mariadb/storage/innobase/trx/trx0roll.cc

985 lines
26 KiB
C++
Raw Normal View History

/*****************************************************************************
Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
2019-05-11 19:25:02 +03:00
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0roll.cc
Transaction rollback
Created 3/26/1996 Heikki Tuuri
*******************************************************/
#include "trx0roll.h"
#include <my_service_manager.h>
#include <mysql/service_wsrep.h>
#include "fsp0fsp.h"
#include "lock0lock.h"
#include "mach0data.h"
#include "pars0pars.h"
#include "que0que.h"
#include "row0mysql.h"
#include "row0undo.h"
#include "srv0mon.h"
#include "srv0start.h"
#include "trx0rec.h"
#include "trx0rseg.h"
#include "trx0sys.h"
#include "trx0trx.h"
#include "trx0undo.h"
#ifdef UNIV_PFS_THREAD
mysql_pfs_key_t trx_rollback_clean_thread_key;
#endif
/** true if trx_rollback_all_recovered() thread is active */
bool trx_rollback_is_active;
2015-02-18 16:20:46 +01:00
/** In crash recovery, the current trx to be rolled back; NULL otherwise */
const trx_t* trx_roll_crash_recv_trx;
/** Finish transaction rollback.
@return whether the rollback was completed normally
@retval false if the rollback was aborted by shutdown */
2020-04-29 15:40:51 +03:00
inline bool trx_t::rollback_finish()
{
2020-04-29 15:40:51 +03:00
mod_tables.clear();
if (UNIV_LIKELY(error_state == DB_SUCCESS))
{
commit();
return true;
}
2020-04-29 15:40:51 +03:00
ut_a(error_state == DB_INTERRUPTED);
2020-08-01 14:42:51 +03:00
ut_ad(srv_shutdown_state != SRV_SHUTDOWN_NONE);
2020-04-29 15:40:51 +03:00
ut_a(!srv_undo_sources);
ut_ad(srv_fast_shutdown);
ut_d(in_rollback= false);
if (trx_undo_t *&undo= rsegs.m_redo.old_insert)
{
UT_LIST_REMOVE(rsegs.m_redo.rseg->old_insert_list, undo);
ut_free(undo);
undo= nullptr;
}
if (trx_undo_t *&undo= rsegs.m_redo.undo)
{
UT_LIST_REMOVE(rsegs.m_redo.rseg->undo_list, undo);
ut_free(undo);
undo= nullptr;
}
if (trx_undo_t *&undo= rsegs.m_noredo.undo)
{
UT_LIST_REMOVE(rsegs.m_noredo.rseg->undo_list, undo);
ut_free(undo);
undo= nullptr;
}
commit_low();
lock.que_state= TRX_QUE_RUNNING;
2020-04-29 15:40:51 +03:00
return false;
}
/** Roll back an active transaction. */
inline void trx_t::rollback_low(trx_savept_t *savept)
{
mem_heap_t *heap= mem_heap_create(512);
roll_node_t *roll_node= roll_node_create(heap);
roll_node->savept= savept;
if (savept)
check_trx_state(this);
else
assert_trx_nonlocking_or_in_list(this);
error_state = DB_SUCCESS;
if (has_logged_or_recovered())
{
ut_ad(rsegs.m_redo.rseg || rsegs.m_noredo.rseg);
que_thr_t *thr= pars_complete_graph_for_exec(roll_node, this, heap,
nullptr);
ut_a(thr == que_fork_start_command(static_cast<que_fork_t*>
(que_node_get_parent(thr))));
que_run_threads(thr);
que_run_threads(roll_node->undo_thr);
/* Free the memory reserved by the undo graph. */
que_graph_free(static_cast<que_t*>(roll_node->undo_thr->common.parent));
}
if (!savept)
{
rollback_finish();
MONITOR_INC(MONITOR_TRX_ROLLBACK);
}
else
{
ut_a(error_state == DB_SUCCESS);
const undo_no_t limit= savept->least_undo_no;
for (trx_mod_tables_t::iterator i= mod_tables.begin();
i != mod_tables.end(); )
{
trx_mod_tables_t::iterator j= i++;
ut_ad(j->second.valid());
if (j->second.rollback(limit))
mod_tables.erase(j);
}
lock.que_state= TRX_QUE_RUNNING;
MONITOR_INC(MONITOR_TRX_ROLLBACK_SAVEPOINT);
}
mem_heap_free(heap);
MONITOR_DEC(MONITOR_TRX_ACTIVE);
}
/** Initiate rollback.
@param savept savepoint
@return error code or DB_SUCCESS */
dberr_t trx_t::rollback(trx_savept_t *savept)
{
ut_ad(!trx_mutex_own(this));
if (state == TRX_STATE_NOT_STARTED)
{
error_state= DB_SUCCESS;
return DB_SUCCESS;
}
ut_ad(state == TRX_STATE_ACTIVE);
2019-01-23 15:30:00 +04:00
#ifdef WITH_WSREP
if (!savept && is_wsrep() && wsrep_thd_is_SR(mysql_thd))
wsrep_handle_SR_rollback(nullptr, mysql_thd);
2019-01-23 15:30:00 +04:00
#endif /* WITH_WSREP */
rollback_low(savept);
return error_state;
}
/*******************************************************************//**
Rollback a transaction used in MySQL.
@return error code or DB_SUCCESS */
static
dberr_t
trx_rollback_for_mysql_low(
/*=======================*/
trx_t* trx) /*!< in/out: transaction */
{
trx->op_info = "rollback";
/* If we are doing the XA recovery of prepared transactions,
then the transaction object does not have an InnoDB session
object, and we set a dummy session that we use for all MySQL
transactions. */
trx->rollback_low();
trx->op_info = "";
return(trx->error_state);
}
/** Rollback a transaction used in MySQL
@param[in, out] trx transaction
@return error code or DB_SUCCESS */
dberr_t trx_rollback_for_mysql(trx_t* trx)
{
/* We are reading trx->state without holding trx->mutex
here, because the rollback should be invoked for a running
active MySQL transaction (or recovered prepared transaction)
that is associated with the current thread. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
trx->will_lock = 0;
ut_ad(trx->mysql_thd);
#ifdef WITH_WSREP
trx->wsrep= false;
trx->lock.was_chosen_as_wsrep_victim= false;
#endif
return(DB_SUCCESS);
case TRX_STATE_ACTIVE:
ut_ad(trx->mysql_thd);
assert_trx_nonlocking_or_in_list(trx);
return(trx_rollback_for_mysql_low(trx));
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
ut_ad(!trx_is_autocommit_non_locking(trx));
MDEV-12288 Reset DB_TRX_ID when the history is removed, to speed up MVCC Let InnoDB purge reset DB_TRX_ID,DB_ROLL_PTR when the history is removed. [TODO: It appears that the resetting is not taking place as often as it could be. We should test that a simple INSERT should eventually cause row_purge_reset_trx_id() to be invoked unless DROP TABLE is invoked soon enough.] The InnoDB clustered index record system columns DB_TRX_ID,DB_ROLL_PTR are used by multi-versioning. After the history is no longer needed, these columns can safely be reset to 0 and 1<<55 (to indicate a fresh insert). When a reader sees 0 in the DB_TRX_ID column, it can instantly determine that the record is present the read view. There is no need to acquire the transaction system mutex to check if the transaction exists, because writes can never be conducted by a transaction whose ID is 0. The persistent InnoDB undo log used to be split into two parts: insert_undo and update_undo. The insert_undo log was discarded at transaction commit or rollback, and the update_undo log was processed by the purge subsystem. As part of this change, we will only generate a single undo log for new transactions, and the purge subsystem will reset the DB_TRX_ID whenever a clustered index record is touched. That is, all persistent undo log will be preserved at transaction commit or rollback, to be removed by purge. The InnoDB redo log format is changed in two ways: We remove the redo log record type MLOG_UNDO_HDR_REUSE, and we introduce the MLOG_ZIP_WRITE_TRX_ID record for updating the DB_TRX_ID,DB_ROLL_PTR in a ROW_FORMAT=COMPRESSED table. This is also changing the format of persistent InnoDB data files: undo log and clustered index leaf page records. It will still be possible via import and export to exchange data files with earlier versions of MariaDB. The change to clustered index leaf page records is simple: we allow DB_TRX_ID to be 0. When it comes to the undo log, we must be able to upgrade from earlier MariaDB versions after a clean shutdown (no redo log to apply). While it would be nice to perform a slow shutdown (innodb_fast_shutdown=0) before an upgrade, to empty the undo logs, we cannot assume that this has been done. So, separate insert_undo log may exist for recovered uncommitted transactions. These transactions may be automatically rolled back, or they may be in XA PREPARE state, in which case InnoDB will preserve the transaction until an explicit XA COMMIT or XA ROLLBACK. Upgrade has been tested by starting up MariaDB 10.2 with ./mysql-test-run --manual-gdb innodb.read_only_recovery and then starting up this patched server with and without --innodb-read-only. trx_undo_ptr_t::undo: Renamed from update_undo. trx_undo_ptr_t::old_insert: Renamed from insert_undo. trx_rseg_t::undo_list: Renamed from update_undo_list. trx_rseg_t::undo_cached: Merged from update_undo_cached and insert_undo_cached. trx_rseg_t::old_insert_list: Renamed from insert_undo_list. row_purge_reset_trx_id(): New function to reset the columns. This will be called for all undo processing in purge that does not remove the clustered index record. trx_undo_update_rec_get_update(): Allow trx_id=0 when copying the old DB_TRX_ID of the record to the undo log. ReadView::changes_visible(): Allow id==0. (Return true for it. This is what speeds up the MVCC.) row_vers_impl_x_locked_low(), row_vers_build_for_semi_consistent_read(): Implement a fast path for DB_TRX_ID=0. Always initialize the TRX_UNDO_PAGE_TYPE to 0. Remove undo->type. MLOG_UNDO_HDR_REUSE: Remove. This changes the redo log format! innobase_start_or_create_for_mysql(): Set srv_undo_sources before starting any transactions. The parsing of the MLOG_ZIP_WRITE_TRX_ID record was successfully tested by running the following: ./mtr --parallel=auto --mysqld=--debug=d,ib_log innodb_zip.bug56680 grep MLOG_ZIP_WRITE_TRX_ID var/*/log/mysqld.1.err
2017-07-07 13:08:16 +03:00
if (trx->rsegs.m_redo.undo || trx->rsegs.m_redo.old_insert) {
/* The XA ROLLBACK of a XA PREPARE transaction
will consist of multiple mini-transactions.
As the very first step of XA ROLLBACK, we must
change the undo log state back from
TRX_UNDO_PREPARED to TRX_UNDO_ACTIVE, in order
to ensure that recovery will complete the
rollback.
Failure to perform this step could cause a
situation where we would roll back part of
a XA PREPARE transaction, the server would be
killed, and finally, the transaction would be
recovered in XA PREPARE state, with some of
the actions already having been rolled back. */
MDEV-12288 Reset DB_TRX_ID when the history is removed, to speed up MVCC Let InnoDB purge reset DB_TRX_ID,DB_ROLL_PTR when the history is removed. [TODO: It appears that the resetting is not taking place as often as it could be. We should test that a simple INSERT should eventually cause row_purge_reset_trx_id() to be invoked unless DROP TABLE is invoked soon enough.] The InnoDB clustered index record system columns DB_TRX_ID,DB_ROLL_PTR are used by multi-versioning. After the history is no longer needed, these columns can safely be reset to 0 and 1<<55 (to indicate a fresh insert). When a reader sees 0 in the DB_TRX_ID column, it can instantly determine that the record is present the read view. There is no need to acquire the transaction system mutex to check if the transaction exists, because writes can never be conducted by a transaction whose ID is 0. The persistent InnoDB undo log used to be split into two parts: insert_undo and update_undo. The insert_undo log was discarded at transaction commit or rollback, and the update_undo log was processed by the purge subsystem. As part of this change, we will only generate a single undo log for new transactions, and the purge subsystem will reset the DB_TRX_ID whenever a clustered index record is touched. That is, all persistent undo log will be preserved at transaction commit or rollback, to be removed by purge. The InnoDB redo log format is changed in two ways: We remove the redo log record type MLOG_UNDO_HDR_REUSE, and we introduce the MLOG_ZIP_WRITE_TRX_ID record for updating the DB_TRX_ID,DB_ROLL_PTR in a ROW_FORMAT=COMPRESSED table. This is also changing the format of persistent InnoDB data files: undo log and clustered index leaf page records. It will still be possible via import and export to exchange data files with earlier versions of MariaDB. The change to clustered index leaf page records is simple: we allow DB_TRX_ID to be 0. When it comes to the undo log, we must be able to upgrade from earlier MariaDB versions after a clean shutdown (no redo log to apply). While it would be nice to perform a slow shutdown (innodb_fast_shutdown=0) before an upgrade, to empty the undo logs, we cannot assume that this has been done. So, separate insert_undo log may exist for recovered uncommitted transactions. These transactions may be automatically rolled back, or they may be in XA PREPARE state, in which case InnoDB will preserve the transaction until an explicit XA COMMIT or XA ROLLBACK. Upgrade has been tested by starting up MariaDB 10.2 with ./mysql-test-run --manual-gdb innodb.read_only_recovery and then starting up this patched server with and without --innodb-read-only. trx_undo_ptr_t::undo: Renamed from update_undo. trx_undo_ptr_t::old_insert: Renamed from insert_undo. trx_rseg_t::undo_list: Renamed from update_undo_list. trx_rseg_t::undo_cached: Merged from update_undo_cached and insert_undo_cached. trx_rseg_t::old_insert_list: Renamed from insert_undo_list. row_purge_reset_trx_id(): New function to reset the columns. This will be called for all undo processing in purge that does not remove the clustered index record. trx_undo_update_rec_get_update(): Allow trx_id=0 when copying the old DB_TRX_ID of the record to the undo log. ReadView::changes_visible(): Allow id==0. (Return true for it. This is what speeds up the MVCC.) row_vers_impl_x_locked_low(), row_vers_build_for_semi_consistent_read(): Implement a fast path for DB_TRX_ID=0. Always initialize the TRX_UNDO_PAGE_TYPE to 0. Remove undo->type. MLOG_UNDO_HDR_REUSE: Remove. This changes the redo log format! innobase_start_or_create_for_mysql(): Set srv_undo_sources before starting any transactions. The parsing of the MLOG_ZIP_WRITE_TRX_ID record was successfully tested by running the following: ./mtr --parallel=auto --mysqld=--debug=d,ib_log innodb_zip.bug56680 grep MLOG_ZIP_WRITE_TRX_ID var/*/log/mysqld.1.err
2017-07-07 13:08:16 +03:00
ut_ad(!trx->rsegs.m_redo.undo
|| trx->rsegs.m_redo.undo->rseg
== trx->rsegs.m_redo.rseg);
ut_ad(!trx->rsegs.m_redo.old_insert
|| trx->rsegs.m_redo.old_insert->rseg
== trx->rsegs.m_redo.rseg);
mtr_t mtr;
mtr.start();
mutex_enter(&trx->rsegs.m_redo.rseg->mutex);
MDEV-12288 Reset DB_TRX_ID when the history is removed, to speed up MVCC Let InnoDB purge reset DB_TRX_ID,DB_ROLL_PTR when the history is removed. [TODO: It appears that the resetting is not taking place as often as it could be. We should test that a simple INSERT should eventually cause row_purge_reset_trx_id() to be invoked unless DROP TABLE is invoked soon enough.] The InnoDB clustered index record system columns DB_TRX_ID,DB_ROLL_PTR are used by multi-versioning. After the history is no longer needed, these columns can safely be reset to 0 and 1<<55 (to indicate a fresh insert). When a reader sees 0 in the DB_TRX_ID column, it can instantly determine that the record is present the read view. There is no need to acquire the transaction system mutex to check if the transaction exists, because writes can never be conducted by a transaction whose ID is 0. The persistent InnoDB undo log used to be split into two parts: insert_undo and update_undo. The insert_undo log was discarded at transaction commit or rollback, and the update_undo log was processed by the purge subsystem. As part of this change, we will only generate a single undo log for new transactions, and the purge subsystem will reset the DB_TRX_ID whenever a clustered index record is touched. That is, all persistent undo log will be preserved at transaction commit or rollback, to be removed by purge. The InnoDB redo log format is changed in two ways: We remove the redo log record type MLOG_UNDO_HDR_REUSE, and we introduce the MLOG_ZIP_WRITE_TRX_ID record for updating the DB_TRX_ID,DB_ROLL_PTR in a ROW_FORMAT=COMPRESSED table. This is also changing the format of persistent InnoDB data files: undo log and clustered index leaf page records. It will still be possible via import and export to exchange data files with earlier versions of MariaDB. The change to clustered index leaf page records is simple: we allow DB_TRX_ID to be 0. When it comes to the undo log, we must be able to upgrade from earlier MariaDB versions after a clean shutdown (no redo log to apply). While it would be nice to perform a slow shutdown (innodb_fast_shutdown=0) before an upgrade, to empty the undo logs, we cannot assume that this has been done. So, separate insert_undo log may exist for recovered uncommitted transactions. These transactions may be automatically rolled back, or they may be in XA PREPARE state, in which case InnoDB will preserve the transaction until an explicit XA COMMIT or XA ROLLBACK. Upgrade has been tested by starting up MariaDB 10.2 with ./mysql-test-run --manual-gdb innodb.read_only_recovery and then starting up this patched server with and without --innodb-read-only. trx_undo_ptr_t::undo: Renamed from update_undo. trx_undo_ptr_t::old_insert: Renamed from insert_undo. trx_rseg_t::undo_list: Renamed from update_undo_list. trx_rseg_t::undo_cached: Merged from update_undo_cached and insert_undo_cached. trx_rseg_t::old_insert_list: Renamed from insert_undo_list. row_purge_reset_trx_id(): New function to reset the columns. This will be called for all undo processing in purge that does not remove the clustered index record. trx_undo_update_rec_get_update(): Allow trx_id=0 when copying the old DB_TRX_ID of the record to the undo log. ReadView::changes_visible(): Allow id==0. (Return true for it. This is what speeds up the MVCC.) row_vers_impl_x_locked_low(), row_vers_build_for_semi_consistent_read(): Implement a fast path for DB_TRX_ID=0. Always initialize the TRX_UNDO_PAGE_TYPE to 0. Remove undo->type. MLOG_UNDO_HDR_REUSE: Remove. This changes the redo log format! innobase_start_or_create_for_mysql(): Set srv_undo_sources before starting any transactions. The parsing of the MLOG_ZIP_WRITE_TRX_ID record was successfully tested by running the following: ./mtr --parallel=auto --mysqld=--debug=d,ib_log innodb_zip.bug56680 grep MLOG_ZIP_WRITE_TRX_ID var/*/log/mysqld.1.err
2017-07-07 13:08:16 +03:00
if (trx_undo_t* undo = trx->rsegs.m_redo.undo) {
trx_undo_set_state_at_prepare(trx, undo, true,
&mtr);
}
MDEV-12288 Reset DB_TRX_ID when the history is removed, to speed up MVCC Let InnoDB purge reset DB_TRX_ID,DB_ROLL_PTR when the history is removed. [TODO: It appears that the resetting is not taking place as often as it could be. We should test that a simple INSERT should eventually cause row_purge_reset_trx_id() to be invoked unless DROP TABLE is invoked soon enough.] The InnoDB clustered index record system columns DB_TRX_ID,DB_ROLL_PTR are used by multi-versioning. After the history is no longer needed, these columns can safely be reset to 0 and 1<<55 (to indicate a fresh insert). When a reader sees 0 in the DB_TRX_ID column, it can instantly determine that the record is present the read view. There is no need to acquire the transaction system mutex to check if the transaction exists, because writes can never be conducted by a transaction whose ID is 0. The persistent InnoDB undo log used to be split into two parts: insert_undo and update_undo. The insert_undo log was discarded at transaction commit or rollback, and the update_undo log was processed by the purge subsystem. As part of this change, we will only generate a single undo log for new transactions, and the purge subsystem will reset the DB_TRX_ID whenever a clustered index record is touched. That is, all persistent undo log will be preserved at transaction commit or rollback, to be removed by purge. The InnoDB redo log format is changed in two ways: We remove the redo log record type MLOG_UNDO_HDR_REUSE, and we introduce the MLOG_ZIP_WRITE_TRX_ID record for updating the DB_TRX_ID,DB_ROLL_PTR in a ROW_FORMAT=COMPRESSED table. This is also changing the format of persistent InnoDB data files: undo log and clustered index leaf page records. It will still be possible via import and export to exchange data files with earlier versions of MariaDB. The change to clustered index leaf page records is simple: we allow DB_TRX_ID to be 0. When it comes to the undo log, we must be able to upgrade from earlier MariaDB versions after a clean shutdown (no redo log to apply). While it would be nice to perform a slow shutdown (innodb_fast_shutdown=0) before an upgrade, to empty the undo logs, we cannot assume that this has been done. So, separate insert_undo log may exist for recovered uncommitted transactions. These transactions may be automatically rolled back, or they may be in XA PREPARE state, in which case InnoDB will preserve the transaction until an explicit XA COMMIT or XA ROLLBACK. Upgrade has been tested by starting up MariaDB 10.2 with ./mysql-test-run --manual-gdb innodb.read_only_recovery and then starting up this patched server with and without --innodb-read-only. trx_undo_ptr_t::undo: Renamed from update_undo. trx_undo_ptr_t::old_insert: Renamed from insert_undo. trx_rseg_t::undo_list: Renamed from update_undo_list. trx_rseg_t::undo_cached: Merged from update_undo_cached and insert_undo_cached. trx_rseg_t::old_insert_list: Renamed from insert_undo_list. row_purge_reset_trx_id(): New function to reset the columns. This will be called for all undo processing in purge that does not remove the clustered index record. trx_undo_update_rec_get_update(): Allow trx_id=0 when copying the old DB_TRX_ID of the record to the undo log. ReadView::changes_visible(): Allow id==0. (Return true for it. This is what speeds up the MVCC.) row_vers_impl_x_locked_low(), row_vers_build_for_semi_consistent_read(): Implement a fast path for DB_TRX_ID=0. Always initialize the TRX_UNDO_PAGE_TYPE to 0. Remove undo->type. MLOG_UNDO_HDR_REUSE: Remove. This changes the redo log format! innobase_start_or_create_for_mysql(): Set srv_undo_sources before starting any transactions. The parsing of the MLOG_ZIP_WRITE_TRX_ID record was successfully tested by running the following: ./mtr --parallel=auto --mysqld=--debug=d,ib_log innodb_zip.bug56680 grep MLOG_ZIP_WRITE_TRX_ID var/*/log/mysqld.1.err
2017-07-07 13:08:16 +03:00
if (trx_undo_t* undo = trx->rsegs.m_redo.old_insert) {
trx_undo_set_state_at_prepare(trx, undo, true,
&mtr);
}
mutex_exit(&trx->rsegs.m_redo.rseg->mutex);
/* Write the redo log for the XA ROLLBACK
state change to the global buffer. It is
not necessary to flush the redo log. If
a durable log write of a later mini-transaction
takes place for whatever reason, then this state
change will be durable as well. */
mtr.commit();
ut_ad(mtr.commit_lsn() > 0);
}
return(trx_rollback_for_mysql_low(trx));
case TRX_STATE_COMMITTED_IN_MEMORY:
check_trx_state(trx);
break;
}
ut_error;
return(DB_CORRUPTION);
}
/*******************************************************************//**
Rollback the latest SQL statement for MySQL.
@return error code or DB_SUCCESS */
dberr_t
trx_rollback_last_sql_stat_for_mysql(
/*=================================*/
trx_t* trx) /*!< in/out: transaction */
{
dberr_t err;
/* We are reading trx->state without holding trx->mutex
here, because the statement rollback should be invoked for a
running active MySQL transaction that is associated with the
current thread. */
ut_ad(trx->mysql_thd);
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
return(DB_SUCCESS);
case TRX_STATE_ACTIVE:
assert_trx_nonlocking_or_in_list(trx);
trx->op_info = "rollback of SQL statement";
err = trx->rollback(&trx->last_sql_stat_start);
if (trx->fts_trx != NULL) {
fts_savepoint_rollback_last_stmt(trx);
}
/* The following call should not be needed,
but we play it safe: */
trx_mark_sql_stat_end(trx);
trx->op_info = "";
return(err);
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
/* The statement rollback is only allowed on an ACTIVE
transaction, not a PREPARED or COMMITTED one. */
break;
}
ut_error;
return(DB_CORRUPTION);
}
/*******************************************************************//**
Search for a savepoint using name.
@return savepoint if found else NULL */
static
trx_named_savept_t*
trx_savepoint_find(
/*===============*/
trx_t* trx, /*!< in: transaction */
const char* name) /*!< in: savepoint name */
{
trx_named_savept_t* savep;
for (savep = UT_LIST_GET_FIRST(trx->trx_savepoints);
savep != NULL;
savep = UT_LIST_GET_NEXT(trx_savepoints, savep)) {
if (!strcmp(savep->name, name)) {
return(savep);
}
}
return(NULL);
}
/*******************************************************************//**
Frees a single savepoint struct. */
static
void
trx_roll_savepoint_free(
/*=====================*/
trx_t* trx, /*!< in: transaction handle */
trx_named_savept_t* savep) /*!< in: savepoint to free */
{
UT_LIST_REMOVE(trx->trx_savepoints, savep);
ut_free(savep->name);
ut_free(savep);
}
/*******************************************************************//**
Frees savepoint structs starting from savep. */
void
trx_roll_savepoints_free(
/*=====================*/
trx_t* trx, /*!< in: transaction handle */
trx_named_savept_t* savep) /*!< in: free all savepoints starting
with this savepoint i*/
{
while (savep != NULL) {
trx_named_savept_t* next_savep;
next_savep = UT_LIST_GET_NEXT(trx_savepoints, savep);
trx_roll_savepoint_free(trx, savep);
savep = next_savep;
}
}
/*******************************************************************//**
Rolls back a transaction back to a named savepoint. Modifications after the
savepoint are undone but InnoDB does NOT release the corresponding locks
which are stored in memory. If a lock is 'implicit', that is, a new inserted
row holds a lock where the lock information is carried by the trx id stored in
the row, these locks are naturally released in the rollback. Savepoints which
were set after this savepoint are deleted.
@return if no savepoint of the name found then DB_NO_SAVEPOINT,
otherwise DB_SUCCESS */
2016-06-21 14:21:03 +02:00
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
trx_rollback_to_savepoint_for_mysql_low(
/*====================================*/
trx_t* trx, /*!< in/out: transaction */
trx_named_savept_t* savep, /*!< in/out: savepoint */
int64_t* mysql_binlog_cache_pos)
/*!< out: the MySQL binlog
cache position corresponding
to this savepoint; MySQL needs
this information to remove the
binlog entries of the queries
executed after the savepoint */
{
dberr_t err;
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
ut_ad(trx->mysql_thd);
/* Free all savepoints strictly later than savep. */
trx_roll_savepoints_free(
trx, UT_LIST_GET_NEXT(trx_savepoints, savep));
*mysql_binlog_cache_pos = savep->mysql_binlog_cache_pos;
trx->op_info = "rollback to a savepoint";
err = trx->rollback(&savep->savept);
/* Store the current undo_no of the transaction so that
we know where to roll back if we have to roll back the
next SQL statement: */
trx_mark_sql_stat_end(trx);
trx->op_info = "";
#ifdef WITH_WSREP
2020-04-27 17:38:17 +03:00
trx->lock.was_chosen_as_wsrep_victim = false;
#endif
return(err);
}
/*******************************************************************//**
Rolls back a transaction back to a named savepoint. Modifications after the
savepoint are undone but InnoDB does NOT release the corresponding locks
which are stored in memory. If a lock is 'implicit', that is, a new inserted
row holds a lock where the lock information is carried by the trx id stored in
the row, these locks are naturally released in the rollback. Savepoints which
were set after this savepoint are deleted.
@return if no savepoint of the name found then DB_NO_SAVEPOINT,
otherwise DB_SUCCESS */
dberr_t
trx_rollback_to_savepoint_for_mysql(
/*================================*/
trx_t* trx, /*!< in: transaction handle */
const char* savepoint_name, /*!< in: savepoint name */
int64_t* mysql_binlog_cache_pos) /*!< out: the MySQL binlog cache
position corresponding to this
savepoint; MySQL needs this
information to remove the
binlog entries of the queries
executed after the savepoint */
{
trx_named_savept_t* savep;
/* We are reading trx->state without holding trx->mutex
here, because the savepoint rollback should be invoked for a
running active MySQL transaction that is associated with the
current thread. */
ut_ad(trx->mysql_thd);
savep = trx_savepoint_find(trx, savepoint_name);
if (savep == NULL) {
return(DB_NO_SAVEPOINT);
}
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
ib::error() << "Transaction has a savepoint "
<< savep->name
<< " though it is not started";
return(DB_ERROR);
case TRX_STATE_ACTIVE:
return(trx_rollback_to_savepoint_for_mysql_low(
trx, savep, mysql_binlog_cache_pos));
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
/* The savepoint rollback is only allowed on an ACTIVE
transaction, not a PREPARED or COMMITTED one. */
break;
}
ut_error;
return(DB_CORRUPTION);
}
/*******************************************************************//**
Creates a named savepoint. If the transaction is not yet started, starts it.
If there is already a savepoint of the same name, this call erases that old
savepoint and replaces it with a new. Savepoints are deleted in a transaction
commit or rollback.
@return always DB_SUCCESS */
dberr_t
trx_savepoint_for_mysql(
/*====================*/
trx_t* trx, /*!< in: transaction handle */
const char* savepoint_name, /*!< in: savepoint name */
int64_t binlog_cache_pos) /*!< in: MySQL binlog cache
position corresponding to this
connection at the time of the
savepoint */
{
trx_named_savept_t* savep;
trx_start_if_not_started_xa(trx, false);
savep = trx_savepoint_find(trx, savepoint_name);
if (savep) {
/* There is a savepoint with the same name: free that */
UT_LIST_REMOVE(trx->trx_savepoints, savep);
ut_free(savep->name);
ut_free(savep);
}
/* Create a new savepoint and add it as the last in the list */
savep = static_cast<trx_named_savept_t*>(
ut_malloc_nokey(sizeof(*savep)));
savep->name = mem_strdup(savepoint_name);
savep->savept = trx_savept_take(trx);
savep->mysql_binlog_cache_pos = binlog_cache_pos;
UT_LIST_ADD_LAST(trx->trx_savepoints, savep);
return(DB_SUCCESS);
}
/*******************************************************************//**
Releases only the named savepoint. Savepoints which were set after this
savepoint are left as is.
@return if no savepoint of the name found then DB_NO_SAVEPOINT,
otherwise DB_SUCCESS */
dberr_t
trx_release_savepoint_for_mysql(
/*============================*/
trx_t* trx, /*!< in: transaction handle */
const char* savepoint_name) /*!< in: savepoint name */
{
trx_named_savept_t* savep;
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE, true)
|| trx_state_eq(trx, TRX_STATE_PREPARED, true));
ut_ad(trx->mysql_thd);
savep = trx_savepoint_find(trx, savepoint_name);
if (savep != NULL) {
trx_roll_savepoint_free(trx, savep);
}
return(savep != NULL ? DB_SUCCESS : DB_NO_SAVEPOINT);
}
/*******************************************************************//**
Returns a transaction savepoint taken at this point in time.
@return savepoint */
trx_savept_t
trx_savept_take(
/*============*/
trx_t* trx) /*!< in: transaction */
{
trx_savept_t savept;
savept.least_undo_no = trx->undo_no;
return(savept);
}
/*******************************************************************//**
Roll back an active transaction. */
static
void
trx_rollback_active(
/*================*/
trx_t* trx) /*!< in/out: transaction */
{
mem_heap_t* heap;
que_fork_t* fork;
que_thr_t* thr;
roll_node_t* roll_node;
const trx_id_t trx_id = trx->id;
ut_ad(trx_id);
heap = mem_heap_create(512);
fork = que_fork_create(NULL, NULL, QUE_FORK_RECOVERY, heap);
fork->trx = trx;
thr = que_thr_create(fork, heap, NULL);
roll_node = roll_node_create(heap);
thr->child = roll_node;
roll_node->common.parent = thr;
trx->graph = fork;
ut_a(thr == que_fork_start_command(fork));
trx_roll_crash_recv_trx = trx;
const bool dictionary_locked = trx_get_dict_operation(trx)
!= TRX_DICT_OP_NONE;
if (dictionary_locked) {
row_mysql_lock_data_dictionary(trx);
}
que_run_threads(thr);
ut_a(roll_node->undo_thr != NULL);
que_run_threads(roll_node->undo_thr);
que_graph_free(
static_cast<que_t*>(roll_node->undo_thr->common.parent));
2020-04-29 15:40:51 +03:00
if (UNIV_UNLIKELY(!trx->rollback_finish())) {
ut_ad(!dictionary_locked);
goto func_exit;
}
ut_a(trx->lock.que_state == TRX_QUE_RUNNING);
if (!dictionary_locked || !trx->table_id) {
} else if (dict_table_t* table = dict_table_open_on_id(
trx->table_id, TRUE, DICT_TABLE_OP_NORMAL)) {
ib::info() << "Dropping table " << table->name
<< ", with id " << trx->table_id
<< " in recovery";
dict_table_close_and_drop(trx, table);
trx_commit_for_mysql(trx);
}
ib::info() << "Rolled back recovered transaction " << trx_id;
func_exit:
if (dictionary_locked) {
row_mysql_unlock_data_dictionary(trx);
}
mem_heap_free(heap);
trx_roll_crash_recv_trx = NULL;
}
struct trx_roll_count_callback_arg
{
uint32_t n_trx;
uint64_t n_rows;
trx_roll_count_callback_arg(): n_trx(0), n_rows(0) {}
};
static my_bool trx_roll_count_callback(rw_trx_hash_element_t *element,
trx_roll_count_callback_arg *arg)
{
mutex_enter(&element->mutex);
if (trx_t *trx= element->trx)
{
if (trx->is_recovered && trx_state_eq(trx, TRX_STATE_ACTIVE))
{
arg->n_trx++;
arg->n_rows+= trx->undo_no;
}
}
mutex_exit(&element->mutex);
return 0;
}
/** Report progress when rolling back a row of a recovered transaction. */
void trx_roll_report_progress()
{
time_t now = time(NULL);
mutex_enter(&recv_sys.mutex);
2019-07-25 18:42:06 +03:00
bool report = recv_sys.report(now);
mutex_exit(&recv_sys.mutex);
if (report) {
trx_roll_count_callback_arg arg;
/* Get number of recovered active transactions and number of
rows they modified. Numbers must be accurate, because only this
thread is allowed to touch recovered transactions. */
trx_sys.rw_trx_hash.iterate_no_dups(
trx_roll_count_callback, &arg);
if (arg.n_rows > 0) {
service_manager_extend_timeout(
INNODB_EXTEND_TIMEOUT_INTERVAL,
"To roll back: " UINT32PF " transactions, "
UINT64PF " rows", arg.n_trx, arg.n_rows);
}
ib::info() << "To roll back: " << arg.n_trx
<< " transactions, " << arg.n_rows << " rows";
}
}
static my_bool trx_rollback_recovered_callback(rw_trx_hash_element_t *element,
std::vector<trx_t*> *trx_list)
{
mutex_enter(&element->mutex);
if (trx_t *trx= element->trx)
{
mutex_enter(&trx->mutex);
if (trx_state_eq(trx, TRX_STATE_ACTIVE) && trx->is_recovered)
trx_list->push_back(trx);
mutex_exit(&trx->mutex);
}
mutex_exit(&element->mutex);
return 0;
}
/**
Rollback any incomplete transactions which were encountered in crash recovery.
If the transaction already was committed, then we clean up a possible insert
undo log. If the transaction was not yet committed, then we roll it back.
Note: For XA recovered transactions, we rely on MySQL to
do rollback. They will be in TRX_STATE_PREPARED state. If the server
is shutdown and they are still lingering in trx_sys_t::trx_list
then the shutdown will hang.
@param[in] all true=roll back all recovered active transactions;
false=roll back any incomplete dictionary transaction
*/
void trx_rollback_recovered(bool all)
{
std::vector<trx_t*> trx_list;
ut_a(srv_force_recovery < SRV_FORCE_NO_TRX_UNDO);
/*
Collect list of recovered ACTIVE transaction ids first. Once collected, no
other thread is allowed to modify or remove these transactions from
rw_trx_hash.
*/
trx_sys.rw_trx_hash.iterate_no_dups(trx_rollback_recovered_callback,
&trx_list);
while (!trx_list.empty())
{
trx_t *trx= trx_list.back();
trx_list.pop_back();
ut_ad(trx);
ut_d(trx_mutex_enter(trx));
ut_ad(trx->is_recovered);
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
ut_d(trx_mutex_exit(trx));
2020-07-31 13:51:28 +03:00
if (srv_shutdown_state != SRV_SHUTDOWN_NONE && !srv_undo_sources &&
srv_fast_shutdown)
goto discard;
if (all || trx_get_dict_operation(trx) != TRX_DICT_OP_NONE
|| trx->has_stats_table_lock())
{
trx_rollback_active(trx);
if (trx->error_state != DB_SUCCESS)
{
ut_ad(trx->error_state == DB_INTERRUPTED);
trx->error_state= DB_SUCCESS;
ut_ad(!srv_undo_sources);
ut_ad(srv_fast_shutdown);
discard:
/* Note: before kill_server() invoked innobase_end() via
unireg_end(), it invoked close_connections(), which should initiate
the rollback of any user transactions via THD::cleanup() in the
connection threads, and wait for all THD::cleanup() to complete.
So, no active user transactions should exist at this point.
srv_undo_sources=false was cleared early in innobase_end().
Generally, the server guarantees that all connections using
InnoDB must be disconnected by the time we are reaching this code,
be it during shutdown or UNINSTALL PLUGIN.
Because there is no possible race condition with any
concurrent user transaction, we do not have to invoke
trx->commit_state() or wait for !trx->is_referenced()
before trx_sys.deregister_rw(trx). */
trx_sys.deregister_rw(trx);
trx_free_at_shutdown(trx);
}
else
2020-08-21 19:18:34 +03:00
trx->free();
}
}
}
/*******************************************************************//**
Rollback or clean up any incomplete transactions which were
encountered in crash recovery. If the transaction already was
committed, then we clean up a possible insert undo log. If the
transaction was not yet committed, then we roll it back.
Note: this is done in a background thread.
@return a dummy parameter */
extern "C"
os_thread_ret_t
DECLARE_THREAD(trx_rollback_all_recovered)(void*)
{
my_thread_init();
ut_ad(!srv_read_only_mode);
#ifdef UNIV_PFS_THREAD
pfs_register_thread(trx_rollback_clean_thread_key);
#endif /* UNIV_PFS_THREAD */
if (trx_sys.rw_trx_hash.size()) {
ib::info() << "Starting in background the rollback of"
" recovered transactions";
trx_rollback_recovered(true);
ib::info() << "Rollback of non-prepared transactions"
" completed";
}
trx_rollback_is_active = false;
2015-02-18 16:20:46 +01:00
my_thread_end();
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit();
OS_THREAD_DUMMY_RETURN;
}
/****************************************************************//**
Builds an undo 'query' graph for a transaction. The actual rollback is
performed by executing this query graph like a query subprocedure call.
The reply about the completion of the rollback will be sent by this
graph.
@return own: the query graph */
static
que_t*
trx_roll_graph_build(
/*=================*/
trx_t* trx) /*!< in/out: transaction */
{
mem_heap_t* heap;
que_fork_t* fork;
que_thr_t* thr;
ut_ad(trx_mutex_own(trx));
heap = mem_heap_create(512);
fork = que_fork_create(NULL, NULL, QUE_FORK_ROLLBACK, heap);
fork->trx = trx;
thr = que_thr_create(fork, heap, NULL);
thr->child = row_undo_node_create(trx, thr, heap);
return(fork);
}
/*********************************************************************//**
Starts a rollback operation, creates the UNDO graph that will do the
actual undo operation.
@return query graph thread that will perform the UNDO operations. */
static
que_thr_t*
trx_rollback_start(
/*===============*/
trx_t* trx, /*!< in: transaction */
undo_no_t roll_limit) /*!< in: rollback to undo no (for
partial undo), 0 if we are rolling back
the entire transaction */
{
ut_ad(trx_mutex_own(trx));
/* Initialize the rollback field in the transaction */
ut_ad(!trx->roll_limit);
ut_ad(!trx->in_rollback);
trx->roll_limit = roll_limit;
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
trx->in_rollback = true;
ut_a(trx->roll_limit <= trx->undo_no);
trx->pages_undone = 0;
/* Build a 'query' graph which will perform the undo operations */
que_t* roll_graph = trx_roll_graph_build(trx);
trx->graph = roll_graph;
trx->lock.que_state = TRX_QUE_ROLLING_BACK;
return(que_fork_start_command(roll_graph));
}
/*********************************************************************//**
Creates a rollback command node struct.
@return own: rollback node struct */
roll_node_t*
roll_node_create(
/*=============*/
mem_heap_t* heap) /*!< in: mem heap where created */
{
roll_node_t* node;
node = static_cast<roll_node_t*>(mem_heap_zalloc(heap, sizeof(*node)));
node->state = ROLL_NODE_SEND;
node->common.type = QUE_NODE_ROLLBACK;
return(node);
}
/***********************************************************//**
Performs an execution step for a rollback command node in a query graph.
@return query thread to run next, or NULL */
que_thr_t*
trx_rollback_step(
/*==============*/
que_thr_t* thr) /*!< in: query thread */
{
roll_node_t* node;
node = static_cast<roll_node_t*>(thr->run_node);
ut_ad(que_node_get_type(node) == QUE_NODE_ROLLBACK);
if (thr->prev_node == que_node_get_parent(node)) {
node->state = ROLL_NODE_SEND;
}
if (node->state == ROLL_NODE_SEND) {
trx_t* trx;
ib_id_t roll_limit;
trx = thr_get_trx(thr);
trx_mutex_enter(trx);
node->state = ROLL_NODE_WAIT;
ut_a(node->undo_thr == NULL);
roll_limit = node->savept ? node->savept->least_undo_no : 0;
trx_commit_or_rollback_prepare(trx);
node->undo_thr = trx_rollback_start(trx, roll_limit);
trx_mutex_exit(trx);
} else {
ut_ad(node->state == ROLL_NODE_WAIT);
thr->run_node = que_node_get_parent(node);
}
return(thr);
}