
data.type= UNDEFINED_INDEX;
data.status= UNDEFINED;
data.unique_index= NULL;
data.index= NULL;
data.unique_index_attrid_map= NULL;
data.index_stat=NULL;
data.index_stat_cache_entries=0;
data.index_stat_update_freq=0;
data.index_stat_query_count=0;
}
static void ndb_clear_index(NDB_INDEX_DATA &data)
{
if (data.unique_index_attrid_map)
{
my_free((char*)data.unique_index_attrid_map, MYF(0));
}
if (data.index_stat)
{
delete data.index_stat;
}
ndb_init_index(data);
}
/*
Associate a direct reference to an index handle
with an index (for faster access)
*/
int ha_ndbcluster::add_index_handle(THD *thd, NDBDICT *dict, KEY *key_info,
const char *index_name, uint index_no)
{
int error= 0;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(index_no);
m_index[index_no].type= idx_type;
DBUG_ENTER("ha_ndbcluster::add_index_handle");
DBUG_PRINT("enter", ("table %s", m_tabname));
if (idx_type != PRIMARY_KEY_INDEX && idx_type != UNIQUE_INDEX)
{
DBUG_PRINT("info", ("Get handle to index %s", index_name));
const NDBINDEX *index;
do
{
index= dict->getIndexGlobal(index_name, *m_table);
if (!index)
ERR_RETURN(dict->getNdbError());
DBUG_PRINT("info", ("index: 0x%lx id: %d version: %d.%d status: %d",
(long) index,
index->getObjectId(),
index->getObjectVersion() & 0xFFFFFF,
index->getObjectVersion() >> 24,
index->getObjectStatus()));
DBUG_ASSERT(index->getObjectStatus() ==
NdbDictionary::Object::Retrieved);
break;
} while (1);
m_index[index_no].index= index;
// ordered index - add stats
NDB_INDEX_DATA& d=m_index[index_no];
delete d.index_stat;
d.index_stat=NULL;
if (thd->variables.ndb_index_stat_enable)
2004-08-19 11:10:35 +02:00
{
d.index_stat=new NdbIndexStat(index);
d.index_stat_cache_entries=thd->variables.ndb_index_stat_cache_entries;
d.index_stat_update_freq=thd->variables.ndb_index_stat_update_freq;
d.index_stat_query_count=0;
d.index_stat->alloc_cache(d.index_stat_cache_entries);
DBUG_PRINT("info", ("index %s stat=on cache_entries=%u update_freq=%u",
index->getName(),
d.index_stat_cache_entries,
d.index_stat_update_freq));
} else
{
DBUG_PRINT("info", ("index %s stat=off", index->getName()));
}
}
if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX)
{
char unique_index_name[FN_LEN];
static const char* unique_suffix= "$unique";
m_has_unique_index= TRUE;
strxnmov(unique_index_name, FN_LEN, index_name, unique_suffix, NullS);
DBUG_PRINT("info", ("Get handle to unique_index %s", unique_index_name));
const NDBINDEX *index;
do
{
index= dict->getIndexGlobal(unique_index_name, *m_table);
if (!index)
ERR_RETURN(dict->getNdbError());
DBUG_PRINT("info", ("index: 0x%lx id: %d version: %d.%d status: %d",
(long) index,
index->getObjectId(),
index->getObjectVersion() & 0xFFFFFF,
index->getObjectVersion() >> 24,
index->getObjectStatus()));
DBUG_ASSERT(index->getObjectStatus() ==
NdbDictionary::Object::Retrieved);
break;
} while (1);
m_index[index_no].unique_index= index;
error= fix_unique_index_attr_order(m_index[index_no], index, key_info);
}
if (!error)
m_index[index_no].status= ACTIVE;
DBUG_RETURN(error);
}
/*
Associate index handles for each index of a table
*/
int ha_ndbcluster::open_indexes(Ndb *ndb, TABLE *tab, bool ignore_error)
{
uint i;
int error= 0;
THD *thd=current_thd;
NDBDICT *dict= ndb->getDictionary();
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::open_indexes");
m_has_unique_index= FALSE;
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
if ((error= add_index_handle(thd, dict, key_info, *key_name, i)))
if (ignore_error)
m_index[i].index= m_index[i].unique_index= NULL;
else
break;
m_index[i].null_in_unique_index= FALSE;
if (check_index_fields_not_null(key_info))
m_index[i].null_in_unique_index= TRUE;
}
if (error && !ignore_error)
{
while (i > 0)
{
i--;
if (m_index[i].index)
{
dict->removeIndexGlobal(*m_index[i].index, 1);
m_index[i].index= NULL;
}
if (m_index[i].unique_index)
{
dict->removeIndexGlobal(*m_index[i].unique_index, 1);
m_index[i].unique_index= NULL;
}
}
}
DBUG_ASSERT(error == 0 || error == 4243);
DBUG_RETURN(error);
}
/*
Renumber indexes in index list by shifting out
indexes that are to be dropped
*/
void ha_ndbcluster::renumber_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
const char *index_name;
KEY* key_info= tab->key_info;
const char **key_name= tab->s->keynames.type_names;
DBUG_ENTER("ha_ndbcluster::renumber_indexes");
for (i= 0; i < tab->s->keys; i++, key_info++, key_name++)
{
index_name= *key_name;
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
m_index[i].type= idx_type;
if (m_index[i].status == TO_BE_DROPPED)
{
DBUG_PRINT("info", ("Shifting index %s(%i) out of the list",
index_name, i));
NDB_INDEX_DATA tmp;
uint j= i + 1;
// Shift index out of list
while(j != MAX_KEY && m_index[j].status != UNDEFINED)
2004-08-19 11:10:35 +02:00
{
tmp= m_index[j - 1];
m_index[j - 1]= m_index[j];
m_index[j]= tmp;
j++;
2004-08-19 11:10:35 +02:00
}
}
}
DBUG_VOID_RETURN;
}
/*
Drop all indexes that are marked for deletion
*/
int ha_ndbcluster::drop_indexes(Ndb *ndb, TABLE *tab)
{
uint i;
int error= 0;
const char *index_name;
KEY* key_info= tab->key_info;
NDBDICT *dict= ndb->getDictionary();
DBUG_ENTER("ha_ndbcluster::drop_indexes");
2006-03-09 17:42:35 +01:00
for (i= 0; i < tab->s->keys; i++, key_info++)
{
NDB_INDEX_TYPE idx_type= get_index_type_from_table(i);
m_index[i].type= idx_type;
if (m_index[i].status == TO_BE_DROPPED)
{
const NdbDictionary::Index *index= m_index[i].index;
const NdbDictionary::Index *unique_index= m_index[i].unique_index;
if (index)
{
index_name= index->getName();
DBUG_PRINT("info", ("Dropping index %u: %s", i, index_name));
// Drop ordered index from ndb
error= dict->dropIndexGlobal(*index);
if (!error)
{
dict->removeIndexGlobal(*index, 1);
m_index[i].index= NULL;
}
}
if (!error && unique_index)
{
2006-03-09 17:42:35 +01:00
index_name= unique_index->getName();
DBUG_PRINT("info", ("Dropping unique index %u: %s", i, index_name));
// Drop unique index from ndb
error= dict->dropIndexGlobal(*unique_index);
if (!error)
{
dict->removeIndexGlobal(*unique_index, 1);
m_index[i].unique_index= NULL;
}
}
if (error)
DBUG_RETURN(error);
ndb_clear_index(m_index[i]);
continue;
}
}
2004-08-19 11:10:35 +02:00
DBUG_RETURN(error);
}
2004-04-15 09:14:14 +02:00
/*
Decode the type of an index from information
provided in table object
*/
NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_table(uint inx) const
2004-04-15 09:14:14 +02:00
{
return get_index_type_from_key(inx, table_share->key_info,
inx == table_share->primary_key);
}
NDB_INDEX_TYPE ha_ndbcluster::get_index_type_from_key(uint inx,
KEY *key_info,
bool primary) const
{
bool is_hash_index= (key_info[inx].algorithm ==
HA_KEY_ALG_HASH);
if (primary)
return is_hash_index ? PRIMARY_KEY_INDEX : PRIMARY_KEY_ORDERED_INDEX;
return ((key_info[inx].flags & HA_NOSAME) ?
(is_hash_index ? UNIQUE_INDEX : UNIQUE_ORDERED_INDEX) :
ORDERED_INDEX);
2004-04-15 09:14:14 +02:00
}
bool ha_ndbcluster::check_index_fields_not_null(KEY* key_info)
{
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("ha_ndbcluster::check_index_fields_not_null");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
if (field->maybe_null())
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
2004-04-15 09:14:14 +02:00
void ha_ndbcluster::release_metadata(THD *thd, Ndb *ndb)
2004-04-15 09:14:14 +02:00
{
uint i;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("release_metadata");
DBUG_PRINT("enter", ("m_tabname: %s", m_tabname));
NDBDICT *dict= ndb->getDictionary();
int invalidate_indexes= 0;
if (thd && thd->lex && thd->lex->sql_command == SQLCOM_FLUSH)
{
invalidate_indexes = 1;
}
if (m_table != NULL)
{
if (m_table->getObjectStatus() == NdbDictionary::Object::Invalid)
invalidate_indexes= 1;
dict->removeTableGlobal(*m_table, invalidate_indexes);
}
// TODO investigate
DBUG_ASSERT(m_table_info == NULL);
2004-09-21 12:52:56 +00:00
m_table_info= NULL;
2004-04-15 09:14:14 +02:00
// Release index list
for (i= 0; i < MAX_KEY; i++)
{
if (m_index[i].unique_index)
{
DBUG_ASSERT(m_table != NULL);
dict->removeIndexGlobal(*m_index[i].unique_index, invalidate_indexes);
}
if (m_index[i].index)
{
DBUG_ASSERT(m_table != NULL);
dict->removeIndexGlobal(*m_index[i].index, invalidate_indexes);
}
ndb_clear_index(m_index[i]);
}
m_table= NULL;
2004-04-15 09:14:14 +02:00
DBUG_VOID_RETURN;
}
2004-07-22 12:38:09 +02:00
int ha_ndbcluster::get_ndb_lock_type(enum thr_lock_type type)
{
if (type >= TL_WRITE_ALLOW_WRITE)
2004-09-28 23:42:34 +00:00
return NdbOperation::LM_Exclusive;
if (type == TL_READ_WITH_SHARED_LOCKS ||
uses_blob_value())
return NdbOperation::LM_Read;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
return NdbOperation::LM_CommittedRead;
}
2004-04-15 09:14:14 +02:00
static const ulong index_type_flags[]=
{
/* UNDEFINED_INDEX */
0,
/* PRIMARY_KEY_INDEX */
HA_ONLY_WHOLE_INDEX,
/* PRIMARY_KEY_ORDERED_INDEX */
/*
2004-06-24 14:49:34 +02:00
Enable HA_KEYREAD_ONLY when "sorted" indexes are supported,
thus ORDERD BY clauses can be optimized by reading directly
through the index.
*/
2004-06-24 14:49:34 +02:00
// HA_KEYREAD_ONLY |
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER,
2004-04-15 09:14:14 +02:00
/* UNIQUE_INDEX */
HA_ONLY_WHOLE_INDEX,
2004-04-15 09:14:14 +02:00
/* UNIQUE_ORDERED_INDEX */
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER,
2004-04-15 09:14:14 +02:00
/* ORDERED_INDEX */
HA_READ_NEXT |
HA_READ_PREV |
HA_READ_RANGE |
HA_READ_ORDER
2004-04-15 09:14:14 +02:00
};
static const int index_flags_size= sizeof(index_type_flags)/sizeof(ulong);
inline NDB_INDEX_TYPE ha_ndbcluster::get_index_type(uint idx_no) const
{
DBUG_ASSERT(idx_no < MAX_KEY);
return m_index[idx_no].type;
2004-04-15 09:14:14 +02:00
}
inline bool ha_ndbcluster::has_null_in_unique_index(uint idx_no) const
{
DBUG_ASSERT(idx_no < MAX_KEY);
return m_index[idx_no].null_in_unique_index;
}
2004-04-15 09:14:14 +02:00
/*
Get the flags for an index
RETURN
flags depending on the type of the index.
*/
inline ulong ha_ndbcluster::index_flags(uint idx_no, uint part,
bool all_parts) const
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("ha_ndbcluster::index_flags");
DBUG_PRINT("enter", ("idx_no: %u", idx_no));
2004-04-15 09:14:14 +02:00
DBUG_ASSERT(get_index_type_from_table(idx_no) < index_flags_size);
DBUG_RETURN(index_type_flags[get_index_type_from_table(idx_no)] |
HA_KEY_SCAN_NOT_ROR);
2004-04-15 09:14:14 +02:00
}
2005-01-07 11:55:20 +01:00
static void shrink_varchar(Field* field, const byte* & ptr, char* buf)
{
if (field->type() == MYSQL_TYPE_VARCHAR && ptr != NULL) {
2005-01-07 11:55:20 +01:00
Field_varstring* f= (Field_varstring*)field;
2005-04-21 12:53:40 +02:00
if (f->length_bytes == 1) {
2005-01-07 11:55:20 +01:00
uint pack_len= field->pack_length();
DBUG_ASSERT(1 <= pack_len && pack_len <= 256);
if (ptr[1] == 0) {
buf[0]= ptr[0];
} else {
DBUG_ASSERT(FALSE);
2005-01-07 11:55:20 +01:00
buf[0]= 255;
}
memmove(buf + 1, ptr + 2, pack_len - 1);
ptr= buf;
}
}
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::set_primary_key(NdbOperation *op, const byte *key)
{
KEY* key_info= table->key_info + table_share->primary_key;
2004-04-15 09:14:14 +02:00
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("set_primary_key");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
2005-01-07 11:55:20 +01:00
const byte* ptr= key;
char buf[256];
shrink_varchar(field, ptr, buf);
2004-04-15 09:14:14 +02:00
if (set_ndb_key(op, field,
key_part->fieldnr-1, ptr))
2004-04-15 09:14:14 +02:00
ERR_RETURN(op->getNdbError());
2005-01-07 11:55:20 +01:00
key += key_part->store_length;
2004-04-15 09:14:14 +02:00
}
DBUG_RETURN(0);
}
int ha_ndbcluster::set_primary_key_from_record(NdbOperation *op, const byte *record)
{
KEY* key_info= table->key_info + table_share->primary_key;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
DBUG_ENTER("set_primary_key_from_record");
for (; key_part != end; key_part++)
{
Field* field= key_part->field;
if (set_ndb_key(op, field,
key_part->fieldnr-1, record+key_part->offset))
2004-04-15 09:14:14 +02:00
ERR_RETURN(op->getNdbError());
}
DBUG_RETURN(0);
}
int ha_ndbcluster::set_index_key_from_record(NdbOperation *op,
const byte *record, uint keyno)
{
KEY* key_info= table->key_info + keyno;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
uint i;
DBUG_ENTER("set_index_key_from_record");
for (i= 0; key_part != end; key_part++, i++)
{
Field* field= key_part->field;
if (set_ndb_key(op, field, m_index[keyno].unique_index_attrid_map[i],
record+key_part->offset))
ERR_RETURN(m_active_trans->getNdbError());
}
DBUG_RETURN(0);
}
int
ha_ndbcluster::set_index_key(NdbOperation *op,
const KEY *key_info,
const byte * key_ptr)
{
DBUG_ENTER("ha_ndbcluster::set_index_key");
uint i;
KEY_PART_INFO* key_part= key_info->key_part;
KEY_PART_INFO* end= key_part+key_info->key_parts;
for (i= 0; key_part != end; key_part++, i++)
{
2005-01-07 11:55:20 +01:00
Field* field= key_part->field;
const byte* ptr= key_part->null_bit ? key_ptr + 1 : key_ptr;
char buf[256];
shrink_varchar(field, ptr, buf);
2005-01-26 13:22:07 +01:00
if (set_ndb_key(op, field, m_index[active_index].unique_index_attrid_map[i], ptr))
ERR_RETURN(m_active_trans->getNdbError());
key_ptr+= key_part->store_length;
}
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
inline
int ha_ndbcluster::define_read_attrs(byte* buf, NdbOperation* op)
{
uint i;
DBUG_ENTER("define_read_attrs");
// Define attributes to read
for (i= 0; i < table_share->fields; i++)
{
Field *field= table->field[i];
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if (bitmap_is_set(table->read_set, i) ||
((field->flags & PRI_KEY_FLAG)))
{
if (get_ndb_value(op, field, i, buf))
ERR_RETURN(op->getNdbError());
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
else
{
m_value[i].ptr= NULL;
}
}
if (table_share->primary_key == MAX_KEY)
{
DBUG_PRINT("info", ("Getting hidden key"));
// Scanning table with no primary key
int hidden_no= table_share->fields;
#ifndef DBUG_OFF
const NDBTAB *tab= (const NDBTAB *) m_table;
if (!tab->getColumn(hidden_no))
DBUG_RETURN(1);
#endif
if (get_ndb_value(op, NULL, hidden_no, NULL))
ERR_RETURN(op->getNdbError());
}
DBUG_RETURN(0);
}
2005-07-12 20:01:22 +02:00
2004-04-15 09:14:14 +02:00
/*
Read one record from NDB using primary key
*/
2005-07-18 13:31:02 +02:00
int ha_ndbcluster::pk_read(const byte *key, uint key_len, byte *buf,
uint32 part_id)
2004-04-15 09:14:14 +02:00
{
uint no_fields= table_share->fields;
2004-04-15 09:14:14 +02:00
NdbConnection *trans= m_active_trans;
NdbOperation *op;
2004-11-17 10:07:52 +01:00
int res;
DBUG_ENTER("pk_read");
DBUG_PRINT("enter", ("key_len: %u", key_len));
DBUG_DUMP("key", (char*)key, key_len);
m_write_op= FALSE;
2004-04-15 09:14:14 +02:00
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
2004-09-07 21:53:59 +02:00
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
2004-11-17 10:07:52 +01:00
if (table_share->primary_key == MAX_KEY)
2004-04-15 09:14:14 +02:00
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
DBUG_DUMP("key", (char*)key, 8);
if (set_hidden_key(op, no_fields, key))
ERR_RETURN(trans->getNdbError());
2004-11-17 10:07:52 +01:00
2004-04-15 09:14:14 +02:00
// Read key at the same time, for future reference
if (get_ndb_value(op, NULL, no_fields, NULL))
ERR_RETURN(trans->getNdbError());
2004-04-15 09:14:14 +02:00
}
else
{
if ((res= set_primary_key(op, key)))
return res;
}
if ((res= define_read_attrs(buf, op)))
2004-11-17 10:07:52 +01:00
DBUG_RETURN(res);
if (m_use_partition_function)
{
op->setPartitionId(part_id);
// If table has user defined partitioning
// and no indexes, we need to read the partition id
// to support ORDER BY queries
if (table_share->primary_key == MAX_KEY &&
get_ndb_partition_id(op))
ERR_RETURN(trans->getNdbError());
}
if ((res = execute_no_commit_ie(this,trans,FALSE)) != 0 ||
op->getNdbError().code)
2004-04-15 09:14:14 +02:00
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
// The value have now been fetched from NDB
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
/*
Read one complementing record from NDB using primary key from old_data
or hidden key
*/
int ha_ndbcluster::complemented_read(const byte *old_data, byte *new_data,
uint32 old_part_id)
{
uint no_fields= table_share->fields, i;
NdbTransaction *trans= m_active_trans;
NdbOperation *op;
DBUG_ENTER("complemented_read");
m_write_op= FALSE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if (bitmap_is_set_all(table->read_set))
{
// We have allready retrieved all fields, nothing to complement
DBUG_RETURN(0);
}
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
2004-09-07 21:53:59 +02:00
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
if (table_share->primary_key != MAX_KEY)
{
if (set_primary_key_from_record(op, old_data))
ERR_RETURN(trans->getNdbError());
}
else
{
// This table has no primary key, use "hidden" primary key
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
op->setPartitionId(old_part_id);
// Read all unreferenced non-key field(s)
for (i= 0; i < no_fields; i++)
{
Field *field= table->field[i];
if (!((field->flags & PRI_KEY_FLAG) ||
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bitmap_is_set(table->read_set, i)) &&
!bitmap_is_set(table->write_set, i))
{
if (get_ndb_value(op, field, i, new_data))
ERR_RETURN(trans->getNdbError());
}
}
if (execute_no_commit(this,trans,FALSE) != 0)
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
// The value have now been fetched from NDB
unpack_record(new_data);
table->status= 0;
/**
* restore m_value
*/
for (i= 0; i < no_fields; i++)
{
Field *field= table->field[i];
if (!((field->flags & PRI_KEY_FLAG) ||
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bitmap_is_set(table->read_set, i)))
{
m_value[i].ptr= NULL;
}
}
DBUG_RETURN(0);
}
/*
* Check that all operations between first and last all
* have gotten the errcode
* If checking for HA_ERR_KEY_NOT_FOUND then update m_dupkey
* for all succeeding operations
*/
bool ha_ndbcluster::check_all_operations_for_error(NdbTransaction *trans,
const NdbOperation *first,
const NdbOperation *last,
uint errcode)
{
const NdbOperation *op= first;
DBUG_ENTER("ha_ndbcluster::check_all_operations_for_error");
while(op)
{
NdbError err= op->getNdbError();
if (err.status != NdbError::Success)
{
if (ndb_to_mysql_error(&err) != (int) errcode)
DBUG_RETURN(FALSE);
if (op == last) break;
op= trans->getNextCompletedOperation(op);
}
else
{
// We found a duplicate
if (op->getType() == NdbOperation::UniqueIndexAccess)
{
if (errcode == HA_ERR_KEY_NOT_FOUND)
{
NdbIndexOperation *iop= (NdbIndexOperation *) op;
const NDBINDEX *index= iop->getIndex();
// Find the key_no of the index
for(uint i= 0; i<table->s->keys; i++)
{
if (m_index[i].unique_index == index)
{
m_dupkey= i;
break;
}
}
}
}
else
{
// Must have been primary key access
DBUG_ASSERT(op->getType() == NdbOperation::PrimaryKeyAccess);
if (errcode == HA_ERR_KEY_NOT_FOUND)
m_dupkey= table->s->primary_key;
}
DBUG_RETURN(FALSE);
}
}
DBUG_RETURN(TRUE);
}
/*
* Peek to check if any rows already exist with conflicting
* primary key or unique index values
*/
int ha_ndbcluster::peek_indexed_rows(const byte *record,
bool check_pk)
{
NdbTransaction *trans= m_active_trans;
NdbOperation *op;
const NdbOperation *first, *last;
uint i;
int res;
DBUG_ENTER("peek_indexed_rows");
2004-12-08 00:36:40 +01:00
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
first= NULL;
if (check_pk && table->s->primary_key != MAX_KEY)
2005-07-18 13:31:02 +02:00
{
/*
* Fetch any row with colliding primary key
*/
if (!(op= trans->getNdbOperation((const NDBTAB *) m_table)) ||
op->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
first= op;
if ((res= set_primary_key_from_record(op, record)))
ERR_RETURN(trans->getNdbError());
if (m_use_partition_function)
2005-07-18 13:31:02 +02:00
{
uint32 part_id;
int error;
longlong func_value;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
dbug_tmp_restore_column_map(table->read_set, old_map);
if (error)
{
m_part_info->err_value= func_value;
DBUG_RETURN(error);
}
op->setPartitionId(part_id);
2005-07-18 13:31:02 +02:00
}
}
/*
* Fetch any rows with colliding unique indexes
*/
KEY* key_info;
KEY_PART_INFO *key_part, *end;
for (i= 0, key_info= table->key_info; i < table->s->keys; i++, key_info++)
{
if (i != table->s->primary_key &&
key_info->flags & HA_NOSAME)
{
// A unique index is defined on table
NdbIndexOperation *iop;
const NDBINDEX *unique_index = m_index[i].unique_index;
key_part= key_info->key_part;
end= key_part + key_info->key_parts;
if (!(iop= trans->getNdbIndexOperation(unique_index, m_table)) ||
iop->readTuple(lm) != 0)
ERR_RETURN(trans->getNdbError());
2005-07-18 13:31:02 +02:00
if (!first)
first= iop;
if ((res= set_index_key_from_record(iop, record, i)))
ERR_RETURN(trans->getNdbError());
}
}
last= trans->getLastDefinedOperation();
if (first)
res= execute_no_commit_ie(this,trans,FALSE);
else
{
// Table has no keys
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
}
if (check_all_operations_for_error(trans, first, last,
HA_ERR_KEY_NOT_FOUND))
2004-12-08 00:36:40 +01:00
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
else
{
DBUG_PRINT("info", ("m_dupkey %d", m_dupkey));
}
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
/*
Read one record from NDB using unique secondary index
*/
int ha_ndbcluster::unique_index_read(const byte *key,
uint key_len, byte *buf)
2004-04-15 09:14:14 +02:00
{
2004-11-17 10:07:52 +01:00
int res;
NdbTransaction *trans= m_active_trans;
2004-04-15 09:14:14 +02:00
NdbIndexOperation *op;
DBUG_ENTER("ha_ndbcluster::unique_index_read");
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("key_len: %u, index: %u", key_len, active_index));
DBUG_DUMP("key", (char*)key, key_len);
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
if (!(op= trans->getNdbIndexOperation(m_index[active_index].unique_index,
m_table)) ||
op->readTuple(lm) != 0)
2004-04-15 09:14:14 +02:00
ERR_RETURN(trans->getNdbError());
// Set secondary index key(s)
if ((res= set_index_key(op, table->key_info + active_index, key)))
DBUG_RETURN(res);
if ((res= define_read_attrs(buf, op)))
2004-11-17 10:07:52 +01:00
DBUG_RETURN(res);
2004-04-15 09:14:14 +02:00
if (execute_no_commit_ie(this,trans,FALSE) != 0 ||
op->getNdbError().code)
2004-04-15 09:14:14 +02:00
{
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(ndb_err(trans));
}
// The value have now been fetched from NDB
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
2004-12-08 00:36:40 +01:00
inline int ha_ndbcluster::fetch_next(NdbScanOperation* cursor)
{
DBUG_ENTER("fetch_next");
int local_check;
NdbTransaction *trans= m_active_trans;
if (m_lock_tuple)
{
/*
Lock level m_lock.type either TL_WRITE_ALLOW_WRITE
(SELECT FOR UPDATE) or TL_READ_WITH_SHARED_LOCKS (SELECT
LOCK WITH SHARE MODE) and row was not explictly unlocked
with unlock_row() call
*/
NdbConnection *con_trans= m_active_trans;
NdbOperation *op;
// Lock row
DBUG_PRINT("info", ("Keeping lock on scanned row"));
if (!(op= m_active_cursor->lockCurrentTuple()))
{
/* purecov: begin inspected */
m_lock_tuple= FALSE;
ERR_RETURN(con_trans->getNdbError());
/* purecov: end */
}
m_ops_pending++;
}
m_lock_tuple= FALSE;
bool contact_ndb= m_lock.type < TL_WRITE_ALLOW_WRITE &&
m_lock.type != TL_READ_WITH_SHARED_LOCKS;;
do {
DBUG_PRINT("info", ("Call nextResult, contact_ndb: %d", contact_ndb));
2004-07-22 12:38:09 +02:00
/*
We can only handle one tuple with blobs at a time.
*/
if (m_ops_pending && m_blobs_pending)
2004-07-22 12:38:09 +02:00
{
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
m_ops_pending= 0;
m_blobs_pending= FALSE;
2004-07-22 12:38:09 +02:00
}
if ((local_check= cursor->nextResult(contact_ndb, m_force_send)) == 0)
{
/*
Explicitly lock tuple if "select for update" or
"select lock in share mode"
*/
m_lock_tuple= (m_lock.type == TL_WRITE_ALLOW_WRITE
||
m_lock.type == TL_READ_WITH_SHARED_LOCKS);
DBUG_RETURN(0);
}
else if (local_check == 1 || local_check == 2)
{
// 1: No more records
// 2: No more cached records
/*
Before fetching more rows and releasing lock(s),
all pending update or delete operations should
be sent to NDB
*/
DBUG_PRINT("info", ("ops_pending: %ld", (long) m_ops_pending));
if (m_ops_pending)
{
if (m_transaction_on)
{
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(-1);
}
else
{
if (execute_commit(this,trans) != 0)
DBUG_RETURN(-1);
if (trans->restart() != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
}
m_ops_pending= 0;
}
contact_ndb= (local_check == 2);
}
2004-12-08 00:36:40 +01:00
else
{
DBUG_RETURN(-1);
}
} while (local_check == 2);
2004-12-08 00:36:40 +01:00
DBUG_RETURN(1);
}
/*
Get the next record of a started scan. Try to fetch
it locally from NdbApi cached records if possible,
otherwise ask NDB for more.
NOTE
If this is a update/delete make sure to not contact
NDB before any pending ops have been sent to NDB.
2004-04-15 09:14:14 +02:00
*/
inline int ha_ndbcluster::next_result(byte *buf)
{
int res;
DBUG_ENTER("next_result");
if (!m_active_cursor)
DBUG_RETURN(HA_ERR_END_OF_FILE);
if ((res= fetch_next(m_active_cursor)) == 0)
{
DBUG_PRINT("info", ("One more record found"));
unpack_record(buf);
table->status= 0;
DBUG_RETURN(0);
}
else if (res == 1)
{
// No more records
table->status= STATUS_NOT_FOUND;
DBUG_PRINT("info", ("No more records"));
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else
{
DBUG_RETURN(ndb_err(m_active_trans));
}
2004-04-15 09:14:14 +02:00
}
/*
Set bounds for ordered index scan.
*/
2004-06-11 13:49:22 +02:00
int ha_ndbcluster::set_bounds(NdbIndexScanOperation *op,
uint inx,
bool rir,
const key_range *keys[2],
uint range_no)
{
const KEY *const key_info= table->key_info + inx;
const uint key_parts= key_info->key_parts;
uint key_tot_len[2];
uint tot_len;
uint i, j;
DBUG_ENTER("set_bounds");
DBUG_PRINT("info", ("key_parts=%d", key_parts));
for (j= 0; j <= 1; j++)
{
const key_range *key= keys[j];
if (key != NULL)
{
// for key->flag see ha_rkey_function
DBUG_PRINT("info", ("key %d length=%d flag=%d",
j, key->length, key->flag));
key_tot_len[j]= key->length;
}
else
{
DBUG_PRINT("info", ("key %d not present", j));
key_tot_len[j]= 0;
}
}
tot_len= 0;
2004-08-31 10:19:10 +02:00
for (i= 0; i < key_parts; i++)
{
KEY_PART_INFO *key_part= &key_info->key_part[i];
Field *field= key_part->field;
#ifndef DBUG_OFF
uint part_len= key_part->length;
#endif
uint part_store_len= key_part->store_length;
// Info about each key part
struct part_st {
bool part_last;
const key_range *key;
const byte *part_ptr;
bool part_null;
int bound_type;
const char* bound_ptr;
};
struct part_st part[2];
for (j= 0; j <= 1; j++)
{
struct part_st &p= part[j];
p.key= NULL;
p.bound_type= -1;
if (tot_len < key_tot_len[j])
{
p.part_last= (tot_len + part_store_len >= key_tot_len[j]);
p.key= keys[j];
p.part_ptr= &p.key->key[tot_len];
p.part_null= key_part->null_bit && *p.part_ptr;
p.bound_ptr= (const char *)
p.part_null ? 0 : key_part->null_bit ? p.part_ptr + 1 : p.part_ptr;
if (j == 0)
{
switch (p.key->flag)
{
case HA_READ_KEY_EXACT:
if (! rir)
p.bound_type= NdbIndexScanOperation::BoundEQ;
else // differs for records_in_range
p.bound_type= NdbIndexScanOperation::BoundLE;
break;
// ascending
case HA_READ_KEY_OR_NEXT:
p.bound_type= NdbIndexScanOperation::BoundLE;
break;
case HA_READ_AFTER_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundLE;
else
p.bound_type= NdbIndexScanOperation::BoundLT;
break;
// descending
case HA_READ_PREFIX_LAST: // weird
p.bound_type= NdbIndexScanOperation::BoundEQ;
break;
case HA_READ_PREFIX_LAST_OR_PREV: // weird
p.bound_type= NdbIndexScanOperation::BoundGE;
break;
case HA_READ_BEFORE_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundGE;
else
p.bound_type= NdbIndexScanOperation::BoundGT;
break;
default:
break;
}
}
if (j == 1) {
switch (p.key->flag)
{
// ascending
case HA_READ_BEFORE_KEY:
if (! p.part_last)
p.bound_type= NdbIndexScanOperation::BoundGE;
else
p.bound_type= NdbIndexScanOperation::BoundGT;
break;
case HA_READ_AFTER_KEY: // weird
p.bound_type= NdbIndexScanOperation::BoundGE;
break;
default:
break;
// descending strangely sets no end key
}
}
if (p.bound_type == -1)
{
DBUG_PRINT("error", ("key %d unknown flag %d", j, p.key->flag));
DBUG_ASSERT(FALSE);
// Stop setting bounds but continue with what we have
DBUG_RETURN(op->end_of_bound(range_no));
}
}
}
// Seen with e.g. b = 1 and c > 1
if (part[0].bound_type == NdbIndexScanOperation::BoundLE &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("replace LE/GE pair by EQ"));
part[0].bound_type= NdbIndexScanOperation::BoundEQ;
part[1].bound_type= -1;
}
// Not seen but was in previous version
if (part[0].bound_type == NdbIndexScanOperation::BoundEQ &&
part[1].bound_type == NdbIndexScanOperation::BoundGE &&
memcmp(part[0].part_ptr, part[1].part_ptr, part_store_len) == 0)
{
DBUG_PRINT("info", ("remove GE from EQ/GE pair"));
part[1].bound_type= -1;
}
for (j= 0; j <= 1; j++)
{
struct part_st &p= part[j];
// Set bound if not done with this key
if (p.key != NULL)
{
DBUG_PRINT("info", ("key %d:%d offset: %d length: %d last: %d bound: %d",
j, i, tot_len, part_len, p.part_last, p.bound_type));
DBUG_DUMP("info", (const char*)p.part_ptr, part_store_len);
// Set bound if not cancelled via type -1
if (p.bound_type != -1)
{
2005-01-07 11:55:20 +01:00
const char* ptr= p.bound_ptr;
char buf[256];
shrink_varchar(field, ptr, buf);
2005-01-26 13:22:07 +01:00
if (op->setBound(i, p.bound_type, ptr))
ERR_RETURN(op->getNdbError());
}
}
}
tot_len+= part_store_len;
}
DBUG_RETURN(op->end_of_bound(range_no));
}
2004-04-15 09:14:14 +02:00
/*
Start ordered index scan in NDB
2004-04-15 09:14:14 +02:00
*/
int ha_ndbcluster::ordered_index_scan(const key_range *start_key,
const key_range *end_key,
2005-07-18 13:31:02 +02:00
bool sorted, bool descending,
byte* buf, part_id_range *part_spec)
2004-04-15 09:14:14 +02:00
{
2004-11-17 10:07:52 +01:00
int res;
2004-10-05 12:17:42 +02:00
bool restart;
NdbTransaction *trans= m_active_trans;
2004-06-11 13:49:22 +02:00
NdbIndexScanOperation *op;
DBUG_ENTER("ha_ndbcluster::ordered_index_scan");
DBUG_PRINT("enter", ("index: %u, sorted: %d, descending: %d",
active_index, sorted, descending));
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("Starting new ordered scan on %s", m_tabname));
m_write_op= FALSE;
2004-07-22 12:38:09 +02:00
// Check that sorted seems to be initialised
DBUG_ASSERT(sorted == 0 || sorted == 1);
2004-04-15 09:14:14 +02:00
if (m_active_cursor == 0)
2004-10-05 12:17:42 +02:00
{
restart= FALSE;
2004-10-05 12:17:42 +02:00
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
bool need_pk = (lm == NdbOperation::LM_Read);
if (!(op= trans->getNdbIndexScanOperation(m_index[active_index].index,
m_table)) ||
op->readTuples(lm, 0, parallelism, sorted, descending, FALSE, need_pk))
2004-10-05 12:17:42 +02:00
ERR_RETURN(trans->getNdbError());
2005-07-18 13:31:02 +02:00
if (m_use_partition_function && part_spec != NULL &&
part_spec->start_part == part_spec->end_part)
op->setPartitionId(part_spec->start_part);
m_active_cursor= op;
2004-10-05 12:17:42 +02:00
} else {
restart= TRUE;
op= (NdbIndexScanOperation*)m_active_cursor;
2004-10-05 12:17:42 +02:00
2005-07-18 13:31:02 +02:00
if (m_use_partition_function && part_spec != NULL &&
part_spec->start_part == part_spec->end_part)
op->setPartitionId(part_spec->start_part);
2004-10-05 12:17:42 +02:00
DBUG_ASSERT(op->getSorted() == sorted);
DBUG_ASSERT(op->getLockMode() ==
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type));
if (op->reset_bounds(m_force_send))
2004-10-05 12:17:42 +02:00
DBUG_RETURN(ndb_err(m_active_trans));
}
{
const key_range *keys[2]= { start_key, end_key };
res= set_bounds(op, active_index, FALSE, keys);
2004-11-17 10:07:52 +01:00
if (res)
DBUG_RETURN(res);
}
if (!restart)
{
if (m_cond && m_cond->generate_scan_filter(op))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
{
DBUG_RETURN(res);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if (m_use_partition_function &&
(table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
2004-10-05 12:17:42 +02:00
}
2004-11-17 10:07:52 +01:00
if (execute_no_commit(this,trans,FALSE) != 0)
2004-11-17 10:07:52 +01:00
DBUG_RETURN(ndb_err(trans));
DBUG_RETURN(next_result(buf));
}
2004-04-15 09:14:14 +02:00
static
int
guess_scan_flags(NdbOperation::LockMode lm,
const NDBTAB* tab, const MY_BITMAP* readset)
{
int flags= 0;
flags|= (lm == NdbOperation::LM_Read) ? NdbScanOperation::SF_KeyInfo : 0;
if (tab->checkColumns(0, 0) & 2)
{
int ret = tab->checkColumns(readset->bitmap, no_bytes_in_map(readset));
if (ret & 2)
{ // If disk columns...use disk scan
flags |= NdbScanOperation::SF_DiskScan;
}
else if ((ret & 4) == 0 && (lm == NdbOperation::LM_Exclusive))
{
// If no mem column is set and exclusive...guess disk scan
flags |= NdbScanOperation::SF_DiskScan;
}
}
return flags;
}
/*
Unique index scan in NDB (full table scan with scan filter)
*/
int ha_ndbcluster::unique_index_scan(const KEY* key_info,
const byte *key,
uint key_len,
byte *buf)
{
int res;
NdbScanOperation *op;
NdbTransaction *trans= m_active_trans;
part_id_range part_spec;
DBUG_ENTER("unique_index_scan");
DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname));
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
int flags= guess_scan_flags(lm, m_table, table->read_set);
if (!(op=trans->getNdbScanOperation((const NDBTAB *) m_table)) ||
op->readTuples(lm, flags, parallelism))
ERR_RETURN(trans->getNdbError());
m_active_cursor= op;
if (m_use_partition_function)
{
part_spec.start_part= 0;
part_spec.end_part= m_part_info->get_tot_partitions() - 1;
prune_partition_set(table, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part = %u, part_spec.end_part = %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
m_active_cursor->setPartitionId(part_spec.start_part);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if ((table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
}
if (!m_cond)
m_cond= new ha_ndbcluster_cond;
if (!m_cond)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(my_errno);
}
if (m_cond->generate_scan_filter_from_key(op, key_info, key, key_len, buf))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
DBUG_RETURN(res);
if (execute_no_commit(this,trans,FALSE) != 0)
DBUG_RETURN(ndb_err(trans));
DBUG_PRINT("exit", ("Scan started successfully"));
DBUG_RETURN(next_result(buf));
}
2004-04-15 09:14:14 +02:00
/*
Start full table scan in NDB
2004-04-15 09:14:14 +02:00
*/
int ha_ndbcluster::full_table_scan(byte *buf)
{
2004-11-17 10:07:52 +01:00
int res;
2004-04-15 09:14:14 +02:00
NdbScanOperation *op;
NdbTransaction *trans= m_active_trans;
part_id_range part_spec;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("full_table_scan");
DBUG_PRINT("enter", ("Starting new scan on %s", m_tabname));
m_write_op= FALSE;
2004-04-15 09:14:14 +02:00
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
int flags= guess_scan_flags(lm, m_table, table->read_set);
if (!(op=trans->getNdbScanOperation(m_table)) ||
op->readTuples(lm, flags, parallelism))
2004-04-15 09:14:14 +02:00
ERR_RETURN(trans->getNdbError());
m_active_cursor= op;
if (m_use_partition_function)
{
part_spec.start_part= 0;
part_spec.end_part= m_part_info->get_tot_partitions() - 1;
prune_partition_set(table, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
m_active_cursor->setPartitionId(part_spec.start_part);
}
// If table has user defined partitioning
// and no primary key, we need to read the partition id
// to support ORDER BY queries
if ((table_share->primary_key == MAX_KEY) &&
(get_ndb_partition_id(op)))
ERR_RETURN(trans->getNdbError());
}
if (m_cond && m_cond->generate_scan_filter(op))
DBUG_RETURN(ndb_err(trans));
if ((res= define_read_attrs(buf, op)))
2004-11-17 10:07:52 +01:00
DBUG_RETURN(res);
if (execute_no_commit(this,trans,FALSE) != 0)
2004-11-17 10:07:52 +01:00
DBUG_RETURN(ndb_err(trans));
DBUG_PRINT("exit", ("Scan started successfully"));
DBUG_RETURN(next_result(buf));
}
2004-04-15 09:14:14 +02:00
/*
Insert one record into NDB
*/
int ha_ndbcluster::write_row(byte *record)
{
2004-08-11 15:06:17 +02:00
bool has_auto_increment;
2004-04-15 09:14:14 +02:00
uint i;
NdbTransaction *trans= m_active_trans;
2004-04-15 09:14:14 +02:00
NdbOperation *op;
int res;
THD *thd= table->in_use;
longlong func_value= 0;
DBUG_ENTER("ha_ndbcluster::write_row");
m_write_op= TRUE;
has_auto_increment= (table->next_number_field && record == table->record[0]);
if (table_share->primary_key != MAX_KEY)
{
/*
* Increase any auto_incremented primary key
*/
if (has_auto_increment)
{
int error;
m_skip_auto_increment= FALSE;
if ((error= update_auto_increment()))
DBUG_RETURN(error);
WL#3146 "less locking in auto_increment": this is a cleanup patch for our current auto_increment handling: new names for auto_increment variables in THD, new methods to manipulate them (see sql_class.h), some move into handler::, causing less backup/restore work when executing substatements. This makes the logic hopefully clearer, less work is is needed in mysql_insert(). By cleaning up, using different variables for different purposes (instead of one for 3 things...), we fix those bugs, which someone may want to fix in 5.0 too: BUG#20339 "stored procedure using LAST_INSERT_ID() does not replicate statement-based" BUG#20341 "stored function inserting into one auto_increment puts bad data in slave" BUG#19243 "wrong LAST_INSERT_ID() after ON DUPLICATE KEY UPDATE" (now if a row is updated, LAST_INSERT_ID() will return its id) and re-fixes: BUG#6880 "LAST_INSERT_ID() value changes during multi-row INSERT" (already fixed differently by Ramil in 4.1) Test of documented behaviour of mysql_insert_id() (there was no test). The behaviour changes introduced are: - LAST_INSERT_ID() now returns "the first autogenerated auto_increment value successfully inserted", instead of "the first autogenerated auto_increment value if any row was successfully inserted", see auto_increment.test. Same for mysql_insert_id(), see mysql_client_test.c. - LAST_INSERT_ID() returns the id of the updated row if ON DUPLICATE KEY UPDATE, see auto_increment.test. Same for mysql_insert_id(), see mysql_client_test.c. - LAST_INSERT_ID() does not change if no autogenerated value was successfully inserted (it used to then be 0), see auto_increment.test. - if in INSERT SELECT no autogenerated value was successfully inserted, mysql_insert_id() now returns the id of the last inserted row (it already did this for INSERT VALUES), see mysql_client_test.c. - if INSERT SELECT uses LAST_INSERT_ID(X), mysql_insert_id() now returns X (it already did this for INSERT VALUES), see mysql_client_test.c. - NDB now behaves like other engines wrt SET INSERT_ID: with INSERT IGNORE, the id passed in SET INSERT_ID is re-used until a row succeeds; SET INSERT_ID influences not only the first row now. Additionally, when unlocking a table we check that the thread is not keeping a next_insert_id (as the table is unlocked that id is potentially out-of-date); forgetting about this next_insert_id is done in a new handler::ha_release_auto_increment(). Finally we prepare for engines capable of reserving finite-length intervals of auto_increment values: we store such intervals in THD. The next step (to be done by the replication team in 5.1) is to read those intervals from THD and actually store them in the statement-based binary log. NDB will be a good engine to test that.
2006-07-09 17:52:19 +02:00
m_skip_auto_increment= (insert_id_for_cur_row == 0);
}
}
/*
* If IGNORE the ignore constraint violations on primary and unique keys
*/
if (!m_use_write && m_ignore_dup_key)
{
/*
compare if expression with that in start_bulk_insert()
start_bulk_insert will set parameters to ensure that each
write_row is committed individually
*/
int peek_res= peek_indexed_rows(record, TRUE);
if (!peek_res)
{
DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);
}
if (peek_res != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(peek_res);
}
2004-09-14 22:02:23 +03:00
statistic_increment(thd->status_var.ha_write_count, &LOCK_status);
2004-10-03 22:27:04 +00:00
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
2004-04-15 09:14:14 +02:00
if (!(op= trans->getNdbOperation(m_table)))
2004-04-15 09:14:14 +02:00
ERR_RETURN(trans->getNdbError());
res= (m_use_write) ? op->writeTuple() :op->insertTuple();
if (res != 0)
ERR_RETURN(trans->getNdbError());
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
{
uint32 part_id;
int error;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value);
dbug_tmp_restore_column_map(table->read_set, old_map);
if (error)
{
m_part_info->err_value= func_value;
2005-07-18 13:31:02 +02:00
DBUG_RETURN(error);
}
2005-07-18 13:31:02 +02:00
op->setPartitionId(part_id);
}
if (table_share->primary_key == MAX_KEY)
2004-04-15 09:14:14 +02:00
{
// Table has hidden primary key
Ndb *ndb= get_ndb();
int ret;
Uint64 auto_value;
uint retries= NDB_AUTO_INCREMENT_RETRIES;
do {
Ndb_tuple_id_range_guard g(m_share);
ret= ndb->getAutoIncrementValue(m_table, g.range, auto_value, 1);
} while (ret == -1 &&
--retries &&
ndb->getNdbError().status == NdbError::TemporaryError);
if (ret == -1)
ERR_RETURN(ndb->getNdbError());
if (set_hidden_key(op, table_share->fields, (const byte*)&auto_value))
2004-04-15 09:14:14 +02:00
ERR_RETURN(op->getNdbError());
}
else
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
int error;
if ((error= set_primary_key_from_record(op, record)))
DBUG_RETURN(error);
2004-04-15 09:14:14 +02:00
}
// Set non-key attribute(s)
bool set_blob_value= FALSE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
for (i= 0; i < table_share->fields; i++)
2004-04-15 09:14:14 +02:00
{
Field *field= table->field[i];
if (!(field->flags & PRI_KEY_FLAG) &&
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
(bitmap_is_set(table->write_set, i) || !m_use_write) &&
set_ndb_value(op, field, i, record-table->record[0], &set_blob_value))
2004-08-13 13:51:18 +02:00
{
m_skip_auto_increment= TRUE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
dbug_tmp_restore_column_map(table->read_set, old_map);
2004-04-15 09:14:14 +02:00
ERR_RETURN(op->getNdbError());
2004-08-13 13:51:18 +02:00
}
2004-04-15 09:14:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
dbug_tmp_restore_column_map(table->read_set, old_map);
2004-04-15 09:14:14 +02:00
if (m_use_partition_function)
{
/*
We need to set the value of the partition function value in
NDB since the NDB kernel doesn't have easy access to the function
to calculate the value.
*/
if (func_value >= INT_MAX32)
func_value= INT_MAX32;
uint32 part_func_value= (uint32)func_value;
uint no_fields= table_share->fields;
if (table_share->primary_key == MAX_KEY)
no_fields++;
op->setValue(no_fields, part_func_value);
}
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
m_rows_changed++;
2004-04-15 09:14:14 +02:00
/*
Execute write operation
NOTE When doing inserts with many values in
each INSERT statement it should not be necessary
to NoCommit the transaction between each row.
Find out how this is detected!
*/
m_rows_inserted++;
no_uncommitted_rows_update(1);
m_bulk_insert_not_flushed= TRUE;
if ((m_rows_to_insert == (ha_rows) 1) ||
((m_rows_inserted % m_bulk_insert_rows) == 0) ||
m_primary_key_update ||
set_blob_value)
{
// Send rows to NDB
DBUG_PRINT("info", ("Sending inserts to NDB, "\
"rows_inserted: %d bulk_insert_rows: %d",
(int)m_rows_inserted, (int)m_bulk_insert_rows));
m_bulk_insert_not_flushed= FALSE;
if (m_transaction_on)
2004-08-13 13:51:18 +02:00
{
if (execute_no_commit(this,trans,FALSE) != 0)
{
m_skip_auto_increment= TRUE;
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
}
else
2004-08-13 13:51:18 +02:00
{
2004-09-28 19:11:50 +00:00
if (execute_commit(this,trans) != 0)
{
m_skip_auto_increment= TRUE;
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
if (trans->restart() != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
2004-08-13 13:51:18 +02:00
}
}
if ((has_auto_increment) && (m_skip_auto_increment))
2004-08-10 14:38:24 +02:00
{
Ndb *ndb= get_ndb();
Uint64 next_val= (Uint64) table->next_number_field->val_int() + 1;
2007-02-27 11:27:04 +02:00
#ifndef DBUG_OFF
char buff[22];
2004-08-10 14:38:24 +02:00
DBUG_PRINT("info",
("Trying to set next auto increment value to %s",
llstr(next_val, buff)));
2007-02-27 11:27:04 +02:00
#endif
Ndb_tuple_id_range_guard g(m_share);
if (ndb->setAutoIncrementValue(m_table, g.range, next_val, TRUE)
== -1)
ERR_RETURN(ndb->getNdbError());
}
m_skip_auto_increment= TRUE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_PRINT("exit",("ok"));
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
/* Compare if a key in a row has changed */
int ha_ndbcluster::key_cmp(uint keynr, const byte * old_row,
const byte * new_row)
2004-04-15 09:14:14 +02:00
{
KEY_PART_INFO *key_part=table->key_info[keynr].key_part;
KEY_PART_INFO *end=key_part+table->key_info[keynr].key_parts;
for (; key_part != end ; key_part++)
{
if (key_part->null_bit)
{
if ((old_row[key_part->null_offset] & key_part->null_bit) !=
(new_row[key_part->null_offset] & key_part->null_bit))
return 1;
2004-04-15 09:14:14 +02:00
}
if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART))
2004-04-15 09:14:14 +02:00
{
if (key_part->field->cmp_binary((char*) (old_row + key_part->offset),
(char*) (new_row + key_part->offset),
(ulong) key_part->length))
return 1;
2004-04-15 09:14:14 +02:00
}
else
{
if (memcmp(old_row+key_part->offset, new_row+key_part->offset,
key_part->length))
return 1;
2004-04-15 09:14:14 +02:00
}
}
return 0;
}
/*
Update one record in NDB using primary key
*/
int ha_ndbcluster::update_row(const byte *old_data, byte *new_data)
{
Fixed compiler warnings Fixed compile-pentium64 scripts Fixed wrong estimate of update_with_key_prefix in sql-bench Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1 Fixed unsafe define of uint4korr() Fixed that --extern works with mysql-test-run.pl Small trivial cleanups This also fixes a bug in counting number of rows that are updated when we have many simultanous queries Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc Split handle_one_connection() into reusable sub functions. Split create_new_thread() into reusable sub functions. Added thread_scheduler; Preliminary interface code for future thread_handling code. Use 'my_thread_id' for internal thread id's Make thr_alarm_kill() to depend on thread_id instead of thread Make thr_abort_locks_for_thread() depend on thread_id instead of thread In store_globals(), set my_thread_var->id to be thd->thread_id. Use my_thread_var->id as basis for my_thread_name() The above changes makes the connection we have between THD and threads more soft. Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions Fixed compiler warnings Fixed core dumps when running with --debug Removed setting of signal masks (was never used) Made event code call pthread_exit() (portability fix) Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called. Made handling of thread_id and thd->variables.pseudo_thread_id uniform. Removed one common 'not freed memory' warning from mysqltest Fixed a couple of usage of not initialized warnings (unlikely cases) Suppress compiler warnings from bdb and (for the moment) warnings from ndb
2007-02-23 13:13:55 +02:00
THD *thd= table->in_use;
NdbTransaction *trans= m_active_trans;
NdbScanOperation* cursor= m_active_cursor;
2004-04-15 09:14:14 +02:00
NdbOperation *op;
uint i;
2005-07-18 13:31:02 +02:00
uint32 old_part_id= 0, new_part_id= 0;
int error;
longlong func_value;
bool pk_update= (table_share->primary_key != MAX_KEY &&
key_cmp(table_share->primary_key, old_data, new_data));
2004-04-15 09:14:14 +02:00
DBUG_ENTER("update_row");
m_write_op= TRUE;
2004-04-15 09:14:14 +02:00
/*
* If IGNORE the ignore constraint violations on primary and unique keys,
* but check that it is not part of INSERT ... ON DUPLICATE KEY UPDATE
*/
if (m_ignore_dup_key && thd->lex->sql_command == SQLCOM_UPDATE)
{
int peek_res= peek_indexed_rows(new_data, pk_update);
if (!peek_res)
{
DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);
}
if (peek_res != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(peek_res);
}
2004-09-14 22:02:23 +03:00
statistic_increment(thd->status_var.ha_update_count, &LOCK_status);
2004-10-03 22:27:04 +00:00
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
{
2004-10-03 22:27:04 +00:00
table->timestamp_field->set_time();
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
bitmap_set_bit(table->write_set, table->timestamp_field->field_index);
}
2004-10-03 22:27:04 +00:00
2005-07-18 13:31:02 +02:00
if (m_use_partition_function &&
(error= get_parts_for_update(old_data, new_data, table->record[0],
m_part_info, &old_part_id, &new_part_id,
&func_value)))
2005-07-18 13:31:02 +02:00
{
m_part_info->err_value= func_value;
2005-07-18 13:31:02 +02:00
DBUG_RETURN(error);
}
/*
* Check for update of primary key or partition change
* for special handling
*/
if (pk_update || old_part_id != new_part_id)
{
int read_res, insert_res, delete_res, undo_res;
DBUG_PRINT("info", ("primary key update or partition change, "
"doing read+delete+insert"));
// Get all old fields, since we optimize away fields not in query
read_res= complemented_read(old_data, new_data, old_part_id);
if (read_res)
{
DBUG_PRINT("info", ("read failed"));
DBUG_RETURN(read_res);
}
// Delete old row
m_primary_key_update= TRUE;
delete_res= delete_row(old_data);
m_primary_key_update= FALSE;
if (delete_res)
{
DBUG_PRINT("info", ("delete failed"));
DBUG_RETURN(delete_res);
}
// Insert new row
DBUG_PRINT("info", ("delete succeded"));
m_primary_key_update= TRUE;
insert_res= write_row(new_data);
m_primary_key_update= FALSE;
if (insert_res)
{
DBUG_PRINT("info", ("insert failed"));
if (trans->commitStatus() == NdbConnection::Started)
{
// Undo delete_row(old_data)
m_primary_key_update= TRUE;
undo_res= write_row((byte *)old_data);
if (undo_res)
push_warning(current_thd,
MYSQL_ERROR::WARN_LEVEL_WARN,
undo_res,
"NDB failed undoing delete at primary key update");
m_primary_key_update= FALSE;
}
DBUG_RETURN(insert_res);
}
DBUG_PRINT("info", ("delete+insert succeeded"));
DBUG_RETURN(0);
}
if (cursor)
2004-04-15 09:14:14 +02:00
{
/*
We are scanning records and want to update the record
that was just found, call updateTuple on the cursor
to take over the lock to a new update operation
And thus setting the primary key of the record from
the active record in cursor
*/
DBUG_PRINT("info", ("Calling updateTuple on cursor"));
if (!(op= cursor->updateCurrentTuple()))
ERR_RETURN(trans->getNdbError());
m_lock_tuple= FALSE;
m_ops_pending++;
if (uses_blob_value())
m_blobs_pending= TRUE;
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
cursor->setPartitionId(new_part_id);
}
else
{
if (!(op= trans->getNdbOperation(m_table)) ||
op->updateTuple() != 0)
ERR_RETURN(trans->getNdbError());
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
op->setPartitionId(new_part_id);
if (table_share->primary_key == MAX_KEY)
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
// Require that the PK for this record has previously been
// read into m_ref
DBUG_DUMP("key", m_ref, NDB_HIDDEN_PRIMARY_KEY_LENGTH);
2006-02-10 17:59:53 +01:00
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
else
{
int res;
if ((res= set_primary_key_from_record(op, old_data)))
DBUG_RETURN(res);
}
2004-04-15 09:14:14 +02:00
}
m_rows_changed++;
2004-04-15 09:14:14 +02:00
// Set non-key attribute(s)
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
for (i= 0; i < table_share->fields; i++)
2004-04-15 09:14:14 +02:00
{
Field *field= table->field[i];
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if (bitmap_is_set(table->write_set, i) &&
2004-04-15 09:14:14 +02:00
(!(field->flags & PRI_KEY_FLAG)) &&
set_ndb_value(op, field, i, new_data - table->record[0]))
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
{
dbug_tmp_restore_column_map(table->read_set, old_map);
2004-04-15 09:14:14 +02:00
ERR_RETURN(op->getNdbError());
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
}
2004-04-15 09:14:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
dbug_tmp_restore_column_map(table->read_set, old_map);
if (m_use_partition_function)
{
if (func_value >= INT_MAX32)
func_value= INT_MAX32;
uint32 part_func_value= (uint32)func_value;
uint no_fields= table_share->fields;
if (table_share->primary_key == MAX_KEY)
no_fields++;
op->setValue(no_fields, part_func_value);
}
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
/*
Execute update operation if we are not doing a scan for update
and there exist UPDATE AFTER triggers
*/
if ((!cursor || m_update_cannot_batch) &&
execute_no_commit(this,trans,false) != 0) {
no_uncommitted_rows_execute_failure();
2004-04-15 09:14:14 +02:00
DBUG_RETURN(ndb_err(trans));
}
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
/*
Delete one record from NDB, using primary key
*/
int ha_ndbcluster::delete_row(const byte *record)
{
Fixed compiler warnings Fixed compile-pentium64 scripts Fixed wrong estimate of update_with_key_prefix in sql-bench Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1 Fixed unsafe define of uint4korr() Fixed that --extern works with mysql-test-run.pl Small trivial cleanups This also fixes a bug in counting number of rows that are updated when we have many simultanous queries Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc Split handle_one_connection() into reusable sub functions. Split create_new_thread() into reusable sub functions. Added thread_scheduler; Preliminary interface code for future thread_handling code. Use 'my_thread_id' for internal thread id's Make thr_alarm_kill() to depend on thread_id instead of thread Make thr_abort_locks_for_thread() depend on thread_id instead of thread In store_globals(), set my_thread_var->id to be thd->thread_id. Use my_thread_var->id as basis for my_thread_name() The above changes makes the connection we have between THD and threads more soft. Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions Fixed compiler warnings Fixed core dumps when running with --debug Removed setting of signal masks (was never used) Made event code call pthread_exit() (portability fix) Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called. Made handling of thread_id and thd->variables.pseudo_thread_id uniform. Removed one common 'not freed memory' warning from mysqltest Fixed a couple of usage of not initialized warnings (unlikely cases) Suppress compiler warnings from bdb and (for the moment) warnings from ndb
2007-02-23 13:13:55 +02:00
THD *thd= table->in_use;
NdbTransaction *trans= m_active_trans;
NdbScanOperation* cursor= m_active_cursor;
2004-04-15 09:14:14 +02:00
NdbOperation *op;
2005-07-18 13:31:02 +02:00
uint32 part_id;
int error;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("delete_row");
m_write_op= TRUE;
2004-04-15 09:14:14 +02:00
2004-09-14 22:02:23 +03:00
statistic_increment(thd->status_var.ha_delete_count,&LOCK_status);
m_rows_changed++;
2004-04-15 09:14:14 +02:00
2005-07-18 13:31:02 +02:00
if (m_use_partition_function &&
(error= get_part_for_delete(record, table->record[0], m_part_info,
&part_id)))
{
DBUG_RETURN(error);
}
if (cursor)
2004-04-15 09:14:14 +02:00
{
/*
We are scanning records and want to delete the record
that was just found, call deleteTuple on the cursor
to take over the lock to a new delete operation
And thus setting the primary key of the record from
the active record in cursor
*/
DBUG_PRINT("info", ("Calling deleteTuple on cursor"));
if (cursor->deleteCurrentTuple() != 0)
ERR_RETURN(trans->getNdbError());
m_lock_tuple= FALSE;
m_ops_pending++;
2004-04-15 09:14:14 +02:00
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
cursor->setPartitionId(part_id);
no_uncommitted_rows_update(-1);
if (thd->slave_thread)
((NdbOperation *)trans->getLastDefinedOperation())->setAnyValue(thd->server_id);
if (!(m_primary_key_update || m_delete_cannot_batch))
// If deleting from cursor, NoCommit will be handled in next_result
DBUG_RETURN(0);
}
else
2004-04-15 09:14:14 +02:00
{
if (!(op=trans->getNdbOperation(m_table)) ||
op->deleteTuple() != 0)
ERR_RETURN(trans->getNdbError());
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
op->setPartitionId(part_id);
no_uncommitted_rows_update(-1);
if (table_share->primary_key == MAX_KEY)
{
// This table has no primary key, use "hidden" primary key
DBUG_PRINT("info", ("Using hidden key"));
2006-02-10 17:59:53 +01:00
if (set_hidden_key(op, table->s->fields, m_ref))
ERR_RETURN(op->getNdbError());
}
else
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if ((error= set_primary_key_from_record(op, record)))
DBUG_RETURN(error);
}
if (thd->slave_thread)
op->setAnyValue(thd->server_id);
2004-04-15 09:14:14 +02:00
}
2004-04-15 09:14:14 +02:00
// Execute delete operation
if (execute_no_commit(this,trans,FALSE) != 0) {
no_uncommitted_rows_execute_failure();
2004-04-15 09:14:14 +02:00
DBUG_RETURN(ndb_err(trans));
}
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
/*
Unpack a record read from NDB
SYNOPSIS
unpack_record()
buf Buffer to store read row
2004-04-15 09:14:14 +02:00
NOTE
The data for each row is read directly into the
destination buffer. This function is primarily
called in order to check if any fields should be
set to null.
*/
2006-01-12 19:51:02 +01:00
void ndb_unpack_record(TABLE *table, NdbValue *value,
MY_BITMAP *defined, byte *buf)
2004-04-15 09:14:14 +02:00
{
Field **p_field= table->field, *field= *p_field;
my_ptrdiff_t row_offset= (my_ptrdiff_t) (buf - table->record[0]);
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
DBUG_ENTER("ndb_unpack_record");
/*
Set the filler bits of the null byte, since they are
not touched in the code below.
The filler bits are the MSBs in the last null byte
*/
if (table->s->null_bytes > 0)
buf[table->s->null_bytes - 1]|= 256U - (1U <<
table->s->last_null_bit_pos);
/*
Set null flag(s)
*/
for ( ; field;
p_field++, value++, field= *p_field)
2004-04-15 09:14:14 +02:00
{
field->set_notnull(row_offset);
2004-07-22 12:38:09 +02:00
if ((*value).ptr)
{
if (!(field->flags & BLOB_FLAG))
2004-07-22 12:38:09 +02:00
{
int is_null= (*value).rec->isNULL();
if (is_null)
2004-12-23 15:28:41 +01:00
{
if (is_null > 0)
{
DBUG_PRINT("info",("[%u] NULL",
(*value).rec->getColumn()->getColumnNo()));
field->set_null(row_offset);
}
else
{
DBUG_PRINT("info",("[%u] UNDEFINED",
(*value).rec->getColumn()->getColumnNo()));
bitmap_clear_bit(defined,
(*value).rec->getColumn()->getColumnNo());
}
}
else if (field->type() == MYSQL_TYPE_BIT)
{
Field_bit *field_bit= static_cast<Field_bit*>(field);
/*
Move internal field pointer to point to 'buf'. Calling
the correct member function directly since we know the
type of the object.
*/
field_bit->Field_bit::move_field_offset(row_offset);
if (field->pack_length() < 5)
2004-12-23 15:28:41 +01:00
{
DBUG_PRINT("info", ("bit field H'%.8X",
(*value).rec->u_32_value()));
field_bit->Field_bit::store((longlong) (*value).rec->u_32_value(),
FALSE);
2004-12-23 15:28:41 +01:00
}
else
{
DBUG_PRINT("info", ("bit field H'%.8X%.8X",
*(Uint32 *)(*value).rec->aRef(),
*((Uint32 *)(*value).rec->aRef()+1)));
#ifdef WORDS_BIGENDIAN
/* lsw is stored first */
Uint32 *buf= (Uint32 *)(*value).rec->aRef();
2007-03-26 21:10:34 +02:00
field_bit->Field_bit::store((((longlong)*buf)
& 0x000000000FFFFFFFF)
|
((((longlong)*(buf+1)) << 32)
& 0xFFFFFFFF00000000),
TRUE);
#else
2007-03-26 21:10:34 +02:00
field_bit->Field_bit::store((longlong)
(*value).rec->u_64_value(), TRUE);
#endif
}
/*
Move back internal field pointer to point to original
value (usually record[0]).
*/
field_bit->Field_bit::move_field_offset(-row_offset);
DBUG_PRINT("info",("[%u] SET",
(*value).rec->getColumn()->getColumnNo()));
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_DUMP("info", (const char*) field->ptr, field->pack_length());
}
else
{
DBUG_PRINT("info",("[%u] SET",
(*value).rec->getColumn()->getColumnNo()));
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_DUMP("info", (const char*) field->ptr, field->pack_length());
2004-12-23 15:28:41 +01:00
}
2004-07-22 12:38:09 +02:00
}
else
{
NdbBlob *ndb_blob= (*value).blob;
2006-01-27 20:27:10 +01:00
uint col_no = ndb_blob->getColumn()->getColumnNo();
int isNull;
ndb_blob->getDefined(isNull);
2006-01-27 20:27:10 +01:00
if (isNull == 1)
{
DBUG_PRINT("info",("[%u] NULL", col_no));
2006-01-27 20:27:10 +01:00
field->set_null(row_offset);
}
else if (isNull == -1)
{
DBUG_PRINT("info",("[%u] UNDEFINED", col_no));
bitmap_clear_bit(defined, col_no);
}
else
{
#ifndef DBUG_OFF
// pointer vas set in get_ndb_blobs_value
Field_blob *field_blob= (Field_blob*)field;
char* ptr;
field_blob->get_ptr(&ptr, row_offset);
uint32 len= field_blob->get_length(row_offset);
DBUG_PRINT("info",("[%u] SET ptr: 0x%lx len: %u",
col_no, (long) ptr, len));
2006-01-27 20:27:10 +01:00
#endif
}
2004-07-22 12:38:09 +02:00
}
}
2004-04-15 09:14:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
dbug_tmp_restore_column_map(table->write_set, old_map);
DBUG_VOID_RETURN;
}
void ha_ndbcluster::unpack_record(byte *buf)
{
ndb_unpack_record(table, m_value, 0, buf);
2004-04-15 09:14:14 +02:00
#ifndef DBUG_OFF
// Read and print all values that was fetched
if (table_share->primary_key == MAX_KEY)
2004-04-15 09:14:14 +02:00
{
// Table with hidden primary key
int hidden_no= table_share->fields;
const NDBTAB *tab= m_table;
2006-06-30 04:10:27 +03:00
char buff[22];
2004-04-15 09:14:14 +02:00
const NDBCOL *hidden_col= tab->getColumn(hidden_no);
const NdbRecAttr* rec= m_value[hidden_no].rec;
2004-04-15 09:14:14 +02:00
DBUG_ASSERT(rec);
DBUG_PRINT("hidden", ("%d: %s \"%s\"", hidden_no,
hidden_col->getName(),
2006-06-30 04:10:27 +03:00
llstr(rec->u_64_value(), buff)));
}
//DBUG_EXECUTE("value", print_results(););
2004-04-15 09:14:14 +02:00
#endif
}
/*
Utility function to print/dump the fetched field
to avoid unnecessary work, wrap in DBUG_EXECUTE as in:
DBUG_EXECUTE("value", print_results(););
2004-04-15 09:14:14 +02:00
*/
void ha_ndbcluster::print_results()
{
DBUG_ENTER("print_results");
#ifndef DBUG_OFF
2005-02-11 22:33:52 +01:00
char buf_type[MAX_FIELD_WIDTH], buf_val[MAX_FIELD_WIDTH];
2005-02-11 22:33:52 +01:00
String type(buf_type, sizeof(buf_type), &my_charset_bin);
String val(buf_val, sizeof(buf_val), &my_charset_bin);
for (uint f= 0; f < table_share->fields; f++)
2004-04-15 09:14:14 +02:00
{
2005-02-11 22:33:52 +01:00
/* Use DBUG_PRINT since DBUG_FILE cannot be filtered out */
char buf[2000];
2004-04-15 09:14:14 +02:00
Field *field;
void* ptr;
2004-07-22 12:38:09 +02:00
NdbValue value;
2004-04-15 09:14:14 +02:00
buf[0]= 0;
2005-02-11 22:33:52 +01:00
field= table->field[f];
2004-07-22 12:38:09 +02:00
if (!(value= m_value[f]).ptr)
2004-04-15 09:14:14 +02:00
{
strmov(buf, "not read");
goto print_value;
2004-04-15 09:14:14 +02:00
}
ptr= field->ptr;
2004-07-22 12:38:09 +02:00
if (! (field->flags & BLOB_FLAG))
2004-04-15 09:14:14 +02:00
{
2004-07-22 12:38:09 +02:00
if (value.rec->isNULL())
{
strmov(buf, "NULL");
goto print_value;
2004-07-22 12:38:09 +02:00
}
type.length(0);
val.length(0);
field->sql_type(type);
field->val_str(&val);
my_snprintf(buf, sizeof(buf), "%s %s", type.c_ptr(), val.c_ptr());
2004-07-22 12:38:09 +02:00
}
else
{
NdbBlob *ndb_blob= value.blob;
bool isNull= TRUE;
2004-07-22 12:38:09 +02:00
ndb_blob->getNull(isNull);
if (isNull)
strmov(buf, "NULL");
2004-04-15 09:14:14 +02:00
}
2005-02-11 22:33:52 +01:00
print_value:
2005-02-11 22:33:52 +01:00
DBUG_PRINT("value", ("%u,%s: %s", f, field->field_name, buf));
2004-04-15 09:14:14 +02:00
}
#endif
DBUG_VOID_RETURN;
}
2005-07-18 13:31:02 +02:00
int ha_ndbcluster::index_init(uint index, bool sorted)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("ha_ndbcluster::index_init");
2005-07-18 13:31:02 +02:00
DBUG_PRINT("enter", ("index: %u sorted: %d", index, sorted));
active_index= index;
m_sorted= sorted;
/*
Locks are are explicitly released in scan
unless m_lock.type == TL_READ_HIGH_PRIORITY
and no sub-sequent call to unlock_row()
*/
m_lock_tuple= FALSE;
2005-07-18 13:31:02 +02:00
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_end()
{
DBUG_ENTER("ha_ndbcluster::index_end");
DBUG_RETURN(close_scan());
2004-04-15 09:14:14 +02:00
}
/**
* Check if key contains null
*/
static
int
check_null_in_key(const KEY* key_info, const byte *key, uint key_len)
{
KEY_PART_INFO *curr_part, *end_part;
const byte* end_ptr= key + key_len;
curr_part= key_info->key_part;
end_part= curr_part + key_info->key_parts;
for (; curr_part != end_part && key < end_ptr; curr_part++)
{
if (curr_part->null_bit && *key)
return 1;
key += curr_part->store_length;
}
return 0;
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::index_read(byte *buf,
const byte *key, uint key_len,
enum ha_rkey_function find_flag)
2004-04-15 09:14:14 +02:00
{
2005-07-18 13:31:02 +02:00
key_range start_key;
bool descending= FALSE;
DBUG_ENTER("ha_ndbcluster::index_read");
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("active_index: %u, key_len: %u, find_flag: %d",
active_index, key_len, find_flag));
start_key.key= key;
start_key.length= key_len;
start_key.flag= find_flag;
2005-07-18 13:31:02 +02:00
descending= FALSE;
switch (find_flag) {
case HA_READ_KEY_OR_PREV:
case HA_READ_BEFORE_KEY:
case HA_READ_PREFIX_LAST:
case HA_READ_PREFIX_LAST_OR_PREV:
descending= TRUE;
break;
default:
break;
}
2005-07-18 13:31:02 +02:00
DBUG_RETURN(read_range_first_to_buf(&start_key, 0, descending,
m_sorted, buf));
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_next(byte *buf)
{
DBUG_ENTER("ha_ndbcluster::index_next");
2004-09-14 22:02:23 +03:00
statistic_increment(current_thd->status_var.ha_read_next_count,
&LOCK_status);
DBUG_RETURN(next_result(buf));
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_prev(byte *buf)
{
DBUG_ENTER("ha_ndbcluster::index_prev");
2004-09-14 22:02:23 +03:00
statistic_increment(current_thd->status_var.ha_read_prev_count,
&LOCK_status);
DBUG_RETURN(next_result(buf));
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_first(byte *buf)
{
DBUG_ENTER("ha_ndbcluster::index_first");
2004-09-14 22:02:23 +03:00
statistic_increment(current_thd->status_var.ha_read_first_count,
&LOCK_status);
// Start the ordered index scan and fetch the first row
// Only HA_READ_ORDER indexes get called by index_first
2005-07-18 13:31:02 +02:00
DBUG_RETURN(ordered_index_scan(0, 0, TRUE, FALSE, buf, NULL));
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_last(byte *buf)
{
DBUG_ENTER("ha_ndbcluster::index_last");
statistic_increment(current_thd->status_var.ha_read_last_count,&LOCK_status);
2005-07-18 13:31:02 +02:00
DBUG_RETURN(ordered_index_scan(0, 0, TRUE, TRUE, buf, NULL));
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::index_read_last(byte * buf, const byte * key, uint key_len)
{
DBUG_ENTER("ha_ndbcluster::index_read_last");
DBUG_RETURN(index_read(buf, key, key_len, HA_READ_PREFIX_LAST));
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::read_range_first_to_buf(const key_range *start_key,
const key_range *end_key,
2005-07-18 13:31:02 +02:00
bool desc, bool sorted,
byte* buf)
{
2005-07-18 13:31:02 +02:00
part_id_range part_spec;
ndb_index_type type= get_index_type(active_index);
const KEY* key_info= table->key_info+active_index;
int error;
DBUG_ENTER("ha_ndbcluster::read_range_first_to_buf");
2005-07-18 13:31:02 +02:00
DBUG_PRINT("info", ("desc: %d, sorted: %d", desc, sorted));
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
{
get_partition_set(table, buf, active_index, start_key, &part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can return HA_ERR_END_OF_FILE
If partition pruning has found exactly one partition in set
we can optimize scan to run towards that partition only.
*/
2005-07-18 13:31:02 +02:00
if (part_spec.start_part > part_spec.end_part)
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
else if (part_spec.start_part == part_spec.end_part)
{
/*
Only one partition is required to scan, if sorted is required we
don't need it any more since output from one ordered partitioned
index is always sorted.
*/
sorted= FALSE;
}
}
2005-07-18 13:31:02 +02:00
m_write_op= FALSE;
switch (type){
case PRIMARY_KEY_ORDERED_INDEX:
case PRIMARY_KEY_INDEX:
if (start_key &&
start_key->length == key_info->key_length &&
start_key->flag == HA_READ_KEY_EXACT)
{
if (m_active_cursor && (error= close_scan()))
DBUG_RETURN(error);
error= pk_read(start_key->key, start_key->length, buf,
part_spec.start_part);
DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error);
}
break;
case UNIQUE_ORDERED_INDEX:
case UNIQUE_INDEX:
if (start_key && start_key->length == key_info->key_length &&
start_key->flag == HA_READ_KEY_EXACT &&
!check_null_in_key(key_info, start_key->key, start_key->length))
{
if (m_active_cursor && (error= close_scan()))
DBUG_RETURN(error);
error= unique_index_read(start_key->key, start_key->length, buf);
DBUG_RETURN(error == HA_ERR_KEY_NOT_FOUND ? HA_ERR_END_OF_FILE : error);
}
else if (type == UNIQUE_INDEX)
DBUG_RETURN(unique_index_scan(key_info,
start_key->key,
start_key->length,
buf));
break;
default:
break;
}
// Start the ordered index scan and fetch the first row
2005-07-18 13:31:02 +02:00
DBUG_RETURN(ordered_index_scan(start_key, end_key, sorted, desc, buf,
&part_spec));
}
2004-10-21 12:39:08 +02:00
int ha_ndbcluster::read_range_first(const key_range *start_key,
const key_range *end_key,
bool eq_r, bool sorted)
2004-10-21 12:39:08 +02:00
{
byte* buf= table->record[0];
DBUG_ENTER("ha_ndbcluster::read_range_first");
2005-07-18 13:31:02 +02:00
DBUG_RETURN(read_range_first_to_buf(start_key, end_key, FALSE,
sorted, buf));
2004-10-21 12:39:08 +02:00
}
int ha_ndbcluster::read_range_next()
{
DBUG_ENTER("ha_ndbcluster::read_range_next");
DBUG_RETURN(next_result(table->record[0]));
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::rnd_init(bool scan)
{
NdbScanOperation *cursor= m_active_cursor;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("rnd_init");
DBUG_PRINT("enter", ("scan: %d", scan));
// Check if scan is to be restarted
2004-08-24 23:13:32 +02:00
if (cursor)
{
if (!scan)
DBUG_RETURN(1);
if (cursor->restart(m_force_send) != 0)
{
DBUG_ASSERT(0);
DBUG_RETURN(-1);
}
2004-08-24 23:13:32 +02:00
}
index_init(table_share->primary_key, 0);
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
int ha_ndbcluster::close_scan()
{
NdbTransaction *trans= m_active_trans;
DBUG_ENTER("close_scan");
2004-12-08 00:36:40 +01:00
m_multi_cursor= 0;
if (!m_active_cursor && !m_multi_cursor)
DBUG_RETURN(0);
2004-12-08 00:36:40 +01:00
NdbScanOperation *cursor= m_active_cursor ? m_active_cursor : m_multi_cursor;
if (m_lock_tuple)
{
/*
Lock level m_lock.type either TL_WRITE_ALLOW_WRITE
(SELECT FOR UPDATE) or TL_READ_WITH_SHARED_LOCKS (SELECT
LOCK WITH SHARE MODE) and row was not explictly unlocked
with unlock_row() call
*/
NdbOperation *op;
// Lock row
DBUG_PRINT("info", ("Keeping lock on scanned row"));
if (!(op= cursor->lockCurrentTuple()))
{
m_lock_tuple= FALSE;
ERR_RETURN(trans->getNdbError());
}
m_ops_pending++;
}
m_lock_tuple= FALSE;
if (m_ops_pending)
{
/*
Take over any pending transactions to the
deleteing/updating transaction before closing the scan
*/
DBUG_PRINT("info", ("ops_pending: %ld", (long) m_ops_pending));
if (execute_no_commit(this,trans,FALSE) != 0) {
no_uncommitted_rows_execute_failure();
DBUG_RETURN(ndb_err(trans));
}
m_ops_pending= 0;
}
cursor->close(m_force_send, TRUE);
2004-12-08 00:36:40 +01:00
m_active_cursor= m_multi_cursor= NULL;
2004-05-28 11:23:44 +02:00
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::rnd_end()
{
DBUG_ENTER("rnd_end");
DBUG_RETURN(close_scan());
2004-04-15 09:14:14 +02:00
}
int ha_ndbcluster::rnd_next(byte *buf)
{
DBUG_ENTER("rnd_next");
2004-09-14 22:02:23 +03:00
statistic_increment(current_thd->status_var.ha_read_rnd_next_count,
&LOCK_status);
2004-04-15 09:14:14 +02:00
if (!m_active_cursor)
DBUG_RETURN(full_table_scan(buf));
DBUG_RETURN(next_result(buf));
2004-04-15 09:14:14 +02:00
}
/*
An "interesting" record has been found and it's pk
retrieved by calling position
Now it's time to read the record from db once
again
*/
int ha_ndbcluster::rnd_pos(byte *buf, byte *pos)
{
DBUG_ENTER("rnd_pos");
2004-09-14 22:02:23 +03:00
statistic_increment(current_thd->status_var.ha_read_rnd_count,
&LOCK_status);
2004-04-15 09:14:14 +02:00
// The primary key for the record is stored in pos
// Perform a pk_read using primary key "index"
2005-07-18 13:31:02 +02:00
{
part_id_range part_spec;
uint key_length= ref_length;
2005-07-18 13:31:02 +02:00
if (m_use_partition_function)
{
if (table_share->primary_key == MAX_KEY)
{
/*
The partition id has been fetched from ndb
and has been stored directly after the hidden key
*/
2006-03-29 13:13:39 +02:00
DBUG_DUMP("key+part", (char *)pos, key_length);
key_length= ref_length - sizeof(m_part_id);
2006-03-29 23:48:35 +02:00
part_spec.start_part= part_spec.end_part= *(uint32 *)(pos + key_length);
}
else
{
key_range key_spec;
KEY *key_info= table->key_info + table_share->primary_key;
key_spec.key= pos;
key_spec.length= key_length;
key_spec.flag= HA_READ_KEY_EXACT;
get_full_part_id_from_key(table, buf, key_info,
&key_spec, &part_spec);
DBUG_ASSERT(part_spec.start_part == part_spec.end_part);
}
DBUG_PRINT("info", ("partition id %u", part_spec.start_part));
2005-07-18 13:31:02 +02:00
}
2006-03-29 13:13:39 +02:00
DBUG_DUMP("key", (char *)pos, key_length);
DBUG_RETURN(pk_read(pos, key_length, buf, part_spec.start_part));
2005-07-18 13:31:02 +02:00
}
2004-04-15 09:14:14 +02:00
}
/*
Store the primary key of this record in ref
variable, so that the row can be retrieved again later
using "reference" in rnd_pos
*/
void ha_ndbcluster::position(const byte *record)
{
KEY *key_info;
KEY_PART_INFO *key_part;
KEY_PART_INFO *end;
byte *buff;
uint key_length;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("position");
if (table_share->primary_key != MAX_KEY)
2004-04-15 09:14:14 +02:00
{
key_length= ref_length;
key_info= table->key_info + table_share->primary_key;
2004-04-15 09:14:14 +02:00
key_part= key_info->key_part;
end= key_part + key_info->key_parts;
buff= ref;
for (; key_part != end; key_part++)
{
if (key_part->null_bit) {
/* Store 0 if the key part is a NULL part */
if (record[key_part->null_offset]
& key_part->null_bit) {
*buff++= 1;
continue;
}
*buff++= 0;
}
size_t len = key_part->length;
const byte * ptr = record + key_part->offset;
Field *field = key_part->field;
if (field->type() == MYSQL_TYPE_VARCHAR)
{
if (((Field_varstring*)field)->length_bytes == 1)
{
/**
* Keys always use 2 bytes length
*/
buff[0] = ptr[0];
buff[1] = 0;
memcpy(buff+2, ptr + 1, len);
}
else
{
memcpy(buff, ptr, len + 2);
}
len += 2;
}
else
{
memcpy(buff, ptr, len);
}
buff += len;
2004-04-15 09:14:14 +02:00
}
}
else
{
// No primary key, get hidden key
DBUG_PRINT("info", ("Getting hidden key"));
// If table has user defined partition save the partition id as well
if(m_use_partition_function)
{
2006-03-14 15:43:28 +01:00
DBUG_PRINT("info", ("Saving partition id %u", m_part_id));
key_length= ref_length - sizeof(m_part_id);
memcpy(ref+key_length, (void *)&m_part_id, sizeof(m_part_id));
}
else
key_length= ref_length;
#ifndef DBUG_OFF
int hidden_no= table->s->fields;
const NDBTAB *tab= m_table;
2004-04-15 09:14:14 +02:00
const NDBCOL *hidden_col= tab->getColumn(hidden_no);
DBUG_ASSERT(hidden_col->getPrimaryKey() &&
hidden_col->getAutoIncrement() &&
key_length == NDB_HIDDEN_PRIMARY_KEY_LENGTH);
#endif
memcpy(ref, m_ref, key_length);
2004-04-15 09:14:14 +02:00
}
2006-03-29 13:13:39 +02:00
#ifndef DBUG_OFF
if (table_share->primary_key == MAX_KEY && m_use_partition_function)
DBUG_DUMP("key+part", (char*)ref, key_length+sizeof(m_part_id));
#endif
DBUG_DUMP("ref", (char*)ref, key_length);
2004-04-15 09:14:14 +02:00
DBUG_VOID_RETURN;
}
int ha_ndbcluster::info(uint flag)
2004-04-15 09:14:14 +02:00
{
int result= 0;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("info");
DBUG_PRINT("enter", ("flag: %d", flag));
if (flag & HA_STATUS_POS)
DBUG_PRINT("info", ("HA_STATUS_POS"));
if (flag & HA_STATUS_NO_LOCK)
DBUG_PRINT("info", ("HA_STATUS_NO_LOCK"));
if (flag & HA_STATUS_TIME)
DBUG_PRINT("info", ("HA_STATUS_TIME"));
if (flag & HA_STATUS_VARIABLE)
{
2004-04-15 09:14:14 +02:00
DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
if (m_table_info)
{
if (m_ha_not_exact_count)
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
stats.records= 100;
else
result= records_update();
}
else
{
if ((my_errno= check_ndb_connection()))
DBUG_RETURN(my_errno);
Ndb *ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
struct Ndb_statistics stat;
if (ndb->setDatabaseName(m_dbname))
{
DBUG_RETURN(my_errno= HA_ERR_OUT_OF_MEM);
}
if (current_thd->variables.ndb_use_exact_count &&
(result= ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat))
2006-10-24 00:18:57 +10:00
== 0)
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
stats.records= stat.row_count;
}
else
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
stats.mean_rec_length= 0;
stats.records= 100;
}
}
}
2004-10-03 23:20:05 +00:00
if (flag & HA_STATUS_CONST)
{
DBUG_PRINT("info", ("HA_STATUS_CONST"));
set_rec_per_key();
}
2004-04-15 09:14:14 +02:00
if (flag & HA_STATUS_ERRKEY)
{
2004-04-15 09:14:14 +02:00
DBUG_PRINT("info", ("HA_STATUS_ERRKEY"));
errkey= m_dupkey;
}
2004-04-15 09:14:14 +02:00
if (flag & HA_STATUS_AUTO)
{
2004-04-15 09:14:14 +02:00
DBUG_PRINT("info", ("HA_STATUS_AUTO"));
if (m_table && table->found_next_number_field)
{
Ndb *ndb= get_ndb();
Ndb_tuple_id_range_guard g(m_share);
Uint64 auto_increment_value64;
if (ndb->readAutoIncrementValue(m_table, g.range,
auto_increment_value64) == -1)
{
const NdbError err= ndb->getNdbError();
sql_print_error("Error %lu in readAutoIncrementValue(): %s",
(ulong) err.code, err.message);
stats.auto_increment_value= ~(ulonglong)0;
}
else
stats.auto_increment_value= (ulonglong)auto_increment_value64;
}
}
if(result == -1)
result= HA_ERR_NO_CONNECTION;
DBUG_RETURN(result);
2004-04-15 09:14:14 +02:00
}
void ha_ndbcluster::get_dynamic_partition_info(PARTITION_INFO *stat_info,
uint part_id)
{
/*
This functions should be fixed. Suggested fix: to
implement ndb function which retrives the statistics
about ndb partitions.
*/
bzero((char*) stat_info, sizeof(PARTITION_INFO));
return;
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::extra(enum ha_extra_function operation)
{
DBUG_ENTER("extra");
switch (operation) {
case HA_EXTRA_IGNORE_DUP_KEY: /* Dup keys don't rollback everything*/
DBUG_PRINT("info", ("HA_EXTRA_IGNORE_DUP_KEY"));
Fix for bug#18437 "Wrong values inserted with a before update trigger on NDB table". SQL-layer was not marking fields which were used in triggers as such. As result these fields were not always properly retrieved/stored by handler layer. So one might got wrong values or lost changes in triggers for NDB, Federated and possibly InnoDB tables. This fix solves the problem by marking fields used in triggers appropriately. Also this patch contains the following cleanup of ha_ndbcluster code: We no longer rely on reading LEX::sql_command value in handler in order to determine if we can enable optimization which allows us to handle REPLACE statement in more efficient way by doing replaces directly in write_row() method without reporting error to SQL-layer. Instead we rely on SQL-layer informing us whether this optimization applicable by calling handler::extra() method with HA_EXTRA_WRITE_CAN_REPLACE flag. As result we no longer apply this optimzation in cases when it should not be used (e.g. if we have on delete triggers on table) and use in some additional cases when it is applicable (e.g. for LOAD DATA REPLACE). Finally this patch includes fix for bug#20728 "REPLACE does not work correctly for NDB table with PK and unique index". This was yet another problem which was caused by improper field mark-up. During row replacement fields which weren't explicity used in REPLACE statement were not marked as fields to be saved (updated) so they have retained values from old row version. The fix is to mark all table fields as set for REPLACE statement. Note that in 5.1 we already solve this problem by notifying handler that it should save values from all fields only in case when real replacement happens.
2006-07-02 01:51:10 +04:00
DBUG_PRINT("info", ("Ignoring duplicate key"));
m_ignore_dup_key= TRUE;
2004-04-15 09:14:14 +02:00
break;
case HA_EXTRA_NO_IGNORE_DUP_KEY:
DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_DUP_KEY"));
m_ignore_dup_key= FALSE;
2004-04-15 09:14:14 +02:00
break;
2006-01-12 19:51:02 +01:00
case HA_EXTRA_IGNORE_NO_KEY:
DBUG_PRINT("info", ("HA_EXTRA_IGNORE_NO_KEY"));
DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit"));
m_ignore_no_key= TRUE;
break;
case HA_EXTRA_NO_IGNORE_NO_KEY:
DBUG_PRINT("info", ("HA_EXTRA_NO_IGNORE_NO_KEY"));
DBUG_PRINT("info", ("Turning on AO_IgnoreError at Commit/NoCommit"));
m_ignore_no_key= FALSE;
break;
Fix for bug#18437 "Wrong values inserted with a before update trigger on NDB table". SQL-layer was not marking fields which were used in triggers as such. As result these fields were not always properly retrieved/stored by handler layer. So one might got wrong values or lost changes in triggers for NDB, Federated and possibly InnoDB tables. This fix solves the problem by marking fields used in triggers appropriately. Also this patch contains the following cleanup of ha_ndbcluster code: We no longer rely on reading LEX::sql_command value in handler in order to determine if we can enable optimization which allows us to handle REPLACE statement in more efficient way by doing replaces directly in write_row() method without reporting error to SQL-layer. Instead we rely on SQL-layer informing us whether this optimization applicable by calling handler::extra() method with HA_EXTRA_WRITE_CAN_REPLACE flag. As result we no longer apply this optimzation in cases when it should not be used (e.g. if we have on delete triggers on table) and use in some additional cases when it is applicable (e.g. for LOAD DATA REPLACE). Finally this patch includes fix for bug#20728 "REPLACE does not work correctly for NDB table with PK and unique index". This was yet another problem which was caused by improper field mark-up. During row replacement fields which weren't explicity used in REPLACE statement were not marked as fields to be saved (updated) so they have retained values from old row version. The fix is to mark all table fields as set for REPLACE statement. Note that in 5.1 we already solve this problem by notifying handler that it should save values from all fields only in case when real replacement happens.
2006-07-02 01:51:10 +04:00
case HA_EXTRA_WRITE_CAN_REPLACE:
DBUG_PRINT("info", ("HA_EXTRA_WRITE_CAN_REPLACE"));
if (!m_has_unique_index ||
current_thd->slave_thread) /* always set if slave, quick fix for bug 27378 */
Fix for bug#18437 "Wrong values inserted with a before update trigger on NDB table". SQL-layer was not marking fields which were used in triggers as such. As result these fields were not always properly retrieved/stored by handler layer. So one might got wrong values or lost changes in triggers for NDB, Federated and possibly InnoDB tables. This fix solves the problem by marking fields used in triggers appropriately. Also this patch contains the following cleanup of ha_ndbcluster code: We no longer rely on reading LEX::sql_command value in handler in order to determine if we can enable optimization which allows us to handle REPLACE statement in more efficient way by doing replaces directly in write_row() method without reporting error to SQL-layer. Instead we rely on SQL-layer informing us whether this optimization applicable by calling handler::extra() method with HA_EXTRA_WRITE_CAN_REPLACE flag. As result we no longer apply this optimzation in cases when it should not be used (e.g. if we have on delete triggers on table) and use in some additional cases when it is applicable (e.g. for LOAD DATA REPLACE). Finally this patch includes fix for bug#20728 "REPLACE does not work correctly for NDB table with PK and unique index". This was yet another problem which was caused by improper field mark-up. During row replacement fields which weren't explicity used in REPLACE statement were not marked as fields to be saved (updated) so they have retained values from old row version. The fix is to mark all table fields as set for REPLACE statement. Note that in 5.1 we already solve this problem by notifying handler that it should save values from all fields only in case when real replacement happens.
2006-07-02 01:51:10 +04:00
{
DBUG_PRINT("info", ("Turning ON use of write instead of insert"));
m_use_write= TRUE;
}
break;
case HA_EXTRA_WRITE_CANNOT_REPLACE:
DBUG_PRINT("info", ("HA_EXTRA_WRITE_CANNOT_REPLACE"));
DBUG_PRINT("info", ("Turning OFF use of write instead of insert"));
m_use_write= FALSE;
break;
case HA_EXTRA_DELETE_CANNOT_BATCH:
DBUG_PRINT("info", ("HA_EXTRA_DELETE_CANNOT_BATCH"));
m_delete_cannot_batch= TRUE;
break;
case HA_EXTRA_UPDATE_CANNOT_BATCH:
DBUG_PRINT("info", ("HA_EXTRA_UPDATE_CANNOT_BATCH"));
m_update_cannot_batch= TRUE;
2005-07-18 13:31:02 +02:00
break;
2007-04-05 07:28:09 +02:00
default:
break;
2004-04-15 09:14:14 +02:00
}
DBUG_RETURN(0);
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
int ha_ndbcluster::reset()
{
DBUG_ENTER("ha_ndbcluster::reset");
if (m_cond)
{
m_cond->cond_clear();
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
/*
Regular partition pruning will set the bitmap appropriately.
Some queries like ALTER TABLE doesn't use partition pruning and
thus the 'used_partitions' bitmap needs to be initialized
*/
if (m_part_info)
bitmap_set_all(&m_part_info->used_partitions);
/* reset flags set by extra calls */
m_ignore_dup_key= FALSE;
m_use_write= FALSE;
m_ignore_no_key= FALSE;
m_delete_cannot_batch= FALSE;
m_update_cannot_batch= FALSE;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_RETURN(0);
}
/*
Start of an insert, remember number of rows to be inserted, it will
be used in write_row and get_autoincrement to send an optimal number
of rows in each roundtrip to the server
SYNOPSIS
rows number of rows to insert, 0 if unknown
*/
void ha_ndbcluster::start_bulk_insert(ha_rows rows)
{
int bytes, batch;
const NDBTAB *tab= m_table;
DBUG_ENTER("start_bulk_insert");
2004-07-22 12:38:09 +02:00
DBUG_PRINT("enter", ("rows: %d", (int)rows));
m_rows_inserted= (ha_rows) 0;
if (!m_use_write && m_ignore_dup_key)
{
/*
compare if expression with that in write_row
we have a situation where peek_indexed_rows() will be called
so we cannot batch
*/
DBUG_PRINT("info", ("Batching turned off as duplicate key is "
"ignored by using peek_row"));
m_rows_to_insert= 1;
m_bulk_insert_rows= 1;
DBUG_VOID_RETURN;
}
if (rows == (ha_rows) 0)
2005-05-07 22:04:52 +02:00
{
/* We don't know how many will be inserted, guess */
m_rows_to_insert= m_autoincrement_prefetch;
2005-05-07 22:04:52 +02:00
}
else
m_rows_to_insert= rows;
/*
Calculate how many rows that should be inserted
per roundtrip to NDB. This is done in order to minimize the
number of roundtrips as much as possible. However performance will
degrade if too many bytes are inserted, thus it's limited by this
calculation.
*/
const int bytesperbatch= 8192;
bytes= 12 + tab->getRowSizeInBytes() + 4 * tab->getNoOfColumns();
batch= bytesperbatch/bytes;
batch= batch == 0 ? 1 : batch;
DBUG_PRINT("info", ("batch: %d, bytes: %d", batch, bytes));
m_bulk_insert_rows= batch;
DBUG_VOID_RETURN;
}
/*
End of an insert
*/
int ha_ndbcluster::end_bulk_insert()
{
int error= 0;
DBUG_ENTER("end_bulk_insert");
// Check if last inserts need to be flushed
if (m_bulk_insert_not_flushed)
{
NdbTransaction *trans= m_active_trans;
// Send rows to NDB
DBUG_PRINT("info", ("Sending inserts to NDB, "\
"rows_inserted: %d bulk_insert_rows: %d",
(int) m_rows_inserted, (int) m_bulk_insert_rows));
m_bulk_insert_not_flushed= FALSE;
if (m_transaction_on)
{
if (execute_no_commit(this, trans,FALSE) != 0)
{
no_uncommitted_rows_execute_failure();
my_errno= error= ndb_err(trans);
}
}
else
{
if (execute_commit(this, trans) != 0)
{
no_uncommitted_rows_execute_failure();
my_errno= error= ndb_err(trans);
}
else
{
2007-02-27 11:27:04 +02:00
IF_DBUG(int res=) trans->restart();
DBUG_ASSERT(res == 0);
}
}
}
m_rows_inserted= (ha_rows) 0;
m_rows_to_insert= (ha_rows) 1;
DBUG_RETURN(error);
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::extra_opt(enum ha_extra_function operation, ulong cache_size)
{
DBUG_ENTER("extra_opt");
2004-07-22 12:38:09 +02:00
DBUG_PRINT("enter", ("cache_size: %lu", cache_size));
2004-04-15 09:14:14 +02:00
DBUG_RETURN(extra(operation));
}
static const char *ha_ndbcluster_exts[] = {
ha_ndb_ext,
NullS
};
2004-04-15 09:14:14 +02:00
const char** ha_ndbcluster::bas_ext() const
{
return ha_ndbcluster_exts;
}
2004-04-15 09:14:14 +02:00
/*
How many seeks it will take to read through the table
This is to be comparable to the number returned by records_in_range so
that we can decide if we should scan the table or use keys.
*/
double ha_ndbcluster::scan_time()
{
DBUG_ENTER("ha_ndbcluster::scan_time()");
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
double res= rows2double(stats.records*1000);
DBUG_PRINT("exit", ("table: %s value: %f",
m_tabname, res));
DBUG_RETURN(res);
2004-04-15 09:14:14 +02:00
}
2005-06-20 17:16:22 +02:00
/*
Convert MySQL table locks into locks supported by Ndb Cluster.
Note that MySQL Cluster does currently not support distributed
table locks, so to be safe one should set cluster in Single
User Mode, before relying on table locks when updating tables
from several MySQL servers
*/
2004-04-15 09:14:14 +02:00
THR_LOCK_DATA **ha_ndbcluster::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
DBUG_ENTER("store_lock");
if (lock_type != TL_IGNORE && m_lock.type == TL_UNLOCK)
{
2004-09-28 19:11:50 +00:00
2004-04-15 09:14:14 +02:00
/* If we are not doing a LOCK TABLE, then allow multiple
writers */
/* Since NDB does not currently have table locks
this is treated as a ordinary lock */
if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
2004-04-15 09:14:14 +02:00
lock_type <= TL_WRITE) && !thd->in_lock_tables)
lock_type= TL_WRITE_ALLOW_WRITE;
/* In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
MySQL would use the lock TL_READ_NO_INSERT on t2, and that
would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
to t2. Convert the lock to a normal read lock to allow
concurrent inserts to t2. */
if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables)
lock_type= TL_READ;
m_lock.type=lock_type;
}
*to++= &m_lock;
DBUG_PRINT("exit", ("lock_type: %d", lock_type));
2004-04-15 09:14:14 +02:00
DBUG_RETURN(to);
}
#ifndef DBUG_OFF
#define PRINT_OPTION_FLAGS(t) { \
if (t->options & OPTION_NOT_AUTOCOMMIT) \
DBUG_PRINT("thd->options", ("OPTION_NOT_AUTOCOMMIT")); \
if (t->options & OPTION_BEGIN) \
DBUG_PRINT("thd->options", ("OPTION_BEGIN")); \
if (t->options & OPTION_TABLE_LOCK) \
DBUG_PRINT("thd->options", ("OPTION_TABLE_LOCK")); \
}
#else
#define PRINT_OPTION_FLAGS(t)
#endif
/*
As MySQL will execute an external lock for every new table it uses
we can use this to start the transactions.
If we are in auto_commit mode we just need to start a transaction
for the statement, this will be stored in thd_ndb.stmt.
2004-04-15 09:14:14 +02:00
If not, we have to start a master transaction if there doesn't exist
one from before, this will be stored in thd_ndb.all
2004-04-15 09:14:14 +02:00
When a table lock is held one transaction will be started which holds
the table lock and for each statement a hupp transaction will be started
If we are locking the table then:
- save the NdbDictionary::Table for easy access
- save reference to table statistics
- refresh list of the indexes for the table if needed (if altered)
2004-04-15 09:14:14 +02:00
*/
#ifdef HAVE_NDB_BINLOG
extern MASTER_INFO *active_mi;
static int ndbcluster_update_apply_status(THD *thd, int do_update)
{
2007-04-07 00:28:09 +02:00
return 0;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NDBDICT *dict= ndb->getDictionary();
const NDBTAB *ndbtab;
NdbTransaction *trans= thd_ndb->all ? thd_ndb->all : thd_ndb->stmt;
ndb->setDatabaseName(NDB_REP_DB);
Ndb_table_guard ndbtab_g(dict, NDB_APPLY_TABLE);
if (!(ndbtab= ndbtab_g.get_table()))
{
return -1;
}
NdbOperation *op= 0;
int r= 0;
r|= (op= trans->getNdbOperation(ndbtab)) == 0;
DBUG_ASSERT(r == 0);
if (do_update)
r|= op->updateTuple();
else
r|= op->writeTuple();
DBUG_ASSERT(r == 0);
// server_id
r|= op->equal(0u, (Uint32)thd->server_id);
DBUG_ASSERT(r == 0);
if (!do_update)
{
// epoch
r|= op->setValue(1u, (Uint64)0);
DBUG_ASSERT(r == 0);
}
// log_name
char tmp_buf[FN_REFLEN];
ndb_pack_varchar(ndbtab->getColumn(2u), tmp_buf,
active_mi->rli.group_master_log_name,
strlen(active_mi->rli.group_master_log_name));
r|= op->setValue(2u, tmp_buf);
DBUG_ASSERT(r == 0);
// start_pos
r|= op->setValue(3u, (Uint64)active_mi->rli.group_master_log_pos);
DBUG_ASSERT(r == 0);
// end_pos
r|= op->setValue(4u, (Uint64)active_mi->rli.group_master_log_pos +
((Uint64)active_mi->rli.future_event_relay_log_pos -
(Uint64)active_mi->rli.group_relay_log_pos));
DBUG_ASSERT(r == 0);
return 0;
}
#endif /* HAVE_NDB_BINLOG */
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::external_lock(THD *thd, int lock_type)
{
int error=0;
NdbTransaction* trans= NULL;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("external_lock");
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
2004-04-15 09:14:14 +02:00
/*
Check that this handler instance has a connection
set up to the Ndb object of thd
*/
if (check_ndb_connection(thd))
2004-04-15 09:14:14 +02:00
DBUG_RETURN(1);
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_PRINT("enter", ("this: 0x%lx thd: 0x%lx thd_ndb: %lx "
"thd_ndb->lock_count: %d",
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
(long) this, (long) thd, (long) thd_ndb,
thd_ndb->lock_count));
2004-04-15 09:14:14 +02:00
if (lock_type != F_UNLCK)
{
DBUG_PRINT("info", ("lock_type != F_UNLCK"));
if (thd->lex->sql_command == SQLCOM_LOAD)
{
m_transaction_on= FALSE;
/* Would be simpler if has_transactions() didn't always say "yes" */
thd->options|= OPTION_STATUS_NO_TRANS_UPDATE;
thd->no_trans_update= TRUE;
}
else if (!thd->transaction.on)
m_transaction_on= FALSE;
else
m_transaction_on= thd->variables.ndb_use_transactions;
if (!thd_ndb->lock_count++)
2004-04-15 09:14:14 +02:00
{
PRINT_OPTION_FLAGS(thd);
if (!(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)))
2004-04-15 09:14:14 +02:00
{
// Autocommit transaction
DBUG_ASSERT(!thd_ndb->stmt);
2004-04-15 09:14:14 +02:00
DBUG_PRINT("trans",("Starting transaction stmt"));
trans= ndb->startTransaction();
2004-04-15 09:14:14 +02:00
if (trans == NULL)
ERR_RETURN(ndb->getNdbError());
thd_ndb->init_open_tables();
thd_ndb->stmt= trans;
thd_ndb->query_state&= NDB_QUERY_NORMAL;
thd_ndb->trans_options= 0;
trans_register_ha(thd, FALSE, ndbcluster_hton);
2004-04-15 09:14:14 +02:00
}
else
{
if (!thd_ndb->all)
{
2004-04-15 09:14:14 +02:00
// Not autocommit transaction
// A "master" transaction ha not been started yet
DBUG_PRINT("trans",("starting transaction, all"));
trans= ndb->startTransaction();
2004-04-15 09:14:14 +02:00
if (trans == NULL)
ERR_RETURN(ndb->getNdbError());
thd_ndb->init_open_tables();
thd_ndb->all= trans;
thd_ndb->query_state&= NDB_QUERY_NORMAL;
thd_ndb->trans_options= 0;
trans_register_ha(thd, TRUE, ndbcluster_hton);
2004-04-15 09:14:14 +02:00
/*
If this is the start of a LOCK TABLE, a table look
should be taken on the table in NDB
Check if it should be read or write lock
*/
if (thd->options & (OPTION_TABLE_LOCK))
{
2004-04-15 09:14:14 +02:00
//lockThisTable();
DBUG_PRINT("info", ("Locking the table..." ));
}
}
}
}
/*
This is the place to make sure this handler instance
has a started transaction.
The transaction is started by the first handler on which
MySQL Server calls external lock
Other handlers in the same stmt or transaction should use
the same NDB transaction. This is done by setting up the m_active_trans
pointer to point to the NDB transaction.
*/
// store thread specific data first to set the right context
m_force_send= thd->variables.ndb_force_send;
m_ha_not_exact_count= !thd->variables.ndb_use_exact_count;
m_autoincrement_prefetch=
(ha_rows) thd->variables.ndb_autoincrement_prefetch_sz;
m_active_trans= thd_ndb->all ? thd_ndb->all : thd_ndb->stmt;
2004-04-15 09:14:14 +02:00
DBUG_ASSERT(m_active_trans);
// Start of transaction
m_rows_changed= 0;
m_ops_pending= 0;
#ifdef HAVE_NDB_BINLOG
if (m_share == ndb_apply_status_share && thd->slave_thread)
thd_ndb->trans_options|= TNTO_INJECTED_APPLY_STATUS;
#endif
// TODO remove double pointers...
m_thd_ndb_share= thd_ndb->get_open_table(thd, m_table);
m_table_info= &m_thd_ndb_share->stat;
}
else
2004-04-15 09:14:14 +02:00
{
DBUG_PRINT("info", ("lock_type == F_UNLCK"));
if (ndb_cache_check_time && m_rows_changed)
{
DBUG_PRINT("info", ("Rows has changed and util thread is running"));
if (thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN))
{
DBUG_PRINT("info", ("Add share to list of tables to be invalidated"));
/* NOTE push_back allocates memory using transactions mem_root! */
thd_ndb->changed_tables.push_back(m_share, &thd->transaction.mem_root);
}
pthread_mutex_lock(&m_share->mutex);
DBUG_PRINT("info", ("Invalidating commit_count"));
m_share->commit_count= 0;
m_share->commit_count_lock++;
pthread_mutex_unlock(&m_share->mutex);
}
if (!--thd_ndb->lock_count)
2004-04-15 09:14:14 +02:00
{
DBUG_PRINT("trans", ("Last external_lock"));
PRINT_OPTION_FLAGS(thd);
if (thd_ndb->stmt)
2004-04-15 09:14:14 +02:00
{
/*
Unlock is done without a transaction commit / rollback.
This happens if the thread didn't update any rows
We must in this case close the transaction to release resources
*/
DBUG_PRINT("trans",("ending non-updating transaction"));
ndb->closeTransaction(m_active_trans);
thd_ndb->stmt= NULL;
2004-04-15 09:14:14 +02:00
}
}
2004-09-21 12:52:56 +00:00
m_table_info= NULL;
/*
This is the place to make sure this handler instance
no longer are connected to the active transaction.
And since the handler is no longer part of the transaction
it can't have open cursors, ops or blobs pending.
*/
m_active_trans= NULL;
if (m_active_cursor)
DBUG_PRINT("warning", ("m_active_cursor != NULL"));
m_active_cursor= NULL;
2004-12-08 00:36:40 +01:00
if (m_multi_cursor)
DBUG_PRINT("warning", ("m_multi_cursor != NULL"));
m_multi_cursor= NULL;
if (m_blobs_pending)
DBUG_PRINT("warning", ("blobs_pending != 0"));
m_blobs_pending= 0;
if (m_ops_pending)
DBUG_PRINT("warning", ("ops_pending != 0L"));
m_ops_pending= 0;
2004-04-15 09:14:14 +02:00
}
thd->set_current_stmt_binlog_row_based_if_mixed();
2004-04-15 09:14:14 +02:00
DBUG_RETURN(error);
}
/*
Unlock the last row read in an open scan.
Rows are unlocked by default in ndb, but
for SELECT FOR UPDATE and SELECT LOCK WIT SHARE MODE
locks are kept if unlock_row() is not called.
*/
void ha_ndbcluster::unlock_row()
{
DBUG_ENTER("unlock_row");
DBUG_PRINT("info", ("Unlocking row"));
m_lock_tuple= FALSE;
DBUG_VOID_RETURN;
}
2004-04-15 09:14:14 +02:00
/*
Start a transaction for running a statement if one is not
already running in a transaction. This will be the case in
a BEGIN; COMMIT; block
When using LOCK TABLE's external_lock will start a transaction
since ndb does not currently does not support table locking
2004-04-15 09:14:14 +02:00
*/
int ha_ndbcluster::start_stmt(THD *thd, thr_lock_type lock_type)
2004-04-15 09:14:14 +02:00
{
int error=0;
DBUG_ENTER("start_stmt");
PRINT_OPTION_FLAGS(thd);
Thd_ndb *thd_ndb= get_thd_ndb(thd);
NdbTransaction *trans= (thd_ndb->stmt)?thd_ndb->stmt:thd_ndb->all;
2004-04-15 09:14:14 +02:00
if (!trans){
Ndb *ndb= thd_ndb->ndb;
2004-04-15 09:14:14 +02:00
DBUG_PRINT("trans",("Starting transaction stmt"));
trans= ndb->startTransaction();
2004-04-15 09:14:14 +02:00
if (trans == NULL)
ERR_RETURN(ndb->getNdbError());
no_uncommitted_rows_reset(thd);
thd_ndb->stmt= trans;
thd_ndb->query_state&= NDB_QUERY_NORMAL;
trans_register_ha(thd, FALSE, ndbcluster_hton);
2004-04-15 09:14:14 +02:00
}
m_active_trans= trans;
// Start of statement
m_ops_pending= 0;
thd->set_current_stmt_binlog_row_based_if_mixed();
2004-04-15 09:14:14 +02:00
DBUG_RETURN(error);
}
/*
Commit a transaction started in NDB
2004-04-15 09:14:14 +02:00
*/
static int ndbcluster_commit(handlerton *hton, THD *thd, bool all)
2004-04-15 09:14:14 +02:00
{
int res= 0;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndbcluster_commit");
DBUG_PRINT("transaction",("%s",
trans == thd_ndb->stmt ?
2004-04-15 09:14:14 +02:00
"stmt" : "all"));
DBUG_ASSERT(ndb);
if (trans == NULL)
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
#ifdef HAVE_NDB_BINLOG
if (thd->slave_thread)
ndbcluster_update_apply_status(thd, thd_ndb->trans_options & TNTO_INJECTED_APPLY_STATUS);
#endif /* HAVE_NDB_BINLOG */
if (execute_commit(thd,trans) != 0)
2004-04-15 09:14:14 +02:00
{
const NdbError err= trans->getNdbError();
const NdbOperation *error_op= trans->getNdbErrorOperation();
ERR_PRINT(err);
2004-04-15 09:14:14 +02:00
res= ndb_to_mysql_error(&err);
if (res != -1)
ndbcluster_print_error(res, error_op);
2004-04-15 09:14:14 +02:00
}
ndb->closeTransaction(trans);
if (all)
thd_ndb->all= NULL;
else
thd_ndb->stmt= NULL;
/* Clear commit_count for tables changed by transaction */
NDB_SHARE* share;
List_iterator_fast<NDB_SHARE> it(thd_ndb->changed_tables);
while ((share= it++))
{
pthread_mutex_lock(&share->mutex);
DBUG_PRINT("info", ("Invalidate commit_count for %s, share->commit_count: %lu",
share->table_name, (ulong) share->commit_count));
share->commit_count= 0;
share->commit_count_lock++;
pthread_mutex_unlock(&share->mutex);
}
thd_ndb->changed_tables.empty();
2004-04-15 09:14:14 +02:00
DBUG_RETURN(res);
}
/*
Rollback a transaction started in NDB
*/
static int ndbcluster_rollback(handlerton *hton, THD *thd, bool all)
2004-04-15 09:14:14 +02:00
{
int res= 0;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
NdbTransaction *trans= all ? thd_ndb->all : thd_ndb->stmt;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndbcluster_rollback");
DBUG_PRINT("transaction",("%s",
trans == thd_ndb->stmt ?
2004-04-15 09:14:14 +02:00
"stmt" : "all"));
DBUG_ASSERT(ndb && trans);
if (trans->execute(NdbTransaction::Rollback) != 0)
2004-04-15 09:14:14 +02:00
{
const NdbError err= trans->getNdbError();
const NdbOperation *error_op= trans->getNdbErrorOperation();
2004-04-15 09:14:14 +02:00
ERR_PRINT(err);
res= ndb_to_mysql_error(&err);
if (res != -1)
ndbcluster_print_error(res, error_op);
2004-04-15 09:14:14 +02:00
}
ndb->closeTransaction(trans);
if (all)
thd_ndb->all= NULL;
else
thd_ndb->stmt= NULL;
/* Clear list of tables changed by transaction */
thd_ndb->changed_tables.empty();
DBUG_RETURN(res);
2004-04-15 09:14:14 +02:00
}
/*
2004-07-22 12:38:09 +02:00
Define NDB column based on Field.
Returns 0 or mysql error code.
Not member of ha_ndbcluster because NDBCOL cannot be declared.
2005-01-08 00:03:19 +01:00
MySQL text types with character set "binary" are mapped to true
NDB binary types without a character set. This may change.
2004-04-15 09:14:14 +02:00
*/
2004-07-22 12:38:09 +02:00
static int create_ndb_column(NDBCOL &col,
Field *field,
HA_CREATE_INFO *info)
2004-04-15 09:14:14 +02:00
{
2004-07-22 12:38:09 +02:00
// Set name
if (col.setName(field->field_name))
{
return (my_errno= errno);
}
2004-09-15 17:44:13 +02:00
// Get char set
CHARSET_INFO *cs= field->charset();
2004-07-22 12:38:09 +02:00
// Set type and sizes
const enum enum_field_types mysql_type= field->real_type();
switch (mysql_type) {
// Numeric types
2004-04-15 09:14:14 +02:00
case MYSQL_TYPE_TINY:
2004-07-22 12:38:09 +02:00
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Tinyunsigned);
else
col.setType(NDBCOL::Tinyint);
col.setLength(1);
break;
2004-04-15 09:14:14 +02:00
case MYSQL_TYPE_SHORT:
2004-07-22 12:38:09 +02:00
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Smallunsigned);
else
col.setType(NDBCOL::Smallint);
col.setLength(1);
break;
2004-04-15 09:14:14 +02:00
case MYSQL_TYPE_LONG:
2004-07-22 12:38:09 +02:00
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Unsigned);
else
col.setType(NDBCOL::Int);
col.setLength(1);
break;
2004-04-15 09:14:14 +02:00
case MYSQL_TYPE_INT24:
2004-07-22 12:38:09 +02:00
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Mediumunsigned);
else
col.setType(NDBCOL::Mediumint);
col.setLength(1);
break;
case MYSQL_TYPE_LONGLONG:
if (field->flags & UNSIGNED_FLAG)
col.setType(NDBCOL::Bigunsigned);
else
col.setType(NDBCOL::Bigint);
col.setLength(1);
2004-04-15 09:14:14 +02:00
break;
case MYSQL_TYPE_FLOAT:
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Float);
col.setLength(1);
break;
2004-04-15 09:14:14 +02:00
case MYSQL_TYPE_DOUBLE:
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Double);
col.setLength(1);
break;
case MYSQL_TYPE_DECIMAL:
{
Field_decimal *f= (Field_decimal*)field;
uint precision= f->pack_length();
uint scale= f->decimals();
if (field->flags & UNSIGNED_FLAG)
{
col.setType(NDBCOL::Olddecimalunsigned);
precision-= (scale > 0);
}
else
{
col.setType(NDBCOL::Olddecimal);
precision-= 1 + (scale > 0);
}
col.setPrecision(precision);
col.setScale(scale);
col.setLength(1);
}
break;
case MYSQL_TYPE_NEWDECIMAL:
{
Field_new_decimal *f= (Field_new_decimal*)field;
uint precision= f->precision;
uint scale= f->decimals();
if (field->flags & UNSIGNED_FLAG)
{
col.setType(NDBCOL::Decimalunsigned);
}
else
{
col.setType(NDBCOL::Decimal);
}
col.setPrecision(precision);
col.setScale(scale);
col.setLength(1);
}
break;
2004-07-22 12:38:09 +02:00
// Date types
case MYSQL_TYPE_DATETIME:
col.setType(NDBCOL::Datetime);
col.setLength(1);
break;
case MYSQL_TYPE_DATE: // ?
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
2004-07-22 12:38:09 +02:00
case MYSQL_TYPE_NEWDATE:
2005-01-08 16:57:51 +01:00
col.setType(NDBCOL::Date);
col.setLength(1);
break;
2004-07-22 12:38:09 +02:00
case MYSQL_TYPE_TIME:
2005-01-08 19:28:44 +01:00
col.setType(NDBCOL::Time);
col.setLength(1);
break;
case MYSQL_TYPE_YEAR:
col.setType(NDBCOL::Year);
col.setLength(1);
break;
case MYSQL_TYPE_TIMESTAMP:
col.setType(NDBCOL::Timestamp);
col.setLength(1);
2004-07-22 12:38:09 +02:00
break;
// Char types
case MYSQL_TYPE_STRING:
if (field->pack_length() == 0)
{
col.setType(NDBCOL::Bit);
col.setLength(1);
}
2005-01-08 00:03:19 +01:00
else if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2004-12-10 16:55:04 +01:00
{
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Binary);
2004-12-10 16:55:04 +01:00
col.setLength(field->pack_length());
2004-09-15 17:44:13 +02:00
}
else
2004-12-10 16:55:04 +01:00
{
col.setType(NDBCOL::Char);
col.setCharset(cs);
col.setLength(field->pack_length());
2004-12-10 16:55:04 +01:00
}
2004-07-22 12:38:09 +02:00
break;
2005-01-07 11:55:20 +01:00
case MYSQL_TYPE_VAR_STRING: // ?
case MYSQL_TYPE_VARCHAR:
{
Field_varstring* f= (Field_varstring*)field;
if (f->length_bytes == 1)
{
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2005-01-07 11:55:20 +01:00
col.setType(NDBCOL::Varbinary);
else {
col.setType(NDBCOL::Varchar);
col.setCharset(cs);
}
}
else if (f->length_bytes == 2)
{
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2005-01-07 11:55:20 +01:00
col.setType(NDBCOL::Longvarbinary);
else {
col.setType(NDBCOL::Longvarchar);
col.setCharset(cs);
}
}
else
{
return HA_ERR_UNSUPPORTED;
}
col.setLength(field->field_length);
2004-09-15 17:44:13 +02:00
}
2004-07-22 12:38:09 +02:00
break;
// Blob types (all come in as MYSQL_TYPE_BLOB)
mysql_type_tiny_blob:
case MYSQL_TYPE_TINY_BLOB:
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Blob);
2004-09-15 17:44:13 +02:00
else {
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Text);
2004-09-15 17:44:13 +02:00
col.setCharset(cs);
}
2004-07-22 12:38:09 +02:00
col.setInlineSize(256);
// No parts
col.setPartSize(0);
col.setStripeSize(0);
break;
//mysql_type_blob:
case MYSQL_TYPE_GEOMETRY:
2004-07-22 12:38:09 +02:00
case MYSQL_TYPE_BLOB:
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Blob);
2004-09-15 17:44:13 +02:00
else {
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Text);
2004-09-15 17:44:13 +02:00
col.setCharset(cs);
}
2004-07-22 12:38:09 +02:00
{
Field_blob *field_blob= (Field_blob *)field;
/*
* max_data_length is 2^8-1, 2^16-1, 2^24-1 for tiny, blob, medium.
* Tinyblob gets no blob parts. The other cases are just a crude
* way to control part size and striping.
*
* In mysql blob(256) is promoted to blob(65535) so it does not
* in fact fit "inline" in NDB.
*/
if (field_blob->max_data_length() < (1 << 8))
goto mysql_type_tiny_blob;
else if (field_blob->max_data_length() < (1 << 16))
{
col.setInlineSize(256);
col.setPartSize(2000);
col.setStripeSize(16);
}
else if (field_blob->max_data_length() < (1 << 24))
goto mysql_type_medium_blob;
else
goto mysql_type_long_blob;
2004-07-22 12:38:09 +02:00
}
break;
mysql_type_medium_blob:
case MYSQL_TYPE_MEDIUM_BLOB:
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Blob);
2004-09-15 17:44:13 +02:00
else {
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Text);
2004-09-15 17:44:13 +02:00
col.setCharset(cs);
}
2004-07-22 12:38:09 +02:00
col.setInlineSize(256);
col.setPartSize(4000);
col.setStripeSize(8);
break;
mysql_type_long_blob:
case MYSQL_TYPE_LONG_BLOB:
2005-01-08 00:03:19 +01:00
if ((field->flags & BINARY_FLAG) && cs == &my_charset_bin)
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Blob);
2004-09-15 17:44:13 +02:00
else {
2004-07-22 12:38:09 +02:00
col.setType(NDBCOL::Text);
2004-09-15 17:44:13 +02:00
col.setCharset(cs);
}
2004-07-22 12:38:09 +02:00
col.setInlineSize(256);
col.setPartSize(8000);
col.setStripeSize(4);
break;
// Other types
case MYSQL_TYPE_ENUM:
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
case MYSQL_TYPE_SET:
col.setType(NDBCOL::Char);
col.setLength(field->pack_length());
break;
case MYSQL_TYPE_BIT:
{
int no_of_bits= field->field_length;
2004-12-23 15:28:41 +01:00
col.setType(NDBCOL::Bit);
if (!no_of_bits)
col.setLength(1);
else
col.setLength(no_of_bits);
break;
}
2004-07-22 12:38:09 +02:00
case MYSQL_TYPE_NULL:
goto mysql_type_unsupported;
mysql_type_unsupported:
default:
return HA_ERR_UNSUPPORTED;
2004-04-15 09:14:14 +02:00
}
2004-07-22 12:38:09 +02:00
// Set nullable and pk
col.setNullable(field->maybe_null());
col.setPrimaryKey(field->flags & PRI_KEY_FLAG);
// Set autoincrement
if (field->flags & AUTO_INCREMENT_FLAG)
{
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22];
2007-02-27 19:31:49 +02:00
#endif
2004-07-22 12:38:09 +02:00
col.setAutoIncrement(TRUE);
ulonglong value= info->auto_increment_value ?
info->auto_increment_value : (ulonglong) 1;
DBUG_PRINT("info", ("Autoincrement key, initial: %s", llstr(value, buff)));
2004-07-22 12:38:09 +02:00
col.setAutoIncrementInitialValue(value);
2004-04-15 09:14:14 +02:00
}
2004-07-22 12:38:09 +02:00
else
col.setAutoIncrement(FALSE);
2004-07-22 12:38:09 +02:00
return 0;
2004-04-15 09:14:14 +02:00
}
/*
Create a table in NDB Cluster
*/
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::create(const char *name,
TABLE *form,
HA_CREATE_INFO *create_info)
2004-04-15 09:14:14 +02:00
{
THD *thd= current_thd;
2004-04-15 09:14:14 +02:00
NDBTAB tab;
NDBCOL col;
uint pack_length, length, i, pk_length= 0;
const void *data= NULL, *pack_data= NULL;
bool create_from_engine= (create_info->table_options & HA_OPTION_CREATE_FROM_ENGINE);
bool is_truncate= (thd->lex->sql_command == SQLCOM_TRUNCATE);
char tablespace[FN_LEN];
NdbDictionary::Table::SingleUserMode single_user_mode= NdbDictionary::Table::SingleUserModeLocked;
2005-01-07 11:55:20 +01:00
DBUG_ENTER("ha_ndbcluster::create");
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("name: %s", name));
DBUG_ASSERT(*fn_rext((char*)name) == 0);
set_dbname(name);
set_tabname(name);
if ((my_errno= check_ndb_connection()))
DBUG_RETURN(my_errno);
Ndb *ndb= get_ndb();
NDBDICT *dict= ndb->getDictionary();
if (is_truncate)
{
{
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(m_table= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
if ((get_tablespace_name(thd, tablespace, FN_LEN)))
create_info->tablespace= tablespace;
m_table= NULL;
}
DBUG_PRINT("info", ("Dropping and re-creating table for TRUNCATE"));
if ((my_errno= delete_table(name)))
DBUG_RETURN(my_errno);
}
table= form;
if (create_from_engine)
{
/*
2006-01-12 19:51:02 +01:00
Table already exists in NDB and frm file has been created by
caller.
Do Ndb specific stuff, such as create a .ndb file
*/
if ((my_errno= write_ndb_file(name)))
DBUG_RETURN(my_errno);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
ndbcluster_create_binlog_setup(get_ndb(), name, strlen(name),
m_dbname, m_tabname, FALSE);
2006-01-12 19:51:02 +01:00
#endif /* HAVE_NDB_BINLOG */
DBUG_RETURN(my_errno);
}
2004-04-15 09:14:14 +02:00
#ifdef HAVE_NDB_BINLOG
/*
Don't allow table creation unless
schema distribution table is setup
( unless it is a creation of the schema dist table itself )
*/
if (!ndb_schema_share)
{
if (!(strcmp(m_dbname, NDB_REP_DB) == 0 &&
strcmp(m_tabname, NDB_SCHEMA_TABLE) == 0))
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
single_user_mode = NdbDictionary::Table::SingleUserModeReadWrite;
}
#endif /* HAVE_NDB_BINLOG */
2004-04-15 09:14:14 +02:00
DBUG_PRINT("table", ("name: %s", m_tabname));
if (tab.setName(m_tabname))
{
DBUG_RETURN(my_errno= errno);
}
tab.setLogging(!(create_info->options & HA_LEX_CREATE_TMP_TABLE));
tab.setSingleUserMode(single_user_mode);
2004-04-15 09:14:14 +02:00
// Save frm data for this table
if (readfrm(name, &data, &length))
DBUG_RETURN(1);
if (packfrm(data, length, &pack_data, &pack_length))
{
my_free((char*)data, MYF(0));
2004-04-15 09:14:14 +02:00
DBUG_RETURN(2);
}
DBUG_PRINT("info", ("setFrm data: 0x%lx len: %d", (long) pack_data, pack_length));
2004-04-15 09:14:14 +02:00
tab.setFrm(pack_data, pack_length);
my_free((char*)data, MYF(0));
my_free((char*)pack_data, MYF(0));
if (create_info->storage_media == HA_SM_DISK)
{
if (create_info->tablespace)
tab.setTablespaceName(create_info->tablespace);
else
tab.setTablespaceName("DEFAULT-TS");
}
else if (create_info->tablespace)
{
if (create_info->storage_media == HA_SM_MEMORY)
{
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"TABLESPACE currently only supported for "
"STORAGE DISK");
DBUG_RETURN(HA_ERR_UNSUPPORTED);
}
tab.setTablespaceName(create_info->tablespace);
create_info->storage_media = HA_SM_DISK; //if use tablespace, that also means store on disk
}
for (i= 0; i < form->s->fields; i++)
2004-04-15 09:14:14 +02:00
{
Field *field= form->field[i];
DBUG_PRINT("info", ("name: %s, type: %u, pack_length: %d",
field->field_name, field->real_type(),
field->pack_length()));
if ((my_errno= create_ndb_column(col, field, create_info)))
2004-07-22 12:38:09 +02:00
DBUG_RETURN(my_errno);
2006-01-11 11:35:25 +01:00
if (create_info->storage_media == HA_SM_DISK ||
create_info->tablespace)
2005-11-07 12:19:28 +01:00
col.setStorageType(NdbDictionary::Column::StorageTypeDisk);
else
col.setStorageType(NdbDictionary::Column::StorageTypeMemory);
if (tab.addColumn(col))
{
DBUG_RETURN(my_errno= errno);
}
if (col.getPrimaryKey())
pk_length += (field->pack_length() + 3) / 4;
2004-04-15 09:14:14 +02:00
}
2005-11-07 12:19:28 +01:00
KEY* key_info;
for (i= 0, key_info= form->key_info; i < form->s->keys; i++, key_info++)
{
KEY_PART_INFO *key_part= key_info->key_part;
KEY_PART_INFO *end= key_part + key_info->key_parts;
for (; key_part != end; key_part++)
tab.getColumn(key_part->fieldnr-1)->setStorageType(
NdbDictionary::Column::StorageTypeMemory);
}
2004-04-15 09:14:14 +02:00
// No primary key, create shadow key as 64 bit, auto increment
if (form->s->primary_key == MAX_KEY)
2004-04-15 09:14:14 +02:00
{
DBUG_PRINT("info", ("Generating shadow key"));
if (col.setName("$PK"))
{
DBUG_RETURN(my_errno= errno);
}
2004-04-15 09:14:14 +02:00
col.setType(NdbDictionary::Column::Bigunsigned);
col.setLength(1);
col.setNullable(FALSE);
2004-04-15 09:14:14 +02:00
col.setPrimaryKey(TRUE);
col.setAutoIncrement(TRUE);
if (tab.addColumn(col))
{
DBUG_RETURN(my_errno= errno);
}
pk_length += 2;
}
// Make sure that blob tables don't have to big part size
for (i= 0; i < form->s->fields; i++)
{
/**
* The extra +7 concists
* 2 - words from pk in blob table
* 5 - from extra words added by tup/dict??
*/
switch (form->field[i]->real_type()) {
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
{
NdbDictionary::Column * column= tab.getColumn(i);
int size= pk_length + (column->getPartSize()+3)/4 + 7;
if (size > NDB_MAX_TUPLE_SIZE_IN_WORDS &&
(pk_length+7) < NDB_MAX_TUPLE_SIZE_IN_WORDS)
{
size= NDB_MAX_TUPLE_SIZE_IN_WORDS - pk_length - 7;
column->setPartSize(4*size);
}
/**
* If size > NDB_MAX and pk_length+7 >= NDB_MAX
* then the table can't be created anyway, so skip
* changing part size, and have error later
*/
}
default:
break;
}
2004-04-15 09:14:14 +02:00
}
2005-02-11 22:33:52 +01:00
2005-07-18 13:31:02 +02:00
// Check partition info
partition_info *part_info= form->part_info;
if ((my_errno= set_up_partition_info(part_info, form, (void*)&tab)))
2005-07-18 13:31:02 +02:00
{
DBUG_RETURN(my_errno);
2005-07-18 13:31:02 +02:00
}
2004-04-15 09:14:14 +02:00
// Create the table in NDB
if (dict->createTable(tab) != 0)
2004-04-15 09:14:14 +02:00
{
const NdbError err= dict->getNdbError();
ERR_PRINT(err);
my_errno= ndb_to_mysql_error(&err);
DBUG_RETURN(my_errno);
}
Ndb_table_guard ndbtab_g(dict, m_tabname);
// temporary set m_table during create
// reset at return
m_table= ndbtab_g.get_table();
// TODO check also that we have the same frm...
if (!m_table)
{
/* purecov: begin deadcode */
const NdbError err= dict->getNdbError();
ERR_PRINT(err);
my_errno= ndb_to_mysql_error(&err);
DBUG_RETURN(my_errno);
/* purecov: end */
}
2004-04-15 09:14:14 +02:00
DBUG_PRINT("info", ("Table %s/%s created successfully",
m_dbname, m_tabname));
2004-08-19 11:10:35 +02:00
// Create secondary indexes
my_errno= create_indexes(ndb, form);
if (!my_errno)
my_errno= write_ndb_file(name);
else
{
/*
Failed to create an index,
drop the table (and all it's indexes)
*/
while (dict->dropTableGlobal(*m_table))
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
continue; // retry indefinitly
break;
default:
break;
}
2006-06-14 13:32:29 +02:00
break;
}
m_table = 0;
DBUG_RETURN(my_errno);
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if (!my_errno)
{
NDB_SHARE *share= 0;
pthread_mutex_lock(&ndbcluster_mutex);
/*
First make sure we get a "fresh" share here, not an old trailing one...
*/
{
uint length= (uint) strlen(name);
2006-01-12 19:51:02 +01:00
if ((share= (NDB_SHARE*) hash_search(&ndbcluster_open_tables,
(byte*) name, length)))
2006-01-12 19:51:02 +01:00
handle_trailing_share(share);
}
/*
get a new share
*/
/* ndb_share reference create */
if (!(share= get_share(name, form, TRUE, TRUE)))
2006-01-12 19:51:02 +01:00
{
sql_print_error("NDB: allocating table share for %s failed", name);
2006-01-12 19:51:02 +01:00
/* my_errno is set */
}
else
{
DBUG_PRINT("NDB_SHARE", ("%s binlog create use_count: %u",
share->key, share->use_count));
}
2006-01-12 19:51:02 +01:00
pthread_mutex_unlock(&ndbcluster_mutex);
while (!IS_TMP_PREFIX(m_tabname))
{
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name,m_dbname,m_tabname);
int do_event_op= ndb_binlog_running;
if (!ndb_schema_share &&
strcmp(share->db, NDB_REP_DB) == 0 &&
strcmp(share->table_name, NDB_SCHEMA_TABLE) == 0)
do_event_op= 1;
2006-01-12 19:51:02 +01:00
/*
Always create an event for the table, as other mysql servers
expect it to be there.
*/
if (!ndbcluster_create_event(ndb, m_table, event_name.c_ptr(), share,
share && do_event_op ? 2 : 1/* push warning */))
2006-01-12 19:51:02 +01:00
{
if (ndb_extra_logging)
sql_print_information("NDB Binlog: CREATE TABLE Event: %s",
event_name.c_ptr());
if (share &&
ndbcluster_create_event_ops(share, m_table, event_name.c_ptr()))
{
sql_print_error("NDB Binlog: FAILED CREATE TABLE event operations."
" Event: %s", name);
/* a warning has been issued to the client */
}
2006-01-12 19:51:02 +01:00
}
/*
warning has been issued if ndbcluster_create_event failed
and (share && do_event_op)
*/
if (share && !do_event_op)
share->flags|= NSF_NO_BINLOG;
ndbcluster_log_schema_op(thd, share,
thd->query, thd->query_length,
2006-01-12 19:51:02 +01:00
share->db, share->table_name,
m_table->getObjectId(),
m_table->getObjectVersion(),
(is_truncate) ?
SOT_TRUNCATE_TABLE : SOT_CREATE_TABLE,
0, 0, 1);
2006-01-12 19:51:02 +01:00
break;
}
}
#endif /* HAVE_NDB_BINLOG */
m_table= 0;
2004-04-15 09:14:14 +02:00
DBUG_RETURN(my_errno);
}
int ha_ndbcluster::create_handler_files(const char *file,
const char *old_name,
int action_flag,
HA_CREATE_INFO *create_info)
2006-01-17 12:53:49 +01:00
{
Ndb* ndb;
const NDBTAB *tab;
const void *data= NULL, *pack_data= NULL;
2006-01-17 12:53:49 +01:00
uint length, pack_length;
int error= 0;
DBUG_ENTER("create_handler_files");
if (action_flag != CHF_INDEX_FLAG)
{
DBUG_RETURN(FALSE);
}
DBUG_PRINT("enter", ("file: %s", file));
2006-01-17 12:53:49 +01:00
if (!(ndb= get_ndb()))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
NDBDICT *dict= ndb->getDictionary();
if (!create_info->frm_only)
2006-01-17 12:53:49 +01:00
DBUG_RETURN(0); // Must be a create, ignore since frm is saved in create
// TODO handle this
DBUG_ASSERT(m_table != 0);
set_dbname(file);
set_tabname(file);
Ndb_table_guard ndbtab_g(dict, m_tabname);
DBUG_PRINT("info", ("m_dbname: %s, m_tabname: %s", m_dbname, m_tabname));
if (!(tab= ndbtab_g.get_table()))
DBUG_RETURN(0); // Unkown table, must be temporary table
DBUG_ASSERT(get_ndb_share_state(m_share) == NSS_ALTERED);
if (readfrm(file, &data, &length) ||
2006-01-17 12:53:49 +01:00
packfrm(data, length, &pack_data, &pack_length))
{
DBUG_PRINT("info", ("Missing frm for %s", m_tabname));
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR));
error= 1;
2006-01-17 12:53:49 +01:00
}
else
{
2006-01-17 12:53:49 +01:00
DBUG_PRINT("info", ("Table %s has changed, altering frm in ndb",
m_tabname));
NdbDictionary::Table new_tab= *tab;
new_tab.setFrm(pack_data, pack_length);
if (dict->alterTableGlobal(*tab, new_tab))
{
error= ndb_to_mysql_error(&dict->getNdbError());
}
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*)pack_data, MYF(MY_ALLOW_ZERO_PTR));
2006-01-17 12:53:49 +01:00
}
set_ndb_share_state(m_share, NSS_INITIAL);
/* ndb_share reference schema(?) free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema(?) free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
2006-01-17 12:53:49 +01:00
DBUG_RETURN(error);
}
int ha_ndbcluster::create_index(const char *name, KEY *key_info,
NDB_INDEX_TYPE idx_type, uint idx_no)
{
int error= 0;
char unique_name[FN_LEN];
static const char* unique_suffix= "$unique";
DBUG_ENTER("ha_ndbcluster::create_ordered_index");
DBUG_PRINT("info", ("Creating index %u: %s", idx_no, name));
if (idx_type == UNIQUE_ORDERED_INDEX || idx_type == UNIQUE_INDEX)
{
strxnmov(unique_name, FN_LEN, name, unique_suffix, NullS);
DBUG_PRINT("info", ("Created unique index name \'%s\' for index %d",
unique_name, idx_no));
}
switch (idx_type){
case PRIMARY_KEY_INDEX:
// Do nothing, already created
break;
case PRIMARY_KEY_ORDERED_INDEX:
error= create_ordered_index(name, key_info);
break;
case UNIQUE_ORDERED_INDEX:
if (!(error= create_ordered_index(name, key_info)))
error= create_unique_index(unique_name, key_info);
break;
case UNIQUE_INDEX:
if (check_index_fields_not_null(key_info))
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_NULL_COLUMN_IN_INDEX,
"Ndb does not support unique index on NULL valued attributes, index access with NULL value will become full table scan");
}
error= create_unique_index(unique_name, key_info);
break;
case ORDERED_INDEX:
if (key_info->algorithm == HA_KEY_ALG_HASH)
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"Ndb does not support non-unique "
"hash based indexes");
error= HA_ERR_UNSUPPORTED;
break;
}
error= create_ordered_index(name, key_info);
break;
default:
DBUG_ASSERT(FALSE);
break;
}
DBUG_RETURN(error);
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::create_ordered_index(const char *name,
KEY *key_info)
{
DBUG_ENTER("ha_ndbcluster::create_ordered_index");
DBUG_RETURN(create_ndb_index(name, key_info, FALSE));
}
int ha_ndbcluster::create_unique_index(const char *name,
KEY *key_info)
{
DBUG_ENTER("ha_ndbcluster::create_unique_index");
DBUG_RETURN(create_ndb_index(name, key_info, TRUE));
}
2004-04-15 09:14:14 +02:00
/*
Create an index in NDB Cluster
*/
int ha_ndbcluster::create_ndb_index(const char *name,
KEY *key_info,
bool unique)
{
Ndb *ndb= get_ndb();
NdbDictionary::Dictionary *dict= ndb->getDictionary();
2004-04-15 09:14:14 +02:00
KEY_PART_INFO *key_part= key_info->key_part;
KEY_PART_INFO *end= key_part + key_info->key_parts;
DBUG_ENTER("ha_ndbcluster::create_index");
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("name: %s ", name));
2004-04-15 09:14:14 +02:00
NdbDictionary::Index ndb_index(name);
if (unique)
2004-04-15 09:14:14 +02:00
ndb_index.setType(NdbDictionary::Index::UniqueHashIndex);
else
{
ndb_index.setType(NdbDictionary::Index::OrderedIndex);
// TODO Only temporary ordered indexes supported
ndb_index.setLogging(FALSE);
2004-04-15 09:14:14 +02:00
}
if (ndb_index.setTable(m_tabname))
{
DBUG_RETURN(my_errno= errno);
}
2004-04-15 09:14:14 +02:00
for (; key_part != end; key_part++)
{
Field *field= key_part->field;
DBUG_PRINT("info", ("attr: %s", field->field_name));
if (ndb_index.addColumnName(field->field_name))
{
DBUG_RETURN(my_errno= errno);
}
2004-04-15 09:14:14 +02:00
}
if (dict->createIndex(ndb_index, *m_table))
2004-04-15 09:14:14 +02:00
ERR_RETURN(dict->getNdbError());
// Success
DBUG_PRINT("info", ("Created index %s", name));
DBUG_RETURN(0);
}
/*
Prepare for an on-line alter table
*/
void ha_ndbcluster::prepare_for_alter()
{
/* ndb_share reference schema */
ndbcluster_get_share(m_share); // Increase ref_count
DBUG_PRINT("NDB_SHARE", ("%s binlog schema use_count: %u",
m_share->key, m_share->use_count));
set_ndb_share_state(m_share, NSS_ALTERED);
}
/*
Add an index on-line to a table
*/
int ha_ndbcluster::add_index(TABLE *table_arg,
KEY *key_info, uint num_of_keys)
{
int error= 0;
uint idx;
DBUG_ENTER("ha_ndbcluster::add_index");
DBUG_PRINT("enter", ("table %s", table_arg->s->table_name.str));
DBUG_ASSERT(m_share->state == NSS_ALTERED);
for (idx= 0; idx < num_of_keys; idx++)
{
KEY *key= key_info + idx;
KEY_PART_INFO *key_part= key->key_part;
KEY_PART_INFO *end= key_part + key->key_parts;
NDB_INDEX_TYPE idx_type= get_index_type_from_key(idx, key_info, false);
DBUG_PRINT("info", ("Adding index: '%s'", key_info[idx].name));
// Add fields to key_part struct
for (; key_part != end; key_part++)
key_part->field= table->field[key_part->fieldnr];
// Check index type
// Create index in ndb
if((error= create_index(key_info[idx].name, key, idx_type, idx)))
break;
}
if (error)
{
set_ndb_share_state(m_share, NSS_INITIAL);
/* ndb_share reference schema free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
}
DBUG_RETURN(error);
}
/*
Mark one or several indexes for deletion. and
renumber the remaining indexes
*/
int ha_ndbcluster::prepare_drop_index(TABLE *table_arg,
uint *key_num, uint num_of_keys)
{
DBUG_ENTER("ha_ndbcluster::prepare_drop_index");
DBUG_ASSERT(m_share->state == NSS_ALTERED);
// Mark indexes for deletion
uint idx;
for (idx= 0; idx < num_of_keys; idx++)
{
DBUG_PRINT("info", ("ha_ndbcluster::prepare_drop_index %u", *key_num));
m_index[*key_num++].status= TO_BE_DROPPED;
}
// Renumber indexes
THD *thd= current_thd;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
renumber_indexes(ndb, table_arg);
DBUG_RETURN(0);
}
/*
Really drop all indexes marked for deletion
*/
int ha_ndbcluster::final_drop_index(TABLE *table_arg)
{
int error;
DBUG_ENTER("ha_ndbcluster::final_drop_index");
DBUG_PRINT("info", ("ha_ndbcluster::final_drop_index"));
// Really drop indexes
THD *thd= current_thd;
Thd_ndb *thd_ndb= get_thd_ndb(thd);
Ndb *ndb= thd_ndb->ndb;
if((error= drop_indexes(ndb, table_arg)))
{
m_share->state= NSS_INITIAL;
/* ndb_share reference schema free */
DBUG_PRINT("NDB_SHARE", ("%s binlog schema free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share); // Decrease ref_count
}
DBUG_RETURN(error);
}
2004-04-15 09:14:14 +02:00
/*
Rename a table in NDB Cluster
*/
int ha_ndbcluster::rename_table(const char *from, const char *to)
{
NDBDICT *dict;
char old_dbname[FN_HEADLEN];
char new_dbname[FN_HEADLEN];
2004-04-15 09:14:14 +02:00
char new_tabname[FN_HEADLEN];
const NDBTAB *orig_tab;
int result;
bool recreate_indexes= FALSE;
NDBDICT::List index_list;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ha_ndbcluster::rename_table");
DBUG_PRINT("info", ("Renaming %s to %s", from, to));
set_dbname(from, old_dbname);
set_dbname(to, new_dbname);
2004-04-15 09:14:14 +02:00
set_tabname(from);
set_tabname(to, new_tabname);
if (check_ndb_connection())
DBUG_RETURN(my_errno= HA_ERR_NO_CONNECTION);
2005-01-03 11:56:51 +01:00
Ndb *ndb= get_ndb();
ndb->setDatabaseName(old_dbname);
2005-01-03 11:56:51 +01:00
dict= ndb->getDictionary();
Ndb_table_guard ndbtab_g(dict, m_tabname);
if (!(orig_tab= ndbtab_g.get_table()))
ERR_RETURN(dict->getNdbError());
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
int ndb_table_id= orig_tab->getObjectId();
int ndb_table_version= orig_tab->getObjectVersion();
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(from, 0, FALSE);
if (share)
2006-01-12 19:51:02 +01:00
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
2007-02-27 11:27:04 +02:00
IF_DBUG(int r=) rename_share(share, to);
2006-01-12 19:51:02 +01:00
DBUG_ASSERT(r == 0);
}
#endif
if (my_strcasecmp(system_charset_info, new_dbname, old_dbname))
{
dict->listIndexes(index_list, *orig_tab);
recreate_indexes= TRUE;
}
// Change current database to that of target table
set_dbname(to);
if (ndb->setDatabaseName(m_dbname))
{
ERR_RETURN(ndb->getNdbError());
}
NdbDictionary::Table new_tab= *orig_tab;
new_tab.setName(new_tabname);
if (dict->alterTableGlobal(*orig_tab, new_tab) != 0)
{
NdbError ndb_error= dict->getNdbError();
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if (share)
{
2007-02-27 19:31:49 +02:00
IF_DBUG(int ret=) rename_share(share, from);
DBUG_ASSERT(ret == 0);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share);
}
#endif
ERR_RETURN(ndb_error);
}
// Rename .ndb file
if ((result= handler::rename_table(from, to)))
{
// ToDo in 4.1 should rollback alter table...
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share);
}
2006-01-12 19:51:02 +01:00
#endif
DBUG_RETURN(result);
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
int is_old_table_tmpfile= 1;
if (share && share->op)
dict->forceGCPWait();
/* handle old table */
if (!IS_TMP_PREFIX(m_tabname))
{
is_old_table_tmpfile= 0;
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, from + sizeof(share_prefix) - 1, 0);
ndbcluster_handle_drop_table(ndb, event_name.c_ptr(), share,
"rename table");
2006-01-12 19:51:02 +01:00
}
if (!result && !IS_TMP_PREFIX(new_tabname))
{
/* always create an event for the table */
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, to + sizeof(share_prefix) - 1, 0);
Ndb_table_guard ndbtab_g2(dict, new_tabname);
const NDBTAB *ndbtab= ndbtab_g2.get_table();
2006-01-12 19:51:02 +01:00
if (!ndbcluster_create_event(ndb, ndbtab, event_name.c_ptr(), share,
share && ndb_binlog_running ? 2 : 1/* push warning */))
2006-01-12 19:51:02 +01:00
{
if (ndb_extra_logging)
sql_print_information("NDB Binlog: RENAME Event: %s",
event_name.c_ptr());
if (share &&
ndbcluster_create_event_ops(share, ndbtab, event_name.c_ptr()))
2006-01-12 19:51:02 +01:00
{
sql_print_error("NDB Binlog: FAILED create event operations "
"during RENAME. Event %s", event_name.c_ptr());
/* a warning has been issued to the client */
2006-01-12 19:51:02 +01:00
}
}
/*
warning has been issued if ndbcluster_create_event failed
and (share && ndb_binlog_running)
*/
if (!is_old_table_tmpfile)
2006-01-12 19:51:02 +01:00
ndbcluster_log_schema_op(current_thd, share,
current_thd->query, current_thd->query_length,
old_dbname, m_tabname,
ndb_table_id, ndb_table_version,
SOT_RENAME_TABLE,
m_dbname, new_tabname, 1);
2006-01-12 19:51:02 +01:00
}
// If we are moving tables between databases, we need to recreate
// indexes
if (recreate_indexes)
{
for (unsigned i = 0; i < index_list.count; i++)
{
NDBDICT::List::Element& index_el = index_list.elements[i];
// Recreate any indexes not stored in the system database
if (my_strcasecmp(system_charset_info,
index_el.database, NDB_SYSTEM_DATABASE))
{
set_dbname(from);
ndb->setDatabaseName(m_dbname);
const NDBINDEX * index= dict->getIndexGlobal(index_el.name, new_tab);
DBUG_PRINT("info", ("Creating index %s/%s",
index_el.database, index->getName()));
dict->createIndex(*index, new_tab);
DBUG_PRINT("info", ("Dropping index %s/%s",
index_el.database, index->getName()));
set_dbname(from);
ndb->setDatabaseName(m_dbname);
dict->dropIndexGlobal(*index);
}
}
2006-01-12 19:51:02 +01:00
}
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share);
}
2006-01-12 19:51:02 +01:00
#endif
2004-04-15 09:14:14 +02:00
DBUG_RETURN(result);
}
/*
Delete table from NDB Cluster
2004-04-15 09:14:14 +02:00
*/
/* static version which does not need a handler */
int
ha_ndbcluster::delete_table(ha_ndbcluster *h, Ndb *ndb,
const char *path,
const char *db,
const char *table_name)
{
THD *thd= current_thd;
DBUG_ENTER("ha_ndbcluster::ndbcluster_delete_table");
NDBDICT *dict= ndb->getDictionary();
int ndb_table_id= 0;
int ndb_table_version= 0;
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop table unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(path, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
2006-01-12 19:51:02 +01:00
#endif
/* Drop the table from NDB */
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
int res= 0;
if (h && h->m_table)
{
retry_temporary_error1:
if (dict->dropTableGlobal(*h->m_table) == 0)
{
ndb_table_id= h->m_table->getObjectId();
ndb_table_version= h->m_table->getObjectVersion();
DBUG_PRINT("info", ("success 1"));
}
else
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
goto retry_temporary_error1; // retry indefinitly
break;
default:
break;
}
res= ndb_to_mysql_error(&dict->getNdbError());
DBUG_PRINT("info", ("error(1) %u", res));
}
h->release_metadata(thd, ndb);
}
else
{
ndb->setDatabaseName(db);
while (1)
{
Ndb_table_guard ndbtab_g(dict, table_name);
if (ndbtab_g.get_table())
{
retry_temporary_error2:
if (dict->dropTableGlobal(*ndbtab_g.get_table()) == 0)
{
ndb_table_id= ndbtab_g.get_table()->getObjectId();
ndb_table_version= ndbtab_g.get_table()->getObjectVersion();
DBUG_PRINT("info", ("success 2"));
break;
}
else
{
switch (dict->getNdbError().status)
{
case NdbError::TemporaryError:
if (!thd->killed)
goto retry_temporary_error2; // retry indefinitly
break;
default:
if (dict->getNdbError().code == NDB_INVALID_SCHEMA_OBJECT)
{
ndbtab_g.invalidate();
continue;
}
break;
}
}
}
res= ndb_to_mysql_error(&dict->getNdbError());
DBUG_PRINT("info", ("error(2) %u", res));
break;
}
}
if (res)
{
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/* the drop table failed for some reason, drop the share anyways */
if (share)
{
pthread_mutex_lock(&ndbcluster_mutex);
if (share->state != NSS_DROPPED)
{
/*
The share kept by the server has not been freed, free it
*/
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share, TRUE);
}
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share, TRUE);
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
DBUG_RETURN(res);
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/* stop the logging of the dropped table, and cleanup */
/*
drop table is successful even if table does not exist in ndb
and in case table was actually not dropped, there is no need
to force a gcp, and setting the event_name to null will indicate
that there is no event to be dropped
*/
int table_dropped= dict->getNdbError().code != 709;
if (!IS_TMP_PREFIX(table_name) && share &&
current_thd->lex->sql_command != SQLCOM_TRUNCATE)
2006-01-12 19:51:02 +01:00
{
ndbcluster_log_schema_op(thd, share,
thd->query, thd->query_length,
2006-01-12 19:51:02 +01:00
share->db, share->table_name,
ndb_table_id, ndb_table_version,
SOT_DROP_TABLE, 0, 0, 1);
2006-01-12 19:51:02 +01:00
}
else if (table_dropped && share && share->op) /* ndbcluster_log_schema_op
will do a force GCP */
dict->forceGCPWait();
if (!IS_TMP_PREFIX(table_name))
{
String event_name(INJECTOR_EVENT_LEN);
ndb_rep_event_name(&event_name, path + sizeof(share_prefix) - 1, 0);
ndbcluster_handle_drop_table(ndb,
table_dropped ? event_name.c_ptr() : 0,
share, "delete table");
2006-01-12 19:51:02 +01:00
}
if (share)
{
pthread_mutex_lock(&ndbcluster_mutex);
if (share->state != NSS_DROPPED)
{
/*
The share kept by the server has not been freed, free it
*/
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share, TRUE);
}
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share, TRUE);
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
int ha_ndbcluster::delete_table(const char *name)
{
DBUG_ENTER("ha_ndbcluster::delete_table");
2004-04-15 09:14:14 +02:00
DBUG_PRINT("enter", ("name: %s", name));
set_dbname(name);
set_tabname(name);
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop table unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
#endif
2004-04-15 09:14:14 +02:00
if (check_ndb_connection())
DBUG_RETURN(HA_ERR_NO_CONNECTION);
/* Call ancestor function to delete .ndb file */
handler::delete_table(name);
DBUG_RETURN(delete_table(this, get_ndb(),name, m_dbname, m_tabname));
2004-04-15 09:14:14 +02:00
}
void ha_ndbcluster::get_auto_increment(ulonglong offset, ulonglong increment,
ulonglong nb_desired_values,
ulonglong *first_value,
ulonglong *nb_reserved_values)
{
int cache_size;
Uint64 auto_value;
2004-07-02 11:50:28 +02:00
DBUG_ENTER("get_auto_increment");
DBUG_PRINT("enter", ("m_tabname: %s", m_tabname));
Ndb *ndb= get_ndb();
if (m_rows_inserted > m_rows_to_insert)
2005-05-07 22:04:52 +02:00
{
/* We guessed too low */
m_rows_to_insert+= m_autoincrement_prefetch;
2005-05-07 22:04:52 +02:00
}
2004-11-20 18:36:41 +01:00
cache_size=
(int) ((m_rows_to_insert - m_rows_inserted < m_autoincrement_prefetch) ?
m_rows_to_insert - m_rows_inserted :
((m_rows_to_insert > m_autoincrement_prefetch) ?
m_rows_to_insert : m_autoincrement_prefetch));
int ret;
uint retries= NDB_AUTO_INCREMENT_RETRIES;
do {
Ndb_tuple_id_range_guard g(m_share);
ret=
m_skip_auto_increment ?
ndb->readAutoIncrementValue(m_table, g.range, auto_value) :
ndb->getAutoIncrementValue(m_table, g.range, auto_value, cache_size);
} while (ret == -1 &&
--retries &&
ndb->getNdbError().status == NdbError::TemporaryError);
if (ret == -1)
{
const NdbError err= ndb->getNdbError();
sql_print_error("Error %lu in ::get_auto_increment(): %s",
(ulong) err.code, err.message);
*first_value= ~(ulonglong) 0;
DBUG_VOID_RETURN;
}
*first_value= (longlong)auto_value;
/* From the point of view of MySQL, NDB reserves one row at a time */
*nb_reserved_values= 1;
DBUG_VOID_RETURN;
2004-04-15 09:14:14 +02:00
}
/*
Constructor for the NDB Cluster table handler
*/
#define HA_NDBCLUSTER_TABLE_FLAGS \
HA_REC_NOT_IN_SEQ | \
HA_NULL_IN_KEY | \
HA_AUTO_PART_KEY | \
HA_NO_PREFIX_CHAR_KEYS | \
HA_NEED_READ_RANGE_BUFFER | \
HA_CAN_GEOMETRY | \
2006-01-12 19:51:02 +01:00
HA_CAN_BIT_FIELD | \
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
HA_PRIMARY_KEY_REQUIRED_FOR_POSITION | \
HA_PRIMARY_KEY_REQUIRED_FOR_DELETE | \
HA_PARTIAL_COLUMN_READ | \
HA_HAS_OWN_BINLOGGING | \
HA_HAS_RECORDS
ha_ndbcluster::ha_ndbcluster(handlerton *hton, TABLE_SHARE *table_arg):
handler(hton, table_arg),
2004-04-15 09:14:14 +02:00
m_active_trans(NULL),
m_active_cursor(NULL),
m_table(NULL),
m_table_info(NULL),
m_table_flags(HA_NDBCLUSTER_TABLE_FLAGS),
m_share(0),
2005-07-18 13:31:02 +02:00
m_part_info(NULL),
m_use_partition_function(FALSE),
m_sorted(FALSE),
m_use_write(FALSE),
m_ignore_dup_key(FALSE),
m_has_unique_index(FALSE),
m_primary_key_update(FALSE),
m_ignore_no_key(FALSE),
m_rows_to_insert((ha_rows) 1),
m_rows_inserted((ha_rows) 0),
m_bulk_insert_rows((ha_rows) 1024),
2005-04-13 16:24:17 +02:00
m_rows_changed((ha_rows) 0),
m_bulk_insert_not_flushed(FALSE),
m_delete_cannot_batch(FALSE),
m_update_cannot_batch(FALSE),
m_ops_pending(0),
m_skip_auto_increment(TRUE),
m_blobs_pending(0),
m_blobs_offset(0),
m_blobs_buffer(0),
m_blobs_buffer_size(0),
m_dupkey((uint) -1),
m_ha_not_exact_count(FALSE),
m_force_send(TRUE),
m_autoincrement_prefetch((ha_rows) 32),
m_transaction_on(TRUE),
m_cond(NULL),
2005-02-11 22:05:24 +01:00
m_multi_cursor(NULL)
{
int i;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ha_ndbcluster");
m_tabname[0]= '\0';
m_dbname[0]= '\0';
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
stats.records= ~(ha_rows)0; // uninitialized
stats.block_size= 1024;
2004-04-15 09:14:14 +02:00
for (i= 0; i < MAX_KEY; i++)
ndb_init_index(m_index[i]);
2004-04-15 09:14:14 +02:00
DBUG_VOID_RETURN;
}
int ha_ndbcluster::ha_initialise()
{
DBUG_ENTER("ha_ndbcluster::ha_initialise");
if (check_ndb_in_thd(current_thd))
{
DBUG_RETURN(FALSE);
}
DBUG_RETURN(TRUE);
}
2004-04-15 09:14:14 +02:00
/*
Destructor for NDB Cluster table handler
*/
ha_ndbcluster::~ha_ndbcluster()
{
THD *thd= current_thd;
Ndb *ndb= thd ? check_ndb_in_thd(thd) : g_ndb;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("~ha_ndbcluster");
if (m_share)
{
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
}
release_metadata(thd, ndb);
my_free(m_blobs_buffer, MYF(MY_ALLOW_ZERO_PTR));
m_blobs_buffer= 0;
2004-04-15 09:14:14 +02:00
// Check for open cursor/transaction
if (m_active_cursor) {
}
2004-04-15 09:14:14 +02:00
DBUG_ASSERT(m_active_cursor == NULL);
if (m_active_trans) {
}
2004-04-15 09:14:14 +02:00
DBUG_ASSERT(m_active_trans == NULL);
// Discard any generated condition
DBUG_PRINT("info", ("Deleting generated condition"));
if (m_cond)
{
delete m_cond;
m_cond= NULL;
}
2004-12-17 21:13:22 +01:00
2004-04-15 09:14:14 +02:00
DBUG_VOID_RETURN;
}
2005-02-11 22:33:52 +01:00
2004-04-15 09:14:14 +02:00
/*
Open a table for further use
- fetch metadata for this table from NDB
- check that table exists
RETURN
0 ok
< 0 Table has changed
2004-04-15 09:14:14 +02:00
*/
int ha_ndbcluster::open(const char *name, int mode, uint test_if_locked)
{
2004-10-03 23:20:05 +00:00
int res;
2004-04-15 09:14:14 +02:00
KEY *key;
DBUG_ENTER("ha_ndbcluster::open");
DBUG_PRINT("enter", ("name: %s mode: %d test_if_locked: %d",
name, mode, test_if_locked));
2004-04-15 09:14:14 +02:00
/*
Setup ref_length to make room for the whole
primary key to be written in the ref variable
*/
2004-04-15 09:14:14 +02:00
if (table_share->primary_key != MAX_KEY)
2004-04-15 09:14:14 +02:00
{
key= table->key_info+table_share->primary_key;
2004-04-15 09:14:14 +02:00
ref_length= key->key_length;
}
else // (table_share->primary_key == MAX_KEY)
{
if (m_use_partition_function)
{
ref_length+= sizeof(m_part_id);
}
}
DBUG_PRINT("info", ("ref_length: %d", ref_length));
2004-04-15 09:14:14 +02:00
// Init table lock structure
/* ndb_share reference handler */
2006-01-12 19:51:02 +01:00
if (!(m_share=get_share(name, table)))
2004-04-15 09:14:14 +02:00
DBUG_RETURN(1);
DBUG_PRINT("NDB_SHARE", ("%s handler use_count: %u",
m_share->key, m_share->use_count));
2004-04-15 09:14:14 +02:00
thr_lock_data_init(&m_share->lock,&m_lock,(void*) 0);
set_dbname(name);
set_tabname(name);
if (check_ndb_connection())
{
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
m_share= 0;
2004-04-15 09:14:14 +02:00
DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
2004-10-03 23:20:05 +00:00
res= get_metadata(name);
if (!res)
{
Ndb *ndb= get_ndb();
if (ndb->setDatabaseName(m_dbname))
{
ERR_RETURN(ndb->getNdbError());
}
2006-10-24 00:18:57 +10:00
struct Ndb_statistics stat;
res= ndb_get_table_statistics(NULL, FALSE, ndb, m_table, &stat);
stats.mean_rec_length= stat.row_size;
stats.data_file_length= stat.fragment_memory;
stats.records= stat.row_count;
if(!res)
res= info(HA_STATUS_CONST);
}
2004-04-15 09:14:14 +02:00
#ifdef HAVE_NDB_BINLOG
if (!ndb_binlog_tables_inited && ndb_binlog_running)
table->db_stat|= HA_READ_ONLY;
#endif
2004-10-03 23:20:05 +00:00
DBUG_RETURN(res);
2004-04-15 09:14:14 +02:00
}
/*
Set partition info
SYNOPSIS
set_part_info()
part_info
RETURN VALUE
NONE
DESCRIPTION
Set up partition info when handler object created
*/
void ha_ndbcluster::set_part_info(partition_info *part_info)
{
m_part_info= part_info;
if (!(m_part_info->part_type == HASH_PARTITION &&
m_part_info->list_of_part_fields &&
!m_part_info->is_sub_partitioned()))
m_use_partition_function= TRUE;
}
2004-04-15 09:14:14 +02:00
/*
Close the table
- release resources setup by open()
*/
int ha_ndbcluster::close(void)
{
DBUG_ENTER("close");
Fixed compiler warnings Fixed compile-pentium64 scripts Fixed wrong estimate of update_with_key_prefix in sql-bench Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1 Fixed unsafe define of uint4korr() Fixed that --extern works with mysql-test-run.pl Small trivial cleanups This also fixes a bug in counting number of rows that are updated when we have many simultanous queries Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc Split handle_one_connection() into reusable sub functions. Split create_new_thread() into reusable sub functions. Added thread_scheduler; Preliminary interface code for future thread_handling code. Use 'my_thread_id' for internal thread id's Make thr_alarm_kill() to depend on thread_id instead of thread Make thr_abort_locks_for_thread() depend on thread_id instead of thread In store_globals(), set my_thread_var->id to be thd->thread_id. Use my_thread_var->id as basis for my_thread_name() The above changes makes the connection we have between THD and threads more soft. Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions Fixed compiler warnings Fixed core dumps when running with --debug Removed setting of signal masks (was never used) Made event code call pthread_exit() (portability fix) Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called. Made handling of thread_id and thd->variables.pseudo_thread_id uniform. Removed one common 'not freed memory' warning from mysqltest Fixed a couple of usage of not initialized warnings (unlikely cases) Suppress compiler warnings from bdb and (for the moment) warnings from ndb
2007-02-23 13:13:55 +02:00
THD *thd= table->in_use;
Ndb *ndb= thd ? check_ndb_in_thd(thd) : g_ndb;
/* ndb_share reference handler free */
DBUG_PRINT("NDB_SHARE", ("%s handler free use_count: %u",
m_share->key, m_share->use_count));
free_share(&m_share);
m_share= 0;
release_metadata(thd, ndb);
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
Thd_ndb* ha_ndbcluster::seize_thd_ndb()
2004-04-15 09:14:14 +02:00
{
Thd_ndb *thd_ndb;
DBUG_ENTER("seize_thd_ndb");
2004-04-15 09:14:14 +02:00
thd_ndb= new Thd_ndb();
if (thd_ndb == NULL)
{
my_errno= HA_ERR_OUT_OF_MEM;
return NULL;
}
if (thd_ndb->ndb->init(max_transactions) != 0)
2004-04-15 09:14:14 +02:00
{
ERR_PRINT(thd_ndb->ndb->getNdbError());
2004-04-15 09:14:14 +02:00
/*
TODO
Alt.1 If init fails because to many allocated Ndb
wait on condition for a Ndb object to be released.
Alt.2 Seize/release from pool, wait until next release
*/
delete thd_ndb;
thd_ndb= NULL;
2004-04-15 09:14:14 +02:00
}
DBUG_RETURN(thd_ndb);
2004-04-15 09:14:14 +02:00
}
void ha_ndbcluster::release_thd_ndb(Thd_ndb* thd_ndb)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("release_thd_ndb");
delete thd_ndb;
2004-04-15 09:14:14 +02:00
DBUG_VOID_RETURN;
}
/*
2004-09-20 17:34:32 +02:00
If this thread already has a Thd_ndb object allocated
2004-04-15 09:14:14 +02:00
in current THD, reuse it. Otherwise
2004-09-20 17:34:32 +02:00
seize a Thd_ndb object, assign it to current THD and use it.
2004-04-15 09:14:14 +02:00
*/
Ndb* check_ndb_in_thd(THD* thd)
2004-04-15 09:14:14 +02:00
{
Thd_ndb *thd_ndb= get_thd_ndb(thd);
if (!thd_ndb)
2004-04-15 09:14:14 +02:00
{
2004-09-20 17:34:32 +02:00
if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb()))
2005-02-11 22:33:52 +01:00
return NULL;
set_thd_ndb(thd, thd_ndb);
2004-04-15 09:14:14 +02:00
}
2005-02-11 22:33:52 +01:00
return thd_ndb->ndb;
}
2004-09-20 17:34:32 +02:00
int ha_ndbcluster::check_ndb_connection(THD* thd)
2004-04-15 09:14:14 +02:00
{
Ndb *ndb;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("check_ndb_connection");
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (ndb->setDatabaseName(m_dbname))
{
ERR_RETURN(ndb->getNdbError());
}
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
2004-09-20 17:34:32 +02:00
static int ndbcluster_close_connection(handlerton *hton, THD *thd)
2004-04-15 09:14:14 +02:00
{
Thd_ndb *thd_ndb= get_thd_ndb(thd);
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndbcluster_close_connection");
if (thd_ndb)
{
ha_ndbcluster::release_thd_ndb(thd_ndb);
set_thd_ndb(thd, NULL); // not strictly required but does not hurt either
}
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
/*
Try to discover one table from NDB
*/
int ndbcluster_discover(handlerton *hton, THD* thd, const char *db,
const char *name,
const void** frmblob,
uint* frmlen)
2004-04-15 09:14:14 +02:00
{
int error= 0;
NdbError ndb_error;
2004-04-15 09:14:14 +02:00
uint len;
const void* data= NULL;
Ndb* ndb;
char key[FN_REFLEN];
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndbcluster_discover");
DBUG_PRINT("enter", ("db: %s, name: %s", db, name));
2004-04-15 09:14:14 +02:00
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (ndb->setDatabaseName(db))
{
ERR_RETURN(ndb->getNdbError());
}
NDBDICT* dict= ndb->getDictionary();
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(key, sizeof(key), db, name, "", 0);
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(key, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
if (share && get_ndb_share_state(share) == NSS_ALTERED)
2004-04-15 09:14:14 +02:00
{
// Frm has been altered on disk, but not yet written to ndb
if (readfrm(key, &data, &len))
{
DBUG_PRINT("error", ("Could not read frm"));
error= 1;
goto err;
}
2004-04-15 09:14:14 +02:00
}
else
{
Ndb_table_guard ndbtab_g(dict, name);
const NDBTAB *tab= ndbtab_g.get_table();
if (!tab)
{
const NdbError err= dict->getNdbError();
if (err.code == 709 || err.code == 723)
{
error= -1;
DBUG_PRINT("info", ("ndb_error.code: %u", ndb_error.code));
}
else
{
error= -1;
ndb_error= err;
DBUG_PRINT("info", ("ndb_error.code: %u", ndb_error.code));
}
goto err;
}
DBUG_PRINT("info", ("Found table %s", tab->getName()));
len= tab->getFrmLength();
if (len == 0 || tab->getFrmData() == NULL)
{
DBUG_PRINT("error", ("No frm data found."));
error= 1;
goto err;
}
if (unpackfrm(&data, &len, tab->getFrmData()))
{
DBUG_PRINT("error", ("Could not unpack table"));
error= 1;
goto err;
}
}
2004-04-15 09:14:14 +02:00
*frmlen= len;
*frmblob= data;
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
err:
my_free((char*)data, MYF(MY_ALLOW_ZERO_PTR));
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
}
if (ndb_error.code)
{
ERR_RETURN(ndb_error);
}
DBUG_RETURN(error);
2004-04-15 09:14:14 +02:00
}
/*
Check if a table exists in NDB
*/
2004-04-15 09:14:14 +02:00
int ndbcluster_table_exists_in_engine(handlerton *hton, THD* thd,
const char *db,
const char *name)
{
Ndb* ndb;
DBUG_ENTER("ndbcluster_table_exists_in_engine");
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
DBUG_PRINT("enter", ("db: %s name: %s", db, name));
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
NDBDICT* dict= ndb->getDictionary();
NdbDictionary::Dictionary::List list;
if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
for (uint i= 0 ; i < list.count ; i++)
{
NdbDictionary::Dictionary::List::Element& elmt= list.elements[i];
if (my_strcasecmp(system_charset_info, elmt.database, db))
continue;
if (my_strcasecmp(system_charset_info, elmt.name, name))
continue;
DBUG_PRINT("info", ("Found table"));
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
2004-04-15 09:14:14 +02:00
extern "C" byte* tables_get_key(const char *entry, uint *length,
my_bool not_used __attribute__((unused)))
{
*length= strlen(entry);
return (byte*) entry;
}
/*
Drop a database in NDB Cluster
NOTE add a dummy void function, since stupid handlerton is returning void instead of int...
*/
int ndbcluster_drop_database_impl(const char *path)
{
DBUG_ENTER("ndbcluster_drop_database");
THD *thd= current_thd;
char dbname[FN_HEADLEN];
Ndb* ndb;
NdbDictionary::Dictionary::List list;
uint i;
char *tabname;
List<char> drop_list;
int ret= 0;
ha_ndbcluster::set_dbname(path, (char *)&dbname);
DBUG_PRINT("enter", ("db: %s", dbname));
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(-1);
// List tables in NDB
NDBDICT *dict= ndb->getDictionary();
if (dict->listObjects(list,
NdbDictionary::Object::UserTable) != 0)
DBUG_RETURN(-1);
for (i= 0 ; i < list.count ; i++)
{
NdbDictionary::Dictionary::List::Element& elmt= list.elements[i];
DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name));
// Add only tables that belongs to db
if (my_strcasecmp(system_charset_info, elmt.database, dbname))
continue;
DBUG_PRINT("info", ("%s must be dropped", elmt.name));
drop_list.push_back(thd->strdup(elmt.name));
}
// Drop any tables belonging to database
char full_path[FN_REFLEN];
char *tmp= full_path +
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(full_path, sizeof(full_path), dbname, "", "", 0);
if (ndb->setDatabaseName(dbname))
{
ERR_RETURN(ndb->getNdbError());
}
List_iterator_fast<char> it(drop_list);
while ((tabname=it++))
{
tablename_to_filename(tabname, tmp, FN_REFLEN - (tmp - full_path)-1);
2006-06-14 01:20:39 +02:00
VOID(pthread_mutex_lock(&LOCK_open));
if (ha_ndbcluster::delete_table(0, ndb, full_path, dbname, tabname))
{
const NdbError err= dict->getNdbError();
2005-11-07 12:19:28 +01:00
if (err.code != 709 && err.code != 723)
{
ERR_PRINT(err);
ret= ndb_to_mysql_error(&err);
}
}
2006-06-14 01:20:39 +02:00
VOID(pthread_mutex_unlock(&LOCK_open));
}
DBUG_RETURN(ret);
}
static void ndbcluster_drop_database(handlerton *hton, char *path)
{
DBUG_ENTER("ndbcluster_drop_database");
#ifdef HAVE_NDB_BINLOG
/*
Don't allow drop database unless
schema distribution table is setup
*/
if (!ndb_schema_share)
{
DBUG_PRINT("info", ("Schema distribution table not setup"));
DBUG_VOID_RETURN;
//DBUG_RETURN(HA_ERR_NO_CONNECTION);
}
#endif
ndbcluster_drop_database_impl(path);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
char db[FN_REFLEN];
THD *thd= current_thd;
2006-01-12 19:51:02 +01:00
ha_ndbcluster::set_dbname(path, db);
ndbcluster_log_schema_op(thd, 0,
thd->query, thd->query_length,
db, "", 0, 0, SOT_DROP_DB, 0, 0, 0);
2006-01-12 19:51:02 +01:00
#endif
DBUG_VOID_RETURN;
}
int ndb_create_table_from_engine(THD *thd, const char *db,
const char *table_name)
{
LEX *old_lex= thd->lex, newlex;
thd->lex= &newlex;
newlex.current_select= NULL;
lex_start(thd, "", 0);
int res= ha_create_table_from_engine(thd, db, table_name);
thd->lex= old_lex;
return res;
}
/*
find all tables in ndb and discover those needed
*/
2006-01-12 19:51:02 +01:00
int ndbcluster_find_all_files(THD *thd)
{
Ndb* ndb;
char key[FN_REFLEN];
NDBDICT *dict;
int unhandled, retries= 5, skipped;
DBUG_ENTER("ndbcluster_find_all_files");
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
dict= ndb->getDictionary();
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
LINT_INIT(unhandled);
LINT_INIT(skipped);
do
{
NdbDictionary::Dictionary::List list;
if (dict->listObjects(list, NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
unhandled= 0;
skipped= 0;
retries--;
for (uint i= 0 ; i < list.count ; i++)
{
NDBDICT::List::Element& elmt= list.elements[i];
2006-02-17 22:33:31 +01:00
if (IS_TMP_PREFIX(elmt.name) || IS_NDB_BLOB_PREFIX(elmt.name))
2006-01-12 19:51:02 +01:00
{
DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name));
continue;
}
DBUG_PRINT("info", ("Found %s.%s in NDB", elmt.database, elmt.name));
if (elmt.state != NDBOBJ::StateOnline &&
elmt.state != NDBOBJ::StateBackup &&
elmt.state != NDBOBJ::StateBuilding)
{
sql_print_information("NDB: skipping setup table %s.%s, in state %d",
elmt.database, elmt.name, elmt.state);
skipped++;
continue;
}
ndb->setDatabaseName(elmt.database);
Ndb_table_guard ndbtab_g(dict, elmt.name);
const NDBTAB *ndbtab= ndbtab_g.get_table();
if (!ndbtab)
{
if (retries == 0)
2006-01-12 19:51:02 +01:00
sql_print_error("NDB: failed to setup table %s.%s, error: %d, %s",
elmt.database, elmt.name,
dict->getNdbError().code,
dict->getNdbError().message);
unhandled++;
continue;
}
if (ndbtab->getFrmLength() == 0)
continue;
/* check if database exists */
char *end= key +
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(key, sizeof(key), elmt.database, "", "", 0);
if (my_access(key, F_OK))
{
/* no such database defined, skip table */
continue;
}
/* finalize construction of path */
end+= tablename_to_filename(elmt.name, end,
sizeof(key)-(end-key));
const void *data= 0, *pack_data= 0;
uint length, pack_length;
int discover= 0;
if (readfrm(key, &data, &length) ||
packfrm(data, length, &pack_data, &pack_length))
{
discover= 1;
sql_print_information("NDB: missing frm for %s.%s, discovering...",
elmt.database, elmt.name);
}
else if (cmp_frm(ndbtab, pack_data, pack_length))
{
/* ndb_share reference temporary */
NDB_SHARE *share= get_share(key, 0, FALSE);
if (share)
{
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
}
if (!share || get_ndb_share_state(share) != NSS_ALTERED)
2006-01-17 12:53:49 +01:00
{
discover= 1;
sql_print_information("NDB: mismatch in frm for %s.%s, discovering...",
elmt.database, elmt.name);
}
2006-01-17 18:35:17 +01:00
if (share)
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-17 18:35:17 +01:00
free_share(&share);
}
}
my_free((char*) data, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) pack_data, MYF(MY_ALLOW_ZERO_PTR));
pthread_mutex_lock(&LOCK_open);
if (discover)
{
/* ToDo 4.1 database needs to be created if missing */
if (ndb_create_table_from_engine(thd, elmt.database, elmt.name))
{
/* ToDo 4.1 handle error */
}
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
else
2006-01-12 19:51:02 +01:00
{
/* set up replication for this table */
ndbcluster_create_binlog_setup(ndb, key, end-key,
elmt.database, elmt.name,
TRUE);
2006-01-12 19:51:02 +01:00
}
#endif
pthread_mutex_unlock(&LOCK_open);
}
}
while (unhandled && retries);
DBUG_RETURN(-(skipped + unhandled));
}
int ndbcluster_find_files(handlerton *hton, THD *thd,
const char *db,
const char *path,
const char *wild, bool dir, List<char> *files)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("ndbcluster_find_files");
DBUG_PRINT("enter", ("db: %s", db));
{ // extra bracket to avoid gcc 2.95.3 warning
2004-04-15 09:14:14 +02:00
uint i;
Ndb* ndb;
char name[FN_REFLEN];
HASH ndb_tables, ok_tables;
NDBDICT::List list;
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(HA_ERR_NO_CONNECTION);
if (dir)
DBUG_RETURN(0); // Discover of databases not yet supported
// List tables in NDB
NDBDICT *dict= ndb->getDictionary();
2004-04-15 09:14:14 +02:00
if (dict->listObjects(list,
NdbDictionary::Object::UserTable) != 0)
ERR_RETURN(dict->getNdbError());
if (hash_init(&ndb_tables, system_charset_info,list.count,0,0,
(hash_get_key)tables_get_key,0,0))
{
DBUG_PRINT("error", ("Failed to init HASH ndb_tables"));
DBUG_RETURN(-1);
}
if (hash_init(&ok_tables, system_charset_info,32,0,0,
(hash_get_key)tables_get_key,0,0))
{
DBUG_PRINT("error", ("Failed to init HASH ok_tables"));
hash_free(&ndb_tables);
DBUG_RETURN(-1);
}
2004-04-15 09:14:14 +02:00
for (i= 0 ; i < list.count ; i++)
{
NDBDICT::List::Element& elmt= list.elements[i];
2006-02-17 22:33:31 +01:00
if (IS_TMP_PREFIX(elmt.name) || IS_NDB_BLOB_PREFIX(elmt.name))
2006-01-12 19:51:02 +01:00
{
DBUG_PRINT("info", ("Skipping %s.%s in NDB", elmt.database, elmt.name));
continue;
}
DBUG_PRINT("info", ("Found %s/%s in NDB", elmt.database, elmt.name));
2004-04-15 09:14:14 +02:00
// Add only tables that belongs to db
if (my_strcasecmp(system_charset_info, elmt.database, db))
continue;
2004-04-15 09:14:14 +02:00
// Apply wildcard to list of tables in NDB
if (wild)
{
if (lower_case_table_names)
{
if (wild_case_compare(files_charset_info, elmt.name, wild))
continue;
}
else if (wild_compare(elmt.name,wild,0))
continue;
}
DBUG_PRINT("info", ("Inserting %s into ndb_tables hash", elmt.name));
my_hash_insert(&ndb_tables, (byte*)thd->strdup(elmt.name));
2004-04-15 09:14:14 +02:00
}
char *file_name;
List_iterator<char> it(*files);
List<char> delete_list;
while ((file_name=it++))
{
bool file_on_disk= FALSE;
DBUG_PRINT("info", ("%s", file_name));
if (hash_search(&ndb_tables, file_name, strlen(file_name)))
{
DBUG_PRINT("info", ("%s existed in NDB _and_ on disk ", file_name));
file_on_disk= TRUE;
}
// Check for .ndb file with this name
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(name, sizeof(name), db, file_name, ha_ndb_ext, 0);
DBUG_PRINT("info", ("Check access for %s", name));
if (my_access(name, F_OK))
{
DBUG_PRINT("info", ("%s did not exist on disk", name));
// .ndb file did not exist on disk, another table type
if (file_on_disk)
{
// Ignore this ndb table
gptr record= hash_search(&ndb_tables, file_name, strlen(file_name));
DBUG_ASSERT(record);
hash_delete(&ndb_tables, record);
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_TABLE_EXISTS_ERROR,
"Local table %s.%s shadows ndb table",
db, file_name);
}
continue;
}
if (file_on_disk)
{
// File existed in NDB and as frm file, put in ok_tables list
my_hash_insert(&ok_tables, (byte*)file_name);
continue;
}
DBUG_PRINT("info", ("%s existed on disk", name));
// The .ndb file exists on disk, but it's not in list of tables in ndb
// Verify that handler agrees table is gone.
if (ndbcluster_table_exists_in_engine(hton, thd, db, file_name) == 0)
{
DBUG_PRINT("info", ("NDB says %s does not exists", file_name));
it.remove();
// Put in list of tables to remove from disk
delete_list.push_back(thd->strdup(file_name));
}
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/* setup logging to binlog for all discovered tables */
{
char *end, *end1= name +
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(name, sizeof(name), db, "", "", 0);
2006-01-12 19:51:02 +01:00
for (i= 0; i < ok_tables.records; i++)
{
file_name= (char*)hash_element(&ok_tables, i);
end= end1 +
tablename_to_filename(file_name, end1, sizeof(name) - (end1 - name));
pthread_mutex_lock(&LOCK_open);
ndbcluster_create_binlog_setup(ndb, name, end-name,
db, file_name, TRUE);
pthread_mutex_unlock(&LOCK_open);
2006-01-12 19:51:02 +01:00
}
}
#endif
// Check for new files to discover
DBUG_PRINT("info", ("Checking for new files to discover"));
List<char> create_list;
for (i= 0 ; i < ndb_tables.records ; i++)
{
file_name= hash_element(&ndb_tables, i);
if (!hash_search(&ok_tables, file_name, strlen(file_name)))
{
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(name, sizeof(name), db, file_name, reg_ext, 0);
if (my_access(name, F_OK))
{
DBUG_PRINT("info", ("%s must be discovered", file_name));
// File is in list of ndb tables and not in ok_tables
// This table need to be created
create_list.push_back(thd->strdup(file_name));
}
}
}
// Lock mutex before deleting and creating frm files
pthread_mutex_lock(&LOCK_open);
if (!global_read_lock)
{
// Delete old files
List_iterator_fast<char> it3(delete_list);
while ((file_name=it3++))
{
DBUG_PRINT("info", ("Remove table %s/%s", db, file_name));
// Delete the table and all related files
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= (char*) db;
table_list.alias= table_list.table_name= (char*)file_name;
(void)mysql_rm_table_part2(thd, &table_list,
2005-02-21 16:13:29 +01:00
/* if_exists */ FALSE,
/* drop_temporary */ FALSE,
/* drop_view */ FALSE,
/* dont_log_query*/ TRUE);
/* Clear error message that is returned when table is deleted */
thd->clear_error();
}
}
// Create new files
List_iterator_fast<char> it2(create_list);
while ((file_name=it2++))
{
DBUG_PRINT("info", ("Table %s need discovery", file_name));
if (ndb_create_table_from_engine(thd, db, file_name) == 0)
files->push_back(thd->strdup(file_name));
}
pthread_mutex_unlock(&LOCK_open);
hash_free(&ok_tables);
hash_free(&ndb_tables);
// Delete schema file from files
if (!strcmp(db, NDB_REP_DB))
{
uint count = 0;
while (count++ < files->elements)
{
file_name = (char *)files->pop();
if (!strcmp(file_name, NDB_SCHEMA_TABLE))
{
DBUG_PRINT("info", ("skip %s.%s table, it should be hidden to user",
NDB_REP_DB, NDB_SCHEMA_TABLE));
continue;
}
files->push_back(file_name);
}
}
} // extra bracket to avoid gcc 2.95.3 warning
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
/*
Initialise all gloal variables before creating
a NDB Cluster table handler
*/
/* Call back after cluster connect */
static int connect_callback()
{
pthread_mutex_lock(&LOCK_ndb_util_thread);
update_status_variables(g_ndb_cluster_connection);
2006-01-12 19:51:02 +01:00
uint node_id, i= 0;
Ndb_cluster_connection_node_iter node_iter;
memset((void *)g_node_id_map, 0xFFFF, sizeof(g_node_id_map));
while ((node_id= g_ndb_cluster_connection->get_next_node(node_iter)))
g_node_id_map[node_id]= i++;
pthread_cond_signal(&COND_ndb_util_thread);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
return 0;
}
extern int ndb_dictionary_is_mysqld;
static int ndbcluster_init(void *p)
2004-04-15 09:14:14 +02:00
{
int res;
2004-04-15 09:14:14 +02:00
DBUG_ENTER("ndbcluster_init");
if (ndbcluster_inited)
DBUG_RETURN(FALSE);
pthread_mutex_init(&ndbcluster_mutex,MY_MUTEX_INIT_FAST);
pthread_mutex_init(&LOCK_ndb_util_thread, MY_MUTEX_INIT_FAST);
pthread_cond_init(&COND_ndb_util_thread, NULL);
pthread_cond_init(&COND_ndb_util_ready, NULL);
ndb_util_thread_running= -1;
ndbcluster_terminating= 0;
ndb_dictionary_is_mysqld= 1;
ndbcluster_hton= (handlerton *)p;
{
handlerton *h= ndbcluster_hton;
h->state= have_ndbcluster;
h->db_type= DB_TYPE_NDBCLUSTER;
h->close_connection= ndbcluster_close_connection;
h->commit= ndbcluster_commit;
h->rollback= ndbcluster_rollback;
h->create= ndbcluster_create_handler; /* Create a new handler */
h->drop_database= ndbcluster_drop_database; /* Drop a database */
h->panic= ndbcluster_end; /* Panic call */
h->show_status= ndbcluster_show_status; /* Show status */
h->alter_tablespace= ndbcluster_alter_tablespace; /* Show status */
h->partition_flags= ndbcluster_partition_flags; /* Partition flags */
h->alter_table_flags=ndbcluster_alter_table_flags; /* Alter table flags */
h->fill_files_table= ndbcluster_fill_files_table;
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
ndbcluster_binlog_init_handlerton();
#endif
h->flags= HTON_CAN_RECREATE | HTON_TEMPORARY_NOT_SUPPORTED;
h->discover= ndbcluster_discover;
h->find_files= ndbcluster_find_files;
h->table_exists_in_engine= ndbcluster_table_exists_in_engine;
2006-01-12 19:51:02 +01:00
}
if (have_ndbcluster != SHOW_OPTION_YES)
DBUG_RETURN(0); // nothing else to do
2006-08-30 11:41:21 +02:00
// Initialize ndb interface
ndb_init_internal();
// Set connectstring if specified
if (opt_ndbcluster_connectstring != 0)
DBUG_PRINT("connectstring", ("%s", opt_ndbcluster_connectstring));
if ((g_ndb_cluster_connection=
new Ndb_cluster_connection(opt_ndbcluster_connectstring)) == 0)
{
DBUG_PRINT("error",("Ndb_cluster_connection(%s)",
opt_ndbcluster_connectstring));
my_errno= HA_ERR_OUT_OF_MEM;
goto ndbcluster_init_error;
}
{
char buf[128];
my_snprintf(buf, sizeof(buf), "mysqld --server-id=%lu", server_id);
g_ndb_cluster_connection->set_name(buf);
}
g_ndb_cluster_connection->set_optimized_node_selection
(opt_ndb_optimized_node_selection);
2004-04-15 09:14:14 +02:00
// Create a Ndb object to open the connection to NDB
if ( (g_ndb= new Ndb(g_ndb_cluster_connection, "sys")) == 0 )
{
DBUG_PRINT("error", ("failed to create global ndb object"));
my_errno= HA_ERR_OUT_OF_MEM;
goto ndbcluster_init_error;
}
2004-04-15 09:14:14 +02:00
if (g_ndb->init() != 0)
{
ERR_PRINT (g_ndb->getNdbError());
goto ndbcluster_init_error;
2004-04-15 09:14:14 +02:00
}
if ((res= g_ndb_cluster_connection->connect(0,0,0)) == 0)
2004-04-15 09:14:14 +02:00
{
connect_callback();
DBUG_PRINT("info",("NDBCLUSTER storage engine at %s on port %d",
g_ndb_cluster_connection->get_connected_host(),
g_ndb_cluster_connection->get_connected_port()));
g_ndb_cluster_connection->wait_until_ready(10,3);
}
else if (res == 1)
{
if (g_ndb_cluster_connection->start_connect_thread(connect_callback))
{
DBUG_PRINT("error", ("g_ndb_cluster_connection->start_connect_thread()"));
goto ndbcluster_init_error;
}
#ifndef DBUG_OFF
{
char buf[1024];
DBUG_PRINT("info",
("NDBCLUSTER storage engine not started, "
"will connect using %s",
g_ndb_cluster_connection->
get_connectstring(buf,sizeof(buf))));
}
#endif
}
else
{
DBUG_ASSERT(res == -1);
DBUG_PRINT("error", ("permanent error"));
goto ndbcluster_init_error;
2004-04-15 09:14:14 +02:00
}
2004-04-15 09:14:14 +02:00
(void) hash_init(&ndbcluster_open_tables,system_charset_info,32,0,0,
(hash_get_key) ndbcluster_get_key,0,0);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/* start the ndb injector thread */
if (ndbcluster_binlog_start())
goto ndbcluster_init_error;
2006-01-12 19:51:02 +01:00
#endif /* HAVE_NDB_BINLOG */
ndb_cache_check_time = opt_ndb_cache_check_time;
2005-02-11 22:33:52 +01:00
// Create utility thread
pthread_t tmp;
if (pthread_create(&tmp, &connection_attrib, ndb_util_thread_func, 0))
{
DBUG_PRINT("error", ("Could not create ndb utility thread"));
hash_free(&ndbcluster_open_tables);
pthread_mutex_destroy(&ndbcluster_mutex);
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
2005-02-11 22:33:52 +01:00
goto ndbcluster_init_error;
}
2006-12-20 22:57:23 +01:00
/* Wait for the util thread to start */
pthread_mutex_lock(&LOCK_ndb_util_thread);
while (ndb_util_thread_running < 0)
pthread_cond_wait(&COND_ndb_util_ready, &LOCK_ndb_util_thread);
2006-12-20 22:57:23 +01:00
pthread_mutex_unlock(&LOCK_ndb_util_thread);
if (!ndb_util_thread_running)
{
DBUG_PRINT("error", ("ndb utility thread exited prematurely"));
hash_free(&ndbcluster_open_tables);
pthread_mutex_destroy(&ndbcluster_mutex);
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
goto ndbcluster_init_error;
}
2006-12-20 22:57:23 +01:00
2004-04-15 09:14:14 +02:00
ndbcluster_inited= 1;
DBUG_RETURN(FALSE);
2005-02-11 22:33:52 +01:00
ndbcluster_init_error:
if (g_ndb)
delete g_ndb;
g_ndb= NULL;
if (g_ndb_cluster_connection)
delete g_ndb_cluster_connection;
g_ndb_cluster_connection= NULL;
have_ndbcluster= SHOW_OPTION_DISABLED; // If we couldn't use handler
ndbcluster_hton->state= SHOW_OPTION_DISABLED; // If we couldn't use handler
DBUG_RETURN(TRUE);
2004-04-15 09:14:14 +02:00
}
static int ndbcluster_end(handlerton *hton, ha_panic_function type)
2004-04-15 09:14:14 +02:00
{
DBUG_ENTER("ndbcluster_end");
2005-02-11 22:33:52 +01:00
if (!ndbcluster_inited)
DBUG_RETURN(0);
2006-12-20 22:57:23 +01:00
ndbcluster_inited= 0;
/* wait for util thread to finish */
sql_print_information("Stopping Cluster Utility thread");
2006-12-20 22:57:23 +01:00
pthread_mutex_lock(&LOCK_ndb_util_thread);
ndbcluster_terminating= 1;
pthread_cond_signal(&COND_ndb_util_thread);
while (ndb_util_thread_running > 0)
pthread_cond_wait(&COND_ndb_util_ready, &LOCK_ndb_util_thread);
2006-12-20 22:57:23 +01:00
pthread_mutex_unlock(&LOCK_ndb_util_thread);
#ifdef HAVE_NDB_BINLOG
{
pthread_mutex_lock(&ndbcluster_mutex);
while (ndbcluster_open_tables.records)
{
NDB_SHARE *share=
(NDB_SHARE*) hash_element(&ndbcluster_open_tables, 0);
#ifndef DBUG_OFF
fprintf(stderr, "NDB: table share %s with use_count %d not freed\n",
share->key, share->use_count);
#endif
ndbcluster_real_free_share(&share);
}
pthread_mutex_unlock(&ndbcluster_mutex);
}
#endif
hash_free(&ndbcluster_open_tables);
if (g_ndb)
{
#ifndef DBUG_OFF
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (g_ndb->get_free_list_usage(&tmp))
{
uint leaked= (uint) tmp.m_created - tmp.m_free;
if (leaked)
fprintf(stderr, "NDB: Found %u %s%s that %s not been released\n",
leaked, tmp.m_name,
(leaked == 1)?"":"'s",
(leaked == 1)?"has":"have");
}
#endif
delete g_ndb;
g_ndb= NULL;
}
delete g_ndb_cluster_connection;
g_ndb_cluster_connection= NULL;
2006-08-30 11:41:21 +02:00
// cleanup ndb interface
ndb_end_internal();
2004-04-15 09:14:14 +02:00
pthread_mutex_destroy(&ndbcluster_mutex);
2005-02-11 22:33:52 +01:00
pthread_mutex_destroy(&LOCK_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_thread);
pthread_cond_destroy(&COND_ndb_util_ready);
2004-04-15 09:14:14 +02:00
DBUG_RETURN(0);
}
void ha_ndbcluster::print_error(int error, myf errflag)
{
DBUG_ENTER("ha_ndbcluster::print_error");
DBUG_PRINT("enter", ("error: %d", error));
if (error == HA_ERR_NO_PARTITION_FOUND)
2006-06-14 19:40:06 -04:00
m_part_info->print_no_partition_found(table);
else
handler::print_error(error, errflag);
DBUG_VOID_RETURN;
}
/*
Static error print function called from
static handler method ndbcluster_commit
and ndbcluster_rollback
*/
void ndbcluster_print_error(int error, const NdbOperation *error_op)
{
DBUG_ENTER("ndbcluster_print_error");
TABLE_SHARE share;
const char *tab_name= (error_op) ? error_op->getTableName() : "";
share.db.str= (char*) "";
share.db.length= 0;
share.table_name.str= (char *) tab_name;
share.table_name.length= strlen(tab_name);
ha_ndbcluster error_handler(ndbcluster_hton, &share);
error_handler.print_error(error, MYF(0));
2004-07-06 08:43:57 +02:00
DBUG_VOID_RETURN;
}
2004-04-15 09:14:14 +02:00
/**
* Set a given location from full pathname to database name
*
2004-04-15 09:14:14 +02:00
*/
void ha_ndbcluster::set_dbname(const char *path_name, char *dbname)
2004-04-15 09:14:14 +02:00
{
char *end, *ptr, *tmp_name;
char tmp_buff[FN_REFLEN];
tmp_name= tmp_buff;
2004-04-15 09:14:14 +02:00
/* Scan name from the end */
ptr= strend(path_name)-1;
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
ptr--;
end= ptr;
2004-04-15 09:14:14 +02:00
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
uint name_len= end - ptr;
memcpy(tmp_name, ptr + 1, name_len);
tmp_name[name_len]= '\0';
2004-04-15 09:14:14 +02:00
#ifdef __WIN__
/* Put to lower case */
ptr= tmp_name;
2004-04-15 09:14:14 +02:00
while (*ptr != '\0') {
*ptr= tolower(*ptr);
2004-04-15 09:14:14 +02:00
ptr++;
}
#endif
filename_to_tablename(tmp_name, dbname, FN_REFLEN);
2004-04-15 09:14:14 +02:00
}
/*
Set m_dbname from full pathname to table file
*/
void ha_ndbcluster::set_dbname(const char *path_name)
{
set_dbname(path_name, m_dbname);
}
2004-04-15 09:14:14 +02:00
/**
* Set a given location from full pathname to table file
*
*/
void
ha_ndbcluster::set_tabname(const char *path_name, char * tabname)
{
char *end, *ptr, *tmp_name;
char tmp_buff[FN_REFLEN];
tmp_name= tmp_buff;
2004-04-15 09:14:14 +02:00
/* Scan name from the end */
end= strend(path_name)-1;
ptr= end;
2004-04-15 09:14:14 +02:00
while (ptr >= path_name && *ptr != '\\' && *ptr != '/') {
ptr--;
}
uint name_len= end - ptr;
memcpy(tmp_name, ptr + 1, end - ptr);
tmp_name[name_len]= '\0';
2004-04-15 09:14:14 +02:00
#ifdef __WIN__
/* Put to lower case */
ptr= tmp_name;
2004-04-15 09:14:14 +02:00
while (*ptr != '\0') {
*ptr= tolower(*ptr);
ptr++;
}
#endif
filename_to_tablename(tmp_name, tabname, FN_REFLEN);
2004-04-15 09:14:14 +02:00
}
/*
Set m_tabname from full pathname to table file
2004-04-15 09:14:14 +02:00
*/
void ha_ndbcluster::set_tabname(const char *path_name)
2004-04-15 09:14:14 +02:00
{
set_tabname(path_name, m_tabname);
2004-04-15 09:14:14 +02:00
}
ha_rows
ha_ndbcluster::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
KEY *key_info= table->key_info + inx;
2004-04-15 09:14:14 +02:00
uint key_length= key_info->key_length;
NDB_INDEX_TYPE idx_type= get_index_type(inx);
2004-04-15 09:14:14 +02:00
DBUG_ENTER("records_in_range");
// Prevent partial read of hash indexes by returning HA_POS_ERROR
if ((idx_type == UNIQUE_INDEX || idx_type == PRIMARY_KEY_INDEX) &&
((min_key && min_key->length < key_length) ||
(max_key && max_key->length < key_length)))
DBUG_RETURN(HA_POS_ERROR);
// Read from hash index with full key
// This is a "const" table which returns only one record!
if ((idx_type != ORDERED_INDEX) &&
((min_key && min_key->length == key_length) ||
(max_key && max_key->length == key_length)))
DBUG_RETURN(1);
if ((idx_type == PRIMARY_KEY_ORDERED_INDEX ||
idx_type == UNIQUE_ORDERED_INDEX ||
idx_type == ORDERED_INDEX) &&
m_index[inx].index_stat != NULL)
{
NDB_INDEX_DATA& d=m_index[inx];
const NDBINDEX* index= d.index;
Ndb* ndb=get_ndb();
NdbTransaction* trans=NULL;
NdbIndexScanOperation* op=NULL;
int res=0;
Uint64 rows;
do
{
// We must provide approx table rows
Uint64 table_rows=0;
Ndb_local_table_statistics *ndb_info= m_table_info;
if (ndb_info->records != ~(ha_rows)0 && ndb_info->records != 0)
{
table_rows = ndb_info->records;
DBUG_PRINT("info", ("use info->records: %lu", (ulong) table_rows));
}
else
{
Ndb_statistics stat;
if ((res=ndb_get_table_statistics(this, TRUE, ndb, m_table, &stat)))
break;
table_rows=stat.row_count;
DBUG_PRINT("info", ("use db row_count: %lu", (ulong) table_rows));
if (table_rows == 0) {
// Problem if autocommit=0
#ifdef ndb_get_table_statistics_uses_active_trans
rows=0;
break;
#endif
}
}
// Define scan op for the range
if ((trans=m_active_trans) == NULL ||
trans->commitStatus() != NdbTransaction::Started)
{
DBUG_PRINT("info", ("no active trans"));
if (! (trans=ndb->startTransaction()))
ERR_BREAK(ndb->getNdbError(), res);
}
if (! (op=trans->getNdbIndexScanOperation(index, (NDBTAB*)m_table)))
ERR_BREAK(trans->getNdbError(), res);
if ((op->readTuples(NdbOperation::LM_CommittedRead)) == -1)
ERR_BREAK(op->getNdbError(), res);
const key_range *keys[2]={ min_key, max_key };
if ((res=set_bounds(op, inx, TRUE, keys)) != 0)
break;
// Decide if db should be contacted
int flags=0;
if (d.index_stat_query_count < d.index_stat_cache_entries ||
(d.index_stat_update_freq != 0 &&
d.index_stat_query_count % d.index_stat_update_freq == 0))
{
DBUG_PRINT("info", ("force stat from db"));
flags|=NdbIndexStat::RR_UseDb;
}
if (d.index_stat->records_in_range(index, op, table_rows, &rows, flags) == -1)
ERR_BREAK(d.index_stat->getNdbError(), res);
d.index_stat_query_count++;
} while (0);
if (trans != m_active_trans && rows == 0)
rows = 1;
if (trans != m_active_trans && trans != NULL)
ndb->closeTransaction(trans);
if (res != 0)
DBUG_RETURN(HA_POS_ERROR);
DBUG_RETURN(rows);
}
DBUG_RETURN(10); /* Good guess when you don't know anything */
2004-04-15 09:14:14 +02:00
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
ulonglong ha_ndbcluster::table_flags(void) const
{
if (m_ha_not_exact_count)
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
return m_table_flags & ~HA_STATS_RECORDS_IS_EXACT;
return m_table_flags;
}
const char * ha_ndbcluster::table_type() const
{
return("NDBCLUSTER");
}
uint ha_ndbcluster::max_supported_record_length() const
{
return NDB_MAX_TUPLE_SIZE;
}
uint ha_ndbcluster::max_supported_keys() const
{
return MAX_KEY;
}
uint ha_ndbcluster::max_supported_key_parts() const
{
return NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY;
}
uint ha_ndbcluster::max_supported_key_length() const
{
return NDB_MAX_KEY_SIZE;
}
2006-02-07 19:57:31 +01:00
uint ha_ndbcluster::max_supported_key_part_length() const
{
return NDB_MAX_KEY_SIZE;
}
bool ha_ndbcluster::low_byte_first() const
{
#ifdef WORDS_BIGENDIAN
return FALSE;
#else
return TRUE;
#endif
}
const char* ha_ndbcluster::index_type(uint key_number)
{
switch (get_index_type(key_number)) {
case ORDERED_INDEX:
case UNIQUE_ORDERED_INDEX:
case PRIMARY_KEY_ORDERED_INDEX:
return "BTREE";
case UNIQUE_INDEX:
case PRIMARY_KEY_INDEX:
default:
return "HASH";
}
}
2005-02-11 22:33:52 +01:00
uint8 ha_ndbcluster::table_cache_type()
{
2005-02-11 22:33:52 +01:00
DBUG_ENTER("ha_ndbcluster::table_cache_type=HA_CACHE_TBL_ASKTRANSACT");
DBUG_RETURN(HA_CACHE_TBL_ASKTRANSACT);
}
uint ndb_get_commitcount(THD *thd, char *dbname, char *tabname,
Uint64 *commit_count)
2005-02-11 22:33:52 +01:00
{
char name[FN_REFLEN];
NDB_SHARE *share;
DBUG_ENTER("ndb_get_commitcount");
Bug#18775 - Temporary table from alter table visible to other threads Continued implementation of WL#1324 (table name to filename encoding) The intermediate (not temporary) files of the new table during ALTER TABLE was visible for SHOW TABLES. These intermediate files are copies of the original table with the changes done by ALTER TABLE. After all the data is copied over from the original table, these files are renamed to the original tables file names. So they are not temporary files. They persist after ALTER TABLE, but just with another name. In 5.0 the intermediate files are invisible for SHOW TABLES because all file names beginning with "#sql" were suppressed. This failed since 5.1.6 because even temporary table names were converted when making file names from them. The prefix became converted to "@0023sql". Converting the prefix during SHOW TABLES would suppress the listing of user tables that start with "#sql". The solution of the problem is to continue the implementation of the table name to file name conversion feature. One requirement is to suppress the conversion for temporary table names. This change is straightforward for real temporary tables as there is a function that creates temporary file names. But the generated path names are located in TMPDIR and have no relation to the internal table name. This cannot be used for ALTER TABLE. Its intermediate files need to be in the same directory as the old table files. And it is necessary to be able to deduce the same path from the same table name repeatedly. Consequently the intermediate table files must be handled like normal tables. Their internal names shall start with tmp_file_prefix (#sql) and they shall not be converted like normal table names. I added a flags parameter to all relevant functions that are called from ALTER TABLE. It is used to suppress the conversion for the intermediate table files. The outcome is that the suppression of #sql in SHOW TABLES works again. It does not suppress user tables as these are converted to @0023sql on file level. This patch does also fix ALTER TABLE ... RENAME, which could not rename a table with non-ASCII characters in its name. It does also fix the problem that a user could create a table like `#sql-xxxx-yyyy`, where xxxx is mysqld's pid and yyyy is the thread ID of some other thread, which prevented this thread from running ALTER TABLE. Some of the above problems are mentioned in Bug 1405, which can be closed with this patch. This patch does also contain some minor fixes for other forgotten conversions. Still known problems are reported as bugs 21370, 21373, and 21387.
2006-08-02 17:57:06 +02:00
build_table_filename(name, sizeof(name), dbname, tabname, "", 0);
DBUG_PRINT("enter", ("name: %s", name));
pthread_mutex_lock(&ndbcluster_mutex);
if (!(share=(NDB_SHARE*) hash_search(&ndbcluster_open_tables,
(byte*) name,
strlen(name))))
{
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_PRINT("info", ("Table %s not found in ndbcluster_open_tables", name));
DBUG_RETURN(1);
}
/* ndb_share reference temporary, free below */
share->use_count++;
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
pthread_mutex_unlock(&ndbcluster_mutex);
pthread_mutex_lock(&share->mutex);
2005-02-11 22:33:52 +01:00
if (ndb_cache_check_time > 0)
{
if (share->commit_count != 0)
2005-02-11 22:33:52 +01:00
{
*commit_count= share->commit_count;
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22];
2007-02-27 19:31:49 +02:00
#endif
DBUG_PRINT("info", ("Getting commit_count: %s from share",
llstr(share->commit_count, buff)));
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
DBUG_RETURN(0);
2005-02-11 22:33:52 +01:00
}
}
DBUG_PRINT("info", ("Get commit_count from NDB"));
2005-02-11 22:33:52 +01:00
Ndb *ndb;
if (!(ndb= check_ndb_in_thd(thd)))
DBUG_RETURN(1);
if (ndb->setDatabaseName(dbname))
{
ERR_RETURN(ndb->getNdbError());
}
uint lock= share->commit_count_lock;
pthread_mutex_unlock(&share->mutex);
2005-02-11 22:33:52 +01:00
struct Ndb_statistics stat;
{
Ndb_table_guard ndbtab_g(ndb->getDictionary(), tabname);
if (ndbtab_g.get_table() == 0
|| ndb_get_table_statistics(NULL, FALSE, ndb, ndbtab_g.get_table(), &stat))
{
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
DBUG_RETURN(1);
}
}
pthread_mutex_lock(&share->mutex);
if (share->commit_count_lock == lock)
{
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22];
2007-02-27 19:31:49 +02:00
#endif
DBUG_PRINT("info", ("Setting commit_count to %s",
llstr(stat.commit_count, buff)));
share->commit_count= stat.commit_count;
*commit_count= stat.commit_count;
}
else
{
DBUG_PRINT("info", ("Discarding commit_count, comit_count_lock changed"));
*commit_count= 0;
}
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
2005-02-11 22:33:52 +01:00
DBUG_RETURN(0);
}
/*
Check if a cached query can be used.
This is done by comparing the supplied engine_data to commit_count of
the table.
The commit_count is either retrieved from the share for the table, where
it has been cached by the util thread. If the util thread is not started,
NDB has to be contacetd to retrieve the commit_count, this will introduce
a small delay while waiting for NDB to answer.
SYNOPSIS
ndbcluster_cache_retrieval_allowed
thd thread handle
full_name concatenation of database name,
the null character '\0', and the table
name
full_name_len length of the full name,
i.e. len(dbname) + len(tablename) + 1
engine_data parameter retrieved when query was first inserted into
the cache. If the value of engine_data is changed,
all queries for this table should be invalidated.
RETURN VALUE
TRUE Yes, use the query from cache
FALSE No, don't use the cached query, and if engine_data
has changed, all queries for this table should be invalidated
*/
static my_bool
ndbcluster_cache_retrieval_allowed(THD *thd,
char *full_name, uint full_name_len,
ulonglong *engine_data)
2005-02-11 22:33:52 +01:00
{
Uint64 commit_count;
bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN));
char *dbname= full_name;
char *tabname= dbname+strlen(dbname)+1;
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22], buff2[22];
2007-02-27 19:31:49 +02:00
#endif
DBUG_ENTER("ndbcluster_cache_retrieval_allowed");
DBUG_PRINT("enter", ("dbname: %s, tabname: %s, is_autocommit: %d",
dbname, tabname, is_autocommit));
2005-02-11 22:33:52 +01:00
if (!is_autocommit)
{
DBUG_PRINT("exit", ("No, don't use cache in transaction"));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(FALSE);
}
2005-02-11 22:33:52 +01:00
if (ndb_get_commitcount(thd, dbname, tabname, &commit_count))
{
*engine_data= 0; /* invalidate */
DBUG_PRINT("exit", ("No, could not retrieve commit_count"));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(FALSE);
}
DBUG_PRINT("info", ("*engine_data: %s, commit_count: %s",
llstr(*engine_data, buff), llstr(commit_count, buff2)));
if (commit_count == 0)
2005-02-11 22:33:52 +01:00
{
*engine_data= 0; /* invalidate */
DBUG_PRINT("exit", ("No, local commit has been performed"));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(FALSE);
}
else if (*engine_data != commit_count)
{
*engine_data= commit_count; /* invalidate */
DBUG_PRINT("exit", ("No, commit_count has changed"));
DBUG_RETURN(FALSE);
}
2005-02-11 22:33:52 +01:00
DBUG_PRINT("exit", ("OK to use cache, engine_data: %s",
llstr(*engine_data, buff)));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(TRUE);
}
/**
Register a table for use in the query cache. Fetch the commit_count
for the table and return it in engine_data, this will later be used
to check if the table has changed, before the cached query is reused.
SYNOPSIS
ha_ndbcluster::can_query_cache_table
thd thread handle
full_name concatenation of database name,
the null character '\0', and the table
name
full_name_len length of the full name,
i.e. len(dbname) + len(tablename) + 1
qc_engine_callback function to be called before using cache on this table
engine_data out, commit_count for this table
RETURN VALUE
TRUE Yes, it's ok to cahce this query
FALSE No, don't cach the query
*/
my_bool
ha_ndbcluster::register_query_cache_table(THD *thd,
char *full_name, uint full_name_len,
qc_engine_callback *engine_callback,
ulonglong *engine_data)
2005-02-11 22:33:52 +01:00
{
Uint64 commit_count;
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22];
2007-02-27 19:31:49 +02:00
#endif
2005-02-11 22:33:52 +01:00
bool is_autocommit= !(thd->options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN));
DBUG_ENTER("ha_ndbcluster::register_query_cache_table");
DBUG_PRINT("enter",("dbname: %s, tabname: %s, is_autocommit: %d",
m_dbname, m_tabname, is_autocommit));
2005-02-11 22:33:52 +01:00
if (!is_autocommit)
{
DBUG_PRINT("exit", ("Can't register table during transaction"));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(FALSE);
}
2005-02-11 22:33:52 +01:00
if (ndb_get_commitcount(thd, m_dbname, m_tabname, &commit_count))
{
*engine_data= 0;
DBUG_PRINT("exit", ("Error, could not get commitcount"));
2005-02-11 22:33:52 +01:00
DBUG_RETURN(FALSE);
}
*engine_data= commit_count;
*engine_callback= ndbcluster_cache_retrieval_allowed;
DBUG_PRINT("exit", ("commit_count: %s", llstr(commit_count, buff)));
DBUG_RETURN(commit_count > 0);
}
2004-04-15 09:14:14 +02:00
2005-02-11 22:33:52 +01:00
2004-04-15 09:14:14 +02:00
/*
2005-02-11 22:33:52 +01:00
Handling the shared NDB_SHARE structure that is needed to
2004-04-15 09:14:14 +02:00
provide table locking.
It's also used for sharing data with other NDB handlers
in the same MySQL Server. There is currently not much
data we want to or can share.
*/
static byte *ndbcluster_get_key(NDB_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)))
2004-04-15 09:14:14 +02:00
{
*length= share->key_length;
return (byte*) share->key;
}
#ifndef DBUG_OFF
static void print_share(const char* where, NDB_SHARE* share)
{
fprintf(DBUG_FILE,
"%s %s.%s: use_count: %u, commit_count: %lu\n",
where, share->db, share->table_name, share->use_count,
(ulong) share->commit_count);
fprintf(DBUG_FILE,
" - key: %s, key_length: %d\n",
share->key, share->key_length);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if (share->table)
fprintf(DBUG_FILE,
" - share->table: %p %s.%s\n",
share->table, share->table->s->db.str,
share->table->s->table_name.str);
2006-01-12 19:51:02 +01:00
#endif
2004-04-15 09:14:14 +02:00
}
static void print_ndbcluster_open_tables()
{
DBUG_LOCK_FILE;
fprintf(DBUG_FILE, ">ndbcluster_open_tables\n");
for (uint i= 0; i < ndbcluster_open_tables.records; i++)
print_share("",
(NDB_SHARE*)hash_element(&ndbcluster_open_tables, i));
fprintf(DBUG_FILE, "<ndbcluster_open_tables\n");
DBUG_UNLOCK_FILE;
}
2006-11-27 14:02:14 +01:00
#endif
#define dbug_print_open_tables() \
DBUG_EXECUTE("info", \
print_ndbcluster_open_tables(););
#define dbug_print_share(t, s) \
DBUG_LOCK_FILE; \
DBUG_EXECUTE("info", \
print_share((t), (s));); \
DBUG_UNLOCK_FILE;
2004-04-15 09:14:14 +02:00
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/*
For some reason a share is still around, try to salvage the situation
by closing all cached tables. If the share still exists, there is an
error somewhere but only report this to the error log. Keep this
"trailing share" but rename it since there are still references to it
to avoid segmentation faults. There is a risk that the memory for
this trailing share leaks.
Must be called with previous pthread_mutex_lock(&ndbcluster_mutex)
*/
int handle_trailing_share(NDB_SHARE *share)
{
THD *thd= current_thd;
2006-01-12 19:51:02 +01:00
static ulong trailing_share_id= 0;
DBUG_ENTER("handle_trailing_share");
/* ndb_share reference temporary, free below */
2006-01-12 19:51:02 +01:00
++share->use_count;
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
pthread_mutex_unlock(&ndbcluster_mutex);
TABLE_LIST table_list;
bzero((char*) &table_list,sizeof(table_list));
table_list.db= share->db;
table_list.alias= table_list.table_name= share->table_name;
safe_mutex_assert_owner(&LOCK_open);
close_cached_tables(thd, 0, &table_list, TRUE);
2006-01-12 19:51:02 +01:00
pthread_mutex_lock(&ndbcluster_mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
if (!--share->use_count)
{
if (ndb_extra_logging)
sql_print_information("NDB_SHARE: trailing share "
"%s(connect_count: %u) "
"released by close_cached_tables at "
"connect_count: %u",
share->key,
share->connect_count,
g_ndb_cluster_connection->get_connect_count());
ndbcluster_real_free_share(&share);
2006-01-12 19:51:02 +01:00
DBUG_RETURN(0);
}
/*
share still exists, if share has not been dropped by server
release that share
*/
if (share->state != NSS_DROPPED)
2006-01-12 19:51:02 +01:00
{
share->state= NSS_DROPPED;
/* ndb_share reference create free */
DBUG_PRINT("NDB_SHARE", ("%s create free use_count: %u",
share->key, share->use_count));
--share->use_count;
if (share->use_count == 0)
{
if (ndb_extra_logging)
sql_print_information("NDB_SHARE: trailing share "
"%s(connect_count: %u) "
"released after NSS_DROPPED check "
"at connect_count: %u",
share->key,
share->connect_count,
g_ndb_cluster_connection->get_connect_count());
ndbcluster_real_free_share(&share);
DBUG_RETURN(0);
}
2006-01-12 19:51:02 +01:00
}
sql_print_error("NDB_SHARE: %s already exists use_count=%d."
" Moving away for safety, but possible memleak.",
share->key, share->use_count);
dbug_print_open_tables();
/*
Ndb share has not been released as it should
*/
#ifdef NOT_YET
DBUG_ASSERT(FALSE);
#endif
2006-01-12 19:51:02 +01:00
/*
This is probably an error. We can however save the situation
at the cost of a possible mem leak, by "renaming" the share
- First remove from hash
*/
hash_delete(&ndbcluster_open_tables, (byte*) share);
/*
now give it a new name, just a running number
if space is not enough allocate some more
*/
{
const uint min_key_length= 10;
if (share->key_length < min_key_length)
{
share->key= alloc_root(&share->mem_root, min_key_length + 1);
share->key_length= min_key_length;
}
share->key_length=
my_snprintf(share->key, min_key_length + 1, "#leak%lu",
2006-01-12 19:51:02 +01:00
trailing_share_id++);
}
/* Keep it for possible the future trailing free */
my_hash_insert(&ndbcluster_open_tables, (byte*) share);
DBUG_RETURN(0);
}
/*
Rename share is used during rename table.
*/
static int rename_share(NDB_SHARE *share, const char *new_key)
{
NDB_SHARE *tmp;
pthread_mutex_lock(&ndbcluster_mutex);
uint new_length= (uint) strlen(new_key);
DBUG_PRINT("rename_share", ("old_key: %s old__length: %d",
share->key, share->key_length));
if ((tmp= (NDB_SHARE*) hash_search(&ndbcluster_open_tables,
(byte*) new_key, new_length)))
handle_trailing_share(tmp);
/* remove the share from hash */
hash_delete(&ndbcluster_open_tables, (byte*) share);
dbug_print_open_tables();
/* save old stuff if insert should fail */
uint old_length= share->key_length;
char *old_key= share->key;
/*
now allocate and set the new key, db etc
enough space for key, db, and table_name
*/
share->key= alloc_root(&share->mem_root, 2 * (new_length + 1));
strmov(share->key, new_key);
share->key_length= new_length;
if (my_hash_insert(&ndbcluster_open_tables, (byte*) share))
{
// ToDo free the allocated stuff above?
DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed",
share->key));
share->key= old_key;
share->key_length= old_length;
if (my_hash_insert(&ndbcluster_open_tables, (byte*) share))
{
sql_print_error("rename_share: failed to recover %s", share->key);
DBUG_PRINT("error", ("rename_share: my_hash_insert %s failed",
share->key));
}
dbug_print_open_tables();
pthread_mutex_unlock(&ndbcluster_mutex);
return -1;
}
dbug_print_open_tables();
share->db= share->key + new_length + 1;
ha_ndbcluster::set_dbname(new_key, share->db);
share->table_name= share->db + strlen(share->db) + 1;
ha_ndbcluster::set_tabname(new_key, share->table_name);
dbug_print_share("rename_share:", share);
if (share->table)
2006-01-12 19:51:02 +01:00
{
if (share->op == 0)
{
share->table->s->db.str= share->db;
share->table->s->db.length= strlen(share->db);
share->table->s->table_name.str= share->table_name;
share->table->s->table_name.length= strlen(share->table_name);
}
2006-01-12 19:51:02 +01:00
}
/* else rename will be handled when the ALTER event comes */
share->old_names= old_key;
// ToDo free old_names after ALTER EVENT
pthread_mutex_unlock(&ndbcluster_mutex);
return 0;
}
#endif
/*
Increase refcount on existing share.
Always returns share and cannot fail.
*/
2006-01-12 19:51:02 +01:00
NDB_SHARE *ndbcluster_get_share(NDB_SHARE *share)
2004-04-15 09:14:14 +02:00
{
pthread_mutex_lock(&ndbcluster_mutex);
share->use_count++;
dbug_print_open_tables();
dbug_print_share("ndbcluster_get_share:", share);
pthread_mutex_unlock(&ndbcluster_mutex);
return share;
}
/*
Get a share object for key
Returns share for key, and increases the refcount on the share.
create_if_not_exists == TRUE:
creates share if it does not alreade exist
returns 0 only due to out of memory, and then sets my_error
create_if_not_exists == FALSE:
returns 0 if share does not exist
have_lock == TRUE, pthread_mutex_lock(&ndbcluster_mutex) already taken
*/
2006-01-12 19:51:02 +01:00
NDB_SHARE *ndbcluster_get_share(const char *key, TABLE *table,
bool create_if_not_exists,
bool have_lock)
{
NDB_SHARE *share;
uint length= (uint) strlen(key);
DBUG_ENTER("ndbcluster_get_share");
DBUG_PRINT("enter", ("key: '%s'", key));
if (!have_lock)
pthread_mutex_lock(&ndbcluster_mutex);
if (!(share= (NDB_SHARE*) hash_search(&ndbcluster_open_tables,
(byte*) key,
length)))
2004-04-15 09:14:14 +02:00
{
if (!create_if_not_exists)
{
DBUG_PRINT("error", ("get_share: %s does not exist", key));
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(0);
}
if ((share= (NDB_SHARE*) my_malloc(sizeof(*share),
2004-04-15 09:14:14 +02:00
MYF(MY_WME | MY_ZEROFILL))))
{
MEM_ROOT **root_ptr=
my_pthread_getspecific_ptr(MEM_ROOT**, THR_MALLOC);
MEM_ROOT *old_root= *root_ptr;
init_sql_alloc(&share->mem_root, 1024, 0);
*root_ptr= &share->mem_root; // remember to reset before return
2006-01-17 12:53:49 +01:00
share->state= NSS_INITIAL;
/* enough space for key, db, and table_name */
share->key= alloc_root(*root_ptr, 2 * (length + 1));
share->key_length= length;
strmov(share->key, key);
2004-04-15 09:14:14 +02:00
if (my_hash_insert(&ndbcluster_open_tables, (byte*) share))
{
free_root(&share->mem_root, MYF(0));
my_free((gptr) share, 0);
*root_ptr= old_root;
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
thr_lock_init(&share->lock);
pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST);
2005-02-11 22:33:52 +01:00
share->commit_count= 0;
share->commit_count_lock= 0;
share->db= share->key + length + 1;
ha_ndbcluster::set_dbname(key, share->db);
share->table_name= share->db + strlen(share->db) + 1;
ha_ndbcluster::set_tabname(key, share->table_name);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
ndbcluster_binlog_init_share(share, table);
#endif
*root_ptr= old_root;
}
else
{
DBUG_PRINT("error", ("get_share: failed to alloc share"));
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(*share));
DBUG_RETURN(0);
2004-04-15 09:14:14 +02:00
}
}
share->use_count++;
dbug_print_open_tables();
dbug_print_share("ndbcluster_get_share:", share);
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
DBUG_RETURN(share);
2004-04-15 09:14:14 +02:00
}
2006-01-12 19:51:02 +01:00
void ndbcluster_real_free_share(NDB_SHARE **share)
{
DBUG_ENTER("ndbcluster_real_free_share");
dbug_print_share("ndbcluster_real_free_share:", *share);
hash_delete(&ndbcluster_open_tables, (byte*) *share);
thr_lock_delete(&(*share)->lock);
pthread_mutex_destroy(&(*share)->mutex);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if ((*share)->table)
{
// (*share)->table->mem_root is freed by closefrm
2006-01-12 19:51:02 +01:00
closefrm((*share)->table, 0);
// (*share)->table_share->mem_root is freed by free_table_share
free_table_share((*share)->table_share);
2006-01-12 19:51:02 +01:00
#ifndef DBUG_OFF
bzero((gptr)(*share)->table_share, sizeof(*(*share)->table_share));
bzero((gptr)(*share)->table, sizeof(*(*share)->table));
(*share)->table_share= 0;
(*share)->table= 0;
#endif
}
#endif
free_root(&(*share)->mem_root, MYF(0));
my_free((gptr) *share, MYF(0));
*share= 0;
dbug_print_open_tables();
DBUG_VOID_RETURN;
}
2004-04-15 09:14:14 +02:00
2006-01-12 19:51:02 +01:00
void ndbcluster_free_share(NDB_SHARE **share, bool have_lock)
2004-04-15 09:14:14 +02:00
{
if (!have_lock)
pthread_mutex_lock(&ndbcluster_mutex);
if ((*share)->util_lock == current_thd)
(*share)->util_lock= 0;
if (!--(*share)->use_count)
2004-04-15 09:14:14 +02:00
{
ndbcluster_real_free_share(share);
2004-04-15 09:14:14 +02:00
}
else
{
dbug_print_open_tables();
dbug_print_share("ndbcluster_free_share:", *share);
}
if (!have_lock)
pthread_mutex_unlock(&ndbcluster_mutex);
2004-04-15 09:14:14 +02:00
}
static
int
ndb_get_table_statistics(ha_ndbcluster* file, bool report_error, Ndb* ndb, const NDBTAB *ndbtab,
struct Ndb_statistics * ndbstat)
{
NdbTransaction* pTrans;
NdbError error;
int retries= 10;
int reterr= 0;
int retry_sleep= 30 * 1000; /* 30 milliseconds */
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22], buff2[22], buff3[22], buff4[22];
2007-02-27 19:31:49 +02:00
#endif
DBUG_ENTER("ndb_get_table_statistics");
2006-07-14 02:07:37 +04:00
DBUG_PRINT("enter", ("table: %s", ndbtab->getName()));
DBUG_ASSERT(ndbtab != 0);
do
{
Uint64 rows, commits, fixed_mem, var_mem;
Uint32 size;
2006-06-29 22:11:29 +02:00
Uint32 count= 0;
Uint64 sum_rows= 0;
Uint64 sum_commits= 0;
2006-06-29 22:11:29 +02:00
Uint64 sum_row_size= 0;
Uint64 sum_mem= 0;
NdbScanOperation*pOp;
int check;
if ((pTrans= ndb->startTransaction()) == NULL)
{
error= ndb->getNdbError();
goto retry;
}
2006-06-29 21:25:37 +02:00
if ((pOp= pTrans->getNdbScanOperation(ndbtab)) == NULL)
{
error= pTrans->getNdbError();
goto retry;
}
if (pOp->readTuples(NdbOperation::LM_CommittedRead))
{
error= pOp->getNdbError();
goto retry;
}
if (pOp->interpret_exit_last_row() == -1)
{
error= pOp->getNdbError();
goto retry;
}
pOp->getValue(NdbDictionary::Column::ROW_COUNT, (char*)&rows);
pOp->getValue(NdbDictionary::Column::COMMIT_COUNT, (char*)&commits);
pOp->getValue(NdbDictionary::Column::ROW_SIZE, (char*)&size);
pOp->getValue(NdbDictionary::Column::FRAGMENT_FIXED_MEMORY,
(char*)&fixed_mem);
pOp->getValue(NdbDictionary::Column::FRAGMENT_VARSIZED_MEMORY,
(char*)&var_mem);
if (pTrans->execute(NdbTransaction::NoCommit,
NdbOperation::AbortOnError,
TRUE) == -1)
{
error= pTrans->getNdbError();
goto retry;
}
while ((check= pOp->nextResult(TRUE, TRUE)) == 0)
{
sum_rows+= rows;
sum_commits+= commits;
if (sum_row_size < size)
sum_row_size= size;
sum_mem+= fixed_mem + var_mem;
count++;
}
if (check == -1)
{
error= pOp->getNdbError();
goto retry;
}
pOp->close(TRUE);
ndb->closeTransaction(pTrans);
ndbstat->row_count= sum_rows;
ndbstat->commit_count= sum_commits;
ndbstat->row_size= sum_row_size;
ndbstat->fragment_memory= sum_mem;
DBUG_PRINT("exit", ("records: %s commits: %s "
"row_size: %s mem: %s count: %u",
llstr(sum_rows, buff),
llstr(sum_commits, buff2),
llstr(sum_row_size, buff3),
llstr(sum_mem, buff4),
count));
DBUG_RETURN(0);
retry:
if(report_error)
{
if (file && pTrans)
{
reterr= file->ndb_err(pTrans);
}
else
{
const NdbError& tmp= error;
ERR_PRINT(tmp);
reterr= ndb_to_mysql_error(&tmp);
}
}
else
reterr= error.code;
if (pTrans)
{
ndb->closeTransaction(pTrans);
pTrans= NULL;
}
if (error.status == NdbError::TemporaryError && retries--)
{
my_sleep(retry_sleep);
continue;
}
break;
} while(1);
DBUG_PRINT("exit", ("failed, reterr: %u, NdbError %u(%s)", reterr,
error.code, error.message));
DBUG_RETURN(reterr);
}
/*
Create a .ndb file to serve as a placeholder indicating
that the table with this name is a ndb table
*/
int ha_ndbcluster::write_ndb_file(const char *name)
{
File file;
bool error=1;
char path[FN_REFLEN];
DBUG_ENTER("write_ndb_file");
DBUG_PRINT("enter", ("name: %s", name));
(void)strxnmov(path, FN_REFLEN-1,
mysql_data_home,"/",name,ha_ndb_ext,NullS);
if ((file=my_create(path, CREATE_MODE,O_RDWR | O_TRUNC,MYF(MY_WME))) >= 0)
{
// It's an empty file
error=0;
my_close(file,MYF(0));
}
DBUG_RETURN(error);
}
void
ha_ndbcluster::release_completed_operations(NdbTransaction *trans,
bool force_release)
{
if (trans->hasBlobOperation())
{
/* We are reading/writing BLOB fields,
releasing operation records is unsafe
*/
return;
}
if (!force_release)
{
if (get_thd_ndb(current_thd)->query_state & NDB_QUERY_MULTI_READ_RANGE)
{
/* We are batching reads and have not consumed all fetched
rows yet, releasing operation records is unsafe
*/
return;
}
}
trans->releaseCompletedOperations();
}
bool
ha_ndbcluster::null_value_index_search(KEY_MULTI_RANGE *ranges,
KEY_MULTI_RANGE *end_range,
HANDLER_BUFFER *buffer)
{
DBUG_ENTER("null_value_index_search");
KEY* key_info= table->key_info + active_index;
KEY_MULTI_RANGE *range= ranges;
ulong reclength= table->s->reclength;
byte *curr= (byte*)buffer->buffer;
byte *end_of_buffer= (byte*)buffer->buffer_end;
for (; range<end_range && curr+reclength <= end_of_buffer;
range++)
{
const byte *key= range->start_key.key;
uint key_len= range->start_key.length;
if (check_null_in_key(key_info, key, key_len))
DBUG_RETURN(TRUE);
curr += reclength;
}
DBUG_RETURN(FALSE);
}
2004-11-17 10:07:52 +01:00
int
ha_ndbcluster::read_multi_range_first(KEY_MULTI_RANGE **found_range_p,
KEY_MULTI_RANGE *ranges,
uint range_count,
bool sorted,
HANDLER_BUFFER *buffer)
2004-11-17 10:07:52 +01:00
{
m_write_op= FALSE;
2004-11-17 10:07:52 +01:00
int res;
KEY* key_info= table->key_info + active_index;
NDB_INDEX_TYPE cur_index_type= get_index_type(active_index);
ulong reclength= table_share->reclength;
2004-11-17 10:07:52 +01:00
NdbOperation* op;
Thd_ndb *thd_ndb= get_thd_ndb(current_thd);
DBUG_ENTER("ha_ndbcluster::read_multi_range_first");
2004-11-17 10:07:52 +01:00
/**
* blobs and unique hash index with NULL can't be batched currently
*/
if (uses_blob_value() ||
(cur_index_type == UNIQUE_INDEX &&
has_null_in_unique_index(active_index) &&
null_value_index_search(ranges, ranges+range_count, buffer)))
2004-11-17 14:21:56 +01:00
{
m_disable_multi_read= TRUE;
DBUG_RETURN(handler::read_multi_range_first(found_range_p,
ranges,
range_count,
sorted,
buffer));
2004-11-17 14:21:56 +01:00
}
thd_ndb->query_state|= NDB_QUERY_MULTI_READ_RANGE;
m_disable_multi_read= FALSE;
2004-11-30 07:58:55 +01:00
/**
* Copy arguments into member variables
*/
m_multi_ranges= ranges;
multi_range_curr= ranges;
multi_range_end= ranges+range_count;
2004-11-17 10:07:52 +01:00
multi_range_sorted= sorted;
multi_range_buffer= buffer;
2004-11-30 07:58:55 +01:00
/**
* read multi range will read ranges as follows (if not ordered)
*
* input read order
* ====== ==========
* pk-op 1 pk-op 1
* pk-op 2 pk-op 2
* range 3 range (3,5) NOTE result rows will be intermixed
* pk-op 4 pk-op 4
* range 5
* pk-op 6 pk-ok 6
*/
2005-01-11 14:06:44 +01:00
/**
2004-11-30 07:58:55 +01:00
* Variables for loop
*/
2004-12-08 00:36:40 +01:00
byte *curr= (byte*)buffer->buffer;
byte *end_of_buffer= (byte*)buffer->buffer_end;
2004-11-17 10:07:52 +01:00
NdbOperation::LockMode lm=
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type);
bool need_pk = (lm == NdbOperation::LM_Read);
const NDBTAB *tab= m_table;
const NDBINDEX *unique_idx= m_index[active_index].unique_index;
const NDBINDEX *idx= m_index[active_index].index;
const NdbOperation* lastOp= m_active_trans->getLastDefinedOperation();
NdbIndexScanOperation* scanOp= 0;
for (; multi_range_curr<multi_range_end && curr+reclength <= end_of_buffer;
multi_range_curr++)
{
2005-07-18 13:31:02 +02:00
part_id_range part_spec;
if (m_use_partition_function)
{
get_partition_set(table, curr, active_index,
&multi_range_curr->start_key,
&part_spec);
DBUG_PRINT("info", ("part_spec.start_part: %u part_spec.end_part: %u",
part_spec.start_part, part_spec.end_part));
/*
If partition pruning has found no partition in set
we can skip this scan
*/
2005-07-18 13:31:02 +02:00
if (part_spec.start_part > part_spec.end_part)
{
/*
We can skip this partition since the key won't fit into any
partition
*/
curr += reclength;
multi_range_curr->range_flag |= SKIP_RANGE;
continue;
}
}
switch (cur_index_type) {
case PRIMARY_KEY_ORDERED_INDEX:
if (!(multi_range_curr->start_key.length == key_info->key_length &&
2005-07-18 13:31:02 +02:00
multi_range_curr->start_key.flag == HA_READ_KEY_EXACT))
goto range;
// else fall through
case PRIMARY_KEY_INDEX:
2004-11-17 10:07:52 +01:00
{
multi_range_curr->range_flag |= UNIQUE_RANGE;
2004-11-17 10:07:52 +01:00
if ((op= m_active_trans->getNdbOperation(tab)) &&
!op->readTuple(lm) &&
!set_primary_key(op, multi_range_curr->start_key.key) &&
!define_read_attrs(curr, op) &&
2005-07-18 13:31:02 +02:00
(!m_use_partition_function ||
(op->setPartitionId(part_spec.start_part), TRUE)))
curr += reclength;
2004-11-17 10:07:52 +01:00
else
ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError());
break;
2004-11-17 10:07:52 +01:00
}
break;
case UNIQUE_ORDERED_INDEX:
if (!(multi_range_curr->start_key.length == key_info->key_length &&
2005-07-18 13:31:02 +02:00
multi_range_curr->start_key.flag == HA_READ_KEY_EXACT &&
!check_null_in_key(key_info, multi_range_curr->start_key.key,
multi_range_curr->start_key.length)))
goto range;
// else fall through
case UNIQUE_INDEX:
2004-11-17 10:07:52 +01:00
{
multi_range_curr->range_flag |= UNIQUE_RANGE;
2004-11-17 10:07:52 +01:00
if ((op= m_active_trans->getNdbIndexOperation(unique_idx, tab)) &&
!op->readTuple(lm) &&
!set_index_key(op, key_info, multi_range_curr->start_key.key) &&
!define_read_attrs(curr, op))
curr += reclength;
2004-11-17 10:07:52 +01:00
else
ERR_RETURN(op ? op->getNdbError() : m_active_trans->getNdbError());
break;
}
2005-07-18 13:31:02 +02:00
case ORDERED_INDEX: {
range:
multi_range_curr->range_flag &= ~(uint)UNIQUE_RANGE;
if (scanOp == 0)
{
if (m_multi_cursor)
{
scanOp= m_multi_cursor;
DBUG_ASSERT(scanOp->getSorted() == sorted);
DBUG_ASSERT(scanOp->getLockMode() ==
(NdbOperation::LockMode)get_ndb_lock_type(m_lock.type));
if (scanOp->reset_bounds(m_force_send))
DBUG_RETURN(ndb_err(m_active_trans));
end_of_buffer -= reclength;
}
else if ((scanOp= m_active_trans->getNdbIndexScanOperation(idx, tab))
&&!scanOp->readTuples(lm, 0, parallelism, sorted,
FALSE, TRUE, need_pk, TRUE)
&&!(m_cond && m_cond->generate_scan_filter(scanOp))
&&!define_read_attrs(end_of_buffer-reclength, scanOp))
{
m_multi_cursor= scanOp;
m_multi_range_cursor_result_ptr= end_of_buffer-reclength;
}
else
{
ERR_RETURN(scanOp ? scanOp->getNdbError() :
m_active_trans->getNdbError());
}
}
const key_range *keys[2]= { &multi_range_curr->start_key,
&multi_range_curr->end_key };
if ((res= set_bounds(scanOp, active_index, FALSE, keys,
multi_range_curr-ranges)))
DBUG_RETURN(res);
break;
2004-11-17 10:07:52 +01:00
}
case UNDEFINED_INDEX:
2005-01-11 14:06:44 +01:00
DBUG_ASSERT(FALSE);
DBUG_RETURN(1);
break;
}
2004-11-17 10:07:52 +01:00
}
if (multi_range_curr != multi_range_end)
2004-11-17 10:07:52 +01:00
{
2004-11-30 07:58:55 +01:00
/**
* Mark that we're using entire buffer (even if might not) as
* we haven't read all ranges for some reason
* This as we don't want mysqld to reuse the buffer when we read
* the remaining ranges
*/
buffer->end_of_used_area= (byte*)buffer->buffer_end;
2004-11-17 10:07:52 +01:00
}
else
{
buffer->end_of_used_area= curr;
}
/**
* Set first operation in multi range
*/
m_current_multi_operation=
lastOp ? lastOp->next() : m_active_trans->getFirstDefinedOperation();
if (!(res= execute_no_commit_ie(this, m_active_trans,true)))
2004-11-17 10:07:52 +01:00
{
m_multi_range_defined= multi_range_curr;
multi_range_curr= ranges;
m_multi_range_result_ptr= (byte*)buffer->buffer;
DBUG_RETURN(read_multi_range_next(found_range_p));
2004-11-17 10:07:52 +01:00
}
ERR_RETURN(m_active_trans->getNdbError());
}
2004-12-08 00:36:40 +01:00
#if 0
2005-07-18 13:31:02 +02:00
#define DBUG_MULTI_RANGE(x) DBUG_PRINT("info", ("read_multi_range_next: case %d\n", x));
2004-12-08 00:36:40 +01:00
#else
#define DBUG_MULTI_RANGE(x)
#endif
2004-11-17 10:07:52 +01:00
int
ha_ndbcluster::read_multi_range_next(KEY_MULTI_RANGE ** multi_range_found_p)
2004-11-17 10:07:52 +01:00
{
DBUG_ENTER("ha_ndbcluster::read_multi_range_next");
if (m_disable_multi_read)
2004-11-30 07:58:55 +01:00
{
2005-07-18 13:31:02 +02:00
DBUG_MULTI_RANGE(11);
DBUG_RETURN(handler::read_multi_range_next(multi_range_found_p));
2004-11-30 07:58:55 +01:00
}
int res;
int range_no;
ulong reclength= table_share->reclength;
const NdbOperation* op= m_current_multi_operation;
for (;multi_range_curr < m_multi_range_defined; multi_range_curr++)
2004-11-17 10:07:52 +01:00
{
2005-07-18 13:31:02 +02:00
DBUG_MULTI_RANGE(12);
if (multi_range_curr->range_flag & SKIP_RANGE)
continue;
if (multi_range_curr->range_flag & UNIQUE_RANGE)
{
if (op->getNdbError().code == 0)
2005-07-18 13:31:02 +02:00
{
DBUG_MULTI_RANGE(13);
goto found_next;
2005-07-18 13:31:02 +02:00
}
op= m_active_trans->getNextCompletedOperation(op);
m_multi_range_result_ptr += reclength;
continue;
}
else if (m_multi_cursor && !multi_range_sorted)
{
2004-12-08 00:36:40 +01:00
DBUG_MULTI_RANGE(1);
if ((res= fetch_next(m_multi_cursor)) == 0)
{
DBUG_MULTI_RANGE(2);
range_no= m_multi_cursor->get_range_no();
goto found;
}
else
{
2005-07-18 13:31:02 +02:00
DBUG_MULTI_RANGE(14);
goto close_scan;
}
}
2004-12-08 00:36:40 +01:00
else if (m_multi_cursor && multi_range_sorted)
{
2004-12-08 00:36:40 +01:00
if (m_active_cursor && (res= fetch_next(m_multi_cursor)))
{
DBUG_MULTI_RANGE(3);
goto close_scan;
2004-12-08 00:36:40 +01:00
}
range_no= m_multi_cursor->get_range_no();
uint current_range_no= multi_range_curr - m_multi_ranges;
2005-01-11 14:06:44 +01:00
if ((uint) range_no == current_range_no)
{
DBUG_MULTI_RANGE(4);
// return current row
goto found;
}
else if (range_no > (int)current_range_no)
{
DBUG_MULTI_RANGE(5);
// wait with current row
m_active_cursor= 0;
continue;
}
else
{
DBUG_MULTI_RANGE(6);
// First fetch from cursor
DBUG_ASSERT(range_no == -1);
if ((res= m_multi_cursor->nextResult(TRUE)))
{
2005-07-18 13:31:02 +02:00
DBUG_MULTI_RANGE(15);
goto close_scan;
}
multi_range_curr--; // Will be increased in for-loop
continue;
}
}
2004-12-08 00:36:40 +01:00
else /** m_multi_cursor == 0 */
{
2004-12-08 00:36:40 +01:00
DBUG_MULTI_RANGE(7);
2004-11-30 07:58:55 +01:00
/**
* Corresponds to range 5 in example in read_multi_range_first
*/
(void)1;
continue;
}
DBUG_ASSERT(FALSE); // Should only get here via goto's
close_scan:
if (res == 1)
{
m_multi_cursor->close(FALSE, TRUE);
m_active_cursor= m_multi_cursor= 0;
2004-12-08 00:36:40 +01:00
DBUG_MULTI_RANGE(8);
continue;
}
else
{
2005-07-18 13:31:02 +02:00
DBUG_MULTI_RANGE(9);
DBUG_RETURN(ndb_err(m_active_trans));
}
}
if (multi_range_curr == multi_range_end)
2005-07-18 13:31:02 +02:00
{
DBUG_MULTI_RANGE(16);
Thd_ndb *thd_ndb= get_thd_ndb(current_thd);
thd_ndb->query_state&= NDB_QUERY_NORMAL;
2004-11-17 10:07:52 +01:00
DBUG_RETURN(HA_ERR_END_OF_FILE);
2005-07-18 13:31:02 +02:00
}
2004-11-17 10:07:52 +01:00
/**
* Read remaining ranges
*/
DBUG_RETURN(read_multi_range_first(multi_range_found_p,
multi_range_curr,
multi_range_end - multi_range_curr,
multi_range_sorted,
multi_range_buffer));
found:
2004-11-30 07:58:55 +01:00
/**
* Found a record belonging to a scan
*/
m_active_cursor= m_multi_cursor;
* multi_range_found_p= m_multi_ranges + range_no;
memcpy(table->record[0], m_multi_range_cursor_result_ptr, reclength);
setup_recattr(m_active_cursor->getFirstRecAttr());
unpack_record(table->record[0]);
table->status= 0;
DBUG_RETURN(0);
found_next:
2004-11-30 07:58:55 +01:00
/**
* Found a record belonging to a pk/index op,
* copy result and move to next to prepare for next call
*/
* multi_range_found_p= multi_range_curr;
memcpy(table->record[0], m_multi_range_result_ptr, reclength);
setup_recattr(op->getFirstRecAttr());
unpack_record(table->record[0]);
table->status= 0;
multi_range_curr++;
m_current_multi_operation= m_active_trans->getNextCompletedOperation(op);
m_multi_range_result_ptr += reclength;
DBUG_RETURN(0);
2004-11-17 10:07:52 +01:00
}
int
ha_ndbcluster::setup_recattr(const NdbRecAttr* curr)
{
DBUG_ENTER("setup_recattr");
Field **field, **end;
NdbValue *value= m_value;
end= table->field + table_share->fields;
for (field= table->field; field < end; field++, value++)
{
if ((* value).ptr)
{
DBUG_ASSERT(curr != 0);
NdbValue* val= m_value + curr->getColumn()->getColumnNo();
DBUG_ASSERT(val->ptr);
val->rec= curr;
curr= curr->next();
}
}
2004-12-08 00:36:40 +01:00
DBUG_RETURN(0);
}
2005-02-11 22:33:52 +01:00
char*
ha_ndbcluster::update_table_comment(
/* out: table comment + additional */
const char* comment)/* in: table comment defined by user */
2005-02-11 22:33:52 +01:00
{
uint length= strlen(comment);
if (length > 64000 - 3)
2005-02-11 22:33:52 +01:00
{
return((char*)comment); /* string too long */
}
Ndb* ndb;
if (!(ndb= get_ndb()))
{
return((char*)comment);
}
if (ndb->setDatabaseName(m_dbname))
{
return((char*)comment);
}
const NDBTAB* tab= m_table;
DBUG_ASSERT(tab != NULL);
2005-02-11 22:33:52 +01:00
char *str;
const char *fmt="%s%snumber_of_replicas: %d";
const unsigned fmt_len_plus_extra= length + strlen(fmt);
if ((str= my_malloc(fmt_len_plus_extra, MYF(0))) == NULL)
{
sql_print_error("ha_ndbcluster::update_table_comment: "
"my_malloc(%u) failed", (unsigned int)fmt_len_plus_extra);
2005-02-11 22:33:52 +01:00
return (char*)comment;
}
my_snprintf(str,fmt_len_plus_extra,fmt,comment,
length > 0 ? " ":"",
tab->getReplicaCount());
2005-02-11 22:33:52 +01:00
return str;
}
// Utility thread main loop
pthread_handler_t ndb_util_thread_func(void *arg __attribute__((unused)))
2005-02-11 22:33:52 +01:00
{
THD *thd; /* needs to be first for thread_stack */
struct timespec abstime;
Thd_ndb *thd_ndb;
2007-04-02 18:49:52 +02:00
uint share_list_size= 0;
NDB_SHARE **share_list= NULL;
2005-02-11 22:33:52 +01:00
my_thread_init();
DBUG_ENTER("ndb_util_thread");
DBUG_PRINT("enter", ("ndb_cache_check_time: %lu", ndb_cache_check_time));
pthread_mutex_lock(&LOCK_ndb_util_thread);
2005-02-11 22:33:52 +01:00
thd= new THD; /* note that contructor of THD uses DBUG_ */
if (thd == NULL)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(NULL);
}
2005-02-11 22:33:52 +01:00
THD_CHECK_SENTRY(thd);
pthread_detach_this_thread();
ndb_util_thread= pthread_self();
thd->thread_stack= (char*)&thd; /* remember where our stack is */
if (thd->store_globals())
goto ndb_util_thread_fail;
thd->init_for_queries();
thd->version=refresh_version;
thd->main_security_ctx.host_or_ip= "";
thd->client_capabilities = 0;
my_net_init(&thd->net, 0);
thd->main_security_ctx.master_access= ~0;
thd->main_security_ctx.priv_user = 0;
thd->current_stmt_binlog_row_based= TRUE; // If in mixed mode
/* Signal successful initialization */
2006-12-20 22:57:23 +01:00
ndb_util_thread_running= 1;
pthread_cond_signal(&COND_ndb_util_ready);
pthread_mutex_unlock(&LOCK_ndb_util_thread);
2006-12-20 22:57:23 +01:00
/*
wait for mysql server to start
*/
pthread_mutex_lock(&LOCK_server_started);
while (!mysqld_server_started)
{
set_timespec(abstime, 1);
pthread_cond_timedwait(&COND_server_started, &LOCK_server_started,
&abstime);
if (ndbcluster_terminating)
{
pthread_mutex_unlock(&LOCK_server_started);
pthread_mutex_lock(&LOCK_ndb_util_thread);
goto ndb_util_thread_end;
}
}
pthread_mutex_unlock(&LOCK_server_started);
/*
Wait for cluster to start
*/
pthread_mutex_lock(&LOCK_ndb_util_thread);
while (!ndb_cluster_node_id && (ndbcluster_hton->slot != ~(uint)0))
{
/* ndb not connected yet */
pthread_cond_wait(&COND_ndb_util_thread, &LOCK_ndb_util_thread);
if (ndbcluster_terminating)
goto ndb_util_thread_end;
}
pthread_mutex_unlock(&LOCK_ndb_util_thread);
/* Get thd_ndb for this thread */
if (!(thd_ndb= ha_ndbcluster::seize_thd_ndb()))
2006-01-12 19:51:02 +01:00
{
sql_print_error("Could not allocate Thd_ndb object");
pthread_mutex_lock(&LOCK_ndb_util_thread);
goto ndb_util_thread_end;
2006-01-12 19:51:02 +01:00
}
set_thd_ndb(thd, thd_ndb);
thd_ndb->options|= TNO_NO_LOG_SCHEMA_OP;
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if (ndb_extra_logging && ndb_binlog_running)
sql_print_information("NDB Binlog: Ndb tables initially read only.");
2006-01-12 19:51:02 +01:00
/* create tables needed by the replication */
ndbcluster_setup_binlog_table_shares(thd);
#else
/*
Get all table definitions from the storage node
*/
ndbcluster_find_all_files(thd);
2006-01-12 19:51:02 +01:00
#endif
set_timespec(abstime, 0);
for (;;)
2005-02-11 22:33:52 +01:00
{
pthread_mutex_lock(&LOCK_ndb_util_thread);
if (!ndbcluster_terminating)
pthread_cond_timedwait(&COND_ndb_util_thread,
&LOCK_ndb_util_thread,
&abstime);
if (ndbcluster_terminating) /* Shutting down server */
goto ndb_util_thread_end;
2005-02-11 22:33:52 +01:00
pthread_mutex_unlock(&LOCK_ndb_util_thread);
#ifdef NDB_EXTRA_DEBUG_UTIL_THREAD
DBUG_PRINT("ndb_util_thread", ("Started, ndb_cache_check_time: %lu",
2005-02-11 22:33:52 +01:00
ndb_cache_check_time));
#endif
2005-02-11 22:33:52 +01:00
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
/*
Check that the ndb_apply_status_share and ndb_schema_share
have been created.
2006-01-12 19:51:02 +01:00
If not try to create it
*/
if (!ndb_binlog_tables_inited)
2006-01-12 19:51:02 +01:00
ndbcluster_setup_binlog_table_shares(thd);
#endif
2005-02-11 22:33:52 +01:00
if (ndb_cache_check_time == 0)
{
/* Wake up in 1 second to check if value has changed */
set_timespec(abstime, 1);
2005-02-11 22:33:52 +01:00
continue;
}
/* Lock mutex and fill list with pointers to all open tables */
NDB_SHARE *share;
pthread_mutex_lock(&ndbcluster_mutex);
2007-04-02 21:26:27 +02:00
uint i, open_count, record_count= ndbcluster_open_tables.records;
if (share_list_size < record_count)
{
NDB_SHARE ** new_share_list= new NDB_SHARE * [record_count];
if (!new_share_list)
{
sql_print_warning("ndb util thread: malloc failure, "
"query cache not maintained properly");
pthread_mutex_unlock(&ndbcluster_mutex);
goto next; // At least do not crash
}
delete [] share_list;
share_list_size= record_count;
share_list= new_share_list;
}
2007-04-02 21:26:27 +02:00
for (i= 0, open_count= 0; i < record_count; i++)
2005-02-11 22:33:52 +01:00
{
share= (NDB_SHARE *)hash_element(&ndbcluster_open_tables, i);
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0))
<= 0)
continue; // injector thread is the only user, skip statistics
share->util_lock= current_thd; // Mark that util thread has lock
#endif /* HAVE_NDB_BINLOG */
/* ndb_share reference temporary, free below */
2005-02-11 22:33:52 +01:00
share->use_count++; /* Make sure the table can't be closed */
DBUG_PRINT("NDB_SHARE", ("%s temporary use_count: %u",
share->key, share->use_count));
2005-02-11 22:33:52 +01:00
DBUG_PRINT("ndb_util_thread",
("Found open table[%d]: %s, use_count: %d",
i, share->table_name, share->use_count));
/* Store pointer to table */
2007-04-02 21:26:27 +02:00
share_list[open_count++]= share;
2005-02-11 22:33:52 +01:00
}
pthread_mutex_unlock(&ndbcluster_mutex);
/* Iterate through the open files list */
2007-04-02 21:26:27 +02:00
for (i= 0; i < open_count; i++)
2005-02-11 22:33:52 +01:00
{
share= share_list[i];
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
if ((share->use_count - (int) (share->op != 0) - (int) (share->op != 0))
<= 1)
{
/*
Util thread and injector thread is the only user, skip statistics
*/
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
2006-01-12 19:51:02 +01:00
free_share(&share);
continue;
}
#endif /* HAVE_NDB_BINLOG */
2005-02-11 22:33:52 +01:00
DBUG_PRINT("ndb_util_thread",
("Fetching commit count for: %s", share->key));
2005-02-11 22:33:52 +01:00
struct Ndb_statistics stat;
uint lock;
pthread_mutex_lock(&share->mutex);
lock= share->commit_count_lock;
pthread_mutex_unlock(&share->mutex);
2005-02-11 22:33:52 +01:00
{
/* Contact NDB to get commit count for table */
Ndb* ndb= thd_ndb->ndb;
2007-04-11 19:38:29 +02:00
if (ndb->setDatabaseName(share->db))
{
goto loop_next;
}
Ndb_table_guard ndbtab_g(ndb->getDictionary(), share->table_name);
if (ndbtab_g.get_table() &&
ndb_get_table_statistics(NULL, FALSE, ndb,
ndbtab_g.get_table(), &stat) == 0)
{
2007-02-27 19:31:49 +02:00
#ifndef DBUG_OFF
char buff[22], buff2[22];
2007-02-27 19:31:49 +02:00
#endif
DBUG_PRINT("info",
("Table: %s commit_count: %s rows: %s",
share->key,
llstr(stat.commit_count, buff),
2006-07-14 02:07:37 +04:00
llstr(stat.row_count, buff2)));
}
else
{
DBUG_PRINT("ndb_util_thread",
("Error: Could not get commit count for table %s",
share->key));
stat.commit_count= 0;
}
2005-02-11 22:33:52 +01:00
}
loop_next:
pthread_mutex_lock(&share->mutex);
if (share->commit_count_lock == lock)
share->commit_count= stat.commit_count;
pthread_mutex_unlock(&share->mutex);
/* ndb_share reference temporary free */
DBUG_PRINT("NDB_SHARE", ("%s temporary free use_count: %u",
share->key, share->use_count));
free_share(&share);
2005-02-11 22:33:52 +01:00
}
next:
/* Calculate new time to wake up */
int secs= 0;
int msecs= ndb_cache_check_time;
struct timeval tick_time;
gettimeofday(&tick_time, 0);
abstime.tv_sec= tick_time.tv_sec;
abstime.tv_nsec= tick_time.tv_usec * 1000;
if (msecs >= 1000){
secs= msecs / 1000;
msecs= msecs % 1000;
}
abstime.tv_sec+= secs;
abstime.tv_nsec+= msecs * 1000000;
if (abstime.tv_nsec >= 1000000000) {
abstime.tv_sec+= 1;
abstime.tv_nsec-= 1000000000;
}
2005-02-11 22:33:52 +01:00
}
pthread_mutex_lock(&LOCK_ndb_util_thread);
ndb_util_thread_end:
net_end(&thd->net);
ndb_util_thread_fail:
if (share_list)
delete [] share_list;
2005-02-11 22:33:52 +01:00
thd->cleanup();
delete thd;
/* signal termination */
2006-12-20 22:57:23 +01:00
ndb_util_thread_running= 0;
pthread_cond_signal(&COND_ndb_util_ready);
2006-12-20 22:57:23 +01:00
pthread_mutex_unlock(&LOCK_ndb_util_thread);
2005-02-11 22:33:52 +01:00
DBUG_PRINT("exit", ("ndb_util_thread"));
my_thread_end();
pthread_exit(0);
DBUG_RETURN(NULL);
}
2004-12-17 21:13:22 +01:00
/*
Condition pushdown
*/
/*
Push a condition to ndbcluster storage engine for evaluation
during table and index scans. The conditions will be stored on a stack
for possibly storing several conditions. The stack can be popped
by calling cond_pop, handler::extra(HA_EXTRA_RESET) (handler::reset())
will clear the stack.
The current implementation supports arbitrary AND/OR nested conditions
with comparisons between columns and constants (including constant
expressions and function calls) and the following comparison operators:
=, !=, >, >=, <, <=, "is null", and "is not null".
RETURN
NULL The condition was supported and will be evaluated for each
row found during the scan
cond The condition was not supported and all rows will be returned from
the scan for evaluation (and thus not saved on stack)
*/
2004-12-17 21:13:22 +01:00
const
COND*
ha_ndbcluster::cond_push(const COND *cond)
{
DBUG_ENTER("cond_push");
if (!m_cond)
m_cond= new ha_ndbcluster_cond;
if (!m_cond)
{
my_errno= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(NULL);
}
DBUG_EXECUTE("where",print_where((COND *)cond, m_tabname););
DBUG_RETURN(m_cond->cond_push(cond, table, (NDBTAB *)m_table));
2004-12-17 21:13:22 +01:00
}
/*
Pop the top condition from the condition stack of the handler instance.
*/
2004-12-17 21:13:22 +01:00
void
ha_ndbcluster::cond_pop()
{
if (m_cond)
m_cond->cond_pop();
}
/*
get table space info for SHOW CREATE TABLE
*/
char* ha_ndbcluster::get_tablespace_name(THD *thd, char* name, uint name_len)
{
Ndb *ndb= check_ndb_in_thd(thd);
NDBDICT *ndbdict= ndb->getDictionary();
NdbError ndberr;
Uint32 id;
ndb->setDatabaseName(m_dbname);
const NDBTAB *ndbtab= m_table;
DBUG_ASSERT(ndbtab != NULL);
if (!ndbtab->getTablespace(&id))
{
return 0;
}
{
NdbDictionary::Tablespace ts= ndbdict->getTablespace(id);
ndberr= ndbdict->getNdbError();
if(ndberr.classification != NdbError::NoError)
goto err;
DBUG_PRINT("info", ("Found tablespace '%s'", ts.getName()));
if (name)
{
strxnmov(name, name_len, ts.getName(), NullS);
return name;
}
else
return (my_strdup(ts.getName(), MYF(0)));
}
err:
if (ndberr.status == NdbError::TemporaryError)
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_GET_TEMPORARY_ERRMSG, ER(ER_GET_TEMPORARY_ERRMSG),
ndberr.code, ndberr.message, "NDB");
else
push_warning_printf(thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_GET_ERRMSG, ER(ER_GET_ERRMSG),
ndberr.code, ndberr.message, "NDB");
return 0;
}
/*
Implements the SHOW NDB STATUS command.
*/
bool
ndbcluster_show_status(handlerton *hton, THD* thd, stat_print_fn *stat_print,
enum ha_stat_type stat_type)
{
char buf[IO_SIZE];
2006-01-12 19:51:02 +01:00
uint buflen;
DBUG_ENTER("ndbcluster_show_status");
if (have_ndbcluster != SHOW_OPTION_YES)
{
DBUG_RETURN(FALSE);
}
if (stat_type != HA_ENGINE_STATUS)
{
DBUG_RETURN(FALSE);
}
2006-01-12 19:51:02 +01:00
update_status_variables(g_ndb_cluster_connection);
buflen=
my_snprintf(buf, sizeof(buf),
"cluster_node_id=%ld, "
2006-01-12 19:51:02 +01:00
"connected_host=%s, "
"connected_port=%ld, "
"number_of_data_nodes=%ld, "
"number_of_ready_data_nodes=%ld, "
"connect_count=%ld",
2006-01-12 19:51:02 +01:00
ndb_cluster_node_id,
ndb_connected_host,
ndb_connected_port,
2006-08-11 18:01:46 +08:00
ndb_number_of_data_nodes,
ndb_number_of_ready_data_nodes,
ndb_connect_count);
if (stat_print(thd, ndbcluster_hton_name, ndbcluster_hton_name_length,
STRING_WITH_LEN("connection"), buf, buflen))
2006-01-12 19:51:02 +01:00
DBUG_RETURN(TRUE);
2005-09-20 12:07:18 +02:00
if (get_thd_ndb(thd) && get_thd_ndb(thd)->ndb)
{
2005-09-20 12:07:18 +02:00
Ndb* ndb= (get_thd_ndb(thd))->ndb;
Ndb::Free_list_usage tmp;
tmp.m_name= 0;
while (ndb->get_free_list_usage(&tmp))
{
2006-01-12 19:51:02 +01:00
buflen=
my_snprintf(buf, sizeof(buf),
"created=%u, free=%u, sizeof=%u",
tmp.m_created, tmp.m_free, tmp.m_sizeof);
if (stat_print(thd, ndbcluster_hton_name, ndbcluster_hton_name_length,
tmp.m_name, strlen(tmp.m_name), buf, buflen))
DBUG_RETURN(TRUE);
}
}
2006-01-12 19:51:02 +01:00
#ifdef HAVE_NDB_BINLOG
ndbcluster_show_status_binlog(thd, stat_print, stat_type);
#endif
DBUG_RETURN(FALSE);
}
2005-07-18 13:31:02 +02:00
2006-01-12 19:51:02 +01:00
2005-07-18 13:31:02 +02:00
/*
Create a table in NDB Cluster
*/
static uint get_no_fragments(ulonglong max_rows)
2005-07-18 13:31:02 +02:00
{
#if MYSQL_VERSION_ID >= 50000
uint acc_row_size= 25 + /*safety margin*/ 2;
#else
uint acc_row_size= pk_length*4;
/* add acc overhead */
if (pk_length <= 8) /* main page will set the limit */
acc_row_size+= 25 + /*safety margin*/ 2;
else /* overflow page will set the limit */
acc_row_size+= 4 + /*safety margin*/ 4;
#endif
ulonglong acc_fragment_size= 512*1024*1024;
#if MYSQL_VERSION_ID >= 50100
return (max_rows*acc_row_size)/acc_fragment_size+1;
#else
return ((max_rows*acc_row_size)/acc_fragment_size+1
+1/*correct rounding*/)/2;
#endif
}
/*
Routine to adjust default number of partitions to always be a multiple
of number of nodes and never more than 4 times the number of nodes.
*/
static bool adjusted_frag_count(uint no_fragments, uint no_nodes,
uint &reported_frags)
{
uint i= 0;
reported_frags= no_nodes;
while (reported_frags < no_fragments && ++i < 4 &&
(reported_frags + no_nodes) < MAX_PARTITIONS)
reported_frags+= no_nodes;
return (reported_frags < no_fragments);
}
int ha_ndbcluster::get_default_no_partitions(HA_CREATE_INFO *create_info)
2005-07-18 13:31:02 +02:00
{
ha_rows max_rows, min_rows;
if (create_info)
{
max_rows= create_info->max_rows;
min_rows= create_info->min_rows;
}
else
{
max_rows= table_share->max_rows;
min_rows= table_share->min_rows;
}
2005-07-18 13:31:02 +02:00
uint reported_frags;
uint no_fragments=
get_no_fragments(max_rows >= min_rows ? max_rows : min_rows);
2005-07-18 13:31:02 +02:00
uint no_nodes= g_ndb_cluster_connection->no_db_nodes();
if (adjusted_frag_count(no_fragments, no_nodes, reported_frags))
{
push_warning(current_thd,
MYSQL_ERROR::WARN_LEVEL_WARN, ER_UNKNOWN_ERROR,
"Ndb might have problems storing the max amount of rows specified");
}
2005-07-18 13:31:02 +02:00
return (int)reported_frags;
}
/*
Set-up auto-partitioning for NDB Cluster
SYNOPSIS
set_auto_partitions()
part_info Partition info struct to set-up
RETURN VALUE
NONE
DESCRIPTION
Set-up auto partitioning scheme for tables that didn't define any
partitioning. We'll use PARTITION BY KEY() in this case which
translates into partition by primary key if a primary key exists
and partition by hidden key otherwise.
*/
void ha_ndbcluster::set_auto_partitions(partition_info *part_info)
{
DBUG_ENTER("ha_ndbcluster::set_auto_partitions");
part_info->list_of_part_fields= TRUE;
part_info->part_type= HASH_PARTITION;
switch (opt_ndb_distribution_id)
{
case ND_KEYHASH:
part_info->linear_hash_ind= FALSE;
break;
case ND_LINHASH:
part_info->linear_hash_ind= TRUE;
break;
}
DBUG_VOID_RETURN;
}
int ha_ndbcluster::set_range_data(void *tab_ref, partition_info *part_info)
{
NDBTAB *tab= (NDBTAB*)tab_ref;
int32 *range_data= (int32*)my_malloc(part_info->no_parts*sizeof(int32),
MYF(0));
uint i;
int error= 0;
bool unsigned_flag= part_info->part_expr->unsigned_flag;
DBUG_ENTER("set_range_data");
if (!range_data)
{
mem_alloc_error(part_info->no_parts*sizeof(int32));
DBUG_RETURN(1);
}
for (i= 0; i < part_info->no_parts; i++)
{
longlong range_val= part_info->range_int_array[i];
if (unsigned_flag)
range_val-= 0x8000000000000000ULL;
if (range_val < INT_MIN32 || range_val >= INT_MAX32)
{
if ((i != part_info->no_parts - 1) ||
(range_val != LONGLONG_MAX))
{
my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB");
error= 1;
goto error;
}
range_val= INT_MAX32;
}
range_data[i]= (int32)range_val;
}
tab->setRangeListData(range_data, sizeof(int32)*part_info->no_parts);
error:
my_free((char*)range_data, MYF(0));
DBUG_RETURN(error);
}
int ha_ndbcluster::set_list_data(void *tab_ref, partition_info *part_info)
{
NDBTAB *tab= (NDBTAB*)tab_ref;
int32 *list_data= (int32*)my_malloc(part_info->no_list_values * 2
* sizeof(int32), MYF(0));
uint32 *part_id, i;
int error= 0;
bool unsigned_flag= part_info->part_expr->unsigned_flag;
DBUG_ENTER("set_list_data");
if (!list_data)
{
mem_alloc_error(part_info->no_list_values*2*sizeof(int32));
DBUG_RETURN(1);
}
for (i= 0; i < part_info->no_list_values; i++)
{
LIST_PART_ENTRY *list_entry= &part_info->list_array[i];
longlong list_val= list_entry->list_value;
if (unsigned_flag)
list_val-= 0x8000000000000000ULL;
if (list_val < INT_MIN32 || list_val > INT_MAX32)
{
my_error(ER_LIMITED_PART_RANGE, MYF(0), "NDB");
error= 1;
goto error;
}
list_data[2*i]= (int32)list_val;
part_id= (uint32*)&list_data[2*i+1];
*part_id= list_entry->partition_id;
}
tab->setRangeListData(list_data, 2*sizeof(int32)*part_info->no_list_values);
error:
my_free((char*)list_data, MYF(0));
DBUG_RETURN(error);
}
2005-07-18 13:31:02 +02:00
/*
User defined partitioning set-up. We need to check how many fragments the
user wants defined and which node groups to put those into. Later we also
want to attach those partitions to a tablespace.
All the functionality of the partition function, partition limits and so
forth are entirely handled by the MySQL Server. There is one exception to
this rule for PARTITION BY KEY where NDB handles the hash function and
this type can thus be handled transparently also by NDB API program.
For RANGE, HASH and LIST and subpartitioning the NDB API programs must
implement the function to map to a partition.
*/
uint ha_ndbcluster::set_up_partition_info(partition_info *part_info,
TABLE *table,
void *tab_par)
{
uint16 frag_data[MAX_PARTITIONS];
char *ts_names[MAX_PARTITIONS];
ulong fd_index= 0, i, j;
2005-07-18 13:31:02 +02:00
NDBTAB *tab= (NDBTAB*)tab_par;
NDBTAB::FragmentType ftype= NDBTAB::UserDefined;
partition_element *part_elem;
bool first= TRUE;
uint tot_ts_name_len;
List_iterator<partition_element> part_it(part_info->partitions);
int error;
DBUG_ENTER("ha_ndbcluster::set_up_partition_info");
2005-07-18 13:31:02 +02:00
if (part_info->part_type == HASH_PARTITION &&
part_info->list_of_part_fields == TRUE)
{
Field **fields= part_info->part_field_array;
if (part_info->linear_hash_ind)
ftype= NDBTAB::DistrKeyLin;
else
ftype= NDBTAB::DistrKeyHash;
for (i= 0; i < part_info->part_field_list.elements; i++)
{
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
NDBCOL *col= tab->getColumn(fields[i]->field_index);
2005-07-18 13:31:02 +02:00
DBUG_PRINT("info",("setting dist key on %s", col->getName()));
col->setPartitionKey(TRUE);
}
}
else
2005-07-18 13:31:02 +02:00
{
if (!current_thd->variables.new_mode)
{
push_warning_printf(current_thd, MYSQL_ERROR::WARN_LEVEL_ERROR,
ER_ILLEGAL_HA_CREATE_OPTION,
ER(ER_ILLEGAL_HA_CREATE_OPTION),
ndbcluster_hton_name,
"LIST, RANGE and HASH partition disabled by default,"
" use --new option to enable");
DBUG_RETURN(HA_ERR_UNSUPPORTED);
}
/*
Create a shadow field for those tables that have user defined
partitioning. This field stores the value of the partition
function such that NDB can handle reorganisations of the data
even when the MySQL Server isn't available to assist with
calculation of the partition function value.
*/
NDBCOL col;
DBUG_PRINT("info", ("Generating partition func value field"));
col.setName("$PART_FUNC_VALUE");
col.setType(NdbDictionary::Column::Int);
col.setLength(1);
col.setNullable(FALSE);
col.setPrimaryKey(FALSE);
col.setAutoIncrement(FALSE);
tab->addColumn(col);
if (part_info->part_type == RANGE_PARTITION)
2005-07-18 13:31:02 +02:00
{
if ((error= set_range_data((void*)tab, part_info)))
{
DBUG_RETURN(error);
}
2005-07-18 13:31:02 +02:00
}
else if (part_info->part_type == LIST_PARTITION)
2005-07-18 13:31:02 +02:00
{
if ((error= set_list_data((void*)tab, part_info)))
{
DBUG_RETURN(error);
}
2005-07-18 13:31:02 +02:00
}
}
tab->setFragmentType(ftype);
i= 0;
tot_ts_name_len= 0;
do
2005-07-18 13:31:02 +02:00
{
uint ng;
part_elem= part_it++;
if (!part_info->is_sub_partitioned())
2005-07-18 13:31:02 +02:00
{
ng= part_elem->nodegroup_id;
if (first && ng == UNDEF_NODEGROUP)
ng= 0;
ts_names[fd_index]= part_elem->tablespace_name;
frag_data[fd_index++]= ng;
2005-07-18 13:31:02 +02:00
}
else
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
j= 0;
do
{
part_elem= sub_it++;
ng= part_elem->nodegroup_id;
if (first && ng == UNDEF_NODEGROUP)
ng= 0;
ts_names[fd_index]= part_elem->tablespace_name;
frag_data[fd_index++]= ng;
} while (++j < part_info->no_subparts);
}
first= FALSE;
} while (++i < part_info->no_parts);
tab->setDefaultNoPartitionsFlag(part_info->use_default_no_partitions);
tab->setLinearFlag(part_info->linear_hash_ind);
{
ha_rows max_rows= table_share->max_rows;
ha_rows min_rows= table_share->min_rows;
if (max_rows < min_rows)
max_rows= min_rows;
if (max_rows != (ha_rows)0) /* default setting, don't set fragmentation */
{
tab->setMaxRows(max_rows);
tab->setMinRows(min_rows);
}
}
tab->setTablespaceNames(ts_names, fd_index*sizeof(char*));
tab->setFragmentCount(fd_index);
tab->setFragmentData(&frag_data, fd_index*2);
DBUG_RETURN(0);
2005-07-18 13:31:02 +02:00
}
bool ha_ndbcluster::check_if_incompatible_data(HA_CREATE_INFO *create_info,
2005-07-22 23:43:59 +03:00
uint table_changes)
{
DBUG_ENTER("ha_ndbcluster::check_if_incompatible_data");
uint i;
const NDBTAB *tab= (const NDBTAB *) m_table;
2006-01-31 17:01:14 +01:00
if (current_thd->variables.ndb_use_copying_alter_table)
{
DBUG_PRINT("info", ("On-line alter table disabled"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
int pk= 0;
int ai= 0;
if (create_info->tablespace)
create_info->storage_media = HA_SM_DISK;
else
create_info->storage_media = HA_SM_MEMORY;
for (i= 0; i < table->s->fields; i++)
{
Field *field= table->field[i];
const NDBCOL *col= tab->getColumn(i);
if (col->getStorageType() == NDB_STORAGETYPE_MEMORY && create_info->storage_media != HA_SM_MEMORY ||
col->getStorageType() == NDB_STORAGETYPE_DISK && create_info->storage_media != HA_SM_DISK)
{
DBUG_PRINT("info", ("Column storage media is changed"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
if (field->flags & FIELD_IS_RENAMED)
{
DBUG_PRINT("info", ("Field has been renamed, copy table"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
if ((field->flags & FIELD_IN_ADD_INDEX) &&
col->getStorageType() == NdbDictionary::Column::StorageTypeDisk)
{
DBUG_PRINT("info", ("add/drop index not supported for disk stored column"));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
if (field->flags & PRI_KEY_FLAG)
pk=1;
if (field->flags & FIELD_IN_ADD_INDEX)
ai=1;
}
char tablespace_name[FN_LEN];
if (get_tablespace_name(current_thd, tablespace_name, FN_LEN))
{
if (create_info->tablespace)
{
if (strcmp(create_info->tablespace, tablespace_name))
{
DBUG_PRINT("info", ("storage media is changed, old tablespace=%s, new tablespace=%s",
tablespace_name, create_info->tablespace));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
else
{
DBUG_PRINT("info", ("storage media is changed, old is DISK and tablespace=%s, new is MEM",
tablespace_name));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
else
{
if (create_info->storage_media != HA_SM_MEMORY)
{
DBUG_PRINT("info", ("storage media is changed, old is MEM, new is DISK and tablespace=%s",
create_info->tablespace));
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
}
2005-07-22 23:43:59 +03:00
if (table_changes != IS_EQUAL_YES)
DBUG_RETURN(COMPATIBLE_DATA_NO);
2005-07-22 23:43:59 +03:00
/**
* Changing from/to primary key
*
* This is _not_ correct, but check_if_incompatible_data-interface
* doesnt give more info, so I guess that we can't do any
* online add index if not using primary key
*
* This as mysql will handle a unique not null index as primary
* even wo/ user specifiying it... :-(
*
*/
if ((table_share->primary_key == MAX_KEY && pk) ||
(table_share->primary_key != MAX_KEY && !pk) ||
(table_share->primary_key == MAX_KEY && !pk && ai))
{
DBUG_RETURN(COMPATIBLE_DATA_NO);
}
2005-07-22 23:43:59 +03:00
/* Check that auto_increment value was not changed */
if ((create_info->used_fields & HA_CREATE_USED_AUTO) &&
create_info->auto_increment_value != 0)
DBUG_RETURN(COMPATIBLE_DATA_NO);
2005-07-22 23:43:59 +03:00
/* Check that row format didn't change */
if ((create_info->used_fields & HA_CREATE_USED_AUTO) &&
get_row_type() != create_info->row_type)
DBUG_RETURN(COMPATIBLE_DATA_NO);
2005-07-22 23:43:59 +03:00
DBUG_RETURN(COMPATIBLE_DATA_YES);
2005-07-22 23:43:59 +03:00
}
bool set_up_tablespace(st_alter_tablespace *alter_info,
2005-11-07 12:19:28 +01:00
NdbDictionary::Tablespace *ndb_ts)
{
ndb_ts->setName(alter_info->tablespace_name);
ndb_ts->setExtentSize(alter_info->extent_size);
ndb_ts->setDefaultLogfileGroup(alter_info->logfile_group_name);
return FALSE;
2005-11-07 12:19:28 +01:00
}
bool set_up_datafile(st_alter_tablespace *alter_info,
2005-11-07 12:19:28 +01:00
NdbDictionary::Datafile *ndb_df)
{
if (alter_info->max_size > 0)
2005-11-07 12:19:28 +01:00
{
my_error(ER_TABLESPACE_AUTO_EXTEND_ERROR, MYF(0));
return TRUE;
2005-11-07 12:19:28 +01:00
}
ndb_df->setPath(alter_info->data_file_name);
ndb_df->setSize(alter_info->initial_size);
ndb_df->setTablespace(alter_info->tablespace_name);
return FALSE;
2005-11-07 12:19:28 +01:00
}
bool set_up_logfile_group(st_alter_tablespace *alter_info,
2005-11-07 12:19:28 +01:00
NdbDictionary::LogfileGroup *ndb_lg)
{
ndb_lg->setName(alter_info->logfile_group_name);
ndb_lg->setUndoBufferSize(alter_info->undo_buffer_size);
return FALSE;
2005-11-07 12:19:28 +01:00
}
bool set_up_undofile(st_alter_tablespace *alter_info,
2005-11-07 12:19:28 +01:00
NdbDictionary::Undofile *ndb_uf)
{
ndb_uf->setPath(alter_info->undo_file_name);
ndb_uf->setSize(alter_info->initial_size);
ndb_uf->setLogfileGroup(alter_info->logfile_group_name);
return FALSE;
2005-11-07 12:19:28 +01:00
}
int ndbcluster_alter_tablespace(handlerton *hton,
THD* thd, st_alter_tablespace *alter_info)
2005-11-07 12:19:28 +01:00
{
int is_tablespace= 0;
NdbError err;
NDBDICT *dict;
int error;
const char *errmsg;
Ndb *ndb;
2005-11-07 12:19:28 +01:00
DBUG_ENTER("ha_ndbcluster::alter_tablespace");
LINT_INIT(errmsg);
2006-01-11 11:35:25 +01:00
ndb= check_ndb_in_thd(thd);
2006-01-11 11:35:25 +01:00
if (ndb == NULL)
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
DBUG_RETURN(HA_ERR_NO_CONNECTION);
2005-11-07 12:19:28 +01:00
}
dict= ndb->getDictionary();
switch (alter_info->ts_cmd_type){
2005-11-07 12:19:28 +01:00
case (CREATE_TABLESPACE):
{
error= ER_CREATE_FILEGROUP_FAILED;
2006-01-11 11:35:25 +01:00
2005-11-07 12:19:28 +01:00
NdbDictionary::Tablespace ndb_ts;
NdbDictionary::Datafile ndb_df;
NdbDictionary::ObjectId objid;
if (set_up_tablespace(alter_info, &ndb_ts))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
if (set_up_datafile(alter_info, &ndb_df))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
2006-01-11 11:35:25 +01:00
errmsg= "TABLESPACE";
if (dict->createTablespace(ndb_ts, &objid))
2005-11-07 12:19:28 +01:00
{
DBUG_PRINT("error", ("createTablespace returned %d", error));
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
DBUG_PRINT("alter_info", ("Successfully created Tablespace"));
2006-01-11 11:35:25 +01:00
errmsg= "DATAFILE";
if (dict->createDatafile(ndb_df))
2005-11-07 12:19:28 +01:00
{
err= dict->getNdbError();
NdbDictionary::Tablespace tmp= dict->getTablespace(ndb_ts.getName());
if (dict->getNdbError().code == 0 &&
tmp.getObjectId() == objid.getObjectId() &&
tmp.getObjectVersion() == objid.getObjectVersion())
{
dict->dropTablespace(tmp);
}
2005-11-07 12:19:28 +01:00
DBUG_PRINT("error", ("createDatafile returned %d", error));
goto ndberror2;
2005-11-07 12:19:28 +01:00
}
is_tablespace= 1;
2005-11-07 12:19:28 +01:00
break;
}
case (ALTER_TABLESPACE):
{
error= ER_ALTER_FILEGROUP_FAILED;
if (alter_info->ts_alter_tablespace_type == ALTER_TABLESPACE_ADD_FILE)
2005-11-07 12:19:28 +01:00
{
NdbDictionary::Datafile ndb_df;
if (set_up_datafile(alter_info, &ndb_df))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
2006-01-11 11:35:25 +01:00
errmsg= " CREATE DATAFILE";
if (dict->createDatafile(ndb_df))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
}
else if(alter_info->ts_alter_tablespace_type == ALTER_TABLESPACE_DROP_FILE)
2005-11-07 12:19:28 +01:00
{
NdbDictionary::Tablespace ts= dict->getTablespace(alter_info->tablespace_name);
NdbDictionary::Datafile df= dict->getDatafile(0, alter_info->data_file_name);
NdbDictionary::ObjectId objid;
df.getTablespaceId(&objid);
if (ts.getObjectId() == objid.getObjectId() &&
strcmp(df.getPath(), alter_info->data_file_name) == 0)
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
errmsg= " DROP DATAFILE";
if (dict->dropDatafile(df))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
}
else
{
DBUG_PRINT("error", ("No such datafile"));
my_error(ER_ALTER_FILEGROUP_FAILED, MYF(0), " NO SUCH FILE");
2005-11-07 12:19:28 +01:00
DBUG_RETURN(1);
}
}
else
{
DBUG_PRINT("error", ("Unsupported alter tablespace: %d",
alter_info->ts_alter_tablespace_type));
2005-11-07 12:19:28 +01:00
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
is_tablespace= 1;
2005-11-07 12:19:28 +01:00
break;
}
case (CREATE_LOGFILE_GROUP):
{
error= ER_CREATE_FILEGROUP_FAILED;
2005-11-07 12:19:28 +01:00
NdbDictionary::LogfileGroup ndb_lg;
NdbDictionary::Undofile ndb_uf;
NdbDictionary::ObjectId objid;
if (alter_info->undo_file_name == NULL)
2005-11-07 12:19:28 +01:00
{
/*
REDO files in LOGFILE GROUP not supported yet
*/
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
if (set_up_logfile_group(alter_info, &ndb_lg))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
2006-01-11 11:35:25 +01:00
errmsg= "LOGFILE GROUP";
if (dict->createLogfileGroup(ndb_lg, &objid))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
DBUG_PRINT("alter_info", ("Successfully created Logfile Group"));
if (set_up_undofile(alter_info, &ndb_uf))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
2006-01-11 11:35:25 +01:00
errmsg= "UNDOFILE";
if (dict->createUndofile(ndb_uf))
2005-11-07 12:19:28 +01:00
{
err= dict->getNdbError();
NdbDictionary::LogfileGroup tmp= dict->getLogfileGroup(ndb_lg.getName());
if (dict->getNdbError().code == 0 &&
tmp.getObjectId() == objid.getObjectId() &&
tmp.getObjectVersion() == objid.getObjectVersion())
{
dict->dropLogfileGroup(tmp);
}
goto ndberror2;
2005-11-07 12:19:28 +01:00
}
break;
}
case (ALTER_LOGFILE_GROUP):
{
error= ER_ALTER_FILEGROUP_FAILED;
if (alter_info->undo_file_name == NULL)
2005-11-07 12:19:28 +01:00
{
/*
REDO files in LOGFILE GROUP not supported yet
*/
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
NdbDictionary::Undofile ndb_uf;
if (set_up_undofile(alter_info, &ndb_uf))
2005-11-07 12:19:28 +01:00
{
DBUG_RETURN(1);
}
2006-01-11 11:35:25 +01:00
errmsg= "CREATE UNDOFILE";
if (dict->createUndofile(ndb_uf))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
break;
}
case (DROP_TABLESPACE):
{
error= ER_DROP_FILEGROUP_FAILED;
2006-01-11 11:35:25 +01:00
errmsg= "TABLESPACE";
if (dict->dropTablespace(dict->getTablespace(alter_info->tablespace_name)))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
is_tablespace= 1;
2005-11-07 12:19:28 +01:00
break;
}
case (DROP_LOGFILE_GROUP):
{
error= ER_DROP_FILEGROUP_FAILED;
2006-01-11 11:35:25 +01:00
errmsg= "LOGFILE GROUP";
if (dict->dropLogfileGroup(dict->getLogfileGroup(alter_info->logfile_group_name)))
2005-11-07 12:19:28 +01:00
{
2006-01-11 11:35:25 +01:00
goto ndberror;
2005-11-07 12:19:28 +01:00
}
break;
}
case (CHANGE_FILE_TABLESPACE):
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
case (ALTER_ACCESS_MODE_TABLESPACE):
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
default:
{
DBUG_RETURN(HA_ADMIN_NOT_IMPLEMENTED);
}
}
#ifdef HAVE_NDB_BINLOG
if (is_tablespace)
ndbcluster_log_schema_op(thd, 0,
thd->query, thd->query_length,
"", alter_info->tablespace_name,
0, 0,
SOT_TABLESPACE, 0, 0, 0);
else
ndbcluster_log_schema_op(thd, 0,
thd->query, thd->query_length,
"", alter_info->logfile_group_name,
0, 0,
SOT_LOGFILE_GROUP, 0, 0, 0);
#endif
2005-11-07 12:19:28 +01:00
DBUG_RETURN(FALSE);
2006-01-11 11:35:25 +01:00
ndberror:
err= dict->getNdbError();
ndberror2:
2006-01-11 11:35:25 +01:00
ERR_PRINT(err);
ndb_to_mysql_error(&err);
my_error(error, MYF(0), errmsg);
DBUG_RETURN(1);
2005-11-07 12:19:28 +01:00
}
bool ha_ndbcluster::get_no_parts(const char *name, uint *no_parts)
{
Ndb *ndb;
NDBDICT *dict;
int err;
DBUG_ENTER("ha_ndbcluster::get_no_parts");
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
LINT_INIT(err);
set_dbname(name);
set_tabname(name);
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
for (;;)
{
if (check_ndb_connection())
{
err= HA_ERR_NO_CONNECTION;
break;
}
ndb= get_ndb();
ndb->setDatabaseName(m_dbname);
Ndb_table_guard ndbtab_g(dict= ndb->getDictionary(), m_tabname);
if (!ndbtab_g.get_table())
ERR_BREAK(dict->getNdbError(), err);
*no_parts= ndbtab_g.get_table()->getFragmentCount();
DBUG_RETURN(FALSE);
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
}
print_error(err, MYF(0));
DBUG_RETURN(TRUE);
}
static int ndbcluster_fill_files_table(handlerton *hton,
THD *thd,
TABLE_LIST *tables,
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
COND *cond)
{
TABLE* table= tables->table;
Ndb *ndb= check_ndb_in_thd(thd);
NdbDictionary::Dictionary* dict= ndb->getDictionary();
NdbDictionary::Dictionary::List dflist;
NdbError ndberr;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
uint i;
DBUG_ENTER("ndbcluster_fill_files_table");
dict->listObjects(dflist, NdbDictionary::Object::Datafile);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < dflist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt = dflist.elements[i];
Ndb_cluster_connection_node_iter iter;
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
uint id;
g_ndb_cluster_connection->init_get_next_node(iter);
while ((id= g_ndb_cluster_connection->get_next_node(iter)))
{
init_fill_schema_files_row(table);
NdbDictionary::Datafile df= dict->getDatafile(id, elt.name);
ndberr= dict->getNdbError();
if(ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
NdbDictionary::Tablespace ts= dict->getTablespace(df.getTablespace());
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
table->field[IS_FILES_FILE_NAME]->set_notnull();
table->field[IS_FILES_FILE_NAME]->store(elt.name, strlen(elt.name),
system_charset_info);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("DATAFILE",8,
system_charset_info);
table->field[IS_FILES_TABLESPACE_NAME]->set_notnull();
table->field[IS_FILES_TABLESPACE_NAME]->store(df.getTablespace(),
strlen(df.getTablespace()),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->
store(ts.getDefaultLogfileGroup(),
strlen(ts.getDefaultLogfileGroup()),
system_charset_info);
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_FREE_EXTENTS]->set_notnull();
table->field[IS_FILES_FREE_EXTENTS]->store(df.getFree()
/ ts.getExtentSize());
table->field[IS_FILES_TOTAL_EXTENTS]->set_notnull();
table->field[IS_FILES_TOTAL_EXTENTS]->store(df.getSize()
/ ts.getExtentSize());
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(ts.getExtentSize());
table->field[IS_FILES_INITIAL_SIZE]->set_notnull();
table->field[IS_FILES_INITIAL_SIZE]->store(df.getSize());
table->field[IS_FILES_MAXIMUM_SIZE]->set_notnull();
table->field[IS_FILES_MAXIMUM_SIZE]->store(df.getSize());
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(df.getObjectVersion());
table->field[IS_FILES_ROW_FORMAT]->set_notnull();
table->field[IS_FILES_ROW_FORMAT]->store("FIXED", 5, system_charset_info);
char extra[30];
int len= my_snprintf(extra, sizeof(extra), "CLUSTER_NODE=%u", id);
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
}
NdbDictionary::Dictionary::List uflist;
dict->listObjects(uflist, NdbDictionary::Object::Undofile);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < uflist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt= uflist.elements[i];
Ndb_cluster_connection_node_iter iter;
unsigned id;
g_ndb_cluster_connection->init_get_next_node(iter);
while ((id= g_ndb_cluster_connection->get_next_node(iter)))
{
NdbDictionary::Undofile uf= dict->getUndofile(id, elt.name);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
NdbDictionary::LogfileGroup lfg=
dict->getLogfileGroup(uf.getLogfileGroup());
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
init_fill_schema_files_row(table);
table->field[IS_FILES_FILE_NAME]->set_notnull();
table->field[IS_FILES_FILE_NAME]->store(elt.name, strlen(elt.name),
system_charset_info);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("UNDO LOG", 8,
system_charset_info);
NdbDictionary::ObjectId objid;
uf.getLogfileGroupId(&objid);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->store(uf.getLogfileGroup(),
strlen(uf.getLogfileGroup()),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->store(objid.getObjectId());
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_TOTAL_EXTENTS]->set_notnull();
table->field[IS_FILES_TOTAL_EXTENTS]->store(uf.getSize()/4);
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(4);
table->field[IS_FILES_INITIAL_SIZE]->set_notnull();
table->field[IS_FILES_INITIAL_SIZE]->store(uf.getSize());
table->field[IS_FILES_MAXIMUM_SIZE]->set_notnull();
table->field[IS_FILES_MAXIMUM_SIZE]->store(uf.getSize());
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(uf.getObjectVersion());
char extra[100];
int len= my_snprintf(extra,sizeof(extra),"CLUSTER_NODE=%u;UNDO_BUFFER_SIZE=%lu",
id, (ulong) lfg.getUndoBufferSize());
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
}
// now for LFGs
NdbDictionary::Dictionary::List lfglist;
dict->listObjects(lfglist, NdbDictionary::Object::LogfileGroup);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
ERR_RETURN(ndberr);
for (i= 0; i < lfglist.count; i++)
{
NdbDictionary::Dictionary::List::Element& elt= lfglist.elements[i];
NdbDictionary::LogfileGroup lfg= dict->getLogfileGroup(elt.name);
ndberr= dict->getNdbError();
if (ndberr.classification != NdbError::NoError)
{
if (ndberr.classification == NdbError::SchemaError)
continue;
ERR_RETURN(ndberr);
}
init_fill_schema_files_row(table);
table->field[IS_FILES_FILE_TYPE]->set_notnull();
table->field[IS_FILES_FILE_TYPE]->store("UNDO LOG", 8,
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NAME]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NAME]->store(elt.name,
strlen(elt.name),
system_charset_info);
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->set_notnull();
table->field[IS_FILES_LOGFILE_GROUP_NUMBER]->store(lfg.getObjectId());
table->field[IS_FILES_ENGINE]->set_notnull();
table->field[IS_FILES_ENGINE]->store(ndbcluster_hton_name,
ndbcluster_hton_name_length,
system_charset_info);
table->field[IS_FILES_FREE_EXTENTS]->set_notnull();
table->field[IS_FILES_FREE_EXTENTS]->store(lfg.getUndoFreeWords());
table->field[IS_FILES_EXTENT_SIZE]->set_notnull();
table->field[IS_FILES_EXTENT_SIZE]->store(4);
table->field[IS_FILES_VERSION]->set_notnull();
table->field[IS_FILES_VERSION]->store(lfg.getObjectVersion());
char extra[100];
int len= my_snprintf(extra,sizeof(extra),
"UNDO_BUFFER_SIZE=%lu",
(ulong) lfg.getUndoBufferSize());
table->field[IS_FILES_EXTRA]->set_notnull();
table->field[IS_FILES_EXTRA]->store(extra, len, system_charset_info);
schema_table_store_record(thd, table);
}
DBUG_RETURN(0);
}
SHOW_VAR ndb_status_variables_export[]= {
{"Ndb", (char*) &ndb_status_variables, SHOW_ARRAY},
{NullS, NullS, SHOW_LONG}
};
struct st_mysql_storage_engine ndbcluster_storage_engine=
{ MYSQL_HANDLERTON_INTERFACE_VERSION };
mysql_declare_plugin(ndbcluster)
{
MYSQL_STORAGE_ENGINE_PLUGIN,
&ndbcluster_storage_engine,
2006-05-02 04:11:00 -07:00
ndbcluster_hton_name,
"MySQL AB",
"Clustered, fault-tolerant tables",
PLUGIN_LICENSE_GPL,
ndbcluster_init, /* Plugin Init */
NULL, /* Plugin Deinit */
0x0100 /* 1.0 */,
ndb_status_variables_export,/* status variables */
NULL, /* system variables */
NULL /* config options */
}
mysql_declare_plugin_end;
#endif