mariadb/newbrt/leafentry.h

216 lines
13 KiB
C
Raw Normal View History

#ifndef LEAFENTRY_H
#define LEAFENTRY_H
#ident "Copyright (c) 2007 Tokutek Inc. All rights reserved."
/* In the past, leaves simply contained key-value pairs.
* In this implementatoin, leaf values are more complex
* They can contain a committed value:
* - Which can be "not-present",
* - Or a key-value pair.
* They can contain a provisional value, which depends on whether a particular transaction commits or aborts.
* - A not-present value
* - Or a key-value pair.
* - Or there can be no provisional value at all (that is, the value doesn't depend on the transaction.)
* Note that if both the provisional value and the committed value are not-present, then there is simply no entry in the leaf.
* So let's enumerate the possibilities:
* committed pair A committed pair unaffected by any incomplete transaction.
* committed pair and provisional pair A committed pair to provisionally be replaced by a new pair.
* committed pair and provisional delete A committed pair that will be deleted
* provisional pair No committed pair, but if a provisional pair to add.
*
* In the case of a committed pair and a provisional pair, the key is the same in both cases. The value can be different.
*
* For DUPSORT databases, the key-value pair is everything, so we need only represent the key-value pair once. So the cases are
* committed pair
* committed pair provisionally deleted
* provisional pair
* The case of a committed pair and a provisional pair can be represented by a committed pair, since it doesn't matter whether the transction aborts or commits, the value is the same.
*/
#include "toku_portability.h"
#include "rbuf.h"
#include "x1764.h"
u_int32_t toku_le_crc(LEAFENTRY v);
int le_committed (u_int32_t klen, void* kval, u_int32_t dlen, void* dval, u_int32_t *resultsize, u_int32_t *disksize, LEAFENTRY *result,
OMT, struct mempool *, void **maybe_free);
int le_both (TXNID xid, u_int32_t cklen, void* ckval, u_int32_t cdlen, void* cdval, u_int32_t pdlen, void* pdval,
u_int32_t *memsize, u_int32_t *disksize, LEAFENTRY *result,
OMT, struct mempool *, void **maybe_free);
int le_provdel (TXNID xid, u_int32_t klen, void* kval, u_int32_t dlen, void* dval,
u_int32_t *resultsize, u_int32_t *memsize, LEAFENTRY *result,
OMT, struct mempool *, void **maybe_free);
int le_provpair (TXNID xid, u_int32_t klen, void* kval, u_int32_t plen, void* pval, u_int32_t *memsize, u_int32_t *disksize, LEAFENTRY *result,
OMT omt, struct mempool *mp, void **maybe_free);
enum le_state { LE_COMMITTED=1, // A committed pair.
LE_BOTH, // A committed pair and a provisional pair.
LE_PROVDEL, // A committed pair that has been provisionally deleted
LE_PROVPAIR }; // No committed value, but a provisional pair.
u_int32_t leafentry_memsize (LEAFENTRY);
static inline enum le_state get_le_state(LEAFENTRY le) {
return (enum le_state)*(unsigned char *)le;
}
static inline void putint (unsigned char *p, u_int32_t i) {
#if 1
*(u_int32_t*)p = toku_htonl(i);
#else
p[0]=(i>>24)&0xff;
p[1]=(i>>16)&0xff;
p[2]=(i>> 8)&0xff;
p[3]=(i>> 0)&0xff;
#endif
}
static inline void putint64 (unsigned char *p, u_int64_t i) {
putint(p, (u_int32_t)(i>>32));
putint(p+4, (u_int32_t)(i&0xffffffff));
}
static inline u_int32_t getint (unsigned char *p) {
#if 1
return toku_ntohl(*(u_int32_t*)p);
#else
return (p[0]<<24)+(p[1]<<16)+(p[2]<<8)+(p[3]);
#endif
}
static inline u_int64_t getint64 (unsigned char *p) {
u_int64_t H = getint(p);
u_int64_t L = getint(p+4);
return (H<<32) + L;
}
// This ugly factorization of the macro is done so that we can do ## or not depending on which version of the
// compiler we are using, without repeating all this crufty offset calculation.
#define DO_LE_COMMITTED(funname,le) case LE_COMMITTED: { \
unsigned char* __klenaddr = 1+(unsigned char*)le; u_int32_t __klen = getint(__klenaddr); \
unsigned char* __kvaladdr = 4 + __klenaddr; \
unsigned char* __clenaddr = __klen + __kvaladdr; u_int32_t __clen = getint(__clenaddr); \
unsigned char* __cvaladdr = 4 + __clenaddr; \
return funname ## _le_committed(__klen, __kvaladdr, __clen, __cvaladdr
#define DO_LE_BOTH(funname,le) case LE_BOTH: { \
unsigned char* __xidaddr = 1+(unsigned char*)le; u_int64_t __xid = getint64(__xidaddr); \
unsigned char* __klenaddr = 8 + __xidaddr; u_int32_t __klen = getint(__klenaddr); \
unsigned char* __kvaladdr = 4 + __klenaddr; \
unsigned char* __clenaddr = __klen + __kvaladdr; u_int32_t __clen = getint(__clenaddr); \
unsigned char* __cvaladdr = 4 + __clenaddr; \
unsigned char* __plenaddr = __clen + __cvaladdr; u_int32_t __plen = getint(__plenaddr); \
unsigned char* __pvaladdr = 4 + __plenaddr; \
return funname ## _le_both(__xid, __klen, __kvaladdr, __clen, __cvaladdr, __plen, __pvaladdr
#define DO_LE_PROVDEL(funname,le ) case LE_PROVDEL: { \
unsigned char* __xidaddr = 1+(unsigned char*)le; u_int64_t __xid = getint64(__xidaddr); \
unsigned char* __klenaddr = 8 + __xidaddr; u_int32_t __klen = getint(__klenaddr); \
unsigned char* __kvaladdr = 4 + __klenaddr; \
unsigned char* __dlenaddr = __klen + __kvaladdr; u_int32_t __dlen = getint(__dlenaddr); \
unsigned char* __dvaladdr = 4 + __dlenaddr; \
return funname ## _le_provdel(__xid, __klen, __kvaladdr, __dlen, __dvaladdr
#define DO_LE_PROVPAIR(funname,le) case LE_PROVPAIR: { \
unsigned char* __xidaddr = 1+(unsigned char*)le; u_int64_t __xid = getint64(__xidaddr); \
unsigned char* __klenaddr = 8 + __xidaddr; u_int32_t __klen = getint(__klenaddr); \
unsigned char* __kvaladdr = 4 + __klenaddr; \
unsigned char* __plenaddr = __klen + __kvaladdr; u_int32_t __plen = getint(__plenaddr); \
unsigned char* __pvaladdr = 4 + __plenaddr; \
return funname ## _le_provpair(__xid, __klen, __kvaladdr, __plen, __pvaladdr
#ifdef __ICL
#define LESWITCHCALL(le,funname, ...) do { \
switch(get_le_state(le)) { \
DO_LE_COMMITTED(funname,le) , __VA_ARGS__); } \
DO_LE_BOTH (funname,le) , __VA_ARGS__); } \
DO_LE_PROVDEL (funname,le) , __VA_ARGS__); } \
DO_LE_PROVPAIR (funname,le) , __VA_ARGS__); } \
} abort(); } while (0)
#else
#define LESWITCHCALL(le,funname, ...) do { \
switch(get_le_state(le)) { \
DO_LE_COMMITTED(funname,le) , ## __VA_ARGS__); } \
DO_LE_BOTH (funname,le) , ## __VA_ARGS__); } \
DO_LE_PROVDEL (funname,le) , ## __VA_ARGS__); } \
DO_LE_PROVPAIR (funname,le) , ## __VA_ARGS__); } \
} abort(); } while (0)
#endif
u_int32_t leafentry_memsize (LEAFENTRY le); // the size of a leafentry in memory.
u_int32_t leafentry_disksize (LEAFENTRY le); // this is the same as logsizeof_LEAFENTRY. The size of a leafentry on disk.
u_int32_t toku_logsizeof_LEAFENTRY(LEAFENTRY le);
void wbuf_LEAFENTRY(struct wbuf *w, LEAFENTRY le);
void rbuf_LEAFENTRY(struct rbuf *r, u_int32_t *resultsize, u_int32_t *disksize, LEAFENTRY *le);
int toku_fread_LEAFENTRY(FILE *f, LEAFENTRY *le, struct x1764 *, u_int32_t *len); // read a leafentry from a log
int toku_logprint_LEAFENTRY(FILE *outf, FILE *inf, const char *fieldname, struct x1764 *, u_int32_t *len, const char *format); // read a leafentry from a log and then print it in human-readable form.
void toku_free_LEAFENTRY(LEAFENTRY le);
int print_leafentry (FILE *outf, LEAFENTRY v); // Print a leafentry out in human-readable form.
int le_is_provdel(LEAFENTRY le); // Return true if it is a provisional delete.
void* le_latest_key (LEAFENTRY le); // Return the latest key (return NULL for provisional deletes)
u_int32_t le_latest_keylen (LEAFENTRY le); // Return the latest keylen.
void* le_latest_val (LEAFENTRY le); // Return the latest val (return NULL for provisional deletes)
u_int32_t le_latest_vallen (LEAFENTRY le); // Return the latest vallen. Returns 0 for provisional deletes.
// Return any key or value (even if it's only provisional)
void* le_any_key (LEAFENTRY le);
u_int32_t le_any_keylen (LEAFENTRY le);
void* le_any_val (LEAFENTRY le);
u_int32_t le_any_vallen (LEAFENTRY le);
u_int64_t le_any_xid (LEAFENTRY le);
void *latest_key_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
void *latest_key_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
void *latest_key_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
void *latest_key_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int32_t latest_keylen_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int32_t latest_keylen_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int32_t latest_keylen_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int32_t latest_keylen_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
void *latest_val_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
void *latest_val_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
void *latest_val_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
void *latest_val_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int32_t latest_vallen_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int32_t latest_vallen_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int32_t latest_vallen_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int32_t latest_vallen_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int64_t latest_xid_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int64_t latest_xid_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int64_t latest_xid_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int64_t latest_xid_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
//
void *any_key_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
void *any_key_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
void *any_key_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
void *any_key_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int32_t any_keylen_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int32_t any_keylen_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int32_t any_keylen_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int32_t any_keylen_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
void *any_val_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
void *any_val_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
void *any_val_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
void *any_val_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int32_t any_vallen_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int32_t any_vallen_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int32_t any_vallen_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int32_t any_vallen_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
u_int64_t any_xid_le_committed(u_int32_t klen, void *kval, u_int32_t vallen, void *val);
u_int64_t any_xid_le_both(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval);
u_int64_t any_xid_le_provdel(TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval);
u_int64_t any_xid_le_provpair(TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval);
#endif