mariadb/sql/opt_subselect.h

434 lines
15 KiB
C
Raw Normal View History

/*
Copyright (c) 2010, 2019, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
2010-04-25 12:23:52 +04:00
/*
Semi-join subquery optimization code definitions
*/
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
int check_and_do_in_subquery_rewrites(JOIN *join);
bool convert_join_subqueries_to_semijoins(JOIN *join);
int pull_out_semijoin_tables(JOIN *join);
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map);
MDEV-12387 Push conditions into materialized subqueries The logic and the implementation scheme are similar with the MDEV-9197 Pushdown conditions into non-mergeable views/derived tables How the push down is made on the example: select * from t1 where a>3 and b>10 and (a,b) in (select x,max(y) from t2 group by x); --> select * from t1 where a>3 and b>10 and (a,b) in (select x,max(y) from t2 where x>3 group by x having max(y)>10); The implementation scheme: 1. Search for the condition cond that depends only on the fields from the left part of the IN subquery (left_part) 2. Find fields F_group in the select of the right part of the IN subquery (right_part) that are used in the GROUP BY 3. Extract from the cond condition cond_where that depends only on the fields from the left_part that stay at the same places in the left_part (have the same indexes) as the F_group fields in the projection of the right_part 4. Transform cond_where so it can be pushed into the WHERE clause of the right_part and delete cond_where from the cond 5. Transform cond so it can be pushed into the HAVING clause of the right_part The optimization is made in the Item_in_subselect::pushdown_cond_for_in_subquery() and is controlled by the variable condition_pushdown_for_subquery. New test file in_subq_cond_pushdown.test is created. There are also some changes made for setup_jtbm_semi_joins(). Now it is decomposed into the 2 procedures: setup_degenerate_jtbm_semi_joins() that is called before optimize_cond() for cond and setup_jtbm_semi_joins() that is called after optimize_cond(). New setup_jtbm_semi_joins() is made in the way so that the result of its work is the same as if it was called before optimize_cond(). The code that is common for pushdown into materialized derived and into materialized IN subqueries is factored out into pushdown_cond_for_derived(), Item_in_subselect::pushdown_cond_for_in_subquery() and st_select_lex::pushdown_cond_into_where_clause().
2018-05-15 23:45:59 +02:00
bool setup_degenerate_jtbm_semi_joins(JOIN *join,
List<TABLE_LIST> *join_list,
List<Item> &eq_list);
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
List<Item> &eq_list);
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list);
// used by Loose_scan_opt
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
table_map remaining_tables);
/*
This is a class for considering possible loose index scan optimizations.
It's usage pattern is as follows:
best_access_path()
{
Loose_scan_opt opt;
opt.init()
for each index we can do ref access with
{
opt.next_ref_key();
for each keyuse
opt.add_keyuse();
opt.check_ref_access();
}
if (some criteria for range scans)
opt.check_range_access();
opt.get_best_option();
}
*/
class Loose_scan_opt
{
/* All methods must check this before doing anything else */
bool try_loosescan;
/*
If we consider (oe1, .. oeN) IN (SELECT ie1, .. ieN) then ieK=oeK is
called sj-equality. If oeK depends only on preceding tables then such
equality is called 'bound'.
*/
ulonglong bound_sj_equalities;
/* Accumulated properties of ref access we're now considering: */
ulonglong handled_sj_equalities;
key_part_map loose_scan_keyparts;
uint max_loose_keypart;
bool part1_conds_met;
/*
Use of quick select is a special case. Some of its properties:
*/
uint quick_uses_applicable_index;
uint quick_max_loose_keypart;
/* Best loose scan method so far */
uint best_loose_scan_key;
double best_loose_scan_cost;
double best_loose_scan_records;
KEYUSE *best_loose_scan_start_key;
uint best_max_loose_keypart;
table_map best_ref_depend_map;
public:
Loose_scan_opt():
try_loosescan(false),
bound_sj_equalities(0),
quick_uses_applicable_index(0),
quick_max_loose_keypart(0),
best_loose_scan_key(0),
best_loose_scan_cost(0),
best_loose_scan_records(0),
best_loose_scan_start_key(NULL),
2019-09-27 15:56:15 +03:00
best_max_loose_keypart(0),
best_ref_depend_map(0)
{
}
void init(JOIN *join, JOIN_TAB *s, table_map remaining_tables)
{
/*
Discover the bound equalities. We need to do this if
1. The next table is an SJ-inner table, and
2. It is the first table from that semijoin, and
3. We're not within a semi-join range (i.e. all semi-joins either have
all or none of their tables in join_table_map), except
s->emb_sj_nest (which we've just entered, see #2).
4. All non-IN-equality correlation references from this sj-nest are
bound
5. But some of the IN-equalities aren't (so this can't be handled by
FirstMatch strategy)
*/
best_loose_scan_cost= DBL_MAX;
if (!join->emb_sjm_nest && s->emb_sj_nest && // (1)
s->emb_sj_nest->sj_in_exprs < 64 &&
((remaining_tables & s->emb_sj_nest->sj_inner_tables) == // (2)
s->emb_sj_nest->sj_inner_tables) && // (2)
join->cur_sj_inner_tables == 0 && // (3)
!(remaining_tables &
s->emb_sj_nest->nested_join->sj_corr_tables) && // (4)
remaining_tables & s->emb_sj_nest->nested_join->sj_depends_on &&// (5)
optimizer_flag(join->thd, OPTIMIZER_SWITCH_LOOSE_SCAN))
{
/* This table is an LooseScan scan candidate */
bound_sj_equalities= get_bound_sj_equalities(s->emb_sj_nest,
remaining_tables);
try_loosescan= TRUE;
DBUG_PRINT("info", ("Will try LooseScan scan, bound_map=%llx",
(longlong)bound_sj_equalities));
}
}
void next_ref_key()
{
handled_sj_equalities=0;
loose_scan_keyparts= 0;
max_loose_keypart= 0;
part1_conds_met= FALSE;
}
void add_keyuse(table_map remaining_tables, KEYUSE *keyuse)
{
if (try_loosescan && keyuse->sj_pred_no != UINT_MAX &&
(keyuse->table->file->index_flags(keyuse->key, 0, 1 ) & HA_READ_ORDER))
{
if (!(remaining_tables & keyuse->used_tables))
{
/*
This allows to use equality propagation to infer that some
sj-equalities are bound.
*/
bound_sj_equalities |= 1ULL << keyuse->sj_pred_no;
}
else
{
handled_sj_equalities |= 1ULL << keyuse->sj_pred_no;
loose_scan_keyparts |= ((key_part_map)1) << keyuse->keypart;
set_if_bigger(max_loose_keypart, keyuse->keypart);
}
}
}
bool have_a_case() { return MY_TEST(handled_sj_equalities); }
void check_ref_access_part1(JOIN_TAB *s, uint key, KEYUSE *start_key,
table_map found_part)
{
/*
Check if we can use LooseScan semi-join strategy. We can if
1. This is the right table at right location
2. All IN-equalities are either
- "bound", ie. the outer_expr part refers to the preceding tables
- "handled", ie. covered by the index we're considering
3. Index order allows to enumerate subquery's duplicate groups in
order. This happens when the index definition matches this
pattern:
(handled_col|bound_col)* (other_col|bound_col)
*/
if (try_loosescan && // (1)
2011-04-25 17:22:25 +02:00
(handled_sj_equalities | bound_sj_equalities) == // (2)
PREV_BITS(ulonglong, s->emb_sj_nest->sj_in_exprs) && // (2)
(PREV_BITS(key_part_map, max_loose_keypart+1) & // (3)
(found_part | loose_scan_keyparts)) == // (3)
PREV_BITS(key_part_map, max_loose_keypart+1) && // (3)
!key_uses_partial_cols(s->table->s, key))
{
if (s->quick && s->quick->index == key &&
s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
{
quick_uses_applicable_index= TRUE;
quick_max_loose_keypart= max_loose_keypart;
}
DBUG_PRINT("info", ("Can use LooseScan scan"));
if (found_part & 1)
{
/* Can use LooseScan on ref access if the first key part is bound */
part1_conds_met= TRUE;
}
/*
Check if this is a special case where there are no usable bound
IN-equalities, i.e. we have
outer_expr IN (SELECT innertbl.key FROM ...)
and outer_expr cannot be evaluated yet, so it's actually full
index scan and not a ref access.
We can do full index scan if it uses index-only.
*/
if (!(found_part & 1 ) && /* no usable ref access for 1st key part */
s->table->covering_keys.is_set(key))
{
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
double records, read_time;
part1_conds_met= TRUE;
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
handler *file= s->table->file;
DBUG_PRINT("info", ("Can use full index scan for LooseScan"));
/* Calculate the cost of complete loose index scan. */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
records= rows2double(file->stats.records);
/* The cost is entire index scan cost (divided by 2) */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
read_time= file->cost(file->ha_keyread_and_copy_time(key, 1,
(ha_rows) records,
0));
/*
Now find out how many different keys we will get (for now we
ignore the fact that we have "keypart_i=const" restriction for
some key components, that may make us think think that loose
scan will produce more distinct records than it actually will)
*/
ulong rpc;
if ((rpc= s->table->key_info[key].rec_per_key[max_loose_keypart]))
records= records / rpc;
// TODO: previous version also did /2
if (read_time < best_loose_scan_cost)
{
best_loose_scan_key= key;
best_loose_scan_cost= read_time;
best_loose_scan_records= records;
best_max_loose_keypart= max_loose_keypart;
best_loose_scan_start_key= start_key;
best_ref_depend_map= 0;
}
}
}
}
void check_ref_access_part2(uint key, KEYUSE *start_key, double records,
double read_time, table_map ref_depend_map_arg)
{
if (part1_conds_met && read_time < best_loose_scan_cost)
{
/* TODO use rec-per-key-based fanout calculations */
best_loose_scan_key= key;
best_loose_scan_cost= read_time;
best_loose_scan_records= records;
best_max_loose_keypart= max_loose_keypart;
best_loose_scan_start_key= start_key;
best_ref_depend_map= ref_depend_map_arg;
}
}
void check_range_access(JOIN *join, uint idx, QUICK_SELECT_I *quick)
{
/* TODO: this the right part restriction: */
if (quick_uses_applicable_index && idx == join->const_tables &&
quick->read_time < best_loose_scan_cost)
{
best_loose_scan_key= quick->index;
best_loose_scan_cost= quick->read_time;
/* this is ok because idx == join->const_tables */
best_loose_scan_records= rows2double(quick->records);
best_max_loose_keypart= quick_max_loose_keypart;
best_loose_scan_start_key= NULL;
best_ref_depend_map= 0;
}
}
void save_to_position(JOIN_TAB *tab, double record_count,
double records_out,
POSITION *pos)
{
pos->read_time= best_loose_scan_cost;
if (best_loose_scan_cost != DBL_MAX)
{
/*
Make sure LooseScan plan doesn't produce more rows than
the records_out of other table access method.
*/
set_if_smaller(best_loose_scan_records, records_out);
pos->loops= record_count;
pos->records_read= best_loose_scan_records;
pos->records_init= pos->records_read;
pos->records_out= best_loose_scan_records;
pos->key= best_loose_scan_start_key;
2013-03-11 07:44:24 -07:00
pos->cond_selectivity= 1.0;
pos->loosescan_picker.loosescan_key= best_loose_scan_key;
pos->loosescan_picker.loosescan_parts= best_max_loose_keypart + 1;
pos->use_join_buffer= FALSE;
pos->firstmatch_with_join_buf= FALSE;
pos->table= tab;
pos->range_rowid_filter_info= tab->range_rowid_filter_info;
pos->ref_depend_map= best_ref_depend_map;
DBUG_PRINT("info", ("Produced a LooseScan plan, key %s, %s",
2017-06-18 12:28:40 +03:00
tab->table->key_info[best_loose_scan_key].name.str,
best_loose_scan_start_key? "(ref access)":
"(range/index access)"));
}
}
};
MDEV-28749: restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (Try 2) The code that updates semi-join optimization state for a join order prefix had several bugs. The visible effect was bad optimization for FirstMatch or LooseScan strategies: they either weren't considered when they should have been, or considered when they shouldn't have been. In order to hit the bug, the optimizer needs to consider several different join prefixes in a certain order. Queries with "obvious" query plans which prune all join orders except one are not affected. Internally, the bugs in updates of semi-join state were: 1. restore_prev_sj_state() assumed that "we assume remaining_tables doesnt contain @tab" which wasn't true. 2. Another bug in this function: it did remove bits from join->cur_sj_inner_tables but never added them. 3. greedy_search() adds tables into the join prefix but neglects to update the semi-join optimization state. (It does update nested outer join state, see this call: check_interleaving_with_nj(best_table) but there's no matching call to update the semi-join state. (This wasn't visible because most of the state is in the POSITION structure which is updated. But there is also state in JOIN, too) The patch: - Fixes all of the above - Adds JOIN::dbug_verify_sj_inner_tables() which is used to verify the state is correct at every step. - Renames advance_sj_state() to optimize_semi_joins(). = Introduces update_sj_state() which ideally should have been called "advance_sj_state" but I didn't reuse the name to not create confusion.
2022-06-06 22:21:22 +03:00
void optimize_semi_joins(JOIN *join, table_map remaining_tables, uint idx,
double *current_record_count,
double *current_read_time, POSITION *loose_scan_pos);
void update_sj_state(JOIN *join, const JOIN_TAB *new_tab,
uint idx, table_map remaining_tables);
void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab, uint idx);
void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab);
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab);
uint get_number_of_tables_at_top_level(JOIN *join);
/*
Temporary table used by semi-join DuplicateElimination strategy
This consists of the temptable itself and data needed to put records
into it. The table's DDL is as follows:
CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col));
where the primary key can be replaced with unique constraint if n exceeds
the limit (as it is always done for query execution-time temptables).
The record value is a concatenation of rowids of tables from the join we're
executing. If a join table is on the inner side of the outer join, we
assume that its rowid can be NULL and provide means to store this rowid in
the tuple.
*/
class SJ_TMP_TABLE : public Sql_alloc
{
public:
/*
Array of pointers to tables whose rowids compose the temporary table
record.
*/
class TAB
{
public:
JOIN_TAB *join_tab;
uint rowid_offset;
ushort null_byte;
uchar null_bit;
};
TAB *tabs;
TAB *tabs_end;
/*
is_degenerate==TRUE means this is a special case where the temptable record
has zero length (and presence of a unique key means that the temptable can
have either 0 or 1 records).
In this case we don't create the physical temptable but instead record
its state in SJ_TMP_TABLE::have_degenerate_row.
*/
bool is_degenerate;
/*
When is_degenerate==TRUE: the contents of the table (whether it has the
record or not).
*/
bool have_degenerate_row;
/* table record parameters */
uint null_bits;
uint null_bytes;
uint rowid_len;
/* The temporary table itself (NULL means not created yet) */
TABLE *tmp_table;
/*
These are the members we got from temptable creation code. We'll need
them if we'll need to convert table from HEAP to MyISAM/Maria.
*/
fixes for test failures and small collateral changes mysql-test/lib/My/Test.pm: somehow with "print" we get truncated writes sometimes mysql-test/suite/perfschema/r/digest_table_full.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/dml_handler.result: host table is not ported over yet mysql-test/suite/perfschema/r/information_schema.result: host table is not ported over yet mysql-test/suite/perfschema/r/nesting.result: this differs, because we don't rewrite general log queries, and multi-statement packets are logged as a one entry. this result file is identical to what mysql-5.6.5 produces with the --log-raw option. mysql-test/suite/perfschema/r/relaylog.result: MariaDB modifies the binlog index file directly, while MySQL 5.6 has a feature "crash-safe binlog index" and modifies a special "crash-safe" shadow copy of the index file and then moves it over. That's why this test shows "NONE" index file writes in MySQL and "MANY" in MariaDB. mysql-test/suite/perfschema/r/server_init.result: MariaDB initializes the "manager" resources from the "manager" thread, and starts this thread only when --flush-time is not 0. MySQL 5.6 initializes "manager" resources unconditionally on server startup. mysql-test/suite/perfschema/r/stage_mdl_global.result: this differs, because MariaDB disables query cache when query_cache_size=0. MySQL does not do that, and this causes useless mutex locks and waits. mysql-test/suite/perfschema/r/statement_digest.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/statement_digest_consumers.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/perfschema/r/statement_digest_long_query.result: md5 hashes of statement digests differ, because yacc token codes are different in mariadb mysql-test/suite/rpl/r/rpl_mixed_drop_create_temp_table.result: will be updated to match 5.6 when alfranio.correia@oracle.com-20110512172919-c1b5kmum4h52g0ni and anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y are merged mysql-test/suite/rpl/r/rpl_non_direct_mixed_mixing_engines.result: will be updated to match 5.6 when anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y is merged
2012-09-27 20:09:46 +02:00
TMP_ENGINE_COLUMNDEF *start_recinfo;
TMP_ENGINE_COLUMNDEF *recinfo;
SJ_TMP_TABLE *next_flush_table;
int sj_weedout_delete_rows();
int sj_weedout_check_row(THD *thd);
bool create_sj_weedout_tmp_table(THD *thd);
};
int setup_semijoin_loosescan(JOIN *join);
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
uint no_jbuf_after);
void destroy_sj_tmp_tables(JOIN *join);
int clear_sj_tmp_tables(JOIN *join);
int rewrite_to_index_subquery_engine(JOIN *join);
void get_delayed_table_estimates(TABLE *table,
ha_rows *out_rows,
double *scan_time,
double *startup_cost);
2010-04-25 12:23:52 +04:00
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab);