2009-11-30 16:55:03 +01:00
|
|
|
#ifndef MDL_H
|
|
|
|
#define MDL_H
|
|
|
|
/* Copyright (C) 2007-2008 MySQL AB
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
|
|
|
|
|
|
#include "sql_plist.h"
|
|
|
|
#include <my_sys.h>
|
|
|
|
#include <m_string.h>
|
2009-12-02 17:31:57 +01:00
|
|
|
#include <mysql_com.h>
|
2009-11-30 16:55:03 +01:00
|
|
|
|
|
|
|
class THD;
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
class MDL_context;
|
|
|
|
class MDL_lock;
|
|
|
|
class MDL_ticket;
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
class Deadlock_detection_context;
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-01 14:59:11 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Type of metadata lock request.
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2010-01-21 21:43:03 +01:00
|
|
|
@sa Comments for MDL_object_lock::can_grant_lock() and
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
MDL_global_lock::can_grant_lock() for details.
|
2009-12-01 14:59:11 +01:00
|
|
|
*/
|
2009-11-30 16:55:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
enum enum_mdl_type {
|
|
|
|
/*
|
|
|
|
An intention exclusive metadata lock. Used only for global locks.
|
|
|
|
Owner of this type of lock can acquire upgradable exclusive locks on
|
|
|
|
individual objects.
|
|
|
|
Compatible with other IX locks, but is incompatible with global S lock.
|
|
|
|
*/
|
|
|
|
MDL_INTENTION_EXCLUSIVE= 0,
|
|
|
|
/*
|
|
|
|
A shared metadata lock.
|
|
|
|
To be used in cases when we are interested in object metadata only
|
|
|
|
and there is no intention to access object data (e.g. for stored
|
|
|
|
routines or during preparing prepared statements).
|
|
|
|
We also mis-use this type of lock for open HANDLERs, since lock
|
|
|
|
acquired by this statement has to be compatible with lock acquired
|
|
|
|
by LOCK TABLES ... WRITE statement, i.e. SNRW (We can't get by by
|
|
|
|
acquiring S lock at HANDLER ... OPEN time and upgrading it to SR
|
|
|
|
lock for HANDLER ... READ as it doesn't solve problem with need
|
|
|
|
to abort DML statements which wait on table level lock while having
|
|
|
|
open HANDLER in the same connection).
|
|
|
|
To avoid deadlock which may occur when SNRW lock is being upgraded to
|
|
|
|
X lock for table on which there is an active S lock which is owned by
|
|
|
|
thread which waits in its turn for table-level lock owned by thread
|
|
|
|
performing upgrade we have to use thr_abort_locks_for_thread()
|
|
|
|
facility in such situation.
|
|
|
|
This problem does not arise for locks on stored routines as we don't
|
|
|
|
use SNRW locks for them. It also does not arise when S locks are used
|
|
|
|
during PREPARE calls as table-level locks are not acquired in this
|
|
|
|
case.
|
|
|
|
*/
|
|
|
|
MDL_SHARED,
|
|
|
|
/*
|
|
|
|
A high priority shared metadata lock.
|
|
|
|
Used for cases when there is no intention to access object data (i.e.
|
|
|
|
data in the table).
|
|
|
|
"High priority" means that, unlike other shared locks, it is granted
|
|
|
|
ignoring pending requests for exclusive locks. Intended for use in
|
|
|
|
cases when we only need to access metadata and not data, e.g. when
|
|
|
|
filling an INFORMATION_SCHEMA table.
|
|
|
|
Since SH lock is compatible with SNRW lock, the connection that
|
|
|
|
holds SH lock lock should not try to acquire any kind of table-level
|
|
|
|
or row-level lock, as this can lead to a deadlock. Moreover, after
|
|
|
|
acquiring SH lock, the connection should not wait for any other
|
|
|
|
resource, as it might cause starvation for X locks and a potential
|
|
|
|
deadlock during upgrade of SNW or SNRW to X lock (e.g. if the
|
|
|
|
upgrading connection holds the resource that is being waited for).
|
|
|
|
*/
|
|
|
|
MDL_SHARED_HIGH_PRIO,
|
|
|
|
/*
|
|
|
|
A shared metadata lock for cases when there is an intention to read data
|
|
|
|
from table.
|
|
|
|
A connection holding this kind of lock can read table metadata and read
|
|
|
|
table data (after acquiring appropriate table and row-level locks).
|
|
|
|
This means that one can only acquire TL_READ, TL_READ_NO_INSERT, and
|
|
|
|
similar table-level locks on table if one holds SR MDL lock on it.
|
|
|
|
To be used for tables in SELECTs, subqueries, and LOCK TABLE ... READ
|
|
|
|
statements.
|
|
|
|
*/
|
|
|
|
MDL_SHARED_READ,
|
|
|
|
/*
|
|
|
|
A shared metadata lock for cases when there is an intention to modify
|
|
|
|
(and not just read) data in the table.
|
|
|
|
A connection holding SW lock can read table metadata and modify or read
|
|
|
|
table data (after acquiring appropriate table and row-level locks).
|
|
|
|
To be used for tables to be modified by INSERT, UPDATE, DELETE
|
|
|
|
statements, but not LOCK TABLE ... WRITE or DDL). Also taken by
|
|
|
|
SELECT ... FOR UPDATE.
|
|
|
|
*/
|
|
|
|
MDL_SHARED_WRITE,
|
|
|
|
/*
|
|
|
|
An upgradable shared metadata lock which blocks all attempts to update
|
|
|
|
table data, allowing reads.
|
|
|
|
A connection holding this kind of lock can read table metadata and read
|
|
|
|
table data.
|
|
|
|
Can be upgraded to X metadata lock.
|
|
|
|
Note, that since this type of lock is not compatible with SNRW or SW
|
|
|
|
lock types, acquiring appropriate engine-level locks for reading
|
|
|
|
(TL_READ* for MyISAM, shared row locks in InnoDB) should be
|
|
|
|
contention-free.
|
|
|
|
To be used for the first phase of ALTER TABLE, when copying data between
|
|
|
|
tables, to allow concurrent SELECTs from the table, but not UPDATEs.
|
|
|
|
*/
|
|
|
|
MDL_SHARED_NO_WRITE,
|
|
|
|
/*
|
|
|
|
An upgradable shared metadata lock which allows other connections
|
|
|
|
to access table metadata, but not data.
|
|
|
|
It blocks all attempts to read or update table data, while allowing
|
|
|
|
INFORMATION_SCHEMA and SHOW queries.
|
|
|
|
A connection holding this kind of lock can read table metadata modify and
|
|
|
|
read table data.
|
|
|
|
Can be upgraded to X metadata lock.
|
|
|
|
To be used for LOCK TABLES WRITE statement.
|
|
|
|
Not compatible with any other lock type except S and SH.
|
|
|
|
*/
|
|
|
|
MDL_SHARED_NO_READ_WRITE,
|
|
|
|
/*
|
|
|
|
An exclusive metadata lock.
|
|
|
|
A connection holding this lock can modify both table's metadata and data.
|
|
|
|
No other type of metadata lock can be granted while this lock is held.
|
|
|
|
To be used for CREATE/DROP/RENAME TABLE statements and for execution of
|
|
|
|
certain phases of other DDL statements.
|
|
|
|
*/
|
|
|
|
MDL_EXCLUSIVE,
|
|
|
|
/* This should be the last !!! */
|
|
|
|
MDL_TYPE_END};
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
|
|
|
|
/** Maximal length of key for metadata locking subsystem. */
|
|
|
|
#define MAX_MDLKEY_LENGTH (1 + NAME_LEN + 1 + NAME_LEN + 1)
|
2009-11-30 16:55:03 +01:00
|
|
|
|
|
|
|
|
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Metadata lock object key.
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2009-12-04 00:34:19 +01:00
|
|
|
A lock is requested or granted based on a fully qualified name and type.
|
|
|
|
E.g. They key for a table consists of <0 (=table)>+<database>+<table name>.
|
|
|
|
Elsewhere in the comments this triple will be referred to simply as "key"
|
|
|
|
or "name".
|
2009-11-30 16:55:03 +01:00
|
|
|
*/
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
class MDL_key
|
2009-11-30 16:55:03 +01:00
|
|
|
{
|
2009-12-04 00:29:40 +01:00
|
|
|
public:
|
2009-12-10 09:21:38 +01:00
|
|
|
/**
|
|
|
|
Object namespaces
|
|
|
|
|
|
|
|
Different types of objects exist in different namespaces
|
|
|
|
- TABLE is for tables and views.
|
|
|
|
- FUNCTION is for stored functions.
|
|
|
|
- PROCEDURE is for stored procedures.
|
|
|
|
- TRIGGER is for triggers.
|
|
|
|
Note that although there isn't metadata locking on triggers,
|
|
|
|
it's necessary to have a separate namespace for them since
|
|
|
|
MDL_key is also used outside of the MDL subsystem.
|
|
|
|
*/
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
enum enum_mdl_namespace { GLOBAL=0,
|
|
|
|
TABLE,
|
2009-12-10 09:21:38 +01:00
|
|
|
FUNCTION,
|
|
|
|
PROCEDURE,
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
TRIGGER };
|
2009-12-10 09:21:38 +01:00
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
const uchar *ptr() const { return (uchar*) m_ptr; }
|
|
|
|
uint length() const { return m_length; }
|
|
|
|
|
|
|
|
const char *db_name() const { return m_ptr + 1; }
|
|
|
|
uint db_name_length() const { return m_db_name_length; }
|
|
|
|
|
2009-12-09 17:11:26 +01:00
|
|
|
const char *name() const { return m_ptr + m_db_name_length + 2; }
|
|
|
|
uint name_length() const { return m_length - m_db_name_length - 3; }
|
|
|
|
|
|
|
|
enum_mdl_namespace mdl_namespace() const
|
|
|
|
{ return (enum_mdl_namespace)(m_ptr[0]); }
|
2009-11-30 16:55:03 +01:00
|
|
|
|
|
|
|
/**
|
2010-01-21 21:43:03 +01:00
|
|
|
Construct a metadata lock key from a triplet (mdl_namespace,
|
|
|
|
database and name).
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-09 09:51:20 +01:00
|
|
|
@remark The key for a table is <mdl_namespace>+<database name>+<table name>
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-09 09:51:20 +01:00
|
|
|
@param mdl_namespace Id of namespace of object to be locked
|
|
|
|
@param db Name of database to which the object belongs
|
|
|
|
@param name Name of of the object
|
|
|
|
@param key Where to store the the MDL key.
|
2009-11-30 16:55:03 +01:00
|
|
|
*/
|
2010-01-21 21:43:03 +01:00
|
|
|
void mdl_key_init(enum_mdl_namespace mdl_namespace,
|
|
|
|
const char *db, const char *name)
|
2009-12-04 00:29:40 +01:00
|
|
|
{
|
2009-12-09 09:51:20 +01:00
|
|
|
m_ptr[0]= (char) mdl_namespace;
|
2010-01-21 21:43:03 +01:00
|
|
|
m_db_name_length= (uint16) (strmov(m_ptr + 1, db) - m_ptr - 1);
|
|
|
|
m_length= (uint16) (strmov(m_ptr + m_db_name_length + 2, name) - m_ptr + 1);
|
2009-12-04 00:29:40 +01:00
|
|
|
}
|
2009-12-04 00:52:05 +01:00
|
|
|
void mdl_key_init(const MDL_key *rhs)
|
2009-12-04 00:29:40 +01:00
|
|
|
{
|
|
|
|
memcpy(m_ptr, rhs->m_ptr, rhs->m_length);
|
|
|
|
m_length= rhs->m_length;
|
|
|
|
m_db_name_length= rhs->m_db_name_length;
|
|
|
|
}
|
2009-12-04 00:52:05 +01:00
|
|
|
bool is_equal(const MDL_key *rhs) const
|
2009-12-04 00:29:40 +01:00
|
|
|
{
|
|
|
|
return (m_length == rhs->m_length &&
|
|
|
|
memcmp(m_ptr, rhs->m_ptr, m_length) == 0);
|
|
|
|
}
|
2010-01-21 21:43:03 +01:00
|
|
|
/**
|
|
|
|
Compare two MDL keys lexicographically.
|
|
|
|
*/
|
|
|
|
int cmp(const MDL_key *rhs) const
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The key buffer is always '\0'-terminated. Since key
|
|
|
|
character set is utf-8, we can safely assume that no
|
|
|
|
character starts with a zero byte.
|
|
|
|
*/
|
|
|
|
return memcmp(m_ptr, rhs->m_ptr, min(m_length, rhs->m_length)+1);
|
|
|
|
}
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_key(const MDL_key *rhs)
|
|
|
|
{
|
|
|
|
mdl_key_init(rhs);
|
|
|
|
}
|
2010-01-21 21:43:03 +01:00
|
|
|
MDL_key(enum_mdl_namespace namespace_arg,
|
|
|
|
const char *db_arg, const char *name_arg)
|
2009-12-04 00:52:05 +01:00
|
|
|
{
|
2009-12-09 09:51:20 +01:00
|
|
|
mdl_key_init(namespace_arg, db_arg, name_arg);
|
2009-12-04 00:52:05 +01:00
|
|
|
}
|
|
|
|
MDL_key() {} /* To use when part of MDL_request. */
|
2009-12-09 09:51:20 +01:00
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
private:
|
2010-01-21 21:43:03 +01:00
|
|
|
uint16 m_length;
|
|
|
|
uint16 m_db_name_length;
|
2009-12-04 00:29:40 +01:00
|
|
|
char m_ptr[MAX_MDLKEY_LENGTH];
|
2009-12-04 00:52:05 +01:00
|
|
|
private:
|
|
|
|
MDL_key(const MDL_key &); /* not implemented */
|
|
|
|
MDL_key &operator=(const MDL_key &); /* not implemented */
|
2009-11-30 16:55:03 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2009-11-30 16:55:03 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Hook class which via its methods specifies which members
|
|
|
|
of T should be used for participating in MDL lists.
|
2009-11-30 16:55:03 +01:00
|
|
|
*/
|
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
template <typename T, T* T::*next, T** T::*prev>
|
|
|
|
struct I_P_List_adapter
|
2009-11-30 16:55:03 +01:00
|
|
|
{
|
2009-12-04 00:29:40 +01:00
|
|
|
static inline T **next_ptr(T *el) { return &(el->*next); }
|
|
|
|
|
|
|
|
static inline T ***prev_ptr(T *el) { return &(el->*prev); }
|
2009-11-30 16:55:03 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
A pending metadata lock request.
|
2009-12-04 00:52:05 +01:00
|
|
|
|
|
|
|
A lock request and a granted metadata lock are represented by
|
|
|
|
different classes because they have different allocation
|
2009-12-04 00:34:19 +01:00
|
|
|
sites and hence different lifetimes. The allocation of lock requests is
|
|
|
|
controlled from outside of the MDL subsystem, while allocation of granted
|
|
|
|
locks (tickets) is controlled within the MDL subsystem.
|
2009-12-04 00:52:05 +01:00
|
|
|
|
|
|
|
MDL_request is a C structure, you don't need to call a constructor
|
|
|
|
or destructor for it.
|
2009-11-30 16:55:03 +01:00
|
|
|
*/
|
|
|
|
|
2009-12-04 00:57:01 +01:00
|
|
|
class MDL_request
|
2009-11-30 16:55:03 +01:00
|
|
|
{
|
2009-12-04 00:57:01 +01:00
|
|
|
public:
|
2009-12-04 00:29:40 +01:00
|
|
|
/** Type of metadata lock. */
|
|
|
|
enum enum_mdl_type type;
|
|
|
|
|
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Pointers for participating in the list of lock requests for this context.
|
2009-12-04 00:29:40 +01:00
|
|
|
*/
|
2009-12-08 10:57:07 +01:00
|
|
|
MDL_request *next_in_list;
|
|
|
|
MDL_request **prev_in_list;
|
|
|
|
/**
|
|
|
|
Pointer to the lock ticket object for this lock request.
|
|
|
|
Valid only if this lock request is satisfied.
|
|
|
|
*/
|
|
|
|
MDL_ticket *ticket;
|
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
/** A lock is requested based on a fully qualified name and type. */
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_key key;
|
|
|
|
|
2009-12-08 10:57:07 +01:00
|
|
|
public:
|
2009-12-10 09:21:38 +01:00
|
|
|
void init(MDL_key::enum_mdl_namespace namespace_arg,
|
|
|
|
const char *db_arg, const char *name_arg,
|
2009-12-08 10:57:07 +01:00
|
|
|
enum_mdl_type mdl_type_arg);
|
2009-12-09 17:11:26 +01:00
|
|
|
void init(const MDL_key *key_arg, enum_mdl_type mdl_type_arg);
|
2009-12-04 00:52:05 +01:00
|
|
|
/** Set type of lock request. Can be only applied to pending locks. */
|
|
|
|
inline void set_type(enum_mdl_type type_arg)
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(ticket == NULL);
|
|
|
|
type= type_arg;
|
|
|
|
}
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
uint get_deadlock_weight() const;
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2009-12-10 09:21:38 +01:00
|
|
|
static MDL_request *create(MDL_key::enum_mdl_namespace mdl_namespace,
|
|
|
|
const char *db, const char *name,
|
|
|
|
enum_mdl_type mdl_type, MEM_ROOT *root);
|
2009-12-08 10:57:07 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
This is to work around the ugliness of TABLE_LIST
|
|
|
|
compiler-generated assignment operator. It is currently used
|
|
|
|
in several places to quickly copy "most" of the members of the
|
|
|
|
table list. These places currently never assume that the mdl
|
|
|
|
request is carried over to the new TABLE_LIST, or shared
|
|
|
|
between lists.
|
|
|
|
|
|
|
|
This method does not initialize the instance being assigned!
|
|
|
|
Use of init() for initialization after this assignment operator
|
|
|
|
is mandatory. Can only be used before the request has been
|
|
|
|
granted.
|
|
|
|
*/
|
|
|
|
MDL_request& operator=(const MDL_request &rhs)
|
|
|
|
{
|
|
|
|
ticket= NULL;
|
|
|
|
/* Do nothing, in particular, don't try to copy the key. */
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
/* Another piece of ugliness for TABLE_LIST constructor */
|
|
|
|
MDL_request() {}
|
2009-12-04 00:52:05 +01:00
|
|
|
|
2009-12-08 10:57:07 +01:00
|
|
|
MDL_request(const MDL_request *rhs)
|
|
|
|
:type(rhs->type),
|
|
|
|
ticket(NULL),
|
|
|
|
key(&rhs->key)
|
|
|
|
{}
|
2009-12-04 00:29:40 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
typedef void (*mdl_cached_object_release_hook)(void *);
|
|
|
|
|
2009-12-04 00:29:40 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
A granted metadata lock.
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
@warning MDL_ticket members are private to the MDL subsystem.
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2009-12-04 00:34:19 +01:00
|
|
|
@note Multiple shared locks on a same object are represented by a
|
|
|
|
single ticket. The same does not apply for other lock types.
|
2010-01-21 21:43:03 +01:00
|
|
|
|
|
|
|
@note There are two groups of MDL_ticket members:
|
|
|
|
- "Externally accessible". These members can be accessed from
|
|
|
|
threads/contexts different than ticket owner in cases when
|
|
|
|
ticket participates in some list of granted or waiting tickets
|
|
|
|
for a lock. Therefore one should change these members before
|
|
|
|
including then to waiting/granted lists or while holding lock
|
|
|
|
protecting those lists.
|
|
|
|
- "Context private". Such members are private to thread/context
|
|
|
|
owning this ticket. I.e. they should not be accessed from other
|
|
|
|
threads/contexts.
|
2009-12-04 00:29:40 +01:00
|
|
|
*/
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
class MDL_ticket
|
2009-12-04 00:29:40 +01:00
|
|
|
{
|
2009-12-04 00:52:05 +01:00
|
|
|
public:
|
2009-12-04 00:29:40 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Pointers for participating in the list of lock requests for this context.
|
2010-01-21 21:43:03 +01:00
|
|
|
Context private.
|
2009-12-04 00:29:40 +01:00
|
|
|
*/
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_ticket *next_in_context;
|
|
|
|
MDL_ticket **prev_in_context;
|
2009-12-04 00:29:40 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Pointers for participating in the list of satisfied/pending requests
|
2010-01-21 21:43:03 +01:00
|
|
|
for the lock. Externally accessible.
|
2009-12-04 00:29:40 +01:00
|
|
|
*/
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_ticket *next_in_lock;
|
|
|
|
MDL_ticket **prev_in_lock;
|
|
|
|
public:
|
|
|
|
bool has_pending_conflicting_lock() const;
|
|
|
|
|
|
|
|
void *get_cached_object();
|
|
|
|
void set_cached_object(void *cached_object,
|
|
|
|
mdl_cached_object_release_hook release_hook);
|
2010-01-21 21:43:03 +01:00
|
|
|
MDL_context *get_ctx() const { return m_ctx; }
|
2009-12-09 10:44:01 +01:00
|
|
|
bool is_upgradable_or_exclusive() const
|
|
|
|
{
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
return m_type == MDL_SHARED_NO_WRITE ||
|
|
|
|
m_type == MDL_SHARED_NO_READ_WRITE ||
|
|
|
|
m_type == MDL_EXCLUSIVE;
|
2009-12-09 10:44:01 +01:00
|
|
|
}
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
enum_mdl_type get_type() const { return m_type; }
|
2010-02-01 15:38:50 +01:00
|
|
|
MDL_lock *get_lock() const { return m_lock; }
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void downgrade_exclusive_lock(enum_mdl_type type);
|
|
|
|
|
|
|
|
bool has_stronger_or_equal_type(enum_mdl_type type) const;
|
|
|
|
|
|
|
|
bool is_incompatible_when_granted(enum_mdl_type type) const;
|
|
|
|
bool is_incompatible_when_waiting(enum_mdl_type type) const;
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
private:
|
|
|
|
friend class MDL_context;
|
|
|
|
|
|
|
|
MDL_ticket(MDL_context *ctx_arg, enum_mdl_type type_arg)
|
|
|
|
: m_type(type_arg),
|
|
|
|
m_ctx(ctx_arg),
|
|
|
|
m_lock(NULL)
|
|
|
|
{}
|
|
|
|
|
|
|
|
static MDL_ticket *create(MDL_context *ctx_arg, enum_mdl_type type_arg);
|
|
|
|
static void destroy(MDL_ticket *ticket);
|
|
|
|
private:
|
2010-01-21 21:43:03 +01:00
|
|
|
/** Type of metadata lock. Externally accessible. */
|
2009-12-04 00:52:05 +01:00
|
|
|
enum enum_mdl_type m_type;
|
2010-01-21 21:43:03 +01:00
|
|
|
/**
|
|
|
|
Context of the owner of the metadata lock ticket. Externally accessible.
|
|
|
|
*/
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_context *m_ctx;
|
2009-12-04 00:29:40 +01:00
|
|
|
|
2010-02-01 15:38:50 +01:00
|
|
|
/**
|
|
|
|
Pointer to the lock object for this lock ticket. Externally accessible.
|
|
|
|
*/
|
2009-12-04 00:52:05 +01:00
|
|
|
MDL_lock *m_lock;
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
private:
|
|
|
|
MDL_ticket(const MDL_ticket &); /* not implemented */
|
|
|
|
MDL_ticket &operator=(const MDL_ticket &); /* not implemented */
|
2009-11-30 16:55:03 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2009-12-08 10:57:07 +01:00
|
|
|
typedef I_P_List<MDL_request, I_P_List_adapter<MDL_request,
|
|
|
|
&MDL_request::next_in_list,
|
2010-01-21 21:43:03 +01:00
|
|
|
&MDL_request::prev_in_list>,
|
|
|
|
I_P_List_counter>
|
2009-12-08 10:57:07 +01:00
|
|
|
MDL_request_list;
|
|
|
|
|
2009-11-30 16:55:03 +01:00
|
|
|
/**
|
2009-12-04 00:34:19 +01:00
|
|
|
Context of the owner of metadata locks. I.e. each server
|
|
|
|
connection has such a context.
|
2009-11-30 16:55:03 +01:00
|
|
|
*/
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
class MDL_context
|
2009-11-30 16:55:03 +01:00
|
|
|
{
|
2009-12-04 00:52:05 +01:00
|
|
|
public:
|
|
|
|
typedef I_P_List<MDL_ticket,
|
|
|
|
I_P_List_adapter<MDL_ticket,
|
|
|
|
&MDL_ticket::next_in_context,
|
|
|
|
&MDL_ticket::prev_in_context> >
|
2009-12-04 00:29:40 +01:00
|
|
|
Ticket_list;
|
|
|
|
|
|
|
|
typedef Ticket_list::Iterator Ticket_iterator;
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
enum mdl_signal_type { NO_WAKE_UP = 0,
|
|
|
|
NORMAL_WAKE_UP,
|
|
|
|
VICTIM_WAKE_UP,
|
|
|
|
TIMEOUT_WAKE_UP };
|
|
|
|
|
2010-01-21 21:43:03 +01:00
|
|
|
MDL_context();
|
2009-12-04 00:52:05 +01:00
|
|
|
void destroy();
|
2009-11-30 16:55:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool try_acquire_lock(MDL_request *mdl_request);
|
|
|
|
bool acquire_lock(MDL_request *mdl_request);
|
|
|
|
bool acquire_locks(MDL_request_list *requests);
|
|
|
|
bool upgrade_shared_lock_to_exclusive(MDL_ticket *mdl_ticket);
|
|
|
|
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
bool clone_ticket(MDL_request *mdl_request);
|
2009-11-30 16:55:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool wait_for_lock(MDL_request *mdl_request);
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
void release_all_locks_for_name(MDL_ticket *ticket);
|
|
|
|
void release_lock(MDL_ticket *ticket);
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-10 09:21:38 +01:00
|
|
|
bool is_lock_owner(MDL_key::enum_mdl_namespace mdl_namespace,
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
const char *db, const char *name,
|
|
|
|
enum_mdl_type mdl_type);
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
|
|
|
|
bool has_lock(MDL_ticket *mdl_savepoint, MDL_ticket *mdl_ticket);
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
inline bool has_locks() const
|
|
|
|
{
|
|
|
|
return !m_tickets.is_empty();
|
|
|
|
}
|
2009-11-30 16:55:03 +01:00
|
|
|
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
MDL_ticket *mdl_savepoint()
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
NULL savepoint represents the start of the transaction.
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
Checking for m_trans_sentinel also makes sure we never
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
return a pointer to HANDLER ticket as a savepoint.
|
|
|
|
*/
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
return m_tickets.front() == m_trans_sentinel ? NULL : m_tickets.front();
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
}
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void set_trans_sentinel()
|
2009-12-04 00:52:05 +01:00
|
|
|
{
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
m_trans_sentinel= mdl_savepoint();
|
2009-12-04 00:52:05 +01:00
|
|
|
}
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
MDL_ticket *trans_sentinel() const { return m_trans_sentinel; }
|
2009-11-30 16:55:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void reset_trans_sentinel(MDL_ticket *sentinel_arg)
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
{
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
m_trans_sentinel= sentinel_arg;
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
}
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void move_ticket_after_trans_sentinel(MDL_ticket *mdl_ticket);
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
|
|
|
|
void release_transactional_locks();
|
2009-12-04 00:52:05 +01:00
|
|
|
void rollback_to_savepoint(MDL_ticket *mdl_savepoint);
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
inline THD *get_thd() const { return m_thd; }
|
2010-01-21 21:43:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool acquire_global_intention_exclusive_lock(MDL_request *mdl_request);
|
|
|
|
|
2009-12-30 18:53:30 +01:00
|
|
|
/**
|
2010-01-21 21:43:03 +01:00
|
|
|
Wake up context which is waiting for a change of MDL_lock state.
|
2009-12-30 18:53:30 +01:00
|
|
|
*/
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void awake(mdl_signal_type signal)
|
2010-01-21 21:43:03 +01:00
|
|
|
{
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
pthread_mutex_lock(&m_signal_lock);
|
|
|
|
m_signal= signal;
|
|
|
|
pthread_cond_signal(&m_signal_cond);
|
|
|
|
pthread_mutex_unlock(&m_signal_lock);
|
2010-01-21 21:43:03 +01:00
|
|
|
}
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void init(THD *thd_arg) { m_thd= thd_arg; }
|
2010-01-21 21:43:03 +01:00
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
void set_needs_thr_lock_abort(bool needs_thr_lock_abort)
|
2010-01-21 21:43:03 +01:00
|
|
|
{
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
/*
|
|
|
|
@note In theory, this member should be modified under protection
|
|
|
|
of some lock since it can be accessed from different threads.
|
|
|
|
In practice, this is not necessary as code which reads this
|
|
|
|
value and so might miss the fact that value was changed will
|
|
|
|
always re-try reading it after small timeout and therefore
|
|
|
|
will see the new value eventually.
|
|
|
|
*/
|
|
|
|
m_needs_thr_lock_abort= TRUE;
|
|
|
|
}
|
|
|
|
bool get_needs_thr_lock_abort() const
|
|
|
|
{
|
|
|
|
return m_needs_thr_lock_abort;
|
2010-01-21 21:43:03 +01:00
|
|
|
}
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool find_deadlock(Deadlock_detection_context *deadlock_ctx);
|
2010-01-21 21:43:03 +01:00
|
|
|
private:
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
/**
|
|
|
|
All MDL tickets acquired by this connection.
|
|
|
|
|
|
|
|
The order of tickets in m_tickets list.
|
|
|
|
---------------------------------------
|
|
|
|
The entire set of locks acquired by a connection
|
|
|
|
can be separated in two subsets: transactional and
|
|
|
|
non-transactional locks.
|
|
|
|
|
|
|
|
Transactional locks are locks with automatic scope. They
|
|
|
|
are accumulated in the course of a transaction, and
|
|
|
|
released only on COMMIT, ROLLBACK or ROLLBACK TO SAVEPOINT.
|
|
|
|
They must not be (and never are) released manually,
|
|
|
|
i.e. with release_lock() call.
|
|
|
|
|
|
|
|
Non-transactional locks are taken for locks that span
|
|
|
|
multiple transactions or savepoints.
|
|
|
|
These are: HANDLER SQL locks (HANDLER SQL is
|
|
|
|
transaction-agnostic), LOCK TABLES locks (you can COMMIT/etc
|
|
|
|
under LOCK TABLES, and the locked tables stay locked), and
|
|
|
|
SET GLOBAL READ_ONLY=1 global shared lock.
|
|
|
|
|
|
|
|
Transactional locks are always prepended to the beginning
|
|
|
|
of the list. In other words, they are stored in reverse
|
|
|
|
temporal order. Thus, when we rollback to a savepoint,
|
|
|
|
we start popping and releasing tickets from the front
|
|
|
|
until we reach the last ticket acquired after the
|
|
|
|
savepoint.
|
|
|
|
|
|
|
|
Non-transactional locks are always stored after
|
|
|
|
transactional ones, and among each other can be
|
|
|
|
split into three sets:
|
|
|
|
|
|
|
|
[LOCK TABLES locks] [HANDLER locks] [GLOBAL READ LOCK locks]
|
|
|
|
|
|
|
|
The following is known about these sets:
|
|
|
|
|
|
|
|
* we can never have both HANDLER and LOCK TABLES locks
|
|
|
|
together -- HANDLER statements are prohibited under LOCK
|
|
|
|
TABLES, entering LOCK TABLES implicitly closes all open
|
|
|
|
HANDLERs.
|
|
|
|
* GLOBAL READ LOCK locks are always stored after LOCK TABLES
|
|
|
|
locks and after HANDLER locks. This is because one can't say
|
|
|
|
SET GLOBAL read_only=1 or FLUSH TABLES WITH READ LOCK
|
|
|
|
if one has locked tables. One can, however, LOCK TABLES
|
|
|
|
after having entered the read only mode. Note, that
|
|
|
|
subsequent LOCK TABLES statement will unlock the previous
|
|
|
|
set of tables, but not the GRL!
|
|
|
|
There are no HANDLER locks after GRL locks because
|
|
|
|
SET GLOBAL read_only performs a FLUSH TABLES WITH
|
|
|
|
READ LOCK internally, and FLUSH TABLES, in turn, implicitly
|
|
|
|
closes all open HANDLERs.
|
|
|
|
However, one can open a few HANDLERs after entering the
|
|
|
|
read only mode.
|
|
|
|
*/
|
2010-01-21 21:43:03 +01:00
|
|
|
Ticket_list m_tickets;
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
/**
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
Separates transactional and non-transactional locks
|
|
|
|
in m_tickets list, @sa m_tickets.
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
*/
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
MDL_ticket *m_trans_sentinel;
|
2009-12-04 00:52:05 +01:00
|
|
|
THD *m_thd;
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
/**
|
|
|
|
TRUE - if for this context we will break protocol and try to
|
|
|
|
acquire table-level locks while having only S lock on
|
|
|
|
some table.
|
|
|
|
To avoid deadlocks which might occur during concurrent
|
|
|
|
upgrade of SNRW lock on such object to X lock we have to
|
|
|
|
abort waits for table-level locks for such connections.
|
|
|
|
FALSE - Otherwise.
|
|
|
|
*/
|
|
|
|
bool m_needs_thr_lock_abort;
|
|
|
|
|
|
|
|
/**
|
|
|
|
Read-write lock protecting m_waiting_for member.
|
|
|
|
|
|
|
|
TODO/FIXME: Replace with RW-lock which will prefer readers
|
|
|
|
on all platforms and not only on Linux.
|
|
|
|
*/
|
|
|
|
rw_lock_t m_waiting_for_lock;
|
|
|
|
MDL_ticket *m_waiting_for;
|
|
|
|
uint m_deadlock_weight;
|
2010-01-21 21:43:03 +01:00
|
|
|
/**
|
|
|
|
Condvar which is used for waiting until this context's pending
|
|
|
|
request can be satisfied or this thread has to perform actions
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
to resolve a potential deadlock (we subscribe to such
|
|
|
|
notification by adding a ticket corresponding to the request
|
|
|
|
to an appropriate queue of waiters).
|
2010-01-21 21:43:03 +01:00
|
|
|
*/
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
pthread_mutex_t m_signal_lock;
|
|
|
|
pthread_cond_t m_signal_cond;
|
|
|
|
mdl_signal_type m_signal;
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
private:
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
MDL_ticket *find_ticket(MDL_request *mdl_req,
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool *is_transactional);
|
A prerequisite patch for the fix for Bug#46224
"HANDLER statements within a transaction might lead to deadlocks".
Introduce a notion of a sentinel to MDL_context. A sentinel
is a ticket that separates all tickets in the context into two
groups: before and after it. Currently we can have (and need) only
one designated sentinel -- it separates all locks taken by LOCK
TABLE or HANDLER statement, which must survive COMMIT and ROLLBACK
and all other locks, which must be released at COMMIT or ROLLBACK.
The tricky part is maintaining the sentinel up to date when
someone release its corresponding ticket. This can happen, e.g.
if someone issues DROP TABLE under LOCK TABLES (generally,
see all calls to release_all_locks_for_name()).
MDL_context::release_ticket() is modified to take care of it.
******
A fix and a test case for Bug#46224 "HANDLER statements within a
transaction might lead to deadlocks".
An attempt to mix HANDLER SQL statements, which are transaction-
agnostic, an open multi-statement transaction,
and DDL against the involved tables (in a concurrent connection)
could lead to a deadlock. The deadlock would occur when
HANDLER OPEN or HANDLER READ would have to wait on a conflicting
metadata lock. If the connection that issued HANDLER statement
also had other metadata locks (say, acquired in scope of a
transaction), a classical deadlock situation of mutual wait
could occur.
Incompatible change: entering LOCK TABLES mode automatically
closes all open HANDLERs in the current connection.
Incompatible change: previously an attempt to wait on a lock
in a connection that has an open HANDLER statement could wait
indefinitely/deadlock. After this patch, an error ER_LOCK_DEADLOCK
is produced.
The idea of the fix is to merge thd->handler_mdl_context
with the main mdl_context of the connection, used for transactional
locks. This makes deadlock detection possible, since all waits
with locks are "visible" and available to analysis in a single
MDL context of the connection.
Since HANDLER locks and transactional locks have a different life
cycle -- HANDLERs are explicitly open and closed, and so
are HANDLER locks, explicitly acquired and released, whereas
transactional locks "accumulate" till the end of a transaction
and are released only with COMMIT, ROLLBACK and ROLLBACK TO SAVEPOINT,
a concept of "sentinel" was introduced to MDL_context.
All locks, HANDLER and others, reside in the same linked list.
However, a selected element of the list separates locks with
different life cycle. HANDLER locks always reside at the
end of the list, after the sentinel. Transactional locks are
prepended to the beginning of the list, before the sentinel.
Thus, ROLLBACK, COMMIT or ROLLBACK TO SAVEPOINT, only
release those locks that reside before the sentinel. HANDLER locks
must be released explicitly as part of HANDLER CLOSE statement,
or an implicit close.
The same approach with sentinel
is also employed for LOCK TABLES locks. Since HANDLER and LOCK TABLES
statement has never worked together, the implementation is
made simple and only maintains one sentinel, which is used either
for HANDLER locks, or for LOCK TABLES locks.
2009-12-22 17:09:15 +01:00
|
|
|
void release_locks_stored_before(MDL_ticket *sentinel);
|
2010-01-21 21:43:03 +01:00
|
|
|
bool acquire_lock_impl(MDL_request *mdl_request);
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
bool find_deadlock();
|
|
|
|
|
|
|
|
void will_wait_for(MDL_ticket *pending_ticket)
|
|
|
|
{
|
|
|
|
rw_wrlock(&m_waiting_for_lock);
|
|
|
|
m_waiting_for= pending_ticket;
|
|
|
|
rw_unlock(&m_waiting_for_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_deadlock_weight(uint weight)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
m_deadlock_weight should not be modified while m_waiting_for is
|
|
|
|
non-NULL as in this case this context might participate in deadlock
|
|
|
|
and so m_deadlock_weight can be accessed from other threads.
|
|
|
|
*/
|
|
|
|
DBUG_ASSERT(m_waiting_for == NULL);
|
|
|
|
m_deadlock_weight= weight;
|
|
|
|
}
|
|
|
|
|
|
|
|
void stop_waiting()
|
|
|
|
{
|
|
|
|
rw_wrlock(&m_waiting_for_lock);
|
|
|
|
m_waiting_for= NULL;
|
|
|
|
rw_unlock(&m_waiting_for_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wait_reset()
|
|
|
|
{
|
|
|
|
pthread_mutex_lock(&m_signal_lock);
|
|
|
|
m_signal= NO_WAKE_UP;
|
|
|
|
pthread_mutex_unlock(&m_signal_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
mdl_signal_type wait();
|
|
|
|
mdl_signal_type timed_wait(ulong timeout);
|
|
|
|
|
|
|
|
mdl_signal_type peek_signal()
|
|
|
|
{
|
|
|
|
mdl_signal_type result;
|
|
|
|
pthread_mutex_lock(&m_signal_lock);
|
|
|
|
result= m_signal;
|
|
|
|
pthread_mutex_unlock(&m_signal_lock);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2010-01-21 21:43:03 +01:00
|
|
|
private:
|
|
|
|
MDL_context(const MDL_context &rhs); /* not implemented */
|
|
|
|
MDL_context &operator=(MDL_context &rhs); /* not implemented */
|
2009-12-04 00:52:05 +01:00
|
|
|
};
|
2009-11-30 16:55:03 +01:00
|
|
|
|
|
|
|
|
2009-12-04 00:52:05 +01:00
|
|
|
void mdl_init();
|
|
|
|
void mdl_destroy();
|
2009-11-30 16:55:03 +01:00
|
|
|
|
2009-12-02 17:31:57 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Functions in the server's kernel used by metadata locking subsystem.
|
|
|
|
*/
|
|
|
|
|
Implement new type-of-operation-aware metadata locks.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
2010-02-01 12:43:06 +01:00
|
|
|
extern bool mysql_notify_thread_having_shared_lock(THD *thd, THD *in_use,
|
|
|
|
bool needs_thr_lock_abort);
|
2009-12-02 17:31:57 +01:00
|
|
|
extern void mysql_ha_flush(THD *thd);
|
|
|
|
extern "C" const char *set_thd_proc_info(THD *thd, const char *info,
|
|
|
|
const char *calling_function,
|
|
|
|
const char *calling_file,
|
|
|
|
const unsigned int calling_line);
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
extern pthread_mutex_t LOCK_open;
|
|
|
|
#endif
|
|
|
|
|
2009-11-30 16:55:03 +01:00
|
|
|
#endif
|