mariadb/sql/sql_list.h

386 lines
9.4 KiB
C
Raw Normal View History

2000-07-31 21:29:14 +02:00
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
2000-07-31 21:29:14 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
2000-07-31 21:29:14 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2000-07-31 21:29:14 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* mysql standard open memoryallocator */
#ifdef __GNUC__
#pragma interface /* gcc class implementation */
#endif
class Sql_alloc
{
public:
static void *operator new(size_t size)
{
return (void*) sql_alloc((uint) size);
}
static void *operator new[](size_t size)
{
return (void*) sql_alloc((uint) size);
}
2000-07-31 21:29:14 +02:00
static void operator delete(void *ptr, size_t size) {} /*lint -e715 */
static void operator delete[](void *ptr, size_t size) {}
#ifdef HAVE_purify
bool dummy;
inline Sql_alloc() :dummy(0) {}
inline ~Sql_alloc() {}
#else
inline Sql_alloc() {}
inline ~Sql_alloc() {}
#endif
2000-07-31 21:29:14 +02:00
};
/*
** basic single linked list
** Used for item and item_buffs.
** All list ends with a pointer to the 'end_of_list' element, which
** data pointer is a null pointer and the next pointer points to itself.
** This makes it very fast to traverse lists as we don't have to
** test for a specialend condition for list that can't contain a null
** pointer.
2000-07-31 21:29:14 +02:00
*/
class list_node :public Sql_alloc
{
public:
list_node *next;
void *info;
list_node(void *info_par,list_node *next_par)
:next(next_par),info(info_par)
{}
list_node() /* For end_of_list */
{
info=0;
next= this;
}
friend class base_list;
friend class base_list_iterator;
};
extern list_node end_of_list;
2000-07-31 21:29:14 +02:00
class base_list :public Sql_alloc {
protected:
list_node *first,**last;
public:
uint elements;
inline void empty() { elements=0; first= &end_of_list; last=&first;}
2000-07-31 21:29:14 +02:00
inline base_list() { empty(); }
inline base_list(const base_list &tmp) :Sql_alloc()
{
elements=tmp.elements;
first=tmp.first;
last=tmp.last;
}
inline base_list(bool error) { }
2000-07-31 21:29:14 +02:00
inline bool push_back(void *info)
{
if (((*last)=new list_node(info, &end_of_list)))
2000-07-31 21:29:14 +02:00
{
last= &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_front(void *info)
{
list_node *node=new list_node(info,first);
if (node)
{
if (last == &first)
2000-07-31 21:29:14 +02:00
last= &node->next;
first=node;
elements++;
return 0;
}
return 1;
}
void remove(list_node **prev)
{
list_node *node=(*prev)->next;
delete *prev;
*prev=node;
if (!--elements)
last= &first;
}
inline void *pop(void)
{
if (first == &end_of_list) return 0;
2000-07-31 21:29:14 +02:00
list_node *tmp=first;
first=first->next;
if (!--elements)
last= &first;
return tmp->info;
}
inline list_node* last_node() { return *last; }
inline list_node* first_node() { return first;}
inline void *head() { return first->info; }
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; }
inline bool is_empty() { return first == &end_of_list ; }
inline list_node *last_ref() { return &end_of_list; }
2000-07-31 21:29:14 +02:00
friend class base_list_iterator;
friend class error_list;
friend class error_list_iterator;
2000-07-31 21:29:14 +02:00
protected:
void after(void *info,list_node *node)
{
list_node *new_node=new list_node(info,node->next);
node->next=new_node;
elements++;
if (last == &(node->next))
last= &new_node->next;
}
};
class base_list_iterator
{
protected:
2000-07-31 21:29:14 +02:00
base_list *list;
list_node **el,**prev,*current;
void sublist(base_list &ls, uint elm)
{
ls.first= *el;
ls.last= list->last;
ls.elements= elm;
}
2000-07-31 21:29:14 +02:00
public:
base_list_iterator(base_list &list_par)
:list(&list_par), el(&list_par.first), prev(0), current(0)
2000-07-31 21:29:14 +02:00
{}
2000-07-31 21:29:14 +02:00
inline void *next(void)
{
prev=el;
current= *el;
2000-07-31 21:29:14 +02:00
el= &current->next;
return current->info;
}
inline void *next_fast(void)
{
list_node *tmp;
tmp= *el;
el= &tmp->next;
return tmp->info;
}
2000-07-31 21:29:14 +02:00
inline void rewind(void)
{
el= &list->first;
}
inline void *replace(void *element)
2000-07-31 21:29:14 +02:00
{ // Return old element
void *tmp=current->info;
current->info=element;
return tmp;
}
void *replace(base_list &new_list)
{
void *ret_value=current->info;
if (!new_list.is_empty())
2000-07-31 21:29:14 +02:00
{
*new_list.last=current->next;
current->info=new_list.first->info;
current->next=new_list.first->next;
2003-04-16 08:08:21 +02:00
if ((list->last == &current->next) && (new_list.elements > 1))
list->last= new_list.last;
2000-07-31 21:29:14 +02:00
list->elements+=new_list.elements-1;
}
return ret_value; // return old element
}
inline void remove(void) // Remove current
{
list->remove(prev);
el=prev;
current=0; // Safeguard
}
void after(void *element) // Insert element after current
{
list->after(element,current);
current=current->next;
el= &current->next;
}
inline void **ref(void) // Get reference pointer
{
return &current->info;
}
inline bool is_last(void)
{
return el == &list->last_ref()->next;
2000-07-31 21:29:14 +02:00
}
friend class error_list_iterator;
2000-07-31 21:29:14 +02:00
};
template <class T> class List :public base_list
{
public:
inline List() :base_list() {}
inline List(const List<T> &tmp) :base_list(tmp) {}
inline bool push_back(T *a) { return base_list::push_back(a); }
inline bool push_front(T *a) { return base_list::push_front(a); }
inline T* head() {return (T*) base_list::head(); }
inline T** head_ref() {return (T**) base_list::head_ref(); }
inline T* pop() {return (T*) base_list::pop(); }
void delete_elements(void)
{
list_node *element,*next;
for (element=first; element != &end_of_list; element=next)
2000-07-31 21:29:14 +02:00
{
next=element->next;
delete (T*) element->info;
}
empty();
}
};
template <class T> class List_iterator :public base_list_iterator
{
public:
List_iterator(List<T> &a) : base_list_iterator(a) {}
inline T* operator++(int) { return (T*) base_list_iterator::next(); }
inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); }
inline T *replace(List<T> &a) { return (T*) base_list_iterator::replace(a); }
inline void after(T *a) { base_list_iterator::after(a); }
inline T** ref(void) { return (T**) base_list_iterator::ref(); }
};
template <class T> class List_iterator_fast :public base_list_iterator
{
protected:
inline T *replace(T *a) { return (T*) 0; }
inline T *replace(List<T> &a) { return (T*) 0; }
inline void remove(void) { }
inline void after(T *a) { }
inline T** ref(void) { return (T**) 0; }
public:
List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
inline T* operator++(int) { return (T*) base_list_iterator::next_fast(); }
inline void rewind(void) { base_list_iterator::rewind(); }
void sublist(List<T> &list, uint el)
{
base_list_iterator::sublist(list, el);
}
2000-07-31 21:29:14 +02:00
};
/*
** A simple intrusive list which automaticly removes element from list
2000-07-31 21:29:14 +02:00
** on delete (for THD element)
*/
struct ilink {
struct ilink **prev,*next;
static void *operator new(size_t size)
{
return (void*)my_malloc((uint)size, MYF(MY_WME | MY_FAE));
}
static void operator delete(void* ptr_arg, size_t size)
{
my_free((gptr)ptr_arg, MYF(MY_WME|MY_ALLOW_ZERO_PTR));
}
2000-07-31 21:29:14 +02:00
inline ilink()
{
prev=0; next=0;
}
inline void unlink()
{
/* Extra tests because element doesn't have to be linked */
if (prev) *prev= next;
if (next) next->prev=prev;
prev=0 ; next=0;
}
virtual ~ilink() { unlink(); } /*lint -e1740 */
};
template <class T> class I_List_iterator;
class base_ilist {
public:
struct ilink *first,last;
base_ilist() { first= &last; last.prev= &first; }
inline bool is_empty() { return first == &last; }
inline void append(ilink *a)
{
first->prev= &a->next;
a->next=first; a->prev= &first; first=a;
}
inline void push_back(ilink *a)
{
*last.prev= a;
a->next= &last;
a->prev= last.prev;
last.prev= &a->next;
}
inline struct ilink *get()
{
struct ilink *first_link=first;
if (first_link == &last)
return 0;
first_link->unlink(); // Unlink from list
return first_link;
}
friend class base_list_iterator;
};
class base_ilist_iterator
{
base_ilist *list;
struct ilink **el,*current;
public:
base_ilist_iterator(base_ilist &list_par) :list(&list_par),
el(&list_par.first),current(0) {}
void *next(void)
{
/* This is coded to allow push_back() while iterating */
current= *el;
if (current == &list->last) return 0;
el= &current->next;
return current;
}
};
template <class T>
class I_List :private base_ilist {
public:
I_List() :base_ilist() {}
inline bool is_empty() { return base_ilist::is_empty(); }
inline void append(T* a) { base_ilist::append(a); }
inline void push_back(T* a) { base_ilist::push_back(a); }
inline T* get() { return (T*) base_ilist::get(); }
#ifndef _lint
friend class I_List_iterator<T>;
#endif
};
template <class T> class I_List_iterator :public base_ilist_iterator
{
public:
I_List_iterator(I_List<T> &a) : base_ilist_iterator(a) {}
inline T* operator++(int) { return (T*) base_ilist_iterator::next(); }
};