mariadb/ndb/include/kernel/NodeBitmask.hpp

90 lines
2.4 KiB
C++
Raw Normal View History

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef NODE_BITMASK_HPP
#define NODE_BITMASK_HPP
#include <ndb_limits.h>
#include <kernel_types.h>
#include <Bitmask.hpp>
/**
* No of 32 bits words needed to store a node bitmask
* containing all the nodes in the system
* Both NDB nodes and API, MGM... nodes
*
* Note that this is used in a lot of signals
*/
#define _NODE_BITMASK_SIZE 2
/**
* No of 32 bits words needed to store a node bitmask
* containing all the ndb nodes in the system
*
* Note that this is used in a lot of signals
*/
#define _NDB_NODE_BITMASK_SIZE 2
/**
* No of 32 bits word needed to store B bits for N nodes
*/
#define NODE_ARRAY_SIZE(N, B) (((N)*(B)+31) >> 5)
typedef Bitmask<(unsigned int)_NODE_BITMASK_SIZE> NodeBitmask;
typedef Bitmask<(unsigned int)_NDB_NODE_BITMASK_SIZE> NdbNodeBitmask;
#define __NBM_SZ ((MAX_NODES >> 5) + ((MAX_NODES & 31) != 0))
#define __NNBM_SZ ((MAX_NDB_NODES >> 5) + ((MAX_NDB_NODES & 31) != 0))
#if ( __NBM_SZ > _NODE_BITMASK_SIZE)
#error "MAX_NODES can not fit into NODE_BITMASK_SIZE"
#endif
#if ( __NNBM_SZ > _NDB_NODE_BITMASK_SIZE)
#error "MAX_NDB_NODES can not fit into NDB_NODE_BITMASK_SIZE"
#endif
/**
* General B Bits operations
*
* Get(x, A[], B)
* w = x >> S1
* s = (x & S2) << S3
* return (A[w] >> s) & S4
*
* Set(x, A[], v, B)
* w = x >> S1
* s = (x & S2) << S3
* m = ~(S4 << s)
* t = A[w] & m;
* A[w] = t | ((v & S4) << s)
*
* B(Bits) S1 S2 S3 S4
* 1 5 31 0 1
* 2 4 15 1 3
* 4 3 7 2 15
* 8 2 3 3 255
* 16 1 1 4 65535
*
* S1 = 5 - 2log(B)
* S2 = 2^S1 - 1
* S3 = 2log(B)
* S4 = 2^B - 1
*/
#endif