mariadb/sql/sql_class.cc

2446 lines
66 KiB
C++
Raw Normal View History

/* Copyright (C) 2000-2006 MySQL AB
2000-07-31 21:29:14 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
2000-07-31 21:29:14 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2000-07-31 21:29:14 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*****************************************************************************
**
** This file implements classes defined in sql_class.h
** Especially the classes to handle a result from a select
**
*****************************************************************************/
#ifdef USE_PRAGMA_IMPLEMENTATION
2000-07-31 21:29:14 +02:00
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <m_ctype.h>
#include <sys/stat.h>
#include <thr_alarm.h>
2000-07-31 21:29:14 +02:00
#ifdef __WIN__
#include <io.h>
#endif
#include <mysys_err.h>
2000-07-31 21:29:14 +02:00
#include "sp_rcontext.h"
#include "sp_cache.h"
/*
The following is used to initialise Table_ident with a internal
table name
*/
char internal_table_name[2]= "*";
char empty_c_string[1]= {0}; /* used for not defined db */
const char * const THD::DEFAULT_WHERE= "field list";
2000-07-31 21:29:14 +02:00
/*****************************************************************************
** Instansiate templates
*****************************************************************************/
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
2000-07-31 21:29:14 +02:00
/* Used templates */
template class List<Key>;
template class List_iterator<Key>;
template class List<key_part_spec>;
template class List_iterator<key_part_spec>;
template class List<Alter_drop>;
template class List_iterator<Alter_drop>;
template class List<Alter_column>;
template class List_iterator<Alter_column>;
#endif
/****************************************************************************
** User variables
****************************************************************************/
extern "C" byte *get_var_key(user_var_entry *entry, uint *length,
my_bool not_used __attribute__((unused)))
2000-07-31 21:29:14 +02:00
{
*length=(uint) entry->name.length;
return (byte*) entry->name.str;
}
extern "C" void free_user_var(user_var_entry *entry)
2000-07-31 21:29:14 +02:00
{
char *pos= (char*) entry+ALIGN_SIZE(sizeof(*entry));
if (entry->value && entry->value != pos)
my_free(entry->value, MYF(0));
my_free((char*) entry,MYF(0));
}
bool key_part_spec::operator==(const key_part_spec& other) const
{
return length == other.length && !strcmp(field_name, other.field_name);
}
/*
Test if a foreign key (= generated key) is a prefix of the given key
(ignoring key name, key type and order of columns)
NOTES:
This is only used to test if an index for a FOREIGN KEY exists
IMPLEMENTATION
We only compare field names
RETURN
0 Generated key is a prefix of other key
1 Not equal
*/
bool foreign_key_prefix(Key *a, Key *b)
{
/* Ensure that 'a' is the generated key */
if (a->generated)
{
if (b->generated && a->columns.elements > b->columns.elements)
swap_variables(Key*, a, b); // Put shorter key in 'a'
}
else
{
if (!b->generated)
return TRUE; // No foreign key
swap_variables(Key*, a, b); // Put generated key in 'a'
}
/* Test if 'a' is a prefix of 'b' */
if (a->columns.elements > b->columns.elements)
return TRUE; // Can't be prefix
List_iterator<key_part_spec> col_it1(a->columns);
List_iterator<key_part_spec> col_it2(b->columns);
const key_part_spec *col1, *col2;
#ifdef ENABLE_WHEN_INNODB_CAN_HANDLE_SWAPED_FOREIGN_KEY_COLUMNS
while ((col1= col_it1++))
{
bool found= 0;
col_it2.rewind();
while ((col2= col_it2++))
{
if (*col1 == *col2)
{
found= TRUE;
break;
}
}
if (!found)
return TRUE; // Error
}
return FALSE; // Is prefix
#else
while ((col1= col_it1++))
{
col2= col_it2++;
if (!(*col1 == *col2))
return TRUE;
}
return FALSE; // Is prefix
#endif
}
2000-07-31 21:29:14 +02:00
/****************************************************************************
** Thread specific functions
****************************************************************************/
Open_tables_state::Open_tables_state(ulong version_arg)
:version(version_arg)
{
reset_open_tables_state();
}
extern "C"
const char *set_thd_proc_info(THD *thd, const char *info,
const char *calling_function,
const char *calling_file,
const unsigned int calling_line)
{
const char *old_info= thd->proc_info;
DBUG_PRINT("proc_info", ("%s:%d %s", calling_file, calling_line, info));
#if defined(ENABLED_PROFILING) && defined(COMMUNITY_SERVER)
thd->profiling.status_change(info, calling_function, calling_file, calling_line);
#endif
thd->proc_info= info;
return old_info;
}
2000-07-31 21:29:14 +02:00
THD::THD()
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
:Statement(&main_lex, &main_mem_root, CONVENTIONAL_EXECUTION,
/* statement id */ 0),
Open_tables_state(refresh_version),
lock_id(&main_lock_id),
user_time(0), in_sub_stmt(0),
table_map_for_update(0),
global_read_lock(0), is_fatal_error(0),
transaction_rollback_request(0), is_fatal_sub_stmt_error(0),
rand_used(0), time_zone_used(0),
last_insert_id_used(0), last_insert_id_used_bin_log(0), insert_id_used(0),
clear_next_insert_id(0), in_lock_tables(0), bootstrap(0),
derived_tables_processing(FALSE), spcont(NULL),
m_parser_state(NULL)
2000-07-31 21:29:14 +02:00
{
ulong tmp;
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
/*
Pass nominal parameters to init_alloc_root only to ensure that
the destructor works OK in case of an error. The main_mem_root
will be re-initialized in init_for_queries().
*/
init_sql_alloc(&main_mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0);
stmt_arena= this;
thread_stack= 0;
db= 0;
This will be pushed only after I fix the testsuite. This is the main commit for Worklog tasks: * A more dynamic binlog format which allows small changes (1064) * Log session variables in Query_log_event (1063) Below 5.0 means 5.0.0. MySQL 5.0 is able to replicate FOREIGN_KEY_CHECKS, UNIQUE_KEY_CHECKS (for speed), SQL_AUTO_IS_NULL, SQL_MODE. Not charsets (WL#1062), not some vars (I can only think of SQL_SELECT_LIMIT, which deserves a special treatment). Note that this works for queries, except LOAD DATA INFILE (for this it would have to wait for Dmitri's push of WL#874, which in turns waits for the present push, so... the deadlock must be broken!). Note that when Dmitri pushes WL#874 in 5.0.1, 5.0.0 won't be able to replicate a LOAD DATA INFILE from 5.0.1. Apart from that, the new binlog format is designed so that it can tolerate a little variation in the events (so that a 5.0.0 slave could replicate a 5.0.1 master, except for LOAD DATA INFILE unfortunately); that is, when I later add replication of charsets it should break nothing. And when I later add a UID to every event, it should break nothing. The main change brought by this patch is a new type of event, Format_description_log_event, which describes some lengthes in other event types. This event is needed for the master/slave/mysqlbinlog to understand a 5.0 log. Thanks to this event, we can later add more bytes to the header of every event without breaking compatibility. Inside Query_log_event, we have some additional dynamic format, as every Query_log_event can have a different number of status variables, stored as pairs (code, value); that's how SQL_MODE and session variables and catalog are stored. Like this, we can later add count of affected rows, charsets... and we can have options --don't-log-count-affected-rows if we want. MySQL 5.0 is able to run on 4.x relay logs, 4.x binlogs. Upgrading a 4.x master to 5.0 is ok (no need to delete binlogs), upgrading a 4.x slave to 5.0 is ok (no need to delete relay logs); so both can be "hot" upgrades. Upgrading a 3.23 master to 5.0 requires as much as upgrading it to 4.0. 3.23 and 4.x can't be slaves of 5.0. So downgrading from 5.0 to 4.x may be complicated. Log_event::log_pos is now the position of the end of the event, which is more useful than the position of the beginning. We take care about compatibility with <5.0 (in which log_pos is the beginning). I added a short test for replication of SQL_MODE and some other variables. TODO: - after committing this, merge the latest 5.0 into it - fix all tests - update the manual with upgrade notes.
2003-12-18 01:09:05 +01:00
catalog= (char*)"std"; // the only catalog we have for now
main_security_ctx.init();
security_ctx= &main_security_ctx;
2003-12-01 16:14:40 +01:00
locked=some_tables_deleted=no_errors=password= 0;
query_start_used= 0;
count_cuted_fields= CHECK_FIELD_IGNORE;
killed= NOT_KILLED;
db_length= col_access=0;
query_error= tmp_table_used= thread_specific_used= 0;
2000-07-31 21:29:14 +02:00
next_insert_id=last_insert_id=0;
hash_clear(&handler_tables_hash);
2000-07-31 21:29:14 +02:00
tmp_table=0;
used_tables=0;
cuted_fields= sent_row_count= 0L;
limit_found_rows= 0;
statement_id_counter= 0UL;
// Must be reset to handle error with THD's created for init of mysqld
2003-12-04 22:08:26 +03:00
lex->current_select= 0;
2000-07-31 21:29:14 +02:00
start_time=(time_t) 0;
time_after_lock=(time_t) 0;
current_linfo = 0;
slave_thread = 0;
thread_id= 0;
one_shot_set= 0;
file_id = 0;
query_id= 0;
query_name_consts= 0;
warn_id= 0;
db_charset= global_system_variables.collation_database;
2005-01-16 13:16:23 +01:00
bzero(ha_data, sizeof(ha_data));
mysys_var=0;
binlog_evt_union.do_union= FALSE;
#ifndef DBUG_OFF
dbug_sentry=THD_SENTRY_MAGIC;
#endif
#ifndef EMBEDDED_LIBRARY
net.vio=0;
#endif
client_capabilities= 0; // minimalistic client
net.last_error[0]=0; // If error on boot
#ifdef HAVE_QUERY_CACHE
query_cache_init_query(&net); // If error on boot
#endif
ull=0;
system_thread= cleanup_done= abort_on_warning= no_warnings_for_error= 0;
peer_port= 0; // For SHOW PROCESSLIST
#ifdef __WIN__
real_id = 0;
#endif
#ifdef SIGNAL_WITH_VIO_CLOSE
active_vio = 0;
#endif
pthread_mutex_init(&LOCK_thd_data, MY_MUTEX_INIT_FAST);
/* Variables with default values */
proc_info="login";
where= THD::DEFAULT_WHERE;
server_id = ::server_id;
slave_net = 0;
2000-07-31 21:29:14 +02:00
command=COM_CONNECT;
2003-07-18 18:57:21 +04:00
*scramble= '\0';
init();
/* Initialize sub structures */
init_sql_alloc(&warn_root, WARN_ALLOC_BLOCK_SIZE, WARN_ALLOC_PREALLOC_SIZE);
#if defined(ENABLED_PROFILING) && defined(COMMUNITY_SERVER)
profiling.set_thd(this);
Prevent bugs by making DBUG_* expressions syntactically equivalent to a single statement. --- Bug#24795: SHOW PROFILE Profiling is only partially functional on some architectures. Where there is no getrusage() system call, presently Null values are returned where it would be required. Notably, Windows needs some love applied to make it as useful. Syntax this adds: SHOW PROFILES SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n] where "n" is an integer and "types" is zero or many (comma-separated) of "CPU" "MEMORY" (not presently supported) "BLOCK IO" "CONTEXT SWITCHES" "PAGE FAULTS" "IPC" "SWAPS" "SOURCE" "ALL" It also adds a session variable (boolean) "profiling", set to "no" by default, and (integer) profiling_history_size, set to 15 by default. This patch abstracts setting THDs' "proc_info" behind a macro that can be used as a hook into the profiling code when profiling support is compiled in. All future code in this line should use that mechanism for setting thd->proc_info. --- Tests are now set to omit the statistics. --- Adds an Information_schema table, "profiling" for access to "show profile" data. --- Merge zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community-3--bug24795 into zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community --- Fix merge problems. --- Fixed one bug in the query_source being NULL. Updated test results. --- Include more thorough profiling tests. Improve support for prepared statements. Use session-specific query IDs, starting at zero. --- Selecting from I_S.profiling is no longer quashed in profiling, as requested by Giuseppe. Limit the size of captured query text. No longer log queries that are zero length.
2007-02-22 10:03:08 -05:00
#endif
user_connect=(USER_CONN *)0;
hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0,
2000-07-31 21:29:14 +02:00
(hash_get_key) get_var_key,
(hash_free_key) free_user_var, 0);
sp_proc_cache= NULL;
sp_func_cache= NULL;
2003-01-30 21:39:54 +04:00
/* For user vars replication*/
if (opt_bin_log)
my_init_dynamic_array(&user_var_events,
2005-01-16 13:16:23 +01:00
sizeof(BINLOG_USER_VAR_EVENT *), 16, 16);
2003-01-30 21:39:54 +04:00
else
bzero((char*) &user_var_events, sizeof(user_var_events));
/* Protocol */
protocol= &protocol_simple; // Default protocol
protocol_simple.init(this);
protocol_prep.init(this);
tablespace_op=FALSE;
tmp= sql_rnd_with_mutex();
randominit(&rand, tmp + (ulong) &rand, tmp + (ulong) ::global_query_id);
substitute_null_with_insert_id = FALSE;
thr_lock_info_init(&lock_info); /* safety: will be reset after start */
thr_lock_owner_init(&main_lock_id, &lock_info);
Bug#8407 (Stored functions/triggers ignore exception handler) Bug 18914 (Calling certain SPs from triggers fail) Bug 20713 (Functions will not not continue for SQLSTATE VALUE '42S02') Bug 21825 (Incorrect message error deleting records in a table with a trigger for inserting) Bug 22580 (DROP TABLE in nested stored procedure causes strange dependency error) Bug 25345 (Cursors from Functions) This fix resolves a long standing issue originally reported with bug 8407, which affect the behavior of Stored Procedures, Stored Functions and Trigger in many different ways, causing symptoms reported by all the bugs listed. In all cases, the root cause of the problem traces back to 8407 and how the server locks tables involved with sub statements. Prior to this fix, the implementation of stored routines would: - compute the transitive closure of all the tables referenced by a top level statement - open and lock all the tables involved - execute the top level statement "transitive closure of tables" means collecting: - all the tables, - all the stored functions, - all the views, - all the table triggers - all the stored procedures involved, and recursively inspect these objects definition to find more references to more objects, until the list of every object referenced does not grow any more. This mechanism is known as "pre-locking" tables before execution. The motivation for locking all the tables (possibly) used at once is to prevent dead locks. One problem with this approach is that, if the execution path the code really takes during runtime does not use a given table, and if the table is missing, the server would not execute the statement. This in particular has a major impact on triggers, since a missing table referenced by an update/delete trigger would prevent an insert trigger to run. Another problem is that stored routines might define SQL exception handlers to deal with missing tables, but the server implementation would never give user code a chance to execute this logic, since the routine is never executed when a missing table cause the pre-locking code to fail. With this fix, the internal implementation of the pre-locking code has been relaxed of some constraints, so that failure to open a table does not necessarily prevent execution of a stored routine. In particular, the pre-locking mechanism is now behaving as follows: 1) the first step, to compute the transitive closure of all the tables possibly referenced by a statement, is unchanged. 2) the next step, which is to open all the tables involved, only attempts to open the tables added by the pre-locking code, but silently fails without reporting any error or invoking any exception handler is the table is not present. This is achieved by trapping internal errors with Prelock_error_handler 3) the locking step only locks tables that were successfully opened. 4) when executing sub statements, the list of tables used by each statements is evaluated as before. The tables needed by the sub statement are expected to be already opened and locked. Statement referencing tables that were not opened in step 2) will fail to find the table in the open list, and only at this point will execution of the user code fail. 5) when a runtime exception is raised at 4), the instruction continuation destination (the next instruction to execute in case of SQL continue handlers) is evaluated. This is achieved with sp_instr::exec_open_and_lock_tables() 6) if a user exception handler is present in the stored routine, that handler is invoked as usual, so that ER_NO_SUCH_TABLE exceptions can be trapped by stored routines. If no handler exists, then the runtime execution will fail as expected. With all these changes, a side effect is that view security is impacted, in two different ways. First, a view defined as "select stored_function()", where the stored function references a table that may not exist, is considered valid. The rationale is that, because the stored function might trap exceptions during execution and still return a valid result, there is no way to decide when the view is created if a missing table really cause the view to be invalid. Secondly, testing for existence of tables is now done later during execution. View security, which consist of trapping errors and return a generic ER_VIEW_INVALID (to prevent disclosing information) was only implemented at very specific phases covering *opening* tables, but not covering the runtime execution. Because of this existing limitation, errors that were previously trapped and converted into ER_VIEW_INVALID are not trapped, causing table names to be reported to the user. This change is exposing an existing problem, which is independent and will be resolved separately.
2007-03-05 19:42:07 -07:00
m_internal_handler= NULL;
}
void THD::push_internal_handler(Internal_error_handler *handler)
{
/*
TODO: The current implementation is limited to 1 handler at a time only.
THD and sp_rcontext need to be modified to use a common handler stack.
*/
DBUG_ASSERT(m_internal_handler == NULL);
m_internal_handler= handler;
}
bool THD::handle_error(uint sql_errno,
MYSQL_ERROR::enum_warning_level level)
{
if (m_internal_handler)
{
return m_internal_handler->handle_error(sql_errno, level, this);
}
return FALSE; // 'FALSE', as per coding style
}
void THD::pop_internal_handler()
{
DBUG_ASSERT(m_internal_handler != NULL);
m_internal_handler= NULL;
2000-07-31 21:29:14 +02:00
}
/*
Init common variables that has to be reset on start and on change_user
*/
void THD::init(void)
{
pthread_mutex_lock(&LOCK_global_system_variables);
variables= global_system_variables;
variables.time_format= date_time_format_copy((THD*) 0,
variables.time_format);
variables.date_format= date_time_format_copy((THD*) 0,
variables.date_format);
variables.datetime_format= date_time_format_copy((THD*) 0,
variables.datetime_format);
/*
variables= global_system_variables above has reset
variables.pseudo_thread_id to 0. We need to correct it here to
avoid temporary tables replication failure.
*/
variables.pseudo_thread_id= thread_id;
pthread_mutex_unlock(&LOCK_global_system_variables);
server_status= SERVER_STATUS_AUTOCOMMIT;
if (variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)
server_status|= SERVER_STATUS_NO_BACKSLASH_ESCAPES;
options= thd_startup_options;
if (variables.max_join_size == HA_POS_ERROR)
options |= OPTION_BIG_SELECTS;
else
options &= ~OPTION_BIG_SELECTS;
(pushing for Andrei) Bug #27417 thd->no_trans_update.stmt lost value inside of SF-exec-stack Once had been set the flag might later got reset inside of a stored routine execution stack. The reason was in that there was no check if a new statement started at time of resetting. The artifact affects most of binlogable DML queries. Notice, that multi-update is wrapped up within bug@27716 fix, multi-delete bug@29136. Fixed with saving parent's statement flag of whether the statement modified non-transactional table, and unioning (merging) the value with that was gained in mysql_execute_command. Resettling thd->no_trans_update members into thd->transaction.`member`; Asserting code; Effectively the following properties are held. 1. At the end of a substatement thd->transaction.stmt.modified_non_trans_table reflects the fact if such a table got modified by the substatement. That also respects THD::really_abort_on_warnin() requirements. 2. Eventually thd->transaction.stmt.modified_non_trans_table will be computed as the union of the values of all invoked sub-statements. That fixes this bug#27417; Computing of thd->transaction.all.modified_non_trans_table is refined to base to the stmt's value for all the case including insert .. select statement which before the patch had an extra issue bug@28960. Minor issues are covered with mysql_load, mysql_delete, and binloggin of insert in to temp_table select. The supplied test verifies limitely, mostly asserts. The ultimate testing is defered for bug@13270, bug@23333.
2007-07-30 18:27:36 +03:00
transaction.all.modified_non_trans_table= transaction.stmt.modified_non_trans_table= FALSE;
open_options=ha_open_options;
update_lock_default= (variables.low_priority_updates ?
TL_WRITE_LOW_PRIORITY :
TL_WRITE);
session_tx_isolation= (enum_tx_isolation) variables.tx_isolation;
warn_list.empty();
bzero((char*) warn_count, sizeof(warn_count));
total_warn_count= 0;
update_charset();
bzero((char *) &status_var, sizeof(status_var));
}
/*
Init THD for query processing.
This has to be called once before we call mysql_parse.
See also comments in sql_class.h.
*/
void THD::init_for_queries()
{
set_time();
ha_enable_transaction(this,TRUE);
reset_root_defaults(mem_root, variables.query_alloc_block_size,
variables.query_prealloc_size);
2005-01-16 13:16:23 +01:00
#ifdef USING_TRANSACTIONS
reset_root_defaults(&transaction.mem_root,
variables.trans_alloc_block_size,
variables.trans_prealloc_size);
2005-01-16 13:16:23 +01:00
#endif
transaction.xid_state.xid.null();
transaction.xid_state.in_thd=1;
}
/*
Do what's needed when one invokes change user
SYNOPSIS
change_user()
IMPLEMENTATION
Reset all resources that are connection specific
*/
void THD::change_user(void)
{
pthread_mutex_lock(&LOCK_status);
add_to_status(&global_status_var, &status_var);
pthread_mutex_unlock(&LOCK_status);
cleanup();
2002-11-21 22:25:53 +02:00
cleanup_done= 0;
init();
stmt_map.reset();
hash_init(&user_vars, system_charset_info, USER_VARS_HASH_SIZE, 0, 0,
(hash_get_key) get_var_key,
2002-11-21 22:25:53 +02:00
(hash_free_key) free_user_var, 0);
sp_cache_clear(&sp_proc_cache);
sp_cache_clear(&sp_func_cache);
}
/* Do operations that may take a long time */
void THD::cleanup(void)
2000-07-31 21:29:14 +02:00
{
DBUG_ENTER("THD::cleanup");
2005-04-06 19:43:35 +03:00
#ifdef ENABLE_WHEN_BINLOG_WILL_BE_ABLE_TO_PREPARE
if (transaction.xid_state.xa_state == XA_PREPARED)
{
#error xid_state in the cache should be replaced by the allocated value
}
2005-04-06 19:43:35 +03:00
#endif
{
2005-04-04 00:50:05 +02:00
ha_rollback(this);
xid_cache_delete(&transaction.xid_state);
}
2000-07-31 21:29:14 +02:00
if (locked_tables)
{
lock=locked_tables; locked_tables=0;
close_thread_tables(this);
}
mysql_ha_flush(this, (TABLE_LIST*) 0,
MYSQL_HA_CLOSE_FINAL | MYSQL_HA_FLUSH_ALL, FALSE);
hash_free(&handler_tables_hash);
delete_dynamic(&user_var_events);
hash_free(&user_vars);
2000-07-31 21:29:14 +02:00
close_temporary_tables(this);
my_free((char*) variables.time_format, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) variables.date_format, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) variables.datetime_format, MYF(MY_ALLOW_ZERO_PTR));
sp_cache_clear(&sp_proc_cache);
sp_cache_clear(&sp_func_cache);
if (global_read_lock)
unlock_global_read_lock(this);
if (ull)
{
pthread_mutex_lock(&LOCK_user_locks);
item_user_lock_release(ull);
pthread_mutex_unlock(&LOCK_user_locks);
ull= 0;
}
cleanup_done=1;
DBUG_VOID_RETURN;
}
THD::~THD()
{
THD_CHECK_SENTRY(this);
DBUG_ENTER("~THD()");
/* Ensure that no one is using THD */
pthread_mutex_lock(&LOCK_thd_data);
pthread_mutex_unlock(&LOCK_thd_data);
add_to_status(&global_status_var, &status_var);
/* Close connection */
2005-04-04 00:50:05 +02:00
#ifndef EMBEDDED_LIBRARY
if (net.vio)
{
vio_delete(net.vio);
2005-04-04 00:50:05 +02:00
net_end(&net);
}
#endif
stmt_map.reset(); /* close all prepared statements */
DBUG_ASSERT(lock_info.n_cursors == 0);
if (!cleanup_done)
cleanup();
2005-01-16 13:16:23 +01:00
2005-04-04 00:50:05 +02:00
ha_close_connection(this);
2000-07-31 21:29:14 +02:00
DBUG_PRINT("info", ("freeing security context"));
main_security_ctx.destroy();
safeFree(db);
free_root(&warn_root,MYF(0));
2005-01-16 13:16:23 +01:00
#ifdef USING_TRANSACTIONS
free_root(&transaction.mem_root,MYF(0));
2005-01-16 13:16:23 +01:00
#endif
2000-07-31 21:29:14 +02:00
mysys_var=0; // Safety (shouldn't be needed)
pthread_mutex_destroy(&LOCK_thd_data);
#ifndef DBUG_OFF
2003-12-04 22:08:26 +03:00
dbug_sentry= THD_SENTRY_GONE;
#endif
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
free_root(&main_mem_root, MYF(0));
2000-07-31 21:29:14 +02:00
DBUG_VOID_RETURN;
}
/*
2006-01-10 18:56:23 +02:00
Add all status variables to another status variable array
SYNOPSIS
add_to_status()
to_var add to this array
from_var from this array
NOTES
This function assumes that all variables are long/ulong.
If this assumption will change, then we have to explictely add
the other variables after the while loop
*/
void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var)
{
ulong *end= (ulong*) ((byte*) to_var +
offsetof(STATUS_VAR, last_system_status_var) +
sizeof(ulong));
ulong *to= (ulong*) to_var, *from= (ulong*) from_var;
while (to != end)
*(to++)+= *(from++);
}
void THD::awake(THD::killed_state state_to_set)
{
THD_CHECK_SENTRY(this);
safe_mutex_assert_owner(&LOCK_thd_data);
killed= state_to_set;
if (state_to_set != THD::KILL_QUERY)
{
thr_alarm_kill(real_id);
#ifdef SIGNAL_WITH_VIO_CLOSE
close_active_vio();
#endif
}
if (mysys_var)
{
pthread_mutex_lock(&mysys_var->mutex);
if (!system_thread) // Don't abort locks
mysys_var->abort=1;
/*
This broadcast could be up in the air if the victim thread
exits the cond in the time between read and broadcast, but that is
ok since all we want to do is to make the victim thread get out
of waiting on current_cond.
If we see a non-zero current_cond: it cannot be an old value (because
then exit_cond() should have run and it can't because we have mutex); so
it is the true value but maybe current_mutex is not yet non-zero (we're
in the middle of enter_cond() and there is a "memory order
inversion"). So we test the mutex too to not lock 0.
Note that there is a small chance we fail to kill. If victim has locked
current_mutex, but hasn't yet entered enter_cond() (which means that
current_cond and current_mutex are 0), then the victim will not get
a signal and it may wait "forever" on the cond (until
we issue a second KILL or the status it's waiting for happens).
It's true that we have set its thd->killed but it may not
see it immediately and so may have time to reach the cond_wait().
*/
if (mysys_var->current_cond && mysys_var->current_mutex)
{
pthread_mutex_lock(mysys_var->current_mutex);
pthread_cond_broadcast(mysys_var->current_cond);
pthread_mutex_unlock(mysys_var->current_mutex);
}
pthread_mutex_unlock(&mysys_var->mutex);
}
}
/*
Remember the location of thread info, the structure needed for
sql_alloc() and the structure for the net buffer
*/
2000-07-31 21:29:14 +02:00
bool THD::store_globals()
{
/*
Assert that thread_stack is initialized: it's necessary to be able
to track stack overrun.
*/
DBUG_ASSERT(this->thread_stack);
if (my_pthread_setspecific_ptr(THR_THD, this) ||
2002-10-02 17:55:12 +03:00
my_pthread_setspecific_ptr(THR_MALLOC, &mem_root))
return 1;
mysys_var=my_thread_var;
dbug_thread_id=my_thread_id();
/*
By default 'slave_proxy_id' is 'thread_id'. They may later become different
if this is the slave SQL thread.
*/
/** @todo we already do it in init(), see if we still need to do it here.
add DBUG_ASSERT(variables.pseudo_thread_id == thread_id)
*/
variables.pseudo_thread_id= thread_id;
/*
We have to call thr_lock_info_init() again here as THD may have been
created in another thread
*/
thr_lock_info_init(&lock_info);
return 0;
2000-07-31 21:29:14 +02:00
}
/*
Cleanup after query.
SYNOPSIS
THD::cleanup_after_query()
DESCRIPTION
This function is used to reset thread data to its default state.
NOTE
This function is not suitable for setting thread data to some
non-default values, as there is only one replication thread, so
different master threads may overwrite data of each other on
slave.
*/
void THD::cleanup_after_query()
{
last_insert_id_used= FALSE;
if (clear_next_insert_id)
{
clear_next_insert_id= 0;
next_insert_id= 0;
BUG#33029 5.0 to 5.1 replication fails on dup key when inserting using a trig in SP For all 5.0 and up to 5.1.12 exclusive, when a stored routine or trigger caused an INSERT into an AUTO_INCREMENT column, the generated AUTO_INCREMENT value should not be written into the binary log, which means if a statement does not generate AUTO_INCREMENT value itself, there will be no Intvar event (SET INSERT_ID) associated with it even if one of the stored routine or trigger caused generation of such a value. And meanwhile, when executing a stored routine or trigger, it would ignore the INSERT_ID value even if there is a INSERT_ID value available set by a SET INSERT_ID statement. Starting from MySQL 5.1.12, the generated AUTO_INCREMENT value is written into the binary log, and the value will be used if available when executing the stored routine or trigger. Prior fix of this bug in MySQL 5.0 and prior MySQL 5.1.12 (referenced as the buggy versions in the text below), when a statement that generates AUTO_INCREMENT value by the top statement was executed in the body of a SP, all statements in the SP after this statement would be treated as if they had generated AUTO_INCREMENT by the top statement. When a statement that did not generate AUTO_INCREMENT value by the top statement but by a function/trigger called by it, an erroneous Intvar event would be associated with the statement, this erroneous INSERT_ID value wouldn't cause problem when replicating between masters and slaves of 5.0.x or prior 5.1.12, because the erroneous INSERT_ID value was not used when executing functions/triggers. But when replicating from buggy versions to 5.1.12 or newer, which will use the INSERT_ID value in functions/triggers, the erroneous value will be used, which would cause duplicate entry error and cause the slave to stop. The patch for 5.0 fixed it not to generate the erroneous Intvar event, another patch for 5.1 fixed it to ignore the SET INSERT_ID value when executing functions/triggers if it is replicating from a master of buggy versions.
2008-03-14 10:03:01 +08:00
/*
BUG#33029, if one statement in a SP set this member to 1, all
statment after this statement in the SP would be considered used
INSERT_ID value, reset this member after each query to fix this.
*/
insert_id_used= 0;
}
/*
Reset rand_used so that detection of calls to rand() will save random
seeds if needed by the slave.
Do not reset rand_used if inside a stored function or trigger because
only the call to these operations is logged. Thus only the calling
statement needs to detect rand() calls made by its substatements. These
substatements must not set rand_used to 0 because it would remove the
detection of rand() by the calling statement.
*/
if (!in_sub_stmt)
rand_used= 0;
/* Free Items that were created during this execution */
free_items();
/* Reset where. */
where= THD::DEFAULT_WHERE;
/* reset table map for multi-table update */
table_map_for_update= 0;
}
/*
Convert a string to another character set
SYNOPSIS
convert_string()
to Store new allocated string here
to_cs New character set for allocated string
from String to convert
from_length Length of string to convert
from_cs Original character set
NOTES
to will be 0-terminated to make it easy to pass to system funcs
RETURN
0 ok
1 End of memory.
In this case to->str will point to 0 and to->length will be 0.
*/
bool THD::convert_string(LEX_STRING *to, CHARSET_INFO *to_cs,
const char *from, uint from_length,
CHARSET_INFO *from_cs)
{
DBUG_ENTER("convert_string");
size_s new_length= to_cs->mbmaxlen * from_length;
uint dummy_errors;
if (!(to->str= alloc(new_length+1)))
{
to->length= 0; // Safety fix
DBUG_RETURN(1); // EOM
}
to->length= copy_and_convert((char*) to->str, new_length, to_cs,
from, from_length, from_cs, &dummy_errors);
to->str[to->length]=0; // Safety
DBUG_RETURN(0);
}
/*
Convert string from source character set to target character set inplace.
SYNOPSIS
THD::convert_string
DESCRIPTION
Convert string using convert_buffer - buffer for character set
conversion shared between all protocols.
RETURN
0 ok
!0 out of memory
*/
bool THD::convert_string(String *s, CHARSET_INFO *from_cs, CHARSET_INFO *to_cs)
{
uint dummy_errors;
if (convert_buffer.copy(s->ptr(), s->length(), from_cs, to_cs, &dummy_errors))
return TRUE;
/* If convert_buffer >> s copying is more efficient long term */
if (convert_buffer.alloced_length() >= convert_buffer.length() * 2 ||
!s->is_alloced())
{
return s->copy(convert_buffer);
}
s->swap(convert_buffer);
return FALSE;
}
/*
Update some cache variables when character set changes
*/
void THD::update_charset()
{
uint32 not_used;
charset_is_system_charset= !String::needs_conversion(0,charset(),
system_charset_info,
&not_used);
charset_is_collation_connection=
!String::needs_conversion(0,charset(),variables.collation_connection,
&not_used);
charset_is_character_set_filesystem=
!String::needs_conversion(0, charset(),
variables.character_set_filesystem, &not_used);
}
/* routings to adding tables to list of changed in transaction tables */
inline static void list_include(CHANGED_TABLE_LIST** prev,
CHANGED_TABLE_LIST* curr,
CHANGED_TABLE_LIST* new_table)
{
if (new_table)
{
*prev = new_table;
(*prev)->next = curr;
}
}
/* add table to list of changed in transaction tables */
void THD::add_changed_table(TABLE *table)
{
DBUG_ENTER("THD::add_changed_table(table)");
DBUG_ASSERT((options & (OPTION_NOT_AUTOCOMMIT | OPTION_BEGIN)) &&
table->file->has_transactions());
add_changed_table(table->s->table_cache_key, table->s->key_length);
2002-09-19 20:10:06 +03:00
DBUG_VOID_RETURN;
}
void THD::add_changed_table(const char *key, long key_length)
{
DBUG_ENTER("THD::add_changed_table(key)");
CHANGED_TABLE_LIST **prev_changed = &transaction.changed_tables;
CHANGED_TABLE_LIST *curr = transaction.changed_tables;
for (; curr; prev_changed = &(curr->next), curr = curr->next)
{
int cmp = (long)curr->key_length - (long)key_length;
if (cmp < 0)
{
list_include(prev_changed, curr, changed_table_dup(key, key_length));
DBUG_PRINT("info",
2007-03-22 20:32:07 +02:00
("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
else if (cmp == 0)
{
cmp = memcmp(curr->key, key, curr->key_length);
if (cmp < 0)
{
list_include(prev_changed, curr, changed_table_dup(key, key_length));
DBUG_PRINT("info",
("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
else if (cmp == 0)
{
DBUG_PRINT("info", ("already in list"));
DBUG_VOID_RETURN;
}
}
}
*prev_changed = changed_table_dup(key, key_length);
2007-03-22 20:32:07 +02:00
DBUG_PRINT("info", ("key_length: %ld %u", key_length,
(*prev_changed)->key_length));
DBUG_VOID_RETURN;
}
CHANGED_TABLE_LIST* THD::changed_table_dup(const char *key, long key_length)
{
CHANGED_TABLE_LIST* new_table =
(CHANGED_TABLE_LIST*) trans_alloc(ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST))+
key_length + 1);
if (!new_table)
{
my_error(EE_OUTOFMEMORY, MYF(ME_BELL),
ALIGN_SIZE(sizeof(TABLE_LIST)) + key_length + 1);
killed= KILL_CONNECTION;
return 0;
}
new_table->key = (char *) (((byte*)new_table)+
ALIGN_SIZE(sizeof(CHANGED_TABLE_LIST)));
new_table->next = 0;
new_table->key_length = key_length;
::memcpy(new_table->key, key, key_length);
return new_table;
}
int THD::send_explain_fields(select_result *result)
{
List<Item> field_list;
Item *item;
CHARSET_INFO *cs= system_charset_info;
field_list.push_back(new Item_return_int("id",3, MYSQL_TYPE_LONGLONG));
field_list.push_back(new Item_empty_string("select_type", 19, cs));
field_list.push_back(item= new Item_empty_string("table", NAME_LEN, cs));
item->maybe_null= 1;
field_list.push_back(item= new Item_empty_string("type", 10, cs));
item->maybe_null= 1;
field_list.push_back(item=new Item_empty_string("possible_keys",
NAME_LEN*MAX_KEY, cs));
item->maybe_null=1;
field_list.push_back(item=new Item_empty_string("key", NAME_LEN, cs));
item->maybe_null=1;
2003-11-13 17:52:02 +03:00
field_list.push_back(item=new Item_empty_string("key_len",
NAME_LEN*MAX_KEY));
item->maybe_null=1;
field_list.push_back(item=new Item_empty_string("ref",
NAME_LEN*MAX_REF_PARTS, cs));
item->maybe_null=1;
field_list.push_back(item= new Item_return_int("rows", 10,
MYSQL_TYPE_LONGLONG));
item->maybe_null= 1;
field_list.push_back(new Item_empty_string("Extra", 255, cs));
return (result->send_fields(field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF));
}
#ifdef SIGNAL_WITH_VIO_CLOSE
void THD::close_active_vio()
{
2003-03-12 01:40:06 +02:00
DBUG_ENTER("close_active_vio");
safe_mutex_assert_owner(&LOCK_thd_data);
2003-01-28 21:03:05 +04:00
#ifndef EMBEDDED_LIBRARY
if (active_vio)
{
vio_close(active_vio);
active_vio = 0;
}
2003-01-28 21:03:05 +04:00
#endif
DBUG_VOID_RETURN;
}
#endif
struct Item_change_record: public ilink
{
Item **place;
Item *old_value;
/* Placement new was hidden by `new' in ilink (TODO: check): */
static void *operator new(size_t size, void *mem) { return mem; }
static void operator delete(void *ptr, size_t size) {}
static void operator delete(void *ptr, void *mem) { /* never called */ }
};
/*
Register an item tree tree transformation, performed by the query
optimizer. We need a pointer to runtime_memroot because it may be !=
thd->mem_root (due to possible set_n_backup_active_arena called for thd).
*/
void THD::nocheck_register_item_tree_change(Item **place, Item *old_value,
MEM_ROOT *runtime_memroot)
{
Item_change_record *change;
/*
Now we use one node per change, which adds some memory overhead,
but still is rather fast as we use alloc_root for allocations.
A list of item tree changes of an average query should be short.
*/
void *change_mem= alloc_root(runtime_memroot, sizeof(*change));
if (change_mem == 0)
{
/*
OOM, thd->fatal_error() is called by the error handler of the
memroot. Just return.
*/
return;
}
change= new (change_mem) Item_change_record;
change->place= place;
change->old_value= old_value;
A fix and test case for Bug#5987 "subselect in bool function crashes server (prepared statements)": the bug was that all boolean items always recovered its original arguments at statement cleanup stage. This collided with Item_subselect::select_transformer, which tries to permanently change the item tree to use a transformed subselect instead of original one. So we had this call sequence for prepare: mysql_stmt_prepare -> JOIN::prepare -> Item_subselect::fix_fields -> the item tree gets transformed -> Item_bool_rowready_func2::cleanup, item tree is recovered to original state, while it shouldn't have been; mysql_stmt_execute -> attempts to execute a broken tree -> crash. Now instead of bluntly recovering all arguments of bool functions in Item_bool_rowready_func2::cleanup, we recover only those which were changed, and do it in one place. There still would exist a possibility for a collision with subselect tranformation, if permanent and temporary changes were performed at the same stage. But fortunately subselect transformation is always done first, so it doesn't conflict with the optimization done by propogate_cond_constants. Now we have: mysql_stmt_prepare -> JOIN::prepare -> subselect transformation permanently changes the tree -> cleanup doesn't recover anything, because nothing was registered for recovery. mysql_stmt_execute -> JOIN::prepare (the tree is already transformed, so it doesn't change), JOIN::optimize -> propogate_cond_constants -> temporary changes the item tree with constants -> JOIN::execute -> cleanup -> the changes done by propogate_cond_constants are recovered, as they were registered for recovery.
2004-10-10 02:39:22 +04:00
change_list.append(change);
}
void THD::rollback_item_tree_changes()
{
I_List_iterator<Item_change_record> it(change_list);
Item_change_record *change;
DBUG_ENTER("rollback_item_tree_changes");
while ((change= it++))
*change->place= change->old_value;
/* We can forget about changes memory: it's allocated in runtime memroot */
change_list.empty();
DBUG_VOID_RETURN;
}
2000-07-31 21:29:14 +02:00
/*****************************************************************************
** Functions to provide a interface to select results
*****************************************************************************/
select_result::select_result()
{
thd=current_thd;
nest_level= -1;
2000-07-31 21:29:14 +02:00
}
void select_result::send_error(uint errcode,const char *err)
{
my_message(errcode, err, MYF(0));
}
void select_result::cleanup()
{
/* do nothing */
}
bool select_result::check_simple_select() const
{
my_error(ER_SP_BAD_CURSOR_QUERY, MYF(0));
return TRUE;
}
static String default_line_term("\n",default_charset_info);
static String default_escaped("\\",default_charset_info);
static String default_field_term("\t",default_charset_info);
2000-07-31 21:29:14 +02:00
sql_exchange::sql_exchange(char *name,bool flag)
:file_name(name), opt_enclosed(0), dumpfile(flag), skip_lines(0)
{
field_term= &default_field_term;
enclosed= line_start= &my_empty_string;
2000-07-31 21:29:14 +02:00
line_term= &default_line_term;
escaped= &default_escaped;
cs= NULL;
2000-07-31 21:29:14 +02:00
}
bool sql_exchange::escaped_given(void)
{
return escaped != &default_escaped;
}
bool select_send::send_fields(List<Item> &list, uint flags)
2000-07-31 21:29:14 +02:00
{
bool res;
if (!(res= thd->protocol->send_fields(&list, flags)))
status= 1;
return res;
2000-07-31 21:29:14 +02:00
}
void select_send::abort()
{
DBUG_ENTER("select_send::abort");
if (status && thd->spcont &&
thd->spcont->find_handler(thd, thd->net.last_errno,
MYSQL_ERROR::WARN_LEVEL_ERROR))
{
/*
Executing stored procedure without a handler.
Here we should actually send an error to the client,
but as an error will break a multiple result set, the only thing we
can do for now is to nicely end the current data set and remembering
the error so that the calling routine will abort
*/
thd->net.report_error= 0;
send_eof();
thd->net.report_error= 1; // Abort SP
}
DBUG_VOID_RETURN;
}
2000-07-31 21:29:14 +02:00
/* Send data to client. Returns 0 if ok */
bool select_send::send_data(List<Item> &items)
{
if (unit->offset_limit_cnt)
2000-07-31 21:29:14 +02:00
{ // using limit offset,count
unit->offset_limit_cnt--;
return 0;
2000-07-31 21:29:14 +02:00
}
2003-03-16 19:17:54 +02:00
/*
We may be passing the control from mysqld to the client: release the
InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved
by thd
*/
ha_release_temporary_latches(thd);
List_iterator_fast<Item> li(items);
Protocol *protocol= thd->protocol;
char buff[MAX_FIELD_WIDTH];
2003-01-29 17:31:20 +04:00
String buffer(buff, sizeof(buff), &my_charset_bin);
DBUG_ENTER("select_send::send_data");
protocol->prepare_for_resend();
2000-07-31 21:29:14 +02:00
Item *item;
while ((item=li++))
{
if (item->send(protocol, &buffer))
2000-07-31 21:29:14 +02:00
{
protocol->free(); // Free used buffer
my_message(ER_OUT_OF_RESOURCES, ER(ER_OUT_OF_RESOURCES), MYF(0));
break;
2000-07-31 21:29:14 +02:00
}
/*
Reset buffer to its original state, as it may have been altered in
Item::send().
*/
buffer.set(buff, sizeof(buff), &my_charset_bin);
2000-07-31 21:29:14 +02:00
}
thd->sent_row_count++;
if (!thd->vio_ok())
DBUG_RETURN(0);
if (!thd->net.report_error)
DBUG_RETURN(protocol->write());
protocol->remove_last_row();
DBUG_RETURN(1);
2000-07-31 21:29:14 +02:00
}
bool select_send::send_eof()
{
/* We may be passing the control from mysqld to the client: release the
InnoDB adaptive hash S-latch to avoid thread deadlocks if it was reserved
by thd */
ha_release_temporary_latches(thd);
2000-07-31 21:29:14 +02:00
/* Unlock tables before sending packet to gain some speed */
if (thd->lock)
{
mysql_unlock_tables(thd, thd->lock);
thd->lock=0;
2000-07-31 21:29:14 +02:00
}
if (!thd->net.report_error)
{
2002-10-04 14:15:59 +03:00
::send_eof(thd);
status= 0;
return 0;
}
else
return 1;
2000-07-31 21:29:14 +02:00
}
/************************************************************************
Handling writing to file
************************************************************************/
2000-07-31 21:29:14 +02:00
void select_to_file::send_error(uint errcode,const char *err)
{
my_message(errcode, err, MYF(0));
if (file > 0)
{
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
(void) my_delete(path,MYF(0)); // Delete file on error
file= -1;
}
}
2000-07-31 21:29:14 +02:00
bool select_to_file::send_eof()
{
int error= test(end_io_cache(&cache));
if (my_close(file,MYF(MY_WME)))
error= 1;
if (!error)
::send_ok(thd,row_count);
file= -1;
return error;
}
void select_to_file::cleanup()
{
/* In case of error send_eof() may be not called: close the file here. */
if (file >= 0)
{
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
file= -1;
}
path[0]= '\0';
row_count= 0;
}
select_to_file::~select_to_file()
2000-07-31 21:29:14 +02:00
{
if (file >= 0)
{ // This only happens in case of error
(void) end_io_cache(&cache);
(void) my_close(file,MYF(0));
file= -1;
}
}
/***************************************************************************
** Export of select to textfile
***************************************************************************/
select_export::~select_export()
{
thd->sent_row_count=row_count;
2000-07-31 21:29:14 +02:00
}
/*
Create file with IO cache
SYNOPSIS
create_file()
thd Thread handle
path File name
exchange Excange class
cache IO cache
RETURN
>= 0 File handle
-1 Error
*/
static File create_file(THD *thd, char *path, sql_exchange *exchange,
IO_CACHE *cache)
2000-07-31 21:29:14 +02:00
{
File file;
uint option= MY_UNPACK_FILENAME | MY_RELATIVE_PATH;
2000-07-31 21:29:14 +02:00
#ifdef DONT_ALLOW_FULL_LOAD_DATA_PATHS
option|= MY_REPLACE_DIR; // Force use of db directory
2000-07-31 21:29:14 +02:00
#endif
2004-09-13 21:49:41 +05:00
if (!dirname_length(exchange->file_name))
2004-09-07 11:55:34 +05:00
{
strxnmov(path, FN_REFLEN, mysql_real_data_home, thd->db ? thd->db : "", NullS);
(void) fn_format(path, exchange->file_name, path, "", option);
}
else
(void) fn_format(path, exchange->file_name, mysql_real_data_home, "", option);
if (opt_secure_file_priv &&
strncmp(opt_secure_file_priv, path, strlen(opt_secure_file_priv)))
{
/* Write only allowed to dir or subdir specified by secure_file_priv */
my_error(ER_OPTION_PREVENTS_STATEMENT, MYF(0), "--secure-file-priv");
return -1;
}
if (!access(path, F_OK))
2000-07-31 21:29:14 +02:00
{
my_error(ER_FILE_EXISTS_ERROR, MYF(0), exchange->file_name);
return -1;
2000-07-31 21:29:14 +02:00
}
/* Create the file world readable */
2004-12-10 18:49:36 +01:00
if ((file= my_create(path, 0666, O_WRONLY|O_EXCL, MYF(MY_WME))) < 0)
return file;
2000-07-31 21:29:14 +02:00
#ifdef HAVE_FCHMOD
(void) fchmod(file, 0666); // Because of umask()
2000-07-31 21:29:14 +02:00
#else
(void) chmod(path, 0666);
2000-07-31 21:29:14 +02:00
#endif
if (init_io_cache(cache, file, 0L, WRITE_CACHE, 0L, 1, MYF(MY_WME)))
2000-07-31 21:29:14 +02:00
{
my_close(file, MYF(0));
my_delete(path, MYF(0)); // Delete file on error, it was just created
return -1;
2000-07-31 21:29:14 +02:00
}
return file;
}
int
select_export::prepare(List<Item> &list, SELECT_LEX_UNIT *u)
{
bool blob_flag=0;
bool string_results= FALSE, non_string_results= FALSE;
unit= u;
if ((uint) strlen(exchange->file_name) + NAME_LEN >= FN_REFLEN)
strmake(path,exchange->file_name,FN_REFLEN-1);
if ((file= create_file(thd, path, exchange, &cache)) < 0)
return 1;
2000-07-31 21:29:14 +02:00
/* Check if there is any blobs in data */
{
List_iterator_fast<Item> li(list);
2000-07-31 21:29:14 +02:00
Item *item;
while ((item=li++))
{
if (item->max_length >= MAX_BLOB_WIDTH)
{
blob_flag=1;
break;
}
if (item->result_type() == STRING_RESULT)
string_results= TRUE;
else
non_string_results= TRUE;
2000-07-31 21:29:14 +02:00
}
}
field_term_length=exchange->field_term->length();
field_term_char= field_term_length ?
(int) (uchar) (*exchange->field_term)[0] : INT_MAX;
2000-07-31 21:29:14 +02:00
if (!exchange->line_term->length())
exchange->line_term=exchange->field_term; // Use this if it exists
field_sep_char= (exchange->enclosed->length() ?
(int) (uchar) (*exchange->enclosed)[0] : field_term_char);
if (exchange->escaped->length() && (exchange->escaped_given() ||
!(thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)))
escape_char= (int) (uchar) (*exchange->escaped)[0];
else
escape_char= -1;
is_ambiguous_field_sep= test(strchr(ESCAPE_CHARS, field_sep_char));
is_unsafe_field_sep= test(strchr(NUMERIC_CHARS, field_sep_char));
2000-07-31 21:29:14 +02:00
line_sep_char= (exchange->line_term->length() ?
(int) (uchar) (*exchange->line_term)[0] : INT_MAX);
2000-07-31 21:29:14 +02:00
if (!field_term_length)
exchange->opt_enclosed=0;
if (!exchange->enclosed->length())
exchange->opt_enclosed=1; // A little quicker loop
fixed_row_size= (!field_term_length && !exchange->enclosed->length() &&
!blob_flag);
if ((is_ambiguous_field_sep && exchange->enclosed->is_empty() &&
(string_results || is_unsafe_field_sep)) ||
(exchange->opt_enclosed && non_string_results &&
field_term_length && strchr(NUMERIC_CHARS, field_term_char)))
{
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_AMBIGUOUS_FIELD_TERM, ER(ER_AMBIGUOUS_FIELD_TERM));
is_ambiguous_field_term= TRUE;
}
else
is_ambiguous_field_term= FALSE;
2000-07-31 21:29:14 +02:00
return 0;
}
#define NEED_ESCAPING(x) ((int) (uchar) (x) == escape_char || \
(enclosed ? (int) (uchar) (x) == field_sep_char \
: (int) (uchar) (x) == field_term_char) || \
(int) (uchar) (x) == line_sep_char || \
!(x))
2000-07-31 21:29:14 +02:00
bool select_export::send_data(List<Item> &items)
{
DBUG_ENTER("select_export::send_data");
2000-07-31 21:29:14 +02:00
char buff[MAX_FIELD_WIDTH],null_buff[2],space[MAX_FIELD_WIDTH];
bool space_inited=0;
2003-01-29 17:31:20 +04:00
String tmp(buff,sizeof(buff),&my_charset_bin),*res;
2000-07-31 21:29:14 +02:00
tmp.length(0);
if (unit->offset_limit_cnt)
2000-07-31 21:29:14 +02:00
{ // using limit offset,count
unit->offset_limit_cnt--;
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
}
row_count++;
Item *item;
uint used_length=0,items_left=items.elements;
List_iterator_fast<Item> li(items);
2000-07-31 21:29:14 +02:00
if (my_b_write(&cache,(byte*) exchange->line_start->ptr(),
exchange->line_start->length()))
goto err;
while ((item=li++))
{
Item_result result_type=item->result_type();
bool enclosed = (exchange->enclosed->length() &&
(!exchange->opt_enclosed || result_type == STRING_RESULT));
2000-07-31 21:29:14 +02:00
res=item->str_result(&tmp);
if (res && enclosed)
2000-07-31 21:29:14 +02:00
{
if (my_b_write(&cache,(byte*) exchange->enclosed->ptr(),
exchange->enclosed->length()))
goto err;
}
if (!res)
{ // NULL
if (!fixed_row_size)
{
if (escape_char != -1) // Use \N syntax
{
null_buff[0]=escape_char;
null_buff[1]='N';
if (my_b_write(&cache,(byte*) null_buff,2))
goto err;
}
else if (my_b_write(&cache,(byte*) "NULL",4))
goto err;
}
else
{
used_length=0; // Fill with space
}
}
else
{
if (fixed_row_size)
used_length=min(res->length(),item->max_length);
else
used_length=res->length();
if ((result_type == STRING_RESULT || is_unsafe_field_sep) &&
escape_char != -1)
2000-07-31 21:29:14 +02:00
{
char *pos, *start, *end;
CHARSET_INFO *res_charset= res->charset();
CHARSET_INFO *character_set_client= thd->variables.
character_set_client;
bool check_second_byte= (res_charset == &my_charset_bin) &&
character_set_client->
escape_with_backslash_is_dangerous;
DBUG_ASSERT(character_set_client->mbmaxlen == 2 ||
!character_set_client->escape_with_backslash_is_dangerous);
2000-07-31 21:29:14 +02:00
for (start=pos=(char*) res->ptr(),end=pos+used_length ;
pos != end ;
pos++)
{
#ifdef USE_MB
2002-12-20 17:57:24 +04:00
if (use_mb(res_charset))
2000-07-31 21:29:14 +02:00
{
int l;
2002-12-20 17:57:24 +04:00
if ((l=my_ismbchar(res_charset, pos, end)))
2000-07-31 21:29:14 +02:00
{
pos += l-1;
continue;
}
}
#endif
/*
Special case when dumping BINARY/VARBINARY/BLOB values
for the clients with character sets big5, cp932, gbk and sjis,
which can have the escape character (0x5C "\" by default)
as the second byte of a multi-byte sequence.
If
- pos[0] is a valid multi-byte head (e.g 0xEE) and
- pos[1] is 0x00, which will be escaped as "\0",
then we'll get "0xEE + 0x5C + 0x30" in the output file.
If this file is later loaded using this sequence of commands:
mysql> create table t1 (a varchar(128)) character set big5;
mysql> LOAD DATA INFILE 'dump.txt' INTO TABLE t1;
then 0x5C will be misinterpreted as the second byte
of a multi-byte character "0xEE + 0x5C", instead of
escape character for 0x00.
To avoid this confusion, we'll escape the multi-byte
head character too, so the sequence "0xEE + 0x00" will be
dumped as "0x5C + 0xEE + 0x5C + 0x30".
Note, in the condition below we only check if
mbcharlen is equal to 2, because there are no
character sets with mbmaxlen longer than 2
and with escape_with_backslash_is_dangerous set.
DBUG_ASSERT before the loop makes that sure.
*/
if ((NEED_ESCAPING(*pos) ||
(check_second_byte &&
my_mbcharlen(character_set_client, (uchar) *pos) == 2 &&
pos + 1 < end &&
NEED_ESCAPING(pos[1]))) &&
/*
Don't escape field_term_char by doubling - doubling is only
valid for ENCLOSED BY characters:
*/
(enclosed || !is_ambiguous_field_term ||
(int) (uchar) *pos != field_term_char))
{
2000-07-31 21:29:14 +02:00
char tmp_buff[2];
tmp_buff[0]= ((int) (uchar) *pos == field_sep_char &&
is_ambiguous_field_sep) ?
field_sep_char : escape_char;
2000-07-31 21:29:14 +02:00
tmp_buff[1]= *pos ? *pos : '0';
if (my_b_write(&cache,(byte*) start,(uint) (pos-start)) ||
my_b_write(&cache,(byte*) tmp_buff,2))
goto err;
start=pos+1;
}
}
if (my_b_write(&cache,(byte*) start,(uint) (pos-start)))
goto err;
}
else if (my_b_write(&cache,(byte*) res->ptr(),used_length))
goto err;
}
if (fixed_row_size)
{ // Fill with space
if (item->max_length > used_length)
{
/* QQ: Fix by adding a my_b_fill() function */
if (!space_inited)
{
space_inited=1;
bfill(space,sizeof(space),' ');
}
uint length=item->max_length-used_length;
for (; length > sizeof(space) ; length-=sizeof(space))
2000-07-31 21:29:14 +02:00
{
if (my_b_write(&cache,(byte*) space,sizeof(space)))
goto err;
}
if (my_b_write(&cache,(byte*) space,length))
goto err;
}
}
if (res && enclosed)
2000-07-31 21:29:14 +02:00
{
if (my_b_write(&cache, (byte*) exchange->enclosed->ptr(),
exchange->enclosed->length()))
goto err;
2000-07-31 21:29:14 +02:00
}
if (--items_left)
{
if (my_b_write(&cache, (byte*) exchange->field_term->ptr(),
field_term_length))
goto err;
2000-07-31 21:29:14 +02:00
}
}
if (my_b_write(&cache,(byte*) exchange->line_term->ptr(),
exchange->line_term->length()))
goto err;
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
/***************************************************************************
** Dump of select to a binary file
***************************************************************************/
int
select_dump::prepare(List<Item> &list __attribute__((unused)),
SELECT_LEX_UNIT *u)
2000-07-31 21:29:14 +02:00
{
unit= u;
return (int) ((file= create_file(thd, path, exchange, &cache)) < 0);
2000-07-31 21:29:14 +02:00
}
bool select_dump::send_data(List<Item> &items)
{
List_iterator_fast<Item> li(items);
2000-07-31 21:29:14 +02:00
char buff[MAX_FIELD_WIDTH];
2003-01-29 17:31:20 +04:00
String tmp(buff,sizeof(buff),&my_charset_bin),*res;
2000-07-31 21:29:14 +02:00
tmp.length(0);
Item *item;
DBUG_ENTER("select_dump::send_data");
2000-07-31 21:29:14 +02:00
if (unit->offset_limit_cnt)
2000-07-31 21:29:14 +02:00
{ // using limit offset,count
unit->offset_limit_cnt--;
2000-07-31 21:29:14 +02:00
DBUG_RETURN(0);
}
if (row_count++ > 1)
{
2004-11-12 14:34:00 +02:00
my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0));
2000-07-31 21:29:14 +02:00
goto err;
}
while ((item=li++))
{
res=item->str_result(&tmp);
if (!res) // If NULL
2000-07-31 21:29:14 +02:00
{
if (my_b_write(&cache,(byte*) "",1))
goto err;
2000-07-31 21:29:14 +02:00
}
else if (my_b_write(&cache,(byte*) res->ptr(),res->length()))
{
my_error(ER_ERROR_ON_WRITE, MYF(0), path, my_errno);
2000-07-31 21:29:14 +02:00
goto err;
}
}
DBUG_RETURN(0);
err:
DBUG_RETURN(1);
}
select_subselect::select_subselect(Item_subselect *item_arg)
{
item= item_arg;
}
2002-12-19 21:15:09 +02:00
bool select_singlerow_subselect::send_data(List<Item> &items)
{
2002-12-19 21:15:09 +02:00
DBUG_ENTER("select_singlerow_subselect::send_data");
Item_singlerow_subselect *it= (Item_singlerow_subselect *)item;
2002-11-18 22:41:57 +02:00
if (it->assigned())
{
my_message(ER_SUBQUERY_NO_1_ROW, ER(ER_SUBQUERY_NO_1_ROW), MYF(0));
2002-05-28 22:38:17 +03:00
DBUG_RETURN(1);
}
if (unit->offset_limit_cnt)
{ // Using limit offset,count
2002-05-28 22:38:17 +03:00
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
List_iterator_fast<Item> li(items);
Item *val_item;
for (uint i= 0; (val_item= li++); i++)
it->store(i, val_item);
it->assigned(1);
2002-05-28 22:38:17 +03:00
DBUG_RETURN(0);
}
void select_max_min_finder_subselect::cleanup()
{
DBUG_ENTER("select_max_min_finder_subselect::cleanup");
cache= 0;
DBUG_VOID_RETURN;
}
bool select_max_min_finder_subselect::send_data(List<Item> &items)
{
DBUG_ENTER("select_max_min_finder_subselect::send_data");
Item_maxmin_subselect *it= (Item_maxmin_subselect *)item;
List_iterator_fast<Item> li(items);
Item *val_item= li++;
it->register_value();
if (it->assigned())
{
cache->store(val_item);
if ((this->*op)())
it->store(0, cache);
}
else
{
if (!cache)
{
cache= Item_cache::get_cache(val_item);
switch (val_item->result_type())
{
case REAL_RESULT:
op= &select_max_min_finder_subselect::cmp_real;
break;
case INT_RESULT:
op= &select_max_min_finder_subselect::cmp_int;
break;
case STRING_RESULT:
op= &select_max_min_finder_subselect::cmp_str;
break;
2005-02-09 02:50:45 +04:00
case DECIMAL_RESULT:
op= &select_max_min_finder_subselect::cmp_decimal;
break;
case ROW_RESULT:
// This case should never be choosen
DBUG_ASSERT(0);
op= 0;
}
}
cache->store(val_item);
it->store(0, cache);
}
it->assigned(1);
DBUG_RETURN(0);
}
bool select_max_min_finder_subselect::cmp_real()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
2004-11-11 21:39:35 +03:00
double val1= cache->val_real(), val2= maxmin->val_real();
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 > val2);
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 < val2);
}
bool select_max_min_finder_subselect::cmp_int()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
longlong val1= cache->val_int(), val2= maxmin->val_int();
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 > val2);
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
val1 < val2);
}
2005-02-09 02:50:45 +04:00
bool select_max_min_finder_subselect::cmp_decimal()
{
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
2005-02-09 02:50:45 +04:00
my_decimal cval, *cvalue= cache->val_decimal(&cval);
my_decimal mval, *mvalue= maxmin->val_decimal(&mval);
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
my_decimal_cmp(cvalue, mvalue) > 0) ;
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
my_decimal_cmp(cvalue,mvalue) < 0);
2005-02-09 02:50:45 +04:00
}
bool select_max_min_finder_subselect::cmp_str()
{
String *val1, *val2, buf1, buf2;
Item *maxmin= ((Item_singlerow_subselect *)item)->element_index(0);
/*
as far as both operand is Item_cache buf1 & buf2 will not be used,
but added for safety
*/
val1= cache->val_str(&buf1);
val2= maxmin->val_str(&buf1);
if (fmax)
return (cache->null_value && !maxmin->null_value) ||
(!cache->null_value && !maxmin->null_value &&
sortcmp(val1, val2, cache->collation.collation) > 0) ;
return (maxmin->null_value && !cache->null_value) ||
(!cache->null_value && !maxmin->null_value &&
sortcmp(val1, val2, cache->collation.collation) < 0);
}
bool select_exists_subselect::send_data(List<Item> &items)
{
DBUG_ENTER("select_exists_subselect::send_data");
Item_exists_subselect *it= (Item_exists_subselect *)item;
if (unit->offset_limit_cnt)
{ // Using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
it->value= 1;
it->assigned(1);
DBUG_RETURN(0);
}
2002-10-11 21:49:10 +03:00
/***************************************************************************
Dump of select to variables
2002-10-11 21:49:10 +03:00
***************************************************************************/
2002-10-16 16:55:08 +03:00
int select_dumpvar::prepare(List<Item> &list, SELECT_LEX_UNIT *u)
2002-10-11 21:49:10 +03:00
{
unit= u;
2002-10-16 16:55:08 +03:00
if (var_list.elements != list.elements)
2002-10-11 21:49:10 +03:00
{
2004-11-12 14:34:00 +02:00
my_message(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
ER(ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT), MYF(0));
2002-10-16 16:55:08 +03:00
return 1;
}
2002-10-16 16:55:08 +03:00
return 0;
}
bool select_dumpvar::check_simple_select() const
{
my_error(ER_SP_BAD_CURSOR_SELECT, MYF(0));
return TRUE;
}
void select_dumpvar::cleanup()
{
row_count= 0;
}
Query_arena::Type Query_arena::type() const
{
DBUG_ASSERT(0); /* Should never be called */
return STATEMENT;
}
void Query_arena::free_items()
{
Item *next;
DBUG_ENTER("Query_arena::free_items");
/* This works because items are allocated with sql_alloc() */
for (; free_list; free_list= next)
{
next= free_list->next;
free_list->delete_self();
}
/* Postcondition: free_list is 0 */
DBUG_VOID_RETURN;
}
void Query_arena::set_query_arena(Query_arena *set)
{
mem_root= set->mem_root;
free_list= set->free_list;
state= set->state;
}
void Query_arena::cleanup_stmt()
{
DBUG_ASSERT(! "Query_arena::cleanup_stmt() not implemented");
}
/*
Statement functions
*/
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
Statement::Statement(LEX *lex_arg, MEM_ROOT *mem_root_arg,
enum enum_state state_arg, ulong id_arg)
:Query_arena(mem_root_arg, state_arg),
2005-06-22 23:12:25 +04:00
id(id_arg),
set_query_id(1),
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
lex(lex_arg),
query(0),
query_length(0),
cursor(0)
{
name.str= NULL;
}
Query_arena::Type Statement::type() const
{
return STATEMENT;
}
void Statement::set_statement(Statement *stmt)
{
id= stmt->id;
set_query_id= stmt->set_query_id;
lex= stmt->lex;
query= stmt->query;
query_length= stmt->query_length;
cursor= stmt->cursor;
}
void
Statement::set_n_backup_statement(Statement *stmt, Statement *backup)
{
DBUG_ENTER("Statement::set_n_backup_statement");
backup->set_statement(this);
set_statement(stmt);
DBUG_VOID_RETURN;
}
void Statement::restore_backup_statement(Statement *stmt, Statement *backup)
{
DBUG_ENTER("Statement::restore_backup_statement");
stmt->set_statement(this);
set_statement(backup);
DBUG_VOID_RETURN;
}
void THD::end_statement()
{
A fix for Bug#26750 "valgrind leak in sp_head" (and post-review fixes). The legend: on a replication slave, in case a trigger creation was filtered out because of application of replicate-do-table/ replicate-ignore-table rule, the parsed definition of a trigger was not cleaned up properly. LEX::sphead member was left around and leaked memory. Until the actual implementation of support of replicate-ignore-table rules for triggers by the patch for Bug 24478 it was never the case that "case SQLCOM_CREATE_TRIGGER" was not executed once a trigger was parsed, so the deletion of lex->sphead there worked and the memory did not leak. The fix: The real cause of the bug is that there is no 1 or 2 places where we can clean up the main LEX after parse. And the reason we can not have just one or two places where we clean up the LEX is asymmetric behaviour of MYSQLparse in case of success or error. One of the root causes of this behaviour is the code in Item::Item() constructor. There, a newly created item adds itself to THD::free_list - a single-linked list of Items used in a statement. Yuck. This code is unaware that we may have more than one statement active at a time, and always assumes that the free_list of the current statement is located in THD::free_list. One day we need to be able to explicitly allocate an item in a given Query_arena. Thus, when parsing a definition of a stored procedure, like CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END; we actually need to reset THD::mem_root, THD::free_list and THD::lex to parse the nested procedure statement (SELECT *). The actual reset and restore is implemented in semantic actions attached to sp_proc_stmt grammar rule. The problem is that in case of a parsing error inside a nested statement Bison generated parser would abort immediately, without executing the restore part of the semantic action. This would leave THD in an in-the-middle-of-parsing state. This is why we couldn't have had a single place where we clean up the LEX after MYSQLparse - in case of an error we needed to do a clean up immediately, in case of success a clean up could have been delayed. This left the door open for a memory leak. One of the following possibilities were considered when working on a fix: - patch the replication logic to do the clean up. Rejected as breaks module borders, replication code should not need to know the gory details of clean up procedure after CREATE TRIGGER. - wrap MYSQLparse with a function that would do a clean up. Rejected as ideally we should fix the problem when it happens, not adjust for it outside of the problematic code. - make sure MYSQLparse cleans up after itself by invoking the clean up functionality in the appropriate places before return. Implemented in this patch. - use %destructor rule for sp_proc_stmt to restore THD - cleaner than the prevoius approach, but rejected because needs a careful analysis of the side effects, and this patch is for 5.0, and long term we need to use the next alternative anyway - make sure that sp_proc_stmt doesn't juggle with THD - this is a large work that will affect many modules. Cleanup: move main_lex and main_mem_root from Statement to its only two descendants Prepared_statement and THD. This ensures that when a Statement instance was created for purposes of statement backup, we do not involve LEX constructor/destructor, which is fairly expensive. In order to track that the transformation produces equivalent functionality please check the respective constructors and destructors of Statement, Prepared_statement and THD - these members were used only there. This cleanup is unrelated to the patch.
2007-03-07 12:24:46 +03:00
/* Cleanup SQL processing state to reuse this statement in next query. */
lex_end(lex);
delete lex->result;
lex->result= 0;
/* Note that free_list is freed in cleanup_after_query() */
/*
Don't free mem_root, as mem_root is freed in the end of dispatch_command
(once for any command).
*/
}
void THD::set_n_backup_active_arena(Query_arena *set, Query_arena *backup)
{
DBUG_ENTER("THD::set_n_backup_active_arena");
DBUG_ASSERT(backup->is_backup_arena == FALSE);
backup->set_query_arena(this);
set_query_arena(set);
#ifndef DBUG_OFF
backup->is_backup_arena= TRUE;
#endif
DBUG_VOID_RETURN;
}
void THD::restore_active_arena(Query_arena *set, Query_arena *backup)
{
DBUG_ENTER("THD::restore_active_arena");
DBUG_ASSERT(backup->is_backup_arena);
set->set_query_arena(this);
set_query_arena(backup);
#ifndef DBUG_OFF
backup->is_backup_arena= FALSE;
#endif
DBUG_VOID_RETURN;
}
Statement::~Statement()
{
}
C_MODE_START
static byte *
get_statement_id_as_hash_key(const byte *record, uint *key_length,
my_bool not_used __attribute__((unused)))
{
const Statement *statement= (const Statement *) record;
*key_length= sizeof(statement->id);
return (byte *) &((const Statement *) statement)->id;
}
static void delete_statement_as_hash_key(void *key)
{
delete (Statement *) key;
}
static byte *get_stmt_name_hash_key(Statement *entry, uint *length,
my_bool not_used __attribute__((unused)))
{
*length=(uint) entry->name.length;
return (byte*) entry->name.str;
}
C_MODE_END
Statement_map::Statement_map() :
last_found_statement(0)
{
enum
{
START_STMT_HASH_SIZE = 16,
START_NAME_HASH_SIZE = 16
};
hash_init(&st_hash, &my_charset_bin, START_STMT_HASH_SIZE, 0, 0,
get_statement_id_as_hash_key,
delete_statement_as_hash_key, MYF(0));
hash_init(&names_hash, system_charset_info, START_NAME_HASH_SIZE, 0, 0,
(hash_get_key) get_stmt_name_hash_key,
NULL,MYF(0));
}
/*
Insert a new statement to the thread-local statement map.
DESCRIPTION
If there was an old statement with the same name, replace it with the
new one. Otherwise, check if max_prepared_stmt_count is not reached yet,
increase prepared_stmt_count, and insert the new statement. It's okay
to delete an old statement and fail to insert the new one.
POSTCONDITIONS
All named prepared statements are also present in names_hash.
Statement names in names_hash are unique.
The statement is added only if prepared_stmt_count < max_prepard_stmt_count
last_found_statement always points to a valid statement or is 0
RETURN VALUE
0 success
1 error: out of resources or max_prepared_stmt_count limit has been
reached. An error is sent to the client, the statement is deleted.
*/
int Statement_map::insert(THD *thd, Statement *statement)
{
if (my_hash_insert(&st_hash, (byte*) statement))
{
/*
Delete is needed only in case of an insert failure. In all other
cases hash_delete will also delete the statement.
*/
delete statement;
my_error(ER_OUT_OF_RESOURCES, MYF(0));
goto err_st_hash;
}
if (statement->name.str && my_hash_insert(&names_hash, (byte*) statement))
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
goto err_names_hash;
}
pthread_mutex_lock(&LOCK_prepared_stmt_count);
/*
We don't check that prepared_stmt_count is <= max_prepared_stmt_count
because we would like to allow to lower the total limit
of prepared statements below the current count. In that case
no new statements can be added until prepared_stmt_count drops below
the limit.
*/
if (prepared_stmt_count >= max_prepared_stmt_count)
{
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
my_error(ER_MAX_PREPARED_STMT_COUNT_REACHED, MYF(0),
max_prepared_stmt_count);
goto err_max;
}
prepared_stmt_count++;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
last_found_statement= statement;
return 0;
err_max:
if (statement->name.str)
hash_delete(&names_hash, (byte*) statement);
err_names_hash:
hash_delete(&st_hash, (byte*) statement);
err_st_hash:
return 1;
}
void Statement_map::close_transient_cursors()
{
#ifdef TO_BE_IMPLEMENTED
Statement *stmt;
while ((stmt= transient_cursor_list.head()))
stmt->close_cursor(); /* deletes itself from the list */
#endif
}
void Statement_map::erase(Statement *statement)
{
if (statement == last_found_statement)
last_found_statement= 0;
if (statement->name.str)
hash_delete(&names_hash, (byte *) statement);
hash_delete(&st_hash, (byte *) statement);
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count > 0);
prepared_stmt_count--;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
}
void Statement_map::reset()
{
/* Must be first, hash_free will reset st_hash.records */
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count >= st_hash.records);
prepared_stmt_count-= st_hash.records;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
my_hash_reset(&names_hash);
my_hash_reset(&st_hash);
last_found_statement= 0;
}
Statement_map::~Statement_map()
{
/* Must go first, hash_free will reset st_hash.records */
pthread_mutex_lock(&LOCK_prepared_stmt_count);
DBUG_ASSERT(prepared_stmt_count >= st_hash.records);
prepared_stmt_count-= st_hash.records;
pthread_mutex_unlock(&LOCK_prepared_stmt_count);
hash_free(&names_hash);
hash_free(&st_hash);
}
2002-10-16 16:55:08 +03:00
bool select_dumpvar::send_data(List<Item> &items)
{
List_iterator_fast<my_var> var_li(var_list);
List_iterator<Item> it(items);
Item *item;
my_var *mv;
DBUG_ENTER("select_dumpvar::send_data");
2002-10-16 16:55:08 +03:00
2003-01-18 16:23:37 +02:00
if (unit->offset_limit_cnt)
{ // using limit offset,count
2003-01-18 16:23:37 +02:00
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
2002-10-16 16:55:08 +03:00
if (row_count++)
{
2004-11-12 14:34:00 +02:00
my_message(ER_TOO_MANY_ROWS, ER(ER_TOO_MANY_ROWS), MYF(0));
2002-10-16 16:55:08 +03:00
DBUG_RETURN(1);
}
while ((mv= var_li++) && (item= it++))
2003-10-24 21:14:26 +03:00
{
if (mv->local)
{
if (thd->spcont->set_variable(thd, mv->offset, &item))
DBUG_RETURN(1);
}
else
{
Item_func_set_user_var *suv= new Item_func_set_user_var(mv->s, item);
if (suv->fix_fields(thd, 0))
DBUG_RETURN (1);
suv->save_item_result(item);
if (suv->update())
DBUG_RETURN (1);
}
2003-10-24 21:14:26 +03:00
}
2002-10-11 21:49:10 +03:00
DBUG_RETURN(0);
}
bool select_dumpvar::send_eof()
{
if (! row_count)
2004-11-24 17:22:29 +01:00
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_WARN,
ER_SP_FETCH_NO_DATA, ER(ER_SP_FETCH_NO_DATA));
::send_ok(thd,row_count);
return 0;
2002-10-11 21:49:10 +03:00
}
/****************************************************************************
TMP_TABLE_PARAM
****************************************************************************/
void TMP_TABLE_PARAM::init()
{
DBUG_ENTER("TMP_TABLE_PARAM::init");
DBUG_PRINT("enter", ("this: 0x%lx", (ulong)this));
field_count= sum_func_count= func_count= hidden_field_count= 0;
group_parts= group_length= group_null_parts= 0;
quick_group= 1;
table_charset= 0;
precomputed_group_by= 0;
DBUG_VOID_RETURN;
}
void thd_increment_bytes_sent(ulong length)
{
2005-03-09 19:22:30 +01:00
THD *thd=current_thd;
2005-03-09 20:49:44 +01:00
if (likely(thd != 0))
2005-03-09 19:22:30 +01:00
{ /* current_thd==0 when close_connection() calls net_send_error() */
thd->status_var.bytes_sent+= length;
}
}
void thd_increment_bytes_received(ulong length)
{
current_thd->status_var.bytes_received+= length;
}
void thd_increment_net_big_packet_count(ulong length)
{
current_thd->status_var.net_big_packet_count+= length;
}
void THD::set_status_var_init()
{
bzero((char*) &status_var, sizeof(status_var));
}
void Security_context::init()
{
host= user= priv_user= ip= 0;
host_or_ip= "connecting host";
priv_host[0]= '\0';
#ifndef NO_EMBEDDED_ACCESS_CHECKS
db_access= NO_ACCESS;
#endif
}
void Security_context::destroy()
{
// If not pointer to constant
if (host != my_localhost)
safeFree(host);
if (user != delayed_user)
safeFree(user);
safeFree(ip);
}
void Security_context::skip_grants()
{
/* privileges for the user are unknown everything is allowed */
host_or_ip= (char *)"";
master_access= ~NO_ACCESS;
priv_user= (char *)"";
*priv_host= '\0';
}
bool Security_context::user_matches(Security_context *them)
{
return ((user != NULL) && (them->user != NULL) &&
!strcmp(user, them->user));
}
/****************************************************************************
Handling of open and locked tables states.
This is used when we want to open/lock (and then close) some tables when
we already have a set of tables open and locked. We use these methods for
access to mysql.proc table to find definitions of stored routines.
****************************************************************************/
void THD::reset_n_backup_open_tables_state(Open_tables_state *backup)
{
DBUG_ENTER("reset_n_backup_open_tables_state");
backup->set_open_tables_state(this);
reset_open_tables_state();
DBUG_VOID_RETURN;
}
void THD::restore_backup_open_tables_state(Open_tables_state *backup)
{
DBUG_ENTER("restore_backup_open_tables_state");
/*
Before we will throw away current open tables state we want
to be sure that it was properly cleaned up.
*/
DBUG_ASSERT(open_tables == 0 && temporary_tables == 0 &&
handler_tables == 0 && derived_tables == 0 &&
lock == 0 && locked_tables == 0 &&
prelocked_mode == NON_PRELOCKED);
set_open_tables_state(backup);
DBUG_VOID_RETURN;
}
/****************************************************************************
Handling of statement states in functions and triggers.
This is used to ensure that the function/trigger gets a clean state
to work with and does not cause any side effects of the calling statement.
It also allows most stored functions and triggers to replicate even
if they are used items that would normally be stored in the binary
replication (like last_insert_id() etc...)
The following things is done
- Disable binary logging for the duration of the statement
- Disable multi-result-sets for the duration of the statement
- Value of last_insert_id() is saved and restored
- Value set by 'SET INSERT_ID=#' is reset and restored
- Value for found_rows() is reset and restored
- examined_row_count is added to the total
- cuted_fields is added to the total
- new savepoint level is created and destroyed
NOTES:
Seed for random() is saved for the first! usage of RAND()
We reset examined_row_count and cuted_fields and add these to the
result to ensure that if we have a bug that would reset these within
a function, we are not loosing any rows from the main statement.
We do not reset value of last_insert_id().
****************************************************************************/
void THD::reset_sub_statement_state(Sub_statement_state *backup,
uint new_state)
{
backup->options= options;
backup->in_sub_stmt= in_sub_stmt;
backup->no_send_ok= net.no_send_ok;
backup->enable_slow_log= enable_slow_log;
backup->last_insert_id= last_insert_id;
backup->next_insert_id= next_insert_id;
2006-06-16 14:05:58 +05:00
backup->current_insert_id= current_insert_id;
backup->insert_id_used= insert_id_used;
2006-06-16 14:05:58 +05:00
backup->last_insert_id_used= last_insert_id_used;
backup->clear_next_insert_id= clear_next_insert_id;
backup->limit_found_rows= limit_found_rows;
backup->examined_row_count= examined_row_count;
backup->sent_row_count= sent_row_count;
backup->cuted_fields= cuted_fields;
backup->client_capabilities= client_capabilities;
backup->savepoints= transaction.savepoints;
if (!lex->requires_prelocking() || is_update_query(lex->sql_command))
options&= ~OPTION_BIN_LOG;
2007-02-23 12:58:56 -05:00
if ((backup->options & OPTION_BIN_LOG) && is_update_query(lex->sql_command))
mysql_bin_log.start_union_events(this, this->query_id);
/* Disable result sets */
client_capabilities &= ~CLIENT_MULTI_RESULTS;
in_sub_stmt|= new_state;
next_insert_id= 0;
insert_id_used= 0;
examined_row_count= 0;
sent_row_count= 0;
cuted_fields= 0;
transaction.savepoints= 0;
/* Surpress OK packets in case if we will execute statements */
net.no_send_ok= TRUE;
}
void THD::restore_sub_statement_state(Sub_statement_state *backup)
{
/*
To save resources we want to release savepoints which were created
during execution of function or trigger before leaving their savepoint
level. It is enough to release first savepoint set on this level since
all later savepoints will be released automatically.
*/
if (transaction.savepoints)
{
SAVEPOINT *sv;
for (sv= transaction.savepoints; sv->prev; sv= sv->prev)
{}
/* ha_release_savepoint() never returns error. */
(void)ha_release_savepoint(this, sv);
}
transaction.savepoints= backup->savepoints;
options= backup->options;
in_sub_stmt= backup->in_sub_stmt;
net.no_send_ok= backup->no_send_ok;
enable_slow_log= backup->enable_slow_log;
last_insert_id= backup->last_insert_id;
next_insert_id= backup->next_insert_id;
2006-06-16 14:05:58 +05:00
current_insert_id= backup->current_insert_id;
insert_id_used= backup->insert_id_used;
2006-06-16 14:05:58 +05:00
last_insert_id_used= backup->last_insert_id_used;
clear_next_insert_id= backup->clear_next_insert_id;
limit_found_rows= backup->limit_found_rows;
sent_row_count= backup->sent_row_count;
client_capabilities= backup->client_capabilities;
/*
If we've left sub-statement mode, reset the fatal error flag.
Otherwise keep the current value, to propagate it up the sub-statement
stack.
*/
if (!in_sub_stmt)
is_fatal_sub_stmt_error= FALSE;
2007-02-23 12:58:56 -05:00
if ((options & OPTION_BIN_LOG) && is_update_query(lex->sql_command))
mysql_bin_log.stop_union_events(this);
/*
The following is added to the old values as we are interested in the
total complexity of the query
*/
examined_row_count+= backup->examined_row_count;
cuted_fields+= backup->cuted_fields;
}
void THD::set_statement(Statement *stmt)
{
pthread_mutex_lock(&LOCK_thd_data);
Statement::set_statement(stmt);
pthread_mutex_unlock(&LOCK_thd_data);
}
/** Assign a new value to thd->query. */
void THD::set_query(char *query_arg, uint32 query_length_arg)
{
pthread_mutex_lock(&LOCK_thd_data);
query= query_arg;
query_length= query_length_arg;
pthread_mutex_unlock(&LOCK_thd_data);
}
/**
Mark transaction to rollback and mark error as fatal to a sub-statement.
@param thd Thread handle
@param all TRUE <=> rollback main transaction.
*/
void mark_transaction_to_rollback(THD *thd, bool all)
{
if (thd)
{
thd->is_fatal_sub_stmt_error= TRUE;
thd->transaction_rollback_request= all;
}
}
/***************************************************************************
Handling of XA id cacheing
***************************************************************************/
pthread_mutex_t LOCK_xid_cache;
HASH xid_cache;
static byte *xid_get_hash_key(const byte *ptr,uint *length,
my_bool not_used __attribute__((unused)))
{
*length=((XID_STATE*)ptr)->xid.key_length();
return ((XID_STATE*)ptr)->xid.key();
}
static void xid_free_hash (void *ptr)
{
if (!((XID_STATE*)ptr)->in_thd)
my_free((gptr)ptr, MYF(0));
}
bool xid_cache_init()
{
pthread_mutex_init(&LOCK_xid_cache, MY_MUTEX_INIT_FAST);
2005-08-14 23:20:06 +02:00
return hash_init(&xid_cache, &my_charset_bin, 100, 0, 0,
xid_get_hash_key, xid_free_hash, 0) != 0;
}
void xid_cache_free()
{
if (hash_inited(&xid_cache))
{
hash_free(&xid_cache);
pthread_mutex_destroy(&LOCK_xid_cache);
}
}
XID_STATE *xid_cache_search(XID *xid)
{
pthread_mutex_lock(&LOCK_xid_cache);
XID_STATE *res=(XID_STATE *)hash_search(&xid_cache, xid->key(), xid->key_length());
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
bool xid_cache_insert(XID *xid, enum xa_states xa_state)
{
XID_STATE *xs;
my_bool res;
pthread_mutex_lock(&LOCK_xid_cache);
if (hash_search(&xid_cache, xid->key(), xid->key_length()))
res=0;
else if (!(xs=(XID_STATE *)my_malloc(sizeof(*xs), MYF(MY_WME))))
res=1;
else
{
xs->xa_state=xa_state;
xs->xid.set(xid);
xs->in_thd=0;
res=my_hash_insert(&xid_cache, (byte*)xs);
}
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
bool xid_cache_insert(XID_STATE *xid_state)
{
pthread_mutex_lock(&LOCK_xid_cache);
DBUG_ASSERT(hash_search(&xid_cache, xid_state->xid.key(),
xid_state->xid.key_length())==0);
my_bool res=my_hash_insert(&xid_cache, (byte*)xid_state);
pthread_mutex_unlock(&LOCK_xid_cache);
return res;
}
void xid_cache_delete(XID_STATE *xid_state)
{
pthread_mutex_lock(&LOCK_xid_cache);
hash_delete(&xid_cache, (byte *)xid_state);
pthread_mutex_unlock(&LOCK_xid_cache);
}