Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
# This test covers behavior for InnoDB tables.
|
|
|
|
--source include/have_innodb.inc
|
|
|
|
# This test requires statement/mixed mode binary logging.
|
|
|
|
# Row-based mode puts weaker serializability requirements
|
|
|
|
# so weaker locks are acquired for it.
|
2010-05-26 16:18:08 +04:00
|
|
|
# Also in ROW mode LOCK_S row locks won't be acquired for DML
|
|
|
|
# and test for bug#51263 won't trigger execution path on which
|
|
|
|
# this bug was encountered.
|
Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
--source include/have_binlog_format_mixed_or_statement.inc
|
2010-05-26 16:18:08 +04:00
|
|
|
# Original test case for bug#51263 needs partitioning.
|
|
|
|
--source include/have_partition.inc
|
Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
# Save the initial number of concurrent sessions.
|
|
|
|
--source include/count_sessions.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # Test how do we handle locking in various cases when
|
|
|
|
--echo # we read data from InnoDB tables.
|
|
|
|
--echo #
|
|
|
|
--echo # In fact by performing this test we check two things:
|
|
|
|
--echo # 1) That SQL-layer correctly determine type of thr_lock.c
|
|
|
|
--echo # lock to be acquired/passed to InnoDB engine.
|
|
|
|
--echo # 2) That InnoDB engine correctly interprets this lock
|
|
|
|
--echo # type and takes necessary row locks or does not
|
|
|
|
--echo # take them if they are not necessary.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo # This test makes sense only in REPEATABLE-READ mode as
|
|
|
|
--echo # in SERIALIZABLE mode all statements that read data take
|
|
|
|
--echo # shared lock on them to enforce its semantics.
|
|
|
|
select @@session.tx_isolation;
|
|
|
|
|
|
|
|
--echo # Prepare playground by creating tables, views,
|
|
|
|
--echo # routines and triggers used in tests.
|
|
|
|
connect (con1, localhost, root,,);
|
|
|
|
connection default;
|
|
|
|
--disable_warnings
|
|
|
|
drop table if exists t0, t1, t2, t3, t4, t5;
|
|
|
|
drop view if exists v1, v2;
|
|
|
|
drop procedure if exists p1;
|
|
|
|
drop procedure if exists p2;
|
|
|
|
drop function if exists f1;
|
|
|
|
drop function if exists f2;
|
|
|
|
drop function if exists f3;
|
|
|
|
drop function if exists f4;
|
|
|
|
drop function if exists f5;
|
|
|
|
drop function if exists f6;
|
|
|
|
drop function if exists f7;
|
|
|
|
drop function if exists f8;
|
|
|
|
drop function if exists f9;
|
|
|
|
drop function if exists f10;
|
|
|
|
drop function if exists f11;
|
|
|
|
drop function if exists f12;
|
|
|
|
drop function if exists f13;
|
|
|
|
drop function if exists f14;
|
|
|
|
drop function if exists f15;
|
|
|
|
--enable_warnings
|
|
|
|
create table t1 (i int primary key) engine=innodb;
|
|
|
|
insert into t1 values (1), (2), (3), (4), (5);
|
|
|
|
create table t2 (j int primary key) engine=innodb;
|
|
|
|
insert into t2 values (1), (2), (3), (4), (5);
|
|
|
|
create table t3 (k int primary key) engine=innodb;
|
|
|
|
insert into t3 values (1), (2), (3);
|
|
|
|
create table t4 (l int primary key) engine=innodb;
|
|
|
|
insert into t4 values (1);
|
|
|
|
create table t5 (l int primary key) engine=innodb;
|
|
|
|
insert into t5 values (1);
|
|
|
|
create view v1 as select i from t1;
|
|
|
|
create view v2 as select j from t2 where j in (select i from t1);
|
|
|
|
create procedure p1(k int) insert into t2 values (k);
|
|
|
|
delimiter |;
|
|
|
|
create function f1() returns int
|
|
|
|
begin
|
|
|
|
declare j int;
|
|
|
|
select i from t1 where i = 1 into j;
|
|
|
|
return j;
|
|
|
|
end|
|
|
|
|
create function f2() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
select i from t1 where i = 1 into k;
|
|
|
|
insert into t2 values (k + 5);
|
|
|
|
return 0;
|
|
|
|
end|
|
|
|
|
create function f3() returns int
|
|
|
|
begin
|
|
|
|
return (select i from t1 where i = 3);
|
|
|
|
end|
|
|
|
|
create function f4() returns int
|
|
|
|
begin
|
|
|
|
if (select i from t1 where i = 3) then
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
end if;
|
|
|
|
end|
|
|
|
|
create function f5() returns int
|
|
|
|
begin
|
|
|
|
insert into t2 values ((select i from t1 where i = 1) + 5);
|
|
|
|
return 0;
|
|
|
|
end|
|
|
|
|
create function f6() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
select i from v1 where i = 1 into k;
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create function f7() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
select j from v2 where j = 1 into k;
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create function f8() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
select i from v1 where i = 1 into k;
|
|
|
|
insert into t2 values (k+5);
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create function f9() returns int
|
|
|
|
begin
|
|
|
|
update v2 set j=j+10 where j=1;
|
|
|
|
return 1;
|
|
|
|
end|
|
|
|
|
create function f10() returns int
|
|
|
|
begin
|
|
|
|
return f1();
|
|
|
|
end|
|
|
|
|
create function f11() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
set k= f1();
|
|
|
|
insert into t2 values (k+5);
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create function f12(p int) returns int
|
|
|
|
begin
|
|
|
|
insert into t2 values (p);
|
|
|
|
return p;
|
|
|
|
end|
|
|
|
|
create function f13(p int) returns int
|
|
|
|
begin
|
|
|
|
return p;
|
|
|
|
end|
|
|
|
|
create procedure p2(inout p int)
|
|
|
|
begin
|
|
|
|
select i from t1 where i = 1 into p;
|
|
|
|
end|
|
|
|
|
create function f14() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
call p2(k);
|
|
|
|
insert into t2 values (k+5);
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create function f15() returns int
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
call p2(k);
|
|
|
|
return k;
|
|
|
|
end|
|
|
|
|
create trigger t4_bi before insert on t4 for each row
|
|
|
|
begin
|
|
|
|
declare k int;
|
|
|
|
select i from t1 where i=1 into k;
|
|
|
|
set new.l= k+1;
|
|
|
|
end|
|
|
|
|
create trigger t4_bu before update on t4 for each row
|
|
|
|
begin
|
|
|
|
if (select i from t1 where i=1) then
|
|
|
|
set new.l= 2;
|
|
|
|
end if;
|
|
|
|
end|
|
|
|
|
create trigger t4_bd before delete on t4 for each row
|
|
|
|
begin
|
|
|
|
if !(select i from v1 where i=1) then
|
|
|
|
signal sqlstate '45000';
|
|
|
|
end if;
|
|
|
|
end|
|
|
|
|
create trigger t5_bi before insert on t5 for each row
|
|
|
|
begin
|
|
|
|
set new.l= f1()+1;
|
|
|
|
end|
|
|
|
|
create trigger t5_bu before update on t5 for each row
|
|
|
|
begin
|
|
|
|
declare j int;
|
|
|
|
call p2(j);
|
|
|
|
set new.l= j + 1;
|
|
|
|
end|
|
|
|
|
delimiter ;|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # Set common variables to be used by scripts called below.
|
|
|
|
--echo #
|
|
|
|
let $con_aux= con1;
|
|
|
|
let $table= t1;
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1. Statements that read tables and do not use subqueries.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1.1 Simple SELECT statement.
|
|
|
|
--echo #
|
|
|
|
--echo # No locks are necessary as this statement won't be written
|
2010-05-30 13:27:44 +04:00
|
|
|
--echo # to the binary log and InnoDB supports snapshots.
|
Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
let $statement= select * from t1;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1.2 Multi-UPDATE statement.
|
|
|
|
--echo #
|
|
|
|
--echo # Has to take shared locks on rows in the table being read as this
|
|
|
|
--echo # statement will be written to the binary log and therefore should
|
|
|
|
--echo # be serialized with concurrent statements.
|
|
|
|
let $statement= update t2, t1 set j= j - 1 where i = j;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1.3 Multi-DELETE statement.
|
|
|
|
--echo #
|
|
|
|
--echo # The above is true for this statement as well.
|
|
|
|
let $statement= delete t2 from t1, t2 where i = j;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1.4 DESCRIBE statement.
|
|
|
|
--echo #
|
|
|
|
--echo # This statement does not really read data from the
|
|
|
|
--echo # target table and thus does not take any lock on it.
|
|
|
|
--echo # We check this for completeness of coverage.
|
|
|
|
let $statement= describe t1;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 1.5 SHOW statements.
|
|
|
|
--echo #
|
|
|
|
--echo # The above is true for SHOW statements as well.
|
|
|
|
let $statement= show create table t1;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
let $statement= show keys from t1;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2. Statements which read tables through subqueries.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.1 CALL with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # A strong lock is not necessary as this statement is not
|
|
|
|
--echo # written to the binary log as a whole (it is written
|
|
|
|
--echo # statement-by-statement) and thanks to MVCC we can always get
|
|
|
|
--echo # versions of rows prior to the update that has locked them.
|
|
|
|
--echo # But in practice InnoDB does locking reads for all statements
|
|
|
|
--echo # other than SELECT (unless it is a READ-COMITTED mode or
|
|
|
|
--echo # innodb_locks_unsafe_for_binlog is ON).
|
|
|
|
let $statement= call p1((select i + 5 from t1 where i = 1));
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.2 CREATE TABLE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Has to take shared locks on rows in the table being read as
|
|
|
|
--echo # this statement is written to the binary log and therefore
|
|
|
|
--echo # should be serialized with concurrent statements.
|
|
|
|
let $statement= create table t0 engine=innodb select * from t1;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
drop table t0;
|
|
|
|
let $statement= create table t0 engine=innodb select j from t2 where j in (select i from t1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
drop table t0;
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.3 DELETE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # The above is true for this statement as well.
|
|
|
|
let $statement= delete from t2 where j in (select i from t1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.4 MULTI-DELETE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Same is true for this statement as well.
|
|
|
|
let $statement= delete t2 from t3, t2 where k = j and j in (select i from t1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.5 DO with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # In theory should not take row locks as it is not logged.
|
|
|
|
--echo # In practice InnoDB takes shared row locks.
|
|
|
|
let $statement= do (select i from t1 where i = 1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.6 INSERT with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Has to take shared locks on rows in the table being read as
|
|
|
|
--echo # this statement is written to the binary log and therefore
|
|
|
|
--echo # should be serialized with concurrent statements.
|
|
|
|
let $statement= insert into t2 select i+5 from t1;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= insert into t2 values ((select i+5 from t1 where i = 4));
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.7 LOAD DATA with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # The above is true for this statement as well.
|
|
|
|
let $statement= load data infile '../../std_data/rpl_loaddata.dat' into table t2 (@a, @b) set j= @b + (select i from t1 where i = 1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.8 REPLACE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Same is true for this statement as well.
|
|
|
|
let $statement= replace into t2 select i+5 from t1;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= replace into t2 values ((select i+5 from t1 where i = 4));
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.9 SELECT with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Locks are not necessary as this statement is not written
|
|
|
|
--echo # to the binary log and thanks to MVCC we can always get
|
|
|
|
--echo # versions of rows prior to the update that has locked them.
|
|
|
|
--echo #
|
|
|
|
--echo # Also serves as a test case for bug #46947 "Embedded SELECT
|
|
|
|
--echo # without FOR UPDATE is causing a lock".
|
|
|
|
let $statement= select * from t2 where j in (select i from t1);
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.10 SET with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # In theory should not require locking as it is not written
|
|
|
|
--echo # to the binary log. In practice InnoDB acquires shared row
|
|
|
|
--echo # locks.
|
|
|
|
let $statement= set @a:= (select i from t1 where i = 1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.11 SHOW with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Similarly to the previous case, in theory should not require locking
|
|
|
|
--echo # as it is not written to the binary log. In practice InnoDB
|
|
|
|
--echo # acquires shared row locks.
|
|
|
|
let $statement= show tables from test where Tables_in_test = 't2' and (select i from t1 where i = 1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= show columns from t2 where (select i from t1 where i = 1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.12 UPDATE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Has to take shared locks on rows in the table being read as
|
|
|
|
--echo # this statement is written to the binary log and therefore
|
|
|
|
--echo # should be serialized with concurrent statements.
|
|
|
|
let $statement= update t2 set j= j-10 where j in (select i from t1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 2.13 MULTI-UPDATE with a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Same is true for this statement as well.
|
|
|
|
let $statement= update t2, t3 set j= j -10 where j=k and j in (select i from t1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 3. Statements which read tables through a view.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 3.1 SELECT statement which uses some table through a view.
|
|
|
|
--echo #
|
|
|
|
--echo # Since this statement is not written to the binary log
|
|
|
|
--echo # and old version of rows are accessible thanks to MVCC,
|
|
|
|
--echo # no locking is necessary.
|
|
|
|
let $statement= select * from v1;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
let $statement= select * from v2;
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
let $statement= select * from t2 where j in (select i from v1);
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
let $statement= select * from t3 where k in (select j from v2);
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 3.2 Statements which modify a table and use views.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statements are going to be written to the binary
|
|
|
|
--echo # log they need to be serialized against concurrent statements
|
|
|
|
--echo # and therefore should take shared row locks on data read.
|
|
|
|
let $statement= update t2 set j= j-10 where j in (select i from v1);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= update t3 set k= k-10 where k in (select j from v2);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= update t2, v1 set j= j-10 where j = i;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= update v2 set j= j-10 where j = 3;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4. Statements which read tables through stored functions.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.1 SELECT/SET with a stored function which does not
|
|
|
|
--echo # modify data and uses SELECT in its turn.
|
|
|
|
--echo #
|
|
|
|
--echo # In theory there is no need to take row locks on the table
|
|
|
|
--echo # being selected from in SF as the call to such function
|
|
|
|
--echo # won't get into the binary log. In practice, however, we
|
|
|
|
--echo # discover that fact too late in the process to be able to
|
|
|
|
--echo # affect the decision what locks should be taken.
|
|
|
|
--echo # Hence, strong locks are taken in this case.
|
|
|
|
let $statement= select f1();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f1();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.2 INSERT (or other statement which modifies data) with
|
|
|
|
--echo # a stored function which does not modify data and uses
|
|
|
|
--echo # SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statement is written to the binary log it should
|
|
|
|
--echo # be serialized with concurrent statements affecting the data
|
|
|
|
--echo # it uses. Therefore it should take row locks on the data
|
|
|
|
--echo # it reads.
|
|
|
|
let $statement= insert into t2 values (f1() + 5);
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.3 SELECT/SET with a stored function which
|
|
|
|
--echo # reads and modifies data.
|
|
|
|
--echo #
|
|
|
|
--echo # Since a call to such function is written to the binary log,
|
|
|
|
--echo # it should be serialized with concurrent statements affecting
|
|
|
|
--echo # the data it uses. Hence, row locks on the data read
|
|
|
|
--echo # should be taken.
|
|
|
|
let $statement= select f2();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f2();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.4. SELECT/SET with a stored function which does not
|
|
|
|
--echo # modify data and reads a table through subselect
|
|
|
|
--echo # in a control construct.
|
|
|
|
--echo #
|
|
|
|
--echo # Again, in theory a call to this function won't get to the
|
|
|
|
--echo # binary log and thus no locking is needed. But in practice
|
|
|
|
--echo # we don't detect this fact early enough (get_lock_type_for_table())
|
|
|
|
--echo # to avoid taking row locks.
|
|
|
|
let $statement= select f3();
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f3();
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= select f4();
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f4();
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.5. INSERT (or other statement which modifies data) with
|
|
|
|
--echo # a stored function which does not modify data and reads
|
|
|
|
--echo # the table through a subselect in one of its control
|
|
|
|
--echo # constructs.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statement is written to the binary log it should
|
|
|
|
--echo # be serialized with concurrent statements affecting data it
|
|
|
|
--echo # uses. Therefore it should take row locks on the data
|
|
|
|
--echo # it reads.
|
|
|
|
let $statement= insert into t2 values (f3() + 5);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= insert into t2 values (f4() + 6);
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.6 SELECT/SET which uses a stored function with
|
|
|
|
--echo # DML which reads a table via a subquery.
|
|
|
|
--echo #
|
|
|
|
--echo # Since call to such function is written to the binary log
|
|
|
|
--echo # it should be serialized with concurrent statements.
|
|
|
|
--echo # Hence reads should take row locks.
|
|
|
|
let $statement= select f5();
|
|
|
|
let $wait_statement= insert into t2 values ((select i from t1 where i = 1) + 5);
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f5();
|
|
|
|
let $wait_statement= insert into t2 values ((select i from t1 where i = 1) + 5);
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.7 SELECT/SET which uses a stored function which
|
|
|
|
--echo # doesn't modify data and reads tables through
|
|
|
|
--echo # a view.
|
|
|
|
--echo #
|
|
|
|
--echo # Once again, in theory, calls to such functions won't
|
|
|
|
--echo # get into the binary log and thus don't need row
|
|
|
|
--echo # locks. But in practice this fact is discovered
|
|
|
|
--echo # too late to have any effect.
|
|
|
|
let $statement= select f6();
|
|
|
|
let $wait_statement= select i from v1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f6();
|
|
|
|
let $wait_statement= select i from v1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= select f7();
|
|
|
|
let $wait_statement= select j from v2 where j = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= set @a:= f7();
|
|
|
|
let $wait_statement= select j from v2 where j = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.8 INSERT which uses stored function which
|
|
|
|
--echo # doesn't modify data and reads a table
|
|
|
|
--echo # through a view.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statement is written to the binary log and
|
|
|
|
--echo # should be serialized with concurrent statements affecting
|
|
|
|
--echo # the data it uses. Therefore it should take row locks on
|
|
|
|
--echo # the rows it reads.
|
|
|
|
let $statement= insert into t3 values (f6() + 5);
|
|
|
|
let $wait_statement= select i from v1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= insert into t3 values (f7() + 5);
|
|
|
|
let $wait_statement= select j from v2 where j = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.9 SELECT which uses a stored function which
|
|
|
|
--echo # modifies data and reads tables through a view.
|
|
|
|
--echo #
|
|
|
|
--echo # Since a call to such function is written to the binary log
|
|
|
|
--echo # it should be serialized with concurrent statements.
|
|
|
|
--echo # Hence, reads should take row locks.
|
|
|
|
let $statement= select f8();
|
|
|
|
let $wait_statement= select i from v1 where i = 1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
let $statement= select f9();
|
|
|
|
let $wait_statement= update v2 set j=j+10 where j=1;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.10 SELECT which uses stored function which doesn't modify
|
|
|
|
--echo # data and reads a table indirectly, by calling another
|
|
|
|
--echo # function.
|
|
|
|
--echo #
|
|
|
|
--echo # In theory, calls to such functions won't get into the binary
|
|
|
|
--echo # log and thus don't need to acquire row locks. But in practice
|
|
|
|
--echo # this fact is discovered too late to have any effect.
|
|
|
|
let $statement= select f10();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.11 INSERT which uses a stored function which doesn't modify
|
|
|
|
--echo # data and reads a table indirectly, by calling another
|
|
|
|
--echo # function.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statement is written to the binary log, it should
|
|
|
|
--echo # be serialized with concurrent statements affecting the data it
|
|
|
|
--echo # uses. Therefore it should take row locks on data it reads.
|
|
|
|
let $statement= insert into t2 values (f10() + 5);
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.12 SELECT which uses a stored function which modifies
|
|
|
|
--echo # data and reads a table indirectly, by calling another
|
|
|
|
--echo # function.
|
|
|
|
--echo #
|
|
|
|
--echo # Since a call to such function is written to the binary log
|
|
|
|
--echo # it should be serialized from concurrent statements.
|
|
|
|
--echo # Hence, reads should take row locks.
|
|
|
|
let $statement= select f11();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.13 SELECT that reads a table through a subquery passed
|
|
|
|
--echo # as a parameter to a stored function which modifies
|
|
|
|
--echo # data.
|
|
|
|
--echo #
|
|
|
|
--echo # Even though a call to this function is written to the
|
|
|
|
--echo # binary log, values of its parameters are written as literals.
|
|
|
|
--echo # So there is no need to acquire row locks on rows used in
|
|
|
|
--echo # the subquery.
|
|
|
|
let $statement= select f12((select i+10 from t1 where i=1));
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 4.14 INSERT that reads a table via a subquery passed
|
|
|
|
--echo # as a parameter to a stored function which doesn't
|
|
|
|
--echo # modify data.
|
|
|
|
--echo #
|
|
|
|
--echo # Since this statement is written to the binary log it should
|
|
|
|
--echo # be serialized with concurrent statements affecting the data it
|
|
|
|
--echo # uses. Therefore it should take row locks on the data it reads.
|
|
|
|
let $statement= insert into t2 values (f13((select i+10 from t1 where i=1)));
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 5. Statements that read tables through stored procedures.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 5.1 CALL statement which reads a table via SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # Since neither this statement nor its components are
|
|
|
|
--echo # written to the binary log, there is no need to take
|
|
|
|
--echo # row locks on the data it reads.
|
|
|
|
let $statement= call p2(@a);
|
|
|
|
--source include/check_no_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
2010-05-30 13:27:44 +04:00
|
|
|
--echo # 5.2 Function that modifies data and uses CALL,
|
Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
--echo # which reads a table through SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # Since a call to such function is written to the binary
|
|
|
|
--echo # log, it should be serialized with concurrent statements.
|
|
|
|
--echo # Hence, in this case reads should take row locks on data.
|
|
|
|
let $statement= select f14();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into p;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 5.3 SELECT that calls a function that doesn't modify data and
|
|
|
|
--echo # uses a CALL statement that reads a table via SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # In theory, calls to such functions won't get into the binary
|
|
|
|
--echo # log and thus don't need to acquire row locks. But in practice
|
|
|
|
--echo # this fact is discovered too late to have any effect.
|
|
|
|
let $statement= select f15();
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into p;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 5.4 INSERT which calls function which doesn't modify data and
|
|
|
|
--echo # uses CALL statement which reads table through SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # Since such statement is written to the binary log it should
|
|
|
|
--echo # be serialized with concurrent statements affecting data it
|
|
|
|
--echo # uses. Therefore it should take row locks on data it reads.
|
|
|
|
let $statement= insert into t2 values (f15()+5);
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into p;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6. Statements that use triggers.
|
|
|
|
--echo #
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6.1 Statement invoking a trigger that reads table via SELECT.
|
|
|
|
--echo #
|
|
|
|
--echo # Since this statement is written to the binary log it should
|
|
|
|
--echo # be serialized with concurrent statements affecting the data
|
|
|
|
--echo # it uses. Therefore, it should take row locks on the data
|
|
|
|
--echo # it reads.
|
|
|
|
let $statement= insert into t4 values (2);
|
|
|
|
let $wait_statement= select i from t1 where i=1 into k;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6.2 Statement invoking a trigger that reads table through
|
|
|
|
--echo # a subquery in a control construct.
|
|
|
|
--echo #
|
|
|
|
--echo # The above is true for this statement as well.
|
|
|
|
let $statement= update t4 set l= 2 where l = 1;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6.3 Statement invoking a trigger that reads a table through
|
|
|
|
--echo # a view.
|
|
|
|
--echo #
|
|
|
|
--echo # And for this statement.
|
|
|
|
let $statement= delete from t4 where l = 1;
|
|
|
|
let $wait_statement= $statement;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6.4 Statement invoking a trigger that reads a table through
|
|
|
|
--echo # a stored function.
|
|
|
|
--echo #
|
|
|
|
--echo # And for this statement.
|
|
|
|
let $statement= insert into t5 values (2);
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into j;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # 6.5 Statement invoking a trigger that reads a table through
|
|
|
|
--echo # stored procedure.
|
|
|
|
--echo #
|
|
|
|
--echo # And for this statement.
|
|
|
|
let $statement= update t5 set l= 2 where l = 1;
|
|
|
|
let $wait_statement= select i from t1 where i = 1 into p;
|
|
|
|
--source include/check_shared_row_lock.inc
|
|
|
|
|
|
|
|
--echo # Clean-up.
|
|
|
|
drop function f1;
|
|
|
|
drop function f2;
|
|
|
|
drop function f3;
|
|
|
|
drop function f4;
|
|
|
|
drop function f5;
|
|
|
|
drop function f6;
|
|
|
|
drop function f7;
|
|
|
|
drop function f8;
|
|
|
|
drop function f9;
|
|
|
|
drop function f10;
|
|
|
|
drop function f11;
|
|
|
|
drop function f12;
|
|
|
|
drop function f13;
|
|
|
|
drop function f14;
|
|
|
|
drop function f15;
|
|
|
|
drop view v1, v2;
|
|
|
|
drop procedure p1;
|
|
|
|
drop procedure p2;
|
|
|
|
drop table t1, t2, t3, t4, t5;
|
|
|
|
disconnect con1;
|
|
|
|
|
2010-05-26 16:18:08 +04:00
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # Test for bug#51263 "Deadlock between transactional SELECT
|
|
|
|
--echo # and ALTER TABLE ... REBUILD PARTITION".
|
|
|
|
--echo #
|
|
|
|
connect (con1,localhost,root,,test,,);
|
|
|
|
connection default;
|
|
|
|
--disable_warnings
|
|
|
|
drop table if exists t1, t2;
|
|
|
|
--enable_warnings
|
|
|
|
create table t1 (i int auto_increment not null primary key) engine=innodb;
|
|
|
|
create table t2 (i int) engine=innodb;
|
|
|
|
insert into t1 values (1), (2), (3), (4), (5);
|
|
|
|
|
|
|
|
begin;
|
|
|
|
--echo # Acquire SR metadata lock on t1 and LOCK_S row-locks on its rows.
|
|
|
|
insert into t2 select count(*) from t1;
|
|
|
|
|
|
|
|
--echo # Switching to connection 'con1'.
|
|
|
|
connection con1;
|
|
|
|
--echo # Sending:
|
|
|
|
--send alter table t1 add column j int
|
|
|
|
|
|
|
|
--echo # Switching to connection 'default'.
|
|
|
|
connection default;
|
|
|
|
--echo # Wait until ALTER is blocked because it tries to upgrade SNW
|
|
|
|
--echo # metadata lock to X lock.
|
|
|
|
--echo # It should not be blocked during copying data to new version of
|
|
|
|
--echo # table as it acquires LOCK_S locks on rows of old version, which
|
|
|
|
--echo # are compatible with locks acquired by connection 'con1'.
|
|
|
|
let $wait_condition=
|
|
|
|
select count(*) = 1 from information_schema.processlist where state =
|
|
|
|
"Waiting for table" and info = "alter table t1 add column j int";
|
|
|
|
--source include/wait_condition.inc
|
|
|
|
|
|
|
|
--echo # The below statement will deadlock because it will try to acquire
|
|
|
|
--echo # SW lock on t1, which will conflict with ALTER's SNW lock. And
|
|
|
|
--echo # ALTER will be waiting for this connection to release its SR lock.
|
|
|
|
--echo # This deadlock should be detected by an MDL subsystem and this
|
|
|
|
--echo # statement should be aborted with an appropriate error.
|
|
|
|
--error ER_LOCK_DEADLOCK
|
|
|
|
insert into t1 values (6);
|
|
|
|
--echo # Unblock ALTER TABLE.
|
|
|
|
commit;
|
|
|
|
|
|
|
|
--echo # Switching to connection 'con1'.
|
|
|
|
connection con1;
|
|
|
|
--echo # Reaping ALTER TABLE.
|
|
|
|
--reap
|
|
|
|
|
|
|
|
--echo # Switching to connection 'default'.
|
|
|
|
connection default;
|
|
|
|
|
|
|
|
--echo #
|
|
|
|
--echo # Now test for scenario in which bug was reported originally.
|
|
|
|
--echo #
|
|
|
|
drop tables t1, t2;
|
|
|
|
create table t1 (i int auto_increment not null primary key) engine=innodb
|
|
|
|
partition by hash (i) partitions 4;
|
|
|
|
create table t2 (i int) engine=innodb;
|
|
|
|
insert into t1 values (1), (2), (3), (4), (5);
|
|
|
|
|
|
|
|
begin;
|
|
|
|
--echo # Acquire SR metadata lock on t1.
|
|
|
|
select * from t1;
|
|
|
|
|
|
|
|
--echo # Switching to connection 'con1'.
|
|
|
|
connection con1;
|
|
|
|
--echo # Sending:
|
|
|
|
--send alter table t1 rebuild partition p0
|
|
|
|
|
|
|
|
--echo # Switching to connection 'default'.
|
|
|
|
connection default;
|
|
|
|
--echo # Wait until ALTER is blocked because of active SR lock.
|
|
|
|
let $wait_condition=
|
|
|
|
select count(*) = 1 from information_schema.processlist
|
|
|
|
where state = "Waiting for table" and info = "alter table t1 rebuild partition p0";
|
|
|
|
--source include/wait_condition.inc
|
|
|
|
|
|
|
|
--echo # The below statement should succeed as transaction
|
|
|
|
--echo # has SR metadata lock on t1 and only going to read
|
|
|
|
--echo # rows from it.
|
|
|
|
insert into t2 select count(*) from t1;
|
|
|
|
--echo # Unblock ALTER TABLE.
|
|
|
|
commit;
|
|
|
|
|
|
|
|
--echo # Switching to connection 'con1'.
|
|
|
|
connection con1;
|
|
|
|
--echo # Reaping ALTER TABLE.
|
|
|
|
--reap
|
|
|
|
|
|
|
|
--echo # Switching to connection 'default'.
|
|
|
|
connection default;
|
|
|
|
disconnect con1;
|
|
|
|
--echo # Clean-up.
|
|
|
|
drop tables t1, t2;
|
|
|
|
|
|
|
|
|
Committing on behalf or Dmitry Lenev:
Fix for bug #46947 "Embedded SELECT without FOR UPDATE is
causing a lock", with after-review fixes.
SELECT statements with subqueries referencing InnoDB tables
were acquiring shared locks on rows in these tables when they
were executed in REPEATABLE-READ mode and with statement or
mixed mode binary logging turned on.
This was a regression which were introduced when fixing
bug 39843.
The problem was that for tables belonging to subqueries
parser set TL_READ_DEFAULT as a lock type. In cases when
statement/mixed binary logging at open_tables() time this
type of lock was converted to TL_READ_NO_INSERT lock at
open_tables() time and caused InnoDB engine to acquire
shared locks on reads from these tables. Although in some
cases such behavior was correct (e.g. for subqueries in
DELETE) in case of SELECT it has caused unnecessary locking.
This patch tries to solve this problem by rethinking our
approach to how we handle locking for SELECT and subqueries.
Now we always set TL_READ_DEFAULT lock type for all cases
when we read data. When at open_tables() time this lock
is interpreted as TL_READ_NO_INSERT or TL_READ depending
on whether this statement as a whole or call to function
which uses particular table should be written to the
binary log or not (if yes then statement should be properly
serialized with concurrent statements and stronger lock
should be acquired).
Test coverage is added for both InnoDB and MyISAM.
This patch introduces an "incompatible" change in locking
scheme for subqueries used in SELECT ... FOR UPDATE and
SELECT .. IN SHARE MODE.
In 4.1 the server would use a snapshot InnoDB read for
subqueries in SELECT FOR UPDATE and SELECT .. IN SHARE MODE
statements, regardless of whether the binary log is on or off.
If the user required a different type of read (i.e. locking read),
he/she could request so explicitly by providing FOR UPDATE/IN SHARE MODE
clause for each individual subquery.
On of the patches for 5.0 broke this behaviour (which was not documented
or tested), and started to use locking reads fora all subqueries in SELECT ...
FOR UPDATE/IN SHARE MODE. This patch restored 4.1 behaviour.
mysql-test/include/check_concurrent_insert.inc:
Added auxiliary script which allows to check if statement
reading table allows concurrent inserts in it.
mysql-test/include/check_no_concurrent_insert.inc:
Added auxiliary script which allows to check that statement
reading table doesn't allow concurrent inserts in it.
mysql-test/include/check_no_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table doesn't take locks on its rows.
mysql-test/include/check_shared_row_lock.inc:
Added auxiliary script which allows to check if statement
reading table takes shared locks on some of its rows.
mysql-test/r/bug39022.result:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/r/innodb_mysql_lock2.result:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/r/lock_sync.result:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
mysql-test/t/bug39022.test:
After bug #46947 'Embedded SELECT without FOR UPDATE is
causing a lock' was fixed test case for bug 39022 has to
be adjusted in order to trigger execution path on which
original problem was encountered.
mysql-test/t/innodb_mysql_lock2.test:
Added coverage for handling of locking in various cases when
we read data from InnoDB tables (includes test case for
bug #46947 'Embedded SELECT without FOR UPDATE is causing a
lock').
mysql-test/t/lock_sync.test:
Added coverage for handling of locking in various cases when
we read data from MyISAM tables.
sql/log_event.cc:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/log_event.h:
Since LEX::lock_option member was removed we no longer can
rely on its value in Load_log_event::print_query() to
determine that log event correponds to LOAD DATA CONCURRENT
statement (this was not correct in all situations anyway).
A new Load_log_event's member was introduced as a replacement.
It is initialized at event object construction time and
explicitly indicates whether LOAD DATA was concurrent.
sql/sp_head.cc:
sp_head::reset_lex():
Before parsing substatement reset part of parser state
which needs this (e.g. set Yacc_state::m_lock_type to
default value).
sql/sql_acl.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_base.cc:
Changed read_lock_type_for_table() to return a weak TL_READ
type of lock in cases when we are executing statement which
won't update tables directly and table doesn't belong to
statement's prelocking list and thus can't be used by a
stored function. It is OK to do so since in this case table
won't be used by statement or function call which will be
written to the binary log, so serializability requirements
for it can be relaxed.
One of results from this change is that SELECTs on InnoDB
tables no longer takes shared row locks for tables which
are used in subqueries (i.e. bug #46947 is fixed).
Another result is that for similar SELECTs on MyISAM tables
concurrent inserts are allowed.
In order to implement this change signature of
read_lock_type_for_table() function was changed to take
pointers to Query_tables_list and TABLE_LIST objects.
sql/sql_base.h:
- Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_lex.cc:
- Removed LEX::lock_option and st_select_lex::lock_option
members. Places in parser that were using them now use
Yacc_state::m_lock_type instead.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class. It is now reset by
Query_tables_list::reset_query_tables_list() method.
sql/sql_lex.h:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- To emphasize that LEX::sql_command member is used during
process of opening and locking of tables it was moved to
Query_tables_list class.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
sql/sql_load.cc:
Load_log_event constructor now requires a parameter that
indicates whether LOAD DATA is concurrent.
sql/sql_parse.cc:
LEX::lock_option was replaced with Yacc_state::m_lock_type.
And instead of resetting the latter implicitly in
mysql_init_multi_delete() we do it explicitly in the
places in parser which call this function.
sql/sql_priv.h:
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method added flag for
HIGH_PRIORITY option.
sql/sql_select.cc:
Changed code not to rely on LEX::lock_option to determine
that it is high-priority SELECT. It was replaced with
Yacc_state::m_lock_type which is accessible only at
parse time. So instead of LEX::lock_option we now rely
on a newly introduced flag for st_select_lex::options -
SELECT_HIGH_PRIORITY.
sql/sql_show.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed.
sql/sql_table.cc:
Since LEX::reset_query_tables_list() now also resets
LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore value of this
member when this method is called by mysql_admin_table(),
to make this code safe for re-execution.
sql/sql_trigger.cc:
Since LEX::reset_n_backup_query_tables_list() now also
resets LEX::sql_command member (as it became part of
Query_tables_list class) we have to restore it in cases
when while working with proxy Query_table_list we assume
that LEX::sql_command still corresponds to original SQL
command being executed (for example, when we are logging
statement to the binary log while having Query_tables_list
reset and backed up).
sql/sql_update.cc:
Function read_lock_type_for_table() now takes pointers
to Query_tables_list and TABLE_LIST elements as its
arguments since to correctly determine lock type it needs
to know what statement is being performed and whether table
element for which lock type to be determined belongs to
prelocking list.
sql/sql_yacc.yy:
- Removed st_select_lex::lock_option member as there is no
real need for per-SELECT lock type (HIGH_PRIORITY option
should apply to the whole statement. FOR UPDATE/LOCK IN
SHARE MODE clauses can be handled without this member).
The main effect which was achieved by introduction of this
member, i.e. using TL_READ_DEFAULT lock type for
subqueries, is now achieved by setting LEX::lock_option
(or rather its replacement - Yacc_state::m_lock_type) to
TL_READ_DEFAULT in almost all cases.
- Replaced LEX::lock_option with Yacc_state::m_lock_type
in order to emphasize that this value is relevant only
during parsing. Unlike for LEX::lock_option the default
value for Yacc_state::m_lock_type is TL_READ_DEFAULT.
Note that for cases when it is OK to take a "weak" read
lock (e.g. simple SELECT) this lock type will be converted
to TL_READ at open_tables() time. So this change won't
cause negative change in behavior for such statements.
OTOH this change ensures that, for example, for SELECTs
which are used in stored functions TL_READ_NO_INSERT lock
is taken when necessary and as result calls to such stored
functions can be written to the binary log with correct
serialization.
- To be able more easily distinguish high-priority SELECTs
in st_select_lex::print() method we now use new flag
in st_select_lex::options bit-field.
2010-04-28 14:04:11 +04:00
|
|
|
# Check that all connections opened by test cases in this file are really
|
|
|
|
# gone so execution of other tests won't be affected by their presence.
|
|
|
|
--source include/wait_until_count_sessions.inc
|