mariadb/sql/opt_range_mrr.cc

381 lines
12 KiB
C++
Raw Normal View History

/*
Copyright (c) 2009, 2011, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
2017-02-10 13:26:55 +02:00
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1301 USA */
/****************************************************************************
MRR Range Sequence Interface implementation that walks a SEL_ARG* tree.
****************************************************************************/
/* MRR range sequence, SEL_ARG* implementation: stack entry */
typedef struct st_range_seq_entry
{
/*
Pointers in min and max keys. They point to right-after-end of key
images. The 0-th entry has these pointing to key tuple start.
*/
uchar *min_key, *max_key;
/*
Flags, for {keypart0, keypart1, ... this_keypart} subtuple.
min_key_flag may have NULL_RANGE set.
*/
uint min_key_flag, max_key_flag;
/* Number of key parts */
uint min_key_parts, max_key_parts;
SEL_ARG *key_tree;
} RANGE_SEQ_ENTRY;
/*
MRR range sequence, SEL_ARG* implementation: SEL_ARG graph traversal context
*/
typedef struct st_sel_arg_range_seq
{
uint keyno; /* index of used tree in SEL_TREE structure */
uint real_keyno; /* Number of the index in tables */
PARAM *param;
SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */
RANGE_SEQ_ENTRY stack[MAX_REF_PARTS];
int i; /* Index of last used element in the above array */
bool at_start; /* TRUE <=> The traversal has just started */
} SEL_ARG_RANGE_SEQ;
/*
Range sequence interface, SEL_ARG* implementation: Initialize the traversal
SYNOPSIS
init()
init_params SEL_ARG tree traversal context
n_ranges [ignored] The number of ranges obtained
flags [ignored] HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
RETURN
Value of init_param
*/
range_seq_t sel_arg_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)init_param;
seq->at_start= TRUE;
seq->stack[0].key_tree= NULL;
seq->stack[0].min_key= seq->param->min_key;
seq->stack[0].min_key_flag= 0;
seq->stack[0].min_key_parts= 0;
seq->stack[0].max_key= seq->param->max_key;
seq->stack[0].max_key_flag= 0;
seq->stack[0].max_key_parts= 0;
seq->i= 0;
return init_param;
}
static void step_down_to(SEL_ARG_RANGE_SEQ *arg, SEL_ARG *key_tree)
{
RANGE_SEQ_ENTRY *cur= &arg->stack[arg->i+1];
RANGE_SEQ_ENTRY *prev= &arg->stack[arg->i];
cur->key_tree= key_tree;
cur->min_key= prev->min_key;
cur->max_key= prev->max_key;
cur->min_key_parts= prev->min_key_parts;
cur->max_key_parts= prev->max_key_parts;
uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length;
cur->min_key_parts += key_tree->store_min(stor_length, &cur->min_key,
prev->min_key_flag);
cur->max_key_parts += key_tree->store_max(stor_length, &cur->max_key,
prev->max_key_flag);
cur->min_key_flag= prev->min_key_flag | key_tree->min_flag;
cur->max_key_flag= prev->max_key_flag | key_tree->max_flag;
if (key_tree->is_null_interval())
cur->min_key_flag |= NULL_RANGE;
(arg->i)++;
}
/*
Range sequence interface, SEL_ARG* implementation: get the next interval
SYNOPSIS
sel_arg_range_seq_next()
rseq Value returned from sel_arg_range_seq_init
range OUT Store information about the range here
DESCRIPTION
This is "get_next" function for Range sequence interface implementation
for SEL_ARG* tree.
IMPLEMENTATION
The traversal also updates those param members:
- is_ror_scan
- range_count
- max_key_part
RETURN
FALSE Ok
TRUE No more ranges in the sequence
*/
#if (_MSC_FULL_VER == 160030319)
/*
Workaround Visual Studio 2010 RTM compiler backend bug, the function enters
infinite loop.
*/
#pragma optimize("g", off)
#endif
bool sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
SEL_ARG *key_tree;
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)rseq;
if (seq->at_start)
{
key_tree= seq->start;
seq->at_start= FALSE;
goto walk_up_n_right;
}
key_tree= seq->stack[seq->i].key_tree;
/* Ok, we're at some "full tuple" position in the tree */
/* Step down if we can */
if (key_tree->next && key_tree->next != &null_element)
{
//step down; (update the tuple, we'll step right and stay there)
seq->i--;
step_down_to(seq, key_tree->next);
key_tree= key_tree->next;
seq->param->is_ror_scan= FALSE;
goto walk_right_n_up;
}
/* Ok, can't step down, walk left until we can step down */
while (1)
{
if (seq->i == 1) // can't step left
return 1;
/* Step left */
seq->i--;
key_tree= seq->stack[seq->i].key_tree;
/* Step down if we can */
if (key_tree->next && key_tree->next != &null_element)
{
// Step down; update the tuple
seq->i--;
step_down_to(seq, key_tree->next);
key_tree= key_tree->next;
break;
}
}
/*
Ok, we've stepped down from the path to previous tuple.
Walk right-up while we can
*/
walk_right_n_up:
while (key_tree->next_key_part && key_tree->next_key_part != &null_element &&
key_tree->next_key_part->part == key_tree->part + 1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{
{
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
uint min_key_length= cur->min_key - seq->param->min_key;
uint max_key_length= cur->max_key - seq->param->max_key;
uint len= cur->min_key - cur[-1].min_key;
if (!(min_key_length == max_key_length &&
!memcmp(cur[-1].min_key, cur[-1].max_key, len) &&
!key_tree->min_flag && !key_tree->max_flag))
{
seq->param->is_ror_scan= FALSE;
if (!key_tree->min_flag)
cur->min_key_parts +=
key_tree->next_key_part->store_min_key(seq->param->key[seq->keyno],
&cur->min_key,
2011-04-25 17:22:25 +02:00
&cur->min_key_flag, MAX_KEY);
if (!key_tree->max_flag)
cur->max_key_parts +=
key_tree->next_key_part->store_max_key(seq->param->key[seq->keyno],
&cur->max_key,
2011-04-25 17:22:25 +02:00
&cur->max_key_flag, MAX_KEY);
break;
}
}
/*
Ok, current atomic interval is in form "t.field=const" and there is
next_key_part interval. Step right, and walk up from there.
*/
key_tree= key_tree->next_key_part;
walk_up_n_right:
while (key_tree->prev && key_tree->prev != &null_element)
{
/* Step up */
key_tree= key_tree->prev;
}
step_down_to(seq, key_tree);
}
/* Ok got a tuple */
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
uint min_key_length= cur->min_key - seq->param->min_key;
range->ptr= (char*)(intptr)(key_tree->part);
if (cur->min_key_flag & GEOM_FLAG)
{
range->range_flag= cur->min_key_flag;
/* Here minimum contains also function code bits, and maximum is +inf */
range->start_key.key= seq->param->min_key;
range->start_key.length= min_key_length;
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag= (ha_rkey_function) (cur->min_key_flag ^ GEOM_FLAG);
}
else
{
range->range_flag= cur->min_key_flag | cur->max_key_flag;
range->start_key.key= seq->param->min_key;
range->start_key.length= cur->min_key - seq->param->min_key;
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag= (cur->min_key_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
HA_READ_KEY_EXACT);
range->end_key.key= seq->param->max_key;
range->end_key.length= cur->max_key - seq->param->max_key;
range->end_key.flag= (cur->max_key_flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
HA_READ_AFTER_KEY);
range->end_key.keypart_map= make_prev_keypart_map(cur->max_key_parts);
KEY *key_info;
if (seq->real_keyno== MAX_KEY)
key_info= NULL;
else
key_info= &seq->param->table->key_info[seq->real_keyno];
/*
Conditions below:
(1) - range analysis is used for estimating condition selectivity
(2) - This is a unique key, and we have conditions for all its
user-defined key parts.
(3) - The table uses extended keys, this key covers all components,
and we have conditions for all key parts.
*/
if (!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag &&
(!key_info || // (1)
((uint)key_tree->part+1 == key_info->user_defined_key_parts && // (2)
key_info->flags & HA_NOSAME) || // (2)
((key_info->flags & HA_EXT_NOSAME) && // (3)
(uint)key_tree->part+1 == key_info->ext_key_parts) // (3)
) &&
range->start_key.length == range->end_key.length &&
!memcmp(seq->param->min_key,seq->param->max_key,range->start_key.length))
range->range_flag= UNIQUE_RANGE | (cur->min_key_flag & NULL_RANGE);
if (seq->param->is_ror_scan)
{
/*
If we get here, the condition on the key was converted to form
"(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
somecond(keyXpart{key_tree->part})"
Check if
somecond is "keyXpart{key_tree->part} = const" and
uncovered "tail" of KeyX parts is either empty or is identical to
first members of clustered primary key.
*/
if (!(!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag &&
(range->start_key.length == range->end_key.length) &&
!memcmp(range->start_key.key, range->end_key.key, range->start_key.length) &&
is_key_scan_ror(seq->param, seq->real_keyno, key_tree->part + 1)))
seq->param->is_ror_scan= FALSE;
}
}
seq->param->range_count++;
2013-03-26 00:03:13 +02:00
seq->param->max_key_part=MY_MAX(seq->param->max_key_part,key_tree->part);
return 0;
}
#if (_MSC_FULL_VER == 160030319)
/* VS2010 compiler bug workaround */
#pragma optimize("g", on)
#endif
/****************************************************************************
MRR Range Sequence Interface implementation that walks array<QUICK_RANGE>
****************************************************************************/
/*
Range sequence interface implementation for array<QUICK_RANGE>: initialize
SYNOPSIS
quick_range_seq_init()
init_param Caller-opaque paramenter: QUICK_RANGE_SELECT* pointer
n_ranges Number of ranges in the sequence (ignored)
flags MRR flags (currently not used)
RETURN
Opaque value to be passed to quick_range_seq_next
*/
range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
QUICK_RANGE_SELECT *quick= (QUICK_RANGE_SELECT*)init_param;
quick->qr_traversal_ctx.first= (QUICK_RANGE**)quick->ranges.buffer;
quick->qr_traversal_ctx.cur= (QUICK_RANGE**)quick->ranges.buffer;
quick->qr_traversal_ctx.last= quick->qr_traversal_ctx.cur +
quick->ranges.elements;
return &quick->qr_traversal_ctx;
}
/*
Range sequence interface implementation for array<QUICK_RANGE>: get next
SYNOPSIS
quick_range_seq_next()
rseq Value returned from quick_range_seq_init
range OUT Store information about the range here
RETURN
0 Ok
1 No more ranges in the sequence
*/
bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
QUICK_RANGE_SEQ_CTX *ctx= (QUICK_RANGE_SEQ_CTX*)rseq;
if (ctx->cur == ctx->last)
return 1; /* no more ranges */
QUICK_RANGE *cur= *(ctx->cur);
2010-10-10 17:38:17 +03:00
cur->make_min_endpoint(&range->start_key);
cur->make_max_endpoint(&range->end_key);
range->range_flag= cur->flag;
ctx->cur++;
return 0;
}