mariadb/newbrt/brt-serialize.c

1820 lines
66 KiB
C
Raw Normal View History

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "$Id$"
#ident "Copyright (c) 2007, 2008, 2009 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include "includes.h"
#include "backwards_10.h"
// NOTE: The backwards compatability functions are in a file that is included at the END of this file.
static int deserialize_brtheader_10 (int fd, struct rbuf *rb, struct brt_header **brth);
static int upgrade_brtheader_10_11 (struct brt_header **brth_10, struct brt_header **brth_11);
static int decompress_brtnode_from_raw_block_into_rbuf_10(u_int8_t *raw_block, struct rbuf *rb, BLOCKNUM blocknum);
static int deserialize_brtnode_from_rbuf_10 (BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h, struct rbuf *rb);
static int upgrade_brtnode_10_11 (BRTNODE *brtnode_10, BRTNODE *brtnode_11);
// performance tracing
#define DO_TOKU_TRACE 0
#if DO_TOKU_TRACE
static inline void do_toku_trace(const char *cp, int len) {
const int toku_trace_fd = -1;
write(toku_trace_fd, cp, len);
}
#define toku_trace(a) do_toku_trace(a, strlen(a))
#else
#define toku_trace(a)
#endif
static int num_cores = 0; // cache the number of cores for the parallelization
int
toku_brt_serialize_init(void) {
num_cores = toku_os_get_number_processors();
return 0;
}
int
toku_brt_serialize_destroy(void) {
return 0;
}
// This mutex protects pwrite from running in parallel, and also protects modifications to the block allocator.
static toku_pthread_mutex_t pwrite_mutex = TOKU_PTHREAD_MUTEX_INITIALIZER;
static int pwrite_is_locked=0;
int
toku_pwrite_lock_init(void) {
int r = toku_pthread_mutex_init(&pwrite_mutex, NULL); assert(r == 0);
return r;
}
int
toku_pwrite_lock_destroy(void) {
int r = toku_pthread_mutex_destroy(&pwrite_mutex); assert(r == 0);
return r;
}
static inline void
lock_for_pwrite (void) {
// Locks the pwrite_mutex.
int r = toku_pthread_mutex_lock(&pwrite_mutex);
assert(r==0);
pwrite_is_locked = 1;
}
static inline void
unlock_for_pwrite (void) {
pwrite_is_locked = 0;
int r = toku_pthread_mutex_unlock(&pwrite_mutex);
assert(r==0);
}
enum {FILE_CHANGE_INCREMENT = (16<<20)};
static inline u_int64_t
alignup64(u_int64_t a, u_int64_t b) {
return ((a+b-1)/b)*b;
}
//Race condition if ydb lock is split.
//Ydb lock is held when this function is called.
//Not going to truncate and delete (redirect to devnull) at same time.
//Must be holding a read or write lock on fdlock (fd is protected)
void
toku_maybe_truncate_cachefile (CACHEFILE cf, int fd, u_int64_t size_used)
// Effect: If file size >= SIZE+32MiB, reduce file size.
// (32 instead of 16.. hysteresis).
// Return 0 on success, otherwise an error number.
{
//Check file size before taking pwrite lock to reduce likelihood of taking
//the pwrite lock needlessly.
//Check file size after taking lock to avoid race conditions.
int64_t file_size;
if (toku_cachefile_is_dev_null_unlocked(cf)) goto done;
{
int r = toku_os_get_file_size(fd, &file_size);
assert(r==0);
assert(file_size >= 0);
}
// If file space is overallocated by at least 32M
if ((u_int64_t)file_size >= size_used + (2*FILE_CHANGE_INCREMENT)) {
lock_for_pwrite();
{
int r = toku_os_get_file_size(fd, &file_size);
assert(r==0);
assert(file_size >= 0);
}
if ((u_int64_t)file_size >= size_used + (2*FILE_CHANGE_INCREMENT)) {
toku_off_t new_size = alignup64(size_used, (2*FILE_CHANGE_INCREMENT)); //Truncate to new size_used.
assert(new_size < file_size);
int r = toku_cachefile_truncate(cf, new_size);
assert(r==0);
}
unlock_for_pwrite();
}
done:
return;
}
static u_int64_t
umin64(u_int64_t a, u_int64_t b) {
if (a<b) return a;
return b;
}
int
maybe_preallocate_in_file (int fd, u_int64_t size)
// Effect: If file size is less than SIZE, make it bigger by either doubling it or growing by 16MiB whichever is less.
// Return 0 on success, otherwise an error number.
{
int64_t file_size;
{
int r = toku_os_get_file_size(fd, &file_size);
if (r != 0) { // debug #2463
int the_errno = errno;
fprintf(stderr, "%s:%d fd=%d size=%"PRIu64"r=%d errno=%d\n", __FUNCTION__, __LINE__, fd, size, r, the_errno); fflush(stderr);
}
assert(r==0);
}
assert(file_size >= 0);
if ((u_int64_t)file_size < size) {
const int N = umin64(size, FILE_CHANGE_INCREMENT); // Double the size of the file, or add 16MiB, whichever is less.
char *MALLOC_N(N, wbuf);
memset(wbuf, 0, N);
toku_off_t start_write = alignup64(file_size, 4096);
assert(start_write >= file_size);
toku_os_full_pwrite(fd, wbuf, N, start_write);
toku_free(wbuf);
}
return 0;
}
static void
toku_full_pwrite_extend (int fd, const void *buf, size_t count, toku_off_t offset)
// requires that the pwrite has been locked
// On failure, this does not return (an assertion fails or something).
{
assert(pwrite_is_locked);
{
int r = maybe_preallocate_in_file(fd, offset+count);
assert(r==0);
}
toku_os_full_pwrite(fd, buf, count, offset);
}
// Don't include the sub_block header
// Overhead calculated in same order fields are written to wbuf
enum {
node_header_overhead = (8+ // magic "tokunode" or "tokuleaf"
4+ // layout_version
4), // layout_version_original
extended_node_header_overhead = (0+ // descriptor (variable, not counted here)
4+ // nodesize
4+ // flags
4+ // height
4+ // random for fingerprint
4), // localfingerprint
};
static int
addupsize (OMTVALUE lev, u_int32_t UU(idx), void *vp) {
LEAFENTRY le=lev;
unsigned int *ip=vp;
(*ip) += OMT_ITEM_OVERHEAD + leafentry_disksize(le);
return 0;
}
static unsigned int
toku_serialize_brtnode_size_slow (BRTNODE node) {
unsigned int size = node_header_overhead + extended_node_header_overhead;
size += toku_serialize_descriptor_size(node->desc);
if (node->height>0) {
unsigned int hsize=0;
unsigned int csize=0;
size+=4; /* n_children */
size+=4; /* subtree fingerprint. */
size+=4*(node->u.n.n_children-1); /* key lengths*/
if (node->flags & TOKU_DB_DUPSORT) size += 4*(node->u.n.n_children-1);
for (int i=0; i<node->u.n.n_children-1; i++) {
csize+=toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i]);
}
size+=(8+4+4+1+3*8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and 3*8 for the subtree estimates and 1 for the exact bit for the estimates. */
int n_buffers = node->u.n.n_children;
assert(0 <= n_buffers && n_buffers < TREE_FANOUT+1);
for (int i=0; i< n_buffers; i++) {
FIFO_ITERATE(BNC_BUFFER(node,i),
key, keylen,
data __attribute__((__unused__)), datalen,
type __attribute__((__unused__)), xids,
(hsize+=BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+keylen+datalen+
xids_get_serialize_size(xids)));
}
assert(hsize==node->u.n.n_bytes_in_buffers);
assert(csize==node->u.n.totalchildkeylens);
return size+hsize+csize;
} else {
unsigned int hsize=0;
toku_omt_iterate(node->u.l.buffer,
addupsize,
&hsize);
assert(hsize==node->u.l.n_bytes_in_buffer);
hsize+=4; /* add n entries in buffer table. */
hsize+=3*8; /* add the three leaf stats, but no exact bit. */
return size+hsize;
}
}
// This is the size of the uncompressed data, not including the compression headers
unsigned int
toku_serialize_brtnode_size (BRTNODE node) {
unsigned int result = node_header_overhead + extended_node_header_overhead;
assert(sizeof(toku_off_t)==8);
result += toku_serialize_descriptor_size(node->desc);
if (node->height>0) {
result+=4; /* subtree fingerpirnt */
result+=4; /* n_children */
result+=4*(node->u.n.n_children-1); /* key lengths*/
if (node->flags & TOKU_DB_DUPSORT) result += 4*(node->u.n.n_children-1); /* data lengths */
assert(node->u.n.totalchildkeylens < (1<<30));
result+=node->u.n.totalchildkeylens; /* the lengths of the pivot keys, without their key lengths. */
result+=(8+4+4+1+3*8)*(node->u.n.n_children); /* For each child, a child offset, a count for the number of hash table entries, the subtree fingerprint, and 3*8 for the subtree estimates and one for the exact bit. */
result+=node->u.n.n_bytes_in_buffers;
} else {
result+=4; /* n_entries in buffer table. */
result+=3*8; /* the three leaf stats. */
result+=node->u.l.n_bytes_in_buffer;
}
if (toku_memory_check) {
unsigned int slowresult = toku_serialize_brtnode_size_slow(node);
if (result!=slowresult) printf("%s:%d result=%u slowresult=%u\n", __FILE__, __LINE__, result, slowresult);
assert(result==slowresult);
}
return result;
}
// uncompressed header offsets
enum {
uncompressed_magic_offset = 0,
uncompressed_version_offset = 8,
};
struct sub_block {
void *uncompressed_ptr;
u_int32_t uncompressed_size;
void *compressed_ptr;
u_int32_t compressed_size; // real compressed size
u_int32_t compressed_size_bound; // estimated compressed size
u_int32_t xsum; // sub block checksum
};
struct stored_sub_block {
u_int32_t uncompressed_size;
u_int32_t compressed_size;
u_int32_t xsum;
};
static void
sub_block_init(struct sub_block *sub_block) {
sub_block->uncompressed_ptr = 0;
sub_block->uncompressed_size = 0;
sub_block->compressed_ptr = 0;
sub_block->compressed_size_bound = 0;
sub_block->compressed_size = 0;
sub_block->xsum = 0;
}
// get the size of the compression header
static size_t
sub_block_header_size(int n_sub_blocks) {
return sizeof (u_int32_t) + n_sub_blocks * sizeof (struct stored_sub_block);
}
// get the sum of the sub block compressed sizes
static size_t
get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[]) {
size_t compressed_size_bound = 0;
for (int i = 0; i < n_sub_blocks; i++) {
sub_block[i].compressed_size_bound = compressBound(sub_block[i].uncompressed_size);
compressed_size_bound += sub_block[i].compressed_size_bound;
}
return compressed_size_bound;
}
// get the sum of the sub block uncompressed sizes
static size_t
get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) {
size_t uncompressed_size = 0;
for (int i = 0; i < n_sub_blocks; i++)
uncompressed_size += sub_block[i].uncompressed_size;
return uncompressed_size;
}
// round up n
static inline int
alignup32(int a, int b) {
return ((a+b-1) / b) * b;
}
static const int max_sub_blocks = 8;
// Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at
// least >= the target_sub_block_size.
static void
choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) {
const int target_sub_block_size = 512*1024;
const int alignment = 32;
int n_sub_blocks, sub_block_size;
n_sub_blocks = total_size / target_sub_block_size;
if (n_sub_blocks <= 1) {
n_sub_blocks = 1;
sub_block_size = total_size;
} else {
if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks
n_sub_blocks = n_sub_blocks_limit;
sub_block_size = alignup32(total_size / n_sub_blocks, alignment);
while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough
sub_block_size += alignment;
}
*sub_block_size_ret = sub_block_size;
*n_sub_blocks_ret = n_sub_blocks;
}
static void
set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) {
int size_left = total_size;
int i;
for (i = 0; i < n_sub_blocks-1; i++) {
sub_block[i].uncompressed_size = sub_block_size;
size_left -= sub_block_size;
}
if (i == 0 || size_left > 0)
sub_block[i].uncompressed_size = size_left;
}
#include "workset.h"
struct compress_work {
struct work base;
struct sub_block *sub_block;
};
static void
compress_work_init(struct compress_work *w, struct sub_block *sub_block) {
w->sub_block = sub_block;
}
static void
compress_sub_block(struct sub_block *sub_block) {
// compress it
Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr;
Bytef *compressed_ptr = (Bytef *) sub_block->compressed_ptr;
uLongf uncompressed_len = sub_block->uncompressed_size;
uLongf real_compressed_len = sub_block->compressed_size_bound;
int compression_level = 5;
int r = compress2((Bytef*)compressed_ptr, &real_compressed_len,
(Bytef*)uncompressed_ptr, uncompressed_len,
compression_level);
assert(r == Z_OK);
sub_block->compressed_size = real_compressed_len; // replace the compressed size estimate with the real size
// checksum it
sub_block->xsum = x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size);
}
static void *
compress_worker(void *arg) {
struct workset *ws = (struct workset *) arg;
while (1) {
struct compress_work *w = (struct compress_work *) workset_get(ws);
if (w == NULL)
break;
compress_sub_block(w->sub_block);
}
return arg;
}
static size_t
compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr) {
char *compressed_base_ptr = compressed_ptr;
size_t compressed_len;
if (n_sub_blocks == 1) {
// single sub-block
sub_block[0].uncompressed_ptr = uncompressed_ptr;
sub_block[0].compressed_ptr = compressed_ptr;
compress_sub_block(&sub_block[0]);
compressed_len = sub_block[0].compressed_size;
} else {
// multiple sub-blocks
int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1
if (T > n_sub_blocks)
T = n_sub_blocks;
if (T > 0)
T = T - 1; // threads in addition to the running thread
struct workset ws;
workset_init(&ws);
struct compress_work work[n_sub_blocks];
workset_lock(&ws);
for (int i = 0; i < n_sub_blocks; i++) {
sub_block[i].uncompressed_ptr = uncompressed_ptr;
sub_block[i].compressed_ptr = compressed_ptr;
compress_work_init(&work[i], &sub_block[i]);
workset_put_locked(&ws, &work[i].base);
uncompressed_ptr += sub_block[i].uncompressed_size;
compressed_ptr += sub_block[i].compressed_size_bound;
}
workset_unlock(&ws);
// compress the sub-blocks
if (0) printf("%s:%d T=%d N=%d\n", __FUNCTION__, __LINE__, T, n_sub_blocks);
toku_pthread_t tids[T];
threadset_create(tids, &T, compress_worker, &ws);
compress_worker(&ws);
// wait for all of the work to complete
threadset_join(tids, T);
// squeeze out the holes not used by the compress bound
compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size;
for (int i = 1; i < n_sub_blocks; i++) {
memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size);
compressed_ptr += sub_block[i].compressed_size;
}
compressed_len = compressed_ptr - compressed_base_ptr;
}
return compressed_len;
}
static void
serialize_node_header(BRTNODE node, struct wbuf *wbuf) {
if (node->height == 0)
wbuf_nocrc_literal_bytes(wbuf, "tokuleaf", 8);
else
wbuf_nocrc_literal_bytes(wbuf, "tokunode", 8);
assert(node->layout_version == BRT_LAYOUT_VERSION);
wbuf_nocrc_int(wbuf, node->layout_version);
wbuf_nocrc_int(wbuf, node->layout_version_original);
// serialize the descriptor
toku_serialize_descriptor_contents_to_wbuf(wbuf, node->desc);
//printf("%s:%d %lld.calculated_size=%d\n", __FILE__, __LINE__, off, calculated_size);
wbuf_nocrc_uint(wbuf, node->nodesize);
wbuf_nocrc_uint(wbuf, node->flags);
wbuf_nocrc_int(wbuf, node->height);
//printf("%s:%d %lld rand=%08x sum=%08x height=%d\n", __FILE__, __LINE__, node->thisnodename, node->rand4fingerprint, node->subtree_fingerprint, node->height);
wbuf_nocrc_uint(wbuf, node->rand4fingerprint);
wbuf_nocrc_uint(wbuf, node->local_fingerprint);
//printf("%s:%d wrote %08x for node %lld\n", __FILE__, __LINE__, node->local_fingerprint, (long long)node->thisnodename);
//printf("%s:%d local_fingerprint=%8x\n", __FILE__, __LINE__, node->local_fingerprint);
//printf("%s:%d w.ndone=%d n_children=%d\n", __FILE__, __LINE__, w.ndone, node->n_children);
}
static void
serialize_nonleaf(BRTNODE node, int n_sub_blocks, struct sub_block sub_block[], struct wbuf *wbuf) {
// serialize the nonleaf header
assert(node->u.n.n_children>0);
// Local fingerprint is not actually stored while in main memory. Must calculate it.
// Subtract the child fingerprints from the subtree fingerprint to get the local fingerprint.
{
u_int32_t subtree_fingerprint = node->local_fingerprint;
for (int i = 0; i < node->u.n.n_children; i++) {
subtree_fingerprint += BNC_SUBTREE_FINGERPRINT(node, i);
}
wbuf_nocrc_uint(wbuf, subtree_fingerprint);
}
wbuf_nocrc_int(wbuf, node->u.n.n_children);
for (int i = 0; i < node->u.n.n_children; i++) {
wbuf_nocrc_uint(wbuf, BNC_SUBTREE_FINGERPRINT(node, i));
struct subtree_estimates *se = &(BNC_SUBTREE_ESTIMATES(node, i));
wbuf_nocrc_ulonglong(wbuf, se->nkeys);
wbuf_nocrc_ulonglong(wbuf, se->ndata);
wbuf_nocrc_ulonglong(wbuf, se->dsize);
wbuf_nocrc_char (wbuf, (char)se->exact);
}
//printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone);
for (int i = 0; i < node->u.n.n_children-1; i++) {
if (node->flags & TOKU_DB_DUPSORT) {
wbuf_nocrc_bytes(wbuf, kv_pair_key(node->u.n.childkeys[i]), kv_pair_keylen(node->u.n.childkeys[i]));
wbuf_nocrc_bytes(wbuf, kv_pair_val(node->u.n.childkeys[i]), kv_pair_vallen(node->u.n.childkeys[i]));
} else {
wbuf_nocrc_bytes(wbuf, kv_pair_key(node->u.n.childkeys[i]), toku_brtnode_pivot_key_len(node, node->u.n.childkeys[i]));
}
//printf("%s:%d w.ndone=%d (childkeylen[%d]=%d\n", __FILE__, __LINE__, w.ndone, i, node->childkeylens[i]);
}
for (int i = 0; i < node->u.n.n_children; i++) {
wbuf_nocrc_BLOCKNUM(wbuf, BNC_BLOCKNUM(node,i));
//printf("%s:%d w.ndone=%d\n", __FILE__, __LINE__, w.ndone);
}
#if 0
// RFP
// map the child buffers
// RFP maybe move sub block boundaries
struct sub_block_map child_buffer_map[node->u.n.n_children];
size_t offset = wbuf_get_woffset(wbuf) + node->u.n.n_children * stored_sub_block_map_size;
for (int i = 0; i < node->u.n.n_children; i++) {
int idx = get_sub_block_index(n_sub_blocks, sub_block, offset);
size_t size = sizeof (u_int32_t) + BNC_NBYTESINBUF(node, i); // # elements + size of the elements
sub_block_map_init(&child_buffer_map[i], idx, offset, size);
offset += size;
}
// serialize the child buffer map
for (int i = 0; i < node->u.n.n_children ; i++)
sub_block_map_serialize(&child_buffer_map[i], wbuf);
#else
n_sub_blocks = n_sub_blocks;
sub_block = sub_block;
#endif
// serialize the child buffers
{
int n_buffers = node->u.n.n_children;
u_int32_t check_local_fingerprint = 0;
for (int i = 0; i < n_buffers; i++) {
//printf("%s:%d p%d=%p n_entries=%d\n", __FILE__, __LINE__, i, node->mdicts[i], mdict_n_entries(node->mdicts[i]));
// assert(child_buffer_map[i].offset == wbuf_get_woffset(wbuf));
wbuf_nocrc_int(wbuf, toku_fifo_n_entries(BNC_BUFFER(node,i)));
FIFO_ITERATE(BNC_BUFFER(node,i), key, keylen, data, datalen, type, xids,
{
assert(type>=0 && type<256);
wbuf_nocrc_char(wbuf, (unsigned char)type);
wbuf_nocrc_xids(wbuf, xids);
wbuf_nocrc_bytes(wbuf, key, keylen);
wbuf_nocrc_bytes(wbuf, data, datalen);
check_local_fingerprint+=node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xids, key, keylen, data, datalen);
});
}
//printf("%s:%d check_local_fingerprint=%8x\n", __FILE__, __LINE__, check_local_fingerprint);
if (check_local_fingerprint!=node->local_fingerprint) printf("%s:%d node=%" PRId64 " fingerprint expected=%08x actual=%08x\n", __FILE__, __LINE__, node->thisnodename.b, check_local_fingerprint, node->local_fingerprint);
assert(check_local_fingerprint==node->local_fingerprint);
}
}
static int
wbufwriteleafentry (OMTVALUE lev, u_int32_t UU(idx), void *v) {
LEAFENTRY le=lev;
struct wbuf *thisw=v;
wbuf_nocrc_LEAFENTRY(thisw, le);
return 0;
}
static void
serialize_leaf(BRTNODE node, int n_sub_blocks, struct sub_block sub_block[], struct wbuf *wbuf) {
// serialize the leaf stats
wbuf_nocrc_ulonglong(wbuf, node->u.l.leaf_stats.nkeys);
wbuf_nocrc_ulonglong(wbuf, node->u.l.leaf_stats.ndata);
wbuf_nocrc_ulonglong(wbuf, node->u.l.leaf_stats.dsize);
#if 0
// RFP partition the leaf elements. for now, 1 partition
const int npartitions = 1;
wbuf_nocrc_int(wbuf, npartitions);
struct sub_block_map part_map[npartitions];
for (int i = 0; i < npartitions; i++) {
size_t offset = wbuf_get_woffset(wbuf);
size_t size = sizeof (u_int32_t) + node->u.l.n_bytes_in_buffer; // # in partition + size of partition
int idx = get_sub_block_index(n_sub_blocks, sub_block, offset);
sub_block_map_init(&part_map[i], idx, offset, size);
}
// RFP serialize the partition pivots
for (int i = 0; i < npartitions-1; i++) {
assert(0);
}
// serialize the partition maps
for (int i = 0; i < npartitions; i++)
sub_block_map_serialize(&part_map[i], wbuf);
#else
n_sub_blocks = n_sub_blocks;
sub_block = sub_block;
#endif
// serialize the leaf entries
wbuf_nocrc_uint(wbuf, toku_omt_size(node->u.l.buffer));
toku_omt_iterate(node->u.l.buffer, wbufwriteleafentry, wbuf);
}
static void
serialize_node(BRTNODE node, char *buf, size_t calculated_size, int n_sub_blocks, struct sub_block sub_block[]) {
struct wbuf wb;
wbuf_init(&wb, buf, calculated_size);
serialize_node_header(node, &wb);
if (node->height > 0)
serialize_nonleaf(node, n_sub_blocks, sub_block, &wb);
else
serialize_leaf(node, n_sub_blocks, sub_block, &wb);
assert(wb.ndone == wb.size);
assert(calculated_size==wb.ndone);
}
int
toku_serialize_brtnode_to_memory (BRTNODE node, int UU(n_workitems), int UU(n_threads), /*out*/ size_t *n_bytes_to_write, /*out*/ char **bytes_to_write) {
// get the size of the serialized node
unsigned int calculated_size = toku_serialize_brtnode_size(node);
// choose sub block parameters
int n_sub_blocks, sub_block_size;
size_t data_size = calculated_size - node_header_overhead;
choose_sub_block_size(data_size, max_sub_blocks, &sub_block_size, &n_sub_blocks);
assert(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks);
assert(sub_block_size > 0);
// set the initial sub block size for all of the sub blocks
struct sub_block sub_block[n_sub_blocks];
for (int i = 0; i < n_sub_blocks; i++)
sub_block_init(&sub_block[i]);
set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block);
// alloocate space for the serialized node
char *MALLOC_N(calculated_size, buf);
//toku_verify_counts(node);
//assert(size>0);
//printf("%s:%d serializing %lld w height=%d p0=%p\n", __FILE__, __LINE__, off, node->height, node->mdicts[0]);
// serialize the node into buf
serialize_node(node, buf, calculated_size, n_sub_blocks, sub_block);
// allocate space for the compressed buf
size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block);
size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
size_t header_len = node_header_overhead + sub_block_header_len + sizeof (uint32_t); // node + sub_block + checksum
char *MALLOC_N(header_len + compressed_len, compressed_buf);
// copy the header
memcpy(compressed_buf, buf, node_header_overhead);
if (0) printf("First 4 bytes before compressing data are %02x%02x%02x%02x\n",
buf[node_header_overhead], buf[node_header_overhead+1],
buf[node_header_overhead+2], buf[node_header_overhead+3]);
// compress all of the sub blocks
char *uncompressed_ptr = buf + node_header_overhead;
char *compressed_ptr = compressed_buf + header_len;
compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr);
//if (0) printf("Block %" PRId64 " Size before compressing %u, after compression %"PRIu64"\n", blocknum.b, calculated_size-node_header_overhead, (uint64_t) compressed_len);
// serialize the sub block header
uint32_t *ptr = (uint32_t *)(compressed_buf + node_header_overhead);
*ptr++ = toku_htod32(n_sub_blocks);
for (int i=0; i<n_sub_blocks; i++) {
ptr[0] = toku_htod32(sub_block[i].compressed_size);
ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
ptr[2] = toku_htod32(sub_block[i].xsum);
ptr += 3;
}
// compute the header checksum and serialize it
uint32_t header_length = (void *)ptr - (void *) compressed_buf;
uint32_t xsum = x1764_memory(compressed_buf, header_length);
*ptr = toku_htod32(xsum);
*n_bytes_to_write = header_len + compressed_len;
*bytes_to_write = compressed_buf;
toku_free(buf);
return 0;
}
int
toku_serialize_brtnode_to (int fd, BLOCKNUM blocknum, BRTNODE node, struct brt_header *h, int n_workitems, int n_threads, BOOL for_checkpoint) {
assert(node->desc == &h->descriptor);
size_t n_to_write;
char *compressed_buf;
{
int r = toku_serialize_brtnode_to_memory (node, n_workitems, n_threads, &n_to_write, &compressed_buf);
if (r!=0) return r;
}
//write_now: printf("%s:%d Writing %d bytes\n", __FILE__, __LINE__, w.ndone);
{
// If the node has never been written, then write the whole buffer, including the zeros
assert(blocknum.b>=0);
//printf("%s:%d h=%p\n", __FILE__, __LINE__, h);
//printf("%s:%d translated_blocknum_limit=%lu blocknum.b=%lu\n", __FILE__, __LINE__, h->translated_blocknum_limit, blocknum.b);
//printf("%s:%d allocator=%p\n", __FILE__, __LINE__, h->block_allocator);
//printf("%s:%d bt=%p\n", __FILE__, __LINE__, h->block_translation);
DISKOFF offset;
//h will be dirtied
toku_blocknum_realloc_on_disk(h->blocktable, blocknum, n_to_write, &offset,
h, for_checkpoint);
lock_for_pwrite();
toku_full_pwrite_extend(fd, compressed_buf, n_to_write, offset);
unlock_for_pwrite();
}
//printf("%s:%d wrote %d bytes for %lld size=%lld\n", __FILE__, __LINE__, w.ndone, off, size);
toku_free(compressed_buf);
node->dirty = 0; // See #1957. Must set the node to be clean after serializing it so that it doesn't get written again on the next checkpoint or eviction.
return 0;
}
static void deserialize_descriptor_from_rbuf(struct rbuf *rb, struct descriptor *desc, BOOL temporary);
static int
deserialize_brtnode_nonleaf_from_rbuf (BRTNODE result, bytevec magic, struct rbuf *rb) {
int r;
if (memcmp(magic, "tokunode", 8)!=0) {
r = toku_db_badformat();
return r;
}
result->u.n.totalchildkeylens=0;
u_int32_t subtree_fingerprint = rbuf_int(rb);
u_int32_t check_subtree_fingerprint = 0;
result->u.n.n_children = rbuf_int(rb);
MALLOC_N(result->u.n.n_children+1, result->u.n.childinfos);
MALLOC_N(result->u.n.n_children, result->u.n.childkeys);
//printf("n_children=%d\n", result->n_children);
assert(result->u.n.n_children>=0);
for (int i=0; i<result->u.n.n_children; i++) {
u_int32_t childfp = rbuf_int(rb);
BNC_SUBTREE_FINGERPRINT(result, i)= childfp;
check_subtree_fingerprint += childfp;
struct subtree_estimates *se = &(BNC_SUBTREE_ESTIMATES(result, i));
se->nkeys = rbuf_ulonglong(rb);
se->ndata = rbuf_ulonglong(rb);
se->dsize = rbuf_ulonglong(rb);
se->exact = (BOOL) (rbuf_char(rb) != 0);
}
for (int i=0; i<result->u.n.n_children-1; i++) {
if (result->flags & TOKU_DB_DUPSORT) {
bytevec keyptr, dataptr;
unsigned int keylen, datalen;
rbuf_bytes(rb, &keyptr, &keylen);
rbuf_bytes(rb, &dataptr, &datalen);
result->u.n.childkeys[i] = kv_pair_malloc(keyptr, keylen, dataptr, datalen);
} else {
bytevec childkeyptr;
unsigned int cklen;
rbuf_bytes(rb, &childkeyptr, &cklen); /* Returns a pointer into the rbuf. */
result->u.n.childkeys[i] = kv_pair_malloc((void*)childkeyptr, cklen, 0, 0);
}
//printf(" key %d length=%d data=%s\n", i, result->childkeylens[i], result->childkeys[i]);
result->u.n.totalchildkeylens+=toku_brtnode_pivot_key_len(result, result->u.n.childkeys[i]);
}
for (int i=0; i<result->u.n.n_children; i++) {
BNC_BLOCKNUM(result,i) = rbuf_blocknum(rb);
BNC_HAVE_FULLHASH(result, i) = FALSE;
BNC_NBYTESINBUF(result,i) = 0;
//printf("Child %d at %lld\n", i, result->children[i]);
}
result->u.n.n_bytes_in_buffers = 0;
for (int i=0; i<result->u.n.n_children; i++) {
r=toku_fifo_create(&BNC_BUFFER(result,i));
if (r!=0) {
int j;
if (0) { died_1: j=result->u.n.n_bytes_in_buffers; }
for (j=0; j<i; j++) toku_fifo_free(&BNC_BUFFER(result,j));
return toku_db_badformat();
}
}
{
int cnum;
u_int32_t check_local_fingerprint = 0;
for (cnum=0; cnum<result->u.n.n_children; cnum++) {
int n_in_this_hash = rbuf_int(rb);
//printf("%d in hash\n", n_in_hash);
for (int i=0; i<n_in_this_hash; i++) {
int diff;
bytevec key; ITEMLEN keylen;
bytevec val; ITEMLEN vallen;
//toku_verify_counts(result);
int type = rbuf_char(rb);
XIDS xids;
xids_create_from_buffer(rb, &xids);
rbuf_bytes(rb, &key, &keylen); /* Returns a pointer into the rbuf. */
rbuf_bytes(rb, &val, &vallen);
check_local_fingerprint += result->rand4fingerprint * toku_calc_fingerprint_cmd(type, xids, key, keylen, val, vallen);
//printf("Found %s,%s\n", (char*)key, (char*)val);
{
r=toku_fifo_enq(BNC_BUFFER(result, cnum), key, keylen, val, vallen, type, xids); /* Copies the data into the hash table. */
if (r!=0) { goto died_1; }
}
diff = keylen + vallen + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD + xids_get_serialize_size(xids);
result->u.n.n_bytes_in_buffers += diff;
BNC_NBYTESINBUF(result,cnum) += diff;
//printf("Inserted\n");
xids_destroy(&xids);
}
}
if (check_local_fingerprint != result->local_fingerprint) {
fprintf(stderr, "%s:%d local fingerprint is wrong (found %8x calcualted %8x\n", __FILE__, __LINE__, result->local_fingerprint, check_local_fingerprint);
return toku_db_badformat();
}
if (check_subtree_fingerprint+check_local_fingerprint != subtree_fingerprint) {
fprintf(stderr, "%s:%d subtree fingerprint is wrong\n", __FILE__, __LINE__);
return toku_db_badformat();
}
}
// RFP REMOVE (void)rbuf_int(rb); //Ignore the crc (already verified).
if (rb->ndone != rb->size) { //Verify we read exactly the entire block.
r = toku_db_badformat(); goto died_1;
}
return 0;
}
static int
deserialize_brtnode_leaf_from_rbuf (BRTNODE result, bytevec magic, struct rbuf *rb) {
int r;
if (memcmp(magic, "tokuleaf", 8)!=0) {
r = toku_db_badformat();
return r;
}
result->u.l.leaf_stats.nkeys = rbuf_ulonglong(rb);
result->u.l.leaf_stats.ndata = rbuf_ulonglong(rb);
result->u.l.leaf_stats.dsize = rbuf_ulonglong(rb);
result->u.l.leaf_stats.exact = TRUE;
int n_in_buf = rbuf_int(rb);
result->u.l.n_bytes_in_buffer = 0;
result->u.l.seqinsert = 0;
//printf("%s:%d r PMA= %p\n", __FILE__, __LINE__, result->u.l.buffer);
toku_mempool_init(&result->u.l.buffer_mempool, rb->buf, rb->size);
u_int32_t actual_sum = 0;
u_int32_t start_of_data = rb->ndone;
OMTVALUE *MALLOC_N(n_in_buf, array);
for (int i=0; i<n_in_buf; i++) {
LEAFENTRY le = (LEAFENTRY)(&rb->buf[rb->ndone]);
u_int32_t disksize = leafentry_disksize(le);
rb->ndone += disksize;
assert(rb->ndone<=rb->size);
array[i]=(OMTVALUE)le;
actual_sum += x1764_memory(le, disksize);
}
toku_trace("fill array");
u_int32_t end_of_data = rb->ndone;
result->u.l.n_bytes_in_buffer += end_of_data-start_of_data + n_in_buf*OMT_ITEM_OVERHEAD;
actual_sum *= result->rand4fingerprint;
r = toku_omt_create_steal_sorted_array(&result->u.l.buffer, &array, n_in_buf, n_in_buf);
toku_trace("create omt");
if (r!=0) {
toku_free(array);
r = toku_db_badformat();
if (0) { died_1: toku_omt_destroy(&result->u.l.buffer); }
return r;
}
assert(array==NULL);
result->u.l.buffer_mempool.frag_size = start_of_data;
result->u.l.buffer_mempool.free_offset = end_of_data;
if (r!=0) goto died_1;
if (actual_sum!=result->local_fingerprint) {
//fprintf(stderr, "%s:%d Corrupted checksum stored=%08x rand=%08x actual=%08x height=%d n_keys=%d\n", __FILE__, __LINE__, result->rand4fingerprint, result->local_fingerprint, actual_sum, result->height, n_in_buf);
r = toku_db_badformat();
goto died_1;
} else {
//fprintf(stderr, "%s:%d Good checksum=%08x height=%d\n", __FILE__, __LINE__, actual_sum, result->height);
}
//toku_verify_counts(result);
if (rb->ndone != rb->size) { //Verify we read exactly the entire block.
r = toku_db_badformat(); goto died_1;
}
r = toku_leaflock_borrow(result->u.l.leaflock_pool, &result->u.l.leaflock);
if (r!=0) goto died_1;
rb->buf = NULL; //Buffer was used for node's mempool.
return 0;
}
static int
deserialize_brtnode_from_rbuf (BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h, struct rbuf *rb) {
TAGMALLOC(BRTNODE, result);
int r;
if (result==0) {
r=errno;
if (0) { died0: toku_free(result); }
return r;
}
result->desc = &h->descriptor;
result->ever_been_written = 1;
//printf("Deserializing %lld datasize=%d\n", off, datasize);
bytevec magic;
rbuf_literal_bytes(rb, &magic, 8);
result->layout_version = rbuf_int(rb);
assert(result->layout_version == BRT_LAYOUT_VERSION);
result->layout_version_original = rbuf_int(rb);
result->layout_version_read_from_disk = result->layout_version;
{
//Restrict scope for now since we do not support upgrades.
struct descriptor desc;
//desc.dbt.data is TEMPORARY. Will be unusable when the rc buffer is freed.
deserialize_descriptor_from_rbuf(rb, &desc, TRUE);
assert(desc.version == result->desc->version); //We do not yet support upgrading the dbts.
}
result->nodesize = rbuf_int(rb);
result->thisnodename = blocknum;
result->flags = rbuf_int(rb);
result->height = rbuf_int(rb);
result->rand4fingerprint = rbuf_int(rb);
result->local_fingerprint = rbuf_int(rb);
// printf("%s:%d read %08x\n", __FILE__, __LINE__, result->local_fingerprint);
result->dirty = 0;
result->fullhash = fullhash;
//printf("height==%d\n", result->height);
if (result->height>0)
r = deserialize_brtnode_nonleaf_from_rbuf(result, magic, rb);
else {
result->u.l.leaflock_pool = toku_cachefile_leaflock_pool(h->cf);
r = deserialize_brtnode_leaf_from_rbuf(result, magic, rb);
}
if (r!=0) goto died0;
//printf("%s:%d Ok got %lld n_children=%d\n", __FILE__, __LINE__, result->thisnodename, result->n_children);
if (result->height>0) {
// For height==0 we used the buf inside the OMT
toku_free(rb->buf);
rb->buf = NULL;
}
*brtnode = result;
//toku_verify_counts(result);
return 0;
}
#include "workset.h"
struct decompress_work {
struct work base;
void *compress_ptr;
void *uncompress_ptr;
u_int32_t compress_size;
u_int32_t uncompress_size;
u_int32_t xsum;
int error;
};
// initialize the decompression work
static void
decompress_work_init(struct decompress_work *dw,
void *compress_ptr, u_int32_t compress_size,
void *uncompress_ptr, u_int32_t uncompress_size,
u_int32_t xsum) {
dw->compress_ptr = compress_ptr;
dw->compress_size = compress_size;
dw->uncompress_ptr = uncompress_ptr;
dw->uncompress_size = uncompress_size;
dw->xsum = xsum;
dw->error = 0;
}
// decompress one block
static int
decompress_sub_block(void *compress_ptr, u_int32_t compress_size, void *uncompress_ptr, u_int32_t uncompress_size, u_int32_t expected_xsum) {
// verify checksum
u_int32_t xsum = x1764_memory(compress_ptr, compress_size);
assert(xsum == expected_xsum);
// decompress
uLongf destlen = uncompress_size;
int r = uncompress(uncompress_ptr, &destlen, compress_ptr, compress_size);
assert(destlen == uncompress_size);
assert(r==Z_OK);
return 0;
}
// decompress blocks until there is no more work to do
static void *
decompress_worker(void *arg) {
struct workset *ws = (struct workset *) arg;
while (1) {
struct decompress_work *dw = (struct decompress_work *) workset_get(ws);
if (dw == NULL)
break;
dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum);
}
return arg;
}
static void
decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data) {
if (n_sub_blocks == 1) {
decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum);
} else {
// compute the number of additional threads needed for decompressing this node
int T = num_cores; // T = min(#cores, #blocks) - 1
if (T > n_sub_blocks)
T = n_sub_blocks;
if (T > 0)
T = T - 1; // threads in addition to the running thread
// init the decompression work set
struct workset ws;
workset_init(&ws);
// initialize the decompression work and add to the work set
struct decompress_work decompress_work[n_sub_blocks];
workset_lock(&ws);
for (int i = 0; i < n_sub_blocks; i++) {
decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum);
workset_put_locked(&ws, &decompress_work[i].base);
uncompressed_data += sub_block[i].uncompressed_size;
compressed_data += sub_block[i].compressed_size;
}
workset_unlock(&ws);
// decompress the sub-blocks
if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n", __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T);
toku_pthread_t tids[T];
threadset_create(tids, &T, decompress_worker, &ws);
decompress_worker(&ws);
// cleanup
threadset_join(tids, T);
workset_destroy(&ws);
}
}
static int
decompress_brtnode_from_raw_block_into_rbuf(u_int8_t *raw_block, struct rbuf *rb, BLOCKNUM blocknum) {
toku_trace("decompress");
int r;
// get the number of compressed sub blocks
int n_sub_blocks;
n_sub_blocks = toku_dtoh32(*(u_int32_t*)(&raw_block[node_header_overhead]));
// verify the number of sub blocks
assert(0 <= n_sub_blocks && n_sub_blocks <= max_sub_blocks);
// deserialize the sub block header
struct sub_block sub_block[n_sub_blocks];
u_int32_t *sub_block_header = (u_int32_t *) &raw_block[node_header_overhead+4];
for (int i = 0; i < n_sub_blocks; i++) {
sub_block_init(&sub_block[i]);
sub_block[i].compressed_size = toku_dtoh32(sub_block_header[0]);
sub_block[i].uncompressed_size = toku_dtoh32(sub_block_header[1]);
sub_block[i].xsum = toku_dtoh32(sub_block_header[2]);
sub_block_header += 3;
}
// verify sub block sizes
for (int i = 0; i < n_sub_blocks; i++) {
u_int32_t compressed_size = sub_block[i].compressed_size;
if (compressed_size<=0 || compressed_size>(1<<30)) { r = toku_db_badformat(); return r; }
u_int32_t uncompressed_size = sub_block[i].uncompressed_size;
if (0) printf("Block %" PRId64 " Compressed size = %u, uncompressed size=%u\n", blocknum.b, compressed_size, uncompressed_size);
if (uncompressed_size<=0 || uncompressed_size>(1<<30)) { r = toku_db_badformat(); return r; }
}
// sum up the uncompressed size of the sub blocks
size_t uncompressed_size = get_sum_uncompressed_size(n_sub_blocks, sub_block);
// allocate the uncompressed buffer
size_t size = node_header_overhead + uncompressed_size;
unsigned char *buf = toku_xmalloc(size);
assert(buf);
rbuf_init(rb, buf, size);
// copy the uncompressed node header to the uncompressed buffer
memcpy(rb->buf, raw_block, node_header_overhead);
// point at the start of the compressed data (past the node header, the sub block header, and the header checksum)
unsigned char *compressed_data = raw_block + node_header_overhead + sub_block_header_size(n_sub_blocks) + sizeof (u_int32_t);
// point at the start of the uncompressed data
unsigned char *uncompressed_data = rb->buf + node_header_overhead;
// decompress all the compressed sub blocks into the uncompressed buffer
decompress_all_sub_blocks(n_sub_blocks, sub_block, compressed_data, uncompressed_data);
toku_trace("decompress done");
rb->ndone=0;
return 0;
}
static int
decompress_brtnode_from_raw_block_into_rbuf_versioned(u_int32_t version, u_int8_t *raw_block, struct rbuf *rb, BLOCKNUM blocknum) {
int r;
switch (version) {
case BRT_LAYOUT_VERSION_10:
r = decompress_brtnode_from_raw_block_into_rbuf_10(raw_block, rb, blocknum);
break;
case BRT_LAYOUT_VERSION:
r = decompress_brtnode_from_raw_block_into_rbuf(raw_block, rb, blocknum);
break;
default:
assert(FALSE);
}
return r;
}
static int
deserialize_brtnode_from_rbuf_versioned (u_int32_t version, BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h, struct rbuf *rb) {
int r = 0;
BRTNODE brtnode_10 = NULL;
BRTNODE brtnode_11 = NULL;
int upgrade = 0;
switch (version) {
case BRT_LAYOUT_VERSION_10:
if (!upgrade)
r = deserialize_brtnode_from_rbuf_10(blocknum, fullhash, &brtnode_10, h, rb);
upgrade++;
if (r==0)
r = upgrade_brtnode_10_11(&brtnode_10, &brtnode_11);
//Fall through on purpose.
case BRT_LAYOUT_VERSION:
if (!upgrade)
r = deserialize_brtnode_from_rbuf(blocknum, fullhash, &brtnode_11, h, rb);
if (r==0) {
assert(brtnode_11);
*brtnode = brtnode_11;
}
if (upgrade && r == 0) (*brtnode)->dirty = 1;
break; // this is the only break
default:
assert(FALSE);
}
return r;
}
// Read brt node from file into struct. Perform version upgrade if necessary.
int
toku_deserialize_brtnode_from (int fd, BLOCKNUM blocknum, u_int32_t fullhash, BRTNODE *brtnode, struct brt_header *h) {
toku_trace("deserial start");
int r;
struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};
if (0) printf("Deserializing Block %" PRId64 "\n", blocknum.b);
if (h->panic) return h->panic;
toku_trace("deserial start");
// get the file offset and block size for the block
DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(h->blocktable, blocknum, &offset, &size);
u_int8_t *XMALLOC_N(size, raw_block);
{
// read the (partially compressed) block
ssize_t rlen = pread(fd, raw_block, size, offset);
assert((DISKOFF)rlen == size);
}
// get the layout_version
int layout_version;
{
u_int8_t *magic = raw_block + uncompressed_magic_offset;
if (memcmp(magic, "tokuleaf", 8)!=0 && memcmp(magic, "tokunode", 8)!=0) {
r = toku_db_badformat();
goto cleanup;
}
u_int8_t *version = raw_block + uncompressed_version_offset;
layout_version = toku_dtoh32(*(uint32_t*)version);
if (layout_version < BRT_LAYOUT_MIN_SUPPORTED_VERSION || layout_version > BRT_LAYOUT_VERSION) {
r = toku_db_badformat();
goto cleanup;
}
}
// verify the header checksum
u_int32_t n_sub_blocks = toku_dtoh32(*(u_int32_t *)(raw_block + node_header_overhead));
u_int32_t header_length = node_header_overhead + sub_block_header_size(n_sub_blocks);
assert(header_length <= size);
u_int32_t xsum = x1764_memory(raw_block, header_length);
u_int32_t stored_xsum = toku_dtoh32(*(u_int32_t *)(raw_block + header_length));
assert(xsum == stored_xsum);
r = decompress_brtnode_from_raw_block_into_rbuf_versioned(layout_version, raw_block, &rb, blocknum);
if (r!=0) goto cleanup;
r = deserialize_brtnode_from_rbuf_versioned(layout_version, blocknum, fullhash, brtnode, h, &rb);
toku_trace("deserial done");
cleanup:
if (rb.buf) toku_free(rb.buf);
if (raw_block) toku_free(raw_block);
return r;
}
int
toku_maybe_upgrade_brt(BRT t) { // possibly do some work to complete the version upgrade of brt
int r = 0;
int version = t->h->layout_version_read_from_disk;
if (!t->h->upgrade_brt_performed) {
switch (version) {
case BRT_LAYOUT_VERSION_10:
r = toku_brt_broadcast_commit_all(t);
//Fall through on purpose.
case BRT_LAYOUT_VERSION:
if (r == 0) {
t->h->upgrade_brt_performed = TRUE;
}
break;
default:
assert(FALSE);
}
}
if (r) {
if (t->h->panic==0) {
char *e = strerror(r);
int l = 200 + strlen(e);
char s[l];
t->h->panic=r;
snprintf(s, l-1, "While upgrading brt version, error %d (%s)", r, e);
t->h->panic_string = toku_strdup(s);
}
}
return r;
}
// ################
struct sum_info {
unsigned int dsum;
unsigned int msum;
unsigned int count;
u_int32_t fp;
};
static int
sum_item (OMTVALUE lev, u_int32_t UU(idx), void *vsi) {
LEAFENTRY le=lev;
struct sum_info *si = vsi;
si->count++;
si->dsum += OMT_ITEM_OVERHEAD + leafentry_disksize(le);
si->msum += leafentry_memsize(le);
si->fp += toku_le_crc(le);
return 0;
}
void toku_verify_counts (BRTNODE node) {
/*foo*/
if (node->height==0) {
assert(node->u.l.buffer);
struct sum_info sum_info = {0,0,0,0};
toku_omt_iterate(node->u.l.buffer, sum_item, &sum_info);
assert(sum_info.count==toku_omt_size(node->u.l.buffer));
assert(sum_info.dsum==node->u.l.n_bytes_in_buffer);
assert(sum_info.msum == node->u.l.buffer_mempool.free_offset - node->u.l.buffer_mempool.frag_size);
u_int32_t fps = node->rand4fingerprint * sum_info.fp;
assert(fps==node->local_fingerprint);
} else {
unsigned int sum = 0;
for (int i=0; i<node->u.n.n_children; i++)
sum += BNC_NBYTESINBUF(node,i);
// We don't rally care of the later buffers have garbage in them. Valgrind would do a better job noticing if we leave it uninitialized.
// But for now the code always initializes the later tables so they are 0.
assert(sum==node->u.n.n_bytes_in_buffers);
}
}
static u_int32_t
serialize_brt_header_min_size (u_int32_t version) {
u_int32_t size = 0;
switch(version) {
case BRT_LAYOUT_VERSION_12:
case BRT_LAYOUT_VERSION_11:
size += 4; // original_version
// fall through to add up bytes in previous version
case BRT_LAYOUT_VERSION_10:
size += (+8 // "tokudata"
+4 // version
+4 // size
+8 // byte order verification
+8 // checkpoint_count
+8 // checkpoint_lsn
+4 // tree's nodesize
+8 // translation_size_on_disk
+8 // translation_address_on_disk
+4 // checksum
);
size+=(+8 // diskoff
+4 // flags
);
break;
default:
assert(FALSE);
}
assert(size <= BLOCK_ALLOCATOR_HEADER_RESERVE);
return size;
}
int toku_serialize_brt_header_size (struct brt_header *h) {
u_int32_t size = serialize_brt_header_min_size(h->layout_version);
//There is no dynamic data.
assert(size <= BLOCK_ALLOCATOR_HEADER_RESERVE);
return size;
}
int toku_serialize_brt_header_to_wbuf (struct wbuf *wbuf, struct brt_header *h, DISKOFF translation_location_on_disk, DISKOFF translation_size_on_disk) {
unsigned int size = toku_serialize_brt_header_size (h); // !!! seems silly to recompute the size when the caller knew it. Do we really need the size?
wbuf_literal_bytes(wbuf, "tokudata", 8);
wbuf_network_int (wbuf, h->layout_version); //MUST be in network order regardless of disk order
wbuf_network_int (wbuf, size); //MUST be in network order regardless of disk order
wbuf_literal_bytes(wbuf, &toku_byte_order_host, 8); //Must not translate byte order
wbuf_ulonglong(wbuf, h->checkpoint_count);
wbuf_LSN (wbuf, h->checkpoint_lsn);
wbuf_int (wbuf, h->nodesize);
//printf("%s:%d bta=%lu size=%lu\n", __FILE__, __LINE__, h->block_translation_address_on_disk, 4 + 16*h->translated_blocknum_limit);
wbuf_DISKOFF(wbuf, translation_location_on_disk);
wbuf_DISKOFF(wbuf, translation_size_on_disk);
wbuf_BLOCKNUM(wbuf, h->root);
wbuf_int(wbuf, h->flags);
wbuf_int(wbuf, h->layout_version_original);
u_int32_t checksum = x1764_finish(&wbuf->checksum);
wbuf_int(wbuf, checksum);
assert(wbuf->ndone == wbuf->size);
return 0;
}
int toku_serialize_brt_header_to (int fd, struct brt_header *h) {
int rr = 0;
if (h->panic) return h->panic;
assert(h->type==BRTHEADER_CHECKPOINT_INPROGRESS);
toku_brtheader_lock(h);
struct wbuf w_translation;
int64_t size_translation;
int64_t address_translation;
{
//Must serialize translation first, to get address,size for header.
toku_serialize_translation_to_wbuf_unlocked(h->blocktable, &w_translation,
&address_translation,
&size_translation);
assert(size_translation==w_translation.size);
}
struct wbuf w_main;
unsigned int size_main = toku_serialize_brt_header_size (h);
{
wbuf_init(&w_main, toku_malloc(size_main), size_main);
{
int r=toku_serialize_brt_header_to_wbuf(&w_main, h, address_translation, size_translation);
assert(r==0);
}
assert(w_main.ndone==size_main);
}
toku_brtheader_unlock(h);
lock_for_pwrite();
{
//Actual Write translation table
toku_full_pwrite_extend(fd, w_translation.buf,
size_translation, address_translation);
}
{
//Alternate writing header to two locations:
// Beginning (0) or BLOCK_ALLOCATOR_HEADER_RESERVE
toku_off_t main_offset;
//TODO: #1623 uncomment next line when ready for 2 headers
main_offset = (h->checkpoint_count & 0x1) ? 0 : BLOCK_ALLOCATOR_HEADER_RESERVE;
toku_full_pwrite_extend(fd, w_main.buf, w_main.ndone, main_offset);
}
toku_free(w_main.buf);
toku_free(w_translation.buf);
unlock_for_pwrite();
return rr;
}
u_int32_t
toku_serialize_descriptor_size(const struct descriptor *desc) {
//Checksum NOT included in this. Checksum only exists in header's version.
u_int32_t size = 4+ //version
4; //size
size += desc->dbt.size;
return size;
}
void
toku_serialize_descriptor_contents_to_wbuf(struct wbuf *wb, const struct descriptor *desc) {
if (desc->version==0) assert(desc->dbt.size==0);
wbuf_int(wb, desc->version);
wbuf_bytes(wb, desc->dbt.data, desc->dbt.size);
}
//Descriptor is written to disk during toku_brt_open iff we have a new (or changed)
//descriptor.
//Descriptors are NOT written during the header checkpoint process.
int
toku_serialize_descriptor_contents_to_fd(int fd, const struct descriptor *desc, DISKOFF offset) {
int r = 0;
// make the checksum
int64_t size = toku_serialize_descriptor_size(desc)+4; //4 for checksum
struct wbuf w;
wbuf_init(&w, toku_xmalloc(size), size);
toku_serialize_descriptor_contents_to_wbuf(&w, desc);
{
//Add checksum
u_int32_t checksum = x1764_finish(&w.checksum);
wbuf_int(&w, checksum);
}
assert(w.ndone==w.size);
{
lock_for_pwrite();
//Actual Write translation table
toku_full_pwrite_extend(fd, w.buf, size, offset);
unlock_for_pwrite();
}
toku_free(w.buf);
return r;
}
static void
deserialize_descriptor_from_rbuf(struct rbuf *rb, struct descriptor *desc, BOOL temporary) {
desc->version = rbuf_int(rb);
u_int32_t size;
bytevec data;
rbuf_bytes(rb, &data, &size);
bytevec data_copy = data;;
if (size>0) {
if (!temporary) {
data_copy = toku_memdup(data, size); //Cannot keep the reference from rbuf. Must copy.
assert(data_copy);
}
}
else {
assert(size==0);
data_copy = NULL;
}
toku_fill_dbt(&desc->dbt, data_copy, size);
if (desc->version==0) assert(desc->dbt.size==0);
}
static void
deserialize_descriptor_from(int fd, struct brt_header *h, struct descriptor *desc) {
DISKOFF offset;
DISKOFF size;
toku_get_descriptor_offset_size(h->blocktable, &offset, &size);
memset(desc, 0, sizeof(*desc));
if (size > 0) {
assert(size>=4); //4 for checksum
{
unsigned char *XMALLOC_N(size, dbuf);
{
lock_for_pwrite();
ssize_t r = pread(fd, dbuf, size, offset);
assert(r==size);
unlock_for_pwrite();
}
{
// check the checksum
u_int32_t x1764 = x1764_memory(dbuf, size-4);
//printf("%s:%d read from %ld (x1764 offset=%ld) size=%ld\n", __FILE__, __LINE__, block_translation_address_on_disk, offset, block_translation_size_on_disk);
u_int32_t stored_x1764 = toku_dtoh32(*(int*)(dbuf + size-4));
assert(x1764 == stored_x1764);
}
{
struct rbuf rb = {.buf = dbuf, .size = size, .ndone = 0};
//Not temporary; must have a toku_memdup'd copy.
deserialize_descriptor_from_rbuf(&rb, desc, FALSE);
}
assert(toku_serialize_descriptor_size(desc)+4 == size);
toku_free(dbuf);
}
}
}
// We only deserialize brt header once and then share everything with all the brts.
static int
deserialize_brtheader (int fd, struct rbuf *rb, struct brt_header **brth) {
// We already know:
// we have an rbuf representing the header.
// The checksum has been validated
//Steal rbuf (used to simplify merge, reduce diff size, and keep old code)
struct rbuf rc = *rb;
memset(rb, 0, sizeof(*rb));
//Verification of initial elements.
{
//Check magic number
bytevec magic;
rbuf_literal_bytes(&rc, &magic, 8);
assert(memcmp(magic,"tokudata",8)==0);
}
struct brt_header *CALLOC(h);
if (h==0) return errno;
int ret=-1;
if (0) { died1: toku_free(h); return ret; }
h->type = BRTHEADER_CURRENT;
h->checkpoint_header = NULL;
h->dirty=0;
h->panic = 0;
h->panic_string = 0;
toku_list_init(&h->live_brts);
toku_list_init(&h->zombie_brts);
//version MUST be in network order on disk regardless of disk order
h->layout_version = rbuf_network_int(&rc);
//TODO: #1924
assert(h->layout_version==BRT_LAYOUT_VERSION);
//Size MUST be in network order regardless of disk order.
u_int32_t size = rbuf_network_int(&rc);
assert(size==rc.size);
bytevec tmp_byte_order_check;
rbuf_literal_bytes(&rc, &tmp_byte_order_check, 8); //Must not translate byte order
int64_t byte_order_stored = *(int64_t*)tmp_byte_order_check;
assert(byte_order_stored == toku_byte_order_host);
h->checkpoint_count = rbuf_ulonglong(&rc);
h->checkpoint_lsn = rbuf_lsn(&rc);
h->nodesize = rbuf_int(&rc);
DISKOFF translation_address_on_disk = rbuf_diskoff(&rc);
DISKOFF translation_size_on_disk = rbuf_diskoff(&rc);
assert(translation_address_on_disk>0);
assert(translation_size_on_disk>0);
// printf("%s:%d translated_blocknum_limit=%ld, block_translation_address_on_disk=%ld\n", __FILE__, __LINE__, h->translated_blocknum_limit, h->block_translation_address_on_disk);
//Load translation table
{
lock_for_pwrite();
unsigned char *XMALLOC_N(translation_size_on_disk, tbuf);
{
// This cast is messed up in 32-bits if the block translation table is ever more than 4GB. But in that case, the translation table itself won't fit in main memory.
ssize_t r = pread(fd, tbuf, translation_size_on_disk, translation_address_on_disk);
assert(r==translation_size_on_disk);
}
unlock_for_pwrite();
// Create table and read in data.
toku_blocktable_create_from_buffer(&h->blocktable,
translation_address_on_disk,
translation_size_on_disk,
tbuf);
toku_free(tbuf);
}
h->root = rbuf_blocknum(&rc);
h->root_hash.valid = FALSE;
h->flags = rbuf_int(&rc);
deserialize_descriptor_from(fd, h, &h->descriptor);
h->layout_version_original = rbuf_int(&rc);
(void)rbuf_int(&rc); //Read in checksum and ignore (already verified).
if (rc.ndone!=rc.size) {ret = EINVAL; goto died1;}
toku_free(rc.buf);
rc.buf = NULL;
*brth = h;
return 0;
}
//TODO: When version 12 exists, add case for version 11 that looks like version 10 case,
// but calls deserialize_brtheader_11() and upgrade_11_12()
static int
deserialize_brtheader_versioned (int fd, struct rbuf *rb, struct brt_header **brth, u_int32_t version) {
int rval;
struct brt_header *brth_10 = NULL;
struct brt_header *brth_11 = NULL;
int upgrade = 0;
switch(version) {
case BRT_LAYOUT_VERSION_10:
if (!upgrade)
rval = deserialize_brtheader_10(fd, rb, &brth_10);
upgrade++;
if (rval == 0)
rval = upgrade_brtheader_10_11(&brth_10, &brth_11);
//Fall through on purpose.
case BRT_LAYOUT_VERSION:
if (!upgrade)
rval = deserialize_brtheader (fd, rb, &brth_11);
if (rval == 0) {
assert(brth_11);
*brth = brth_11;
}
if (upgrade && rval == 0) (*brth)->dirty = 1;
break; // this is the only break
default:
assert(FALSE);
}
if (rval == 0) {
assert((*brth)->layout_version == BRT_LAYOUT_VERSION);
(*brth)->layout_version_read_from_disk = version;
(*brth)->upgrade_brt_performed = FALSE;
}
return rval;
}
// Simply reading the raw bytes of the header into an rbuf is insensitive to disk format version.
// If that ever changes, then modify this.
//TOKUDB_DICTIONARY_NO_HEADER means we can overwrite everything in the file AND the header is useless
static int
deserialize_brtheader_from_fd_into_rbuf(int fd, toku_off_t offset, struct rbuf *rb, u_int64_t *checkpoint_count, u_int32_t * version_p) {
int r = 0;
const int64_t prefix_size = 8 + // magic ("tokudata")
4 + // version
4; // size
unsigned char prefix[prefix_size];
rb->buf = NULL;
int64_t n = pread(fd, prefix, prefix_size, offset);
if (n==0) r = TOKUDB_DICTIONARY_NO_HEADER;
else if (n<0) {r = errno; assert(r!=0);}
else if (n!=prefix_size) r = EINVAL;
else {
rb->size = prefix_size;
rb->ndone = 0;
rb->buf = prefix;
{
//Check magic number
bytevec magic;
rbuf_literal_bytes(rb, &magic, 8);
if (memcmp(magic,"tokudata",8)!=0) {
if ((*(u_int64_t*)magic) == 0) r = TOKUDB_DICTIONARY_NO_HEADER;
else r = EINVAL; //Not a tokudb file! Do not use.
}
}
u_int32_t version = 0;
if (r==0) {
//Version MUST be in network order regardless of disk order.
version = rbuf_network_int(rb);
*version_p = version;
if (version < BRT_LAYOUT_MIN_SUPPORTED_VERSION) r = TOKUDB_DICTIONARY_TOO_OLD; //Cannot use
if (version > BRT_LAYOUT_VERSION) r = TOKUDB_DICTIONARY_TOO_NEW; //Cannot use
}
u_int32_t size;
if (r==0) {
const int64_t max_header_size = BLOCK_ALLOCATOR_HEADER_RESERVE;
int64_t min_header_size = serialize_brt_header_min_size(version);
//Size MUST be in network order regardless of disk order.
size = rbuf_network_int(rb);
//If too big, it is corrupt. We would probably notice during checksum
//but may have to do a multi-gigabyte malloc+read to find out.
//If its too small reading rbuf would crash, so verify.
if (size > max_header_size || size < min_header_size) r = TOKUDB_DICTIONARY_NO_HEADER;
}
if (r!=0) {
rb->buf = NULL; //Prevent freeing of 'prefix'
}
if (r==0) {
assert(rb->ndone==prefix_size);
rb->size = size;
rb->buf = toku_xmalloc(rb->size);
}
if (r==0) {
n = pread(fd, rb->buf, rb->size, offset);
if (n==-1) {
r = errno;
assert(r!=0);
}
else if (n!=(int64_t)rb->size) r = EINVAL; //Header might be useless (wrong size) or could be a disk read error.
}
//It's version 10 or later. Magic looks OK.
//We have an rbuf that represents the header.
//Size is within acceptable bounds.
if (r==0) {
//Verify checksum
u_int32_t calculated_x1764 = x1764_memory(rb->buf, rb->size-4);
u_int32_t stored_x1764 = toku_dtoh32(*(int*)(rb->buf+rb->size-4));
if (calculated_x1764!=stored_x1764) r = TOKUDB_DICTIONARY_NO_HEADER; //Header useless
}
if (r==0) {
//Verify byte order
bytevec tmp_byte_order_check;
rbuf_literal_bytes(rb, &tmp_byte_order_check, 8); //Must not translate byte order
int64_t byte_order_stored = *(int64_t*)tmp_byte_order_check;
if (byte_order_stored != toku_byte_order_host) r = TOKUDB_DICTIONARY_NO_HEADER; //Cannot use dictionary
}
if (r==0) {
//Load checkpoint count
*checkpoint_count = rbuf_ulonglong(rb);
//Restart at beginning during regular deserialization
rb->ndone = 0;
}
}
if (r!=0 && rb->buf) {
toku_free(rb->buf);
rb->buf = NULL;
}
return r;
}
// Read brtheader from file into struct. Read both headers and use the latest one.
int
toku_deserialize_brtheader_from (int fd, struct brt_header **brth) {
struct rbuf rb_0;
struct rbuf rb_1;
u_int64_t checkpoint_count_0;
u_int64_t checkpoint_count_1;
int r0;
int r1;
u_int32_t version_0, version_1, version = 0;
{
toku_off_t header_0_off = 0;
r0 = deserialize_brtheader_from_fd_into_rbuf(fd, header_0_off, &rb_0, &checkpoint_count_0, &version_0);
}
{
toku_off_t header_1_off = BLOCK_ALLOCATOR_HEADER_RESERVE;
r1 = deserialize_brtheader_from_fd_into_rbuf(fd, header_1_off, &rb_1, &checkpoint_count_1, &version_1);
}
struct rbuf *rb = NULL;
if (r0!=TOKUDB_DICTIONARY_TOO_NEW && r1!=TOKUDB_DICTIONARY_TOO_NEW) {
if (r0==0) {
rb = &rb_0;
version = version_0;
}
if (r1==0 && (r0!=0 || checkpoint_count_1 > checkpoint_count_0)) {
rb = &rb_1;
version = version_1;
}
if (r0==0 && r1==0) {
assert(checkpoint_count_1 != checkpoint_count_0);
if (rb == &rb_0) assert(version_0 >= version_1);
else assert(version_0 <= version_1);
}
}
int r = 0;
if (rb==NULL) {
// We were unable to read either header or at least one is too new.
// Certain errors are higher priority than others. Order of these if/else if is important.
if (r0==TOKUDB_DICTIONARY_TOO_NEW || r1==TOKUDB_DICTIONARY_TOO_NEW)
r = TOKUDB_DICTIONARY_TOO_NEW;
else if (r0==TOKUDB_DICTIONARY_TOO_OLD || r1==TOKUDB_DICTIONARY_TOO_OLD) {
r = TOKUDB_DICTIONARY_TOO_OLD;
}
else if (r0==TOKUDB_DICTIONARY_NO_HEADER || r1==TOKUDB_DICTIONARY_NO_HEADER) {
r = TOKUDB_DICTIONARY_NO_HEADER;
}
else r = r0; //Arbitrarily report the error from the first header.
assert(r!=0);
}
if (r==0) r = deserialize_brtheader_versioned(fd, rb, brth, version);
if (rb_0.buf) toku_free(rb_0.buf);
if (rb_1.buf) toku_free(rb_1.buf);
return r;
}
unsigned int
toku_brt_pivot_key_len (BRT brt, struct kv_pair *pk) {
if (brt->flags & TOKU_DB_DUPSORT) {
return kv_pair_keylen(pk) + kv_pair_vallen(pk);
} else {
return kv_pair_keylen(pk);
}
}
unsigned int
toku_brtnode_pivot_key_len (BRTNODE node, struct kv_pair *pk) {
if (node->flags & TOKU_DB_DUPSORT) {
return kv_pair_keylen(pk) + kv_pair_vallen(pk);
} else {
return kv_pair_keylen(pk);
}
}
int
toku_db_badformat(void) {
return DB_BADFORMAT;
}
// NOTE: Backwards compatibility functions are in the included .c file(s):
#include "backwards_10.c"