2012-02-17 12:19:38 +01:00
|
|
|
/*
|
2019-09-23 17:35:29 +03:00
|
|
|
Copyright (c) 2010, 2019, MariaDB
|
2012-02-17 12:19:38 +01:00
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
Update FSF address
This commit is based on the work of Michal Schorm, rebased on the
earliest MariaDB version.
Th command line used to generate this diff was:
find ./ -type f \
-exec sed -i -e 's/Foundation, Inc., 59 Temple Place, Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
-exec sed -i -e 's/Foundation, Inc. 59 Temple Place.* Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
-exec sed -i -e 's/MA.*.....-1307.*USA/MA 02110-1335 USA/g' {} \; \
-exec sed -i -e 's/Foundation, Inc., 59 Temple/Foundation, Inc., 51 Franklin/g' {} \; \
-exec sed -i -e 's/Place, Suite 330, Boston, MA.*02111-1307.*USA/Street, Fifth Floor, Boston, MA 02110-1335 USA/g' {} \; \
-exec sed -i -e 's/MA.*.....-1307/MA 02110-1335/g' {} \;
2019-05-10 20:49:46 +03:00
|
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
2012-02-17 12:19:38 +01:00
|
|
|
|
2010-04-25 12:23:52 +04:00
|
|
|
/*
|
|
|
|
Semi-join subquery optimization code definitions
|
|
|
|
*/
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
#ifdef USE_PRAGMA_INTERFACE
|
|
|
|
#pragma interface /* gcc class implementation */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int check_and_do_in_subquery_rewrites(JOIN *join);
|
|
|
|
bool convert_join_subqueries_to_semijoins(JOIN *join);
|
|
|
|
int pull_out_semijoin_tables(JOIN *join);
|
|
|
|
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map);
|
2018-05-15 23:45:59 +02:00
|
|
|
bool setup_degenerate_jtbm_semi_joins(JOIN *join,
|
|
|
|
List<TABLE_LIST> *join_list,
|
|
|
|
List<Item> &eq_list);
|
|
|
|
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
|
|
|
|
List<Item> &eq_list);
|
2014-02-07 20:51:31 +04:00
|
|
|
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list);
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
// used by Loose_scan_opt
|
|
|
|
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
|
|
|
|
table_map remaining_tables);
|
|
|
|
|
|
|
|
/*
|
|
|
|
This is a class for considering possible loose index scan optimizations.
|
|
|
|
It's usage pattern is as follows:
|
|
|
|
best_access_path()
|
|
|
|
{
|
|
|
|
Loose_scan_opt opt;
|
|
|
|
|
|
|
|
opt.init()
|
|
|
|
for each index we can do ref access with
|
|
|
|
{
|
|
|
|
opt.next_ref_key();
|
|
|
|
for each keyuse
|
|
|
|
opt.add_keyuse();
|
|
|
|
opt.check_ref_access();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (some criteria for range scans)
|
|
|
|
opt.check_range_access();
|
|
|
|
|
|
|
|
opt.get_best_option();
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
class Loose_scan_opt
|
|
|
|
{
|
|
|
|
/* All methods must check this before doing anything else */
|
|
|
|
bool try_loosescan;
|
|
|
|
|
|
|
|
/*
|
|
|
|
If we consider (oe1, .. oeN) IN (SELECT ie1, .. ieN) then ieK=oeK is
|
|
|
|
called sj-equality. If oeK depends only on preceding tables then such
|
|
|
|
equality is called 'bound'.
|
|
|
|
*/
|
|
|
|
ulonglong bound_sj_equalities;
|
|
|
|
|
|
|
|
/* Accumulated properties of ref access we're now considering: */
|
|
|
|
ulonglong handled_sj_equalities;
|
|
|
|
key_part_map loose_scan_keyparts;
|
|
|
|
uint max_loose_keypart;
|
|
|
|
bool part1_conds_met;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Use of quick select is a special case. Some of its properties:
|
|
|
|
*/
|
|
|
|
uint quick_uses_applicable_index;
|
|
|
|
uint quick_max_loose_keypart;
|
|
|
|
|
|
|
|
/* Best loose scan method so far */
|
|
|
|
uint best_loose_scan_key;
|
|
|
|
double best_loose_scan_cost;
|
|
|
|
double best_loose_scan_records;
|
|
|
|
KEYUSE *best_loose_scan_start_key;
|
|
|
|
|
|
|
|
uint best_max_loose_keypart;
|
2019-09-10 23:51:42 +03:00
|
|
|
table_map best_ref_depend_map;
|
2010-02-16 00:53:06 +03:00
|
|
|
|
2011-11-25 23:54:36 +04:00
|
|
|
public:
|
2010-02-16 00:53:06 +03:00
|
|
|
Loose_scan_opt():
|
2019-09-27 10:43:23 +03:00
|
|
|
try_loosescan(false),
|
2010-02-16 00:53:06 +03:00
|
|
|
bound_sj_equalities(0),
|
2019-08-18 23:18:44 +03:00
|
|
|
quick_uses_applicable_index(0),
|
|
|
|
quick_max_loose_keypart(0),
|
|
|
|
best_loose_scan_key(0),
|
|
|
|
best_loose_scan_cost(0),
|
|
|
|
best_loose_scan_records(0),
|
|
|
|
best_loose_scan_start_key(NULL),
|
2019-09-27 15:56:15 +03:00
|
|
|
best_max_loose_keypart(0),
|
|
|
|
best_ref_depend_map(0)
|
2010-02-16 00:53:06 +03:00
|
|
|
{
|
|
|
|
}
|
2019-09-27 10:43:23 +03:00
|
|
|
|
2010-02-16 00:53:06 +03:00
|
|
|
void init(JOIN *join, JOIN_TAB *s, table_map remaining_tables)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Discover the bound equalities. We need to do this if
|
|
|
|
1. The next table is an SJ-inner table, and
|
|
|
|
2. It is the first table from that semijoin, and
|
|
|
|
3. We're not within a semi-join range (i.e. all semi-joins either have
|
|
|
|
all or none of their tables in join_table_map), except
|
|
|
|
s->emb_sj_nest (which we've just entered, see #2).
|
|
|
|
4. All non-IN-equality correlation references from this sj-nest are
|
|
|
|
bound
|
|
|
|
5. But some of the IN-equalities aren't (so this can't be handled by
|
|
|
|
FirstMatch strategy)
|
|
|
|
*/
|
|
|
|
best_loose_scan_cost= DBL_MAX;
|
|
|
|
if (!join->emb_sjm_nest && s->emb_sj_nest && // (1)
|
|
|
|
s->emb_sj_nest->sj_in_exprs < 64 &&
|
|
|
|
((remaining_tables & s->emb_sj_nest->sj_inner_tables) == // (2)
|
|
|
|
s->emb_sj_nest->sj_inner_tables) && // (2)
|
2015-08-27 10:07:32 +03:00
|
|
|
join->cur_sj_inner_tables == 0 && // (3)
|
2010-02-16 00:53:06 +03:00
|
|
|
!(remaining_tables &
|
|
|
|
s->emb_sj_nest->nested_join->sj_corr_tables) && // (4)
|
|
|
|
remaining_tables & s->emb_sj_nest->nested_join->sj_depends_on &&// (5)
|
|
|
|
optimizer_flag(join->thd, OPTIMIZER_SWITCH_LOOSE_SCAN))
|
|
|
|
{
|
|
|
|
/* This table is an LooseScan scan candidate */
|
|
|
|
bound_sj_equalities= get_bound_sj_equalities(s->emb_sj_nest,
|
|
|
|
remaining_tables);
|
|
|
|
try_loosescan= TRUE;
|
|
|
|
DBUG_PRINT("info", ("Will try LooseScan scan, bound_map=%llx",
|
|
|
|
(longlong)bound_sj_equalities));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void next_ref_key()
|
|
|
|
{
|
|
|
|
handled_sj_equalities=0;
|
|
|
|
loose_scan_keyparts= 0;
|
|
|
|
max_loose_keypart= 0;
|
|
|
|
part1_conds_met= FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
void add_keyuse(table_map remaining_tables, KEYUSE *keyuse)
|
|
|
|
{
|
2012-04-19 05:37:16 +04:00
|
|
|
if (try_loosescan && keyuse->sj_pred_no != UINT_MAX &&
|
|
|
|
(keyuse->table->file->index_flags(keyuse->key, 0, 1 ) & HA_READ_ORDER))
|
|
|
|
|
2010-02-16 00:53:06 +03:00
|
|
|
{
|
|
|
|
if (!(remaining_tables & keyuse->used_tables))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
This allows to use equality propagation to infer that some
|
|
|
|
sj-equalities are bound.
|
|
|
|
*/
|
|
|
|
bound_sj_equalities |= 1ULL << keyuse->sj_pred_no;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handled_sj_equalities |= 1ULL << keyuse->sj_pred_no;
|
|
|
|
loose_scan_keyparts |= ((key_part_map)1) << keyuse->keypart;
|
|
|
|
set_if_bigger(max_loose_keypart, keyuse->keypart);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-02-19 14:05:15 +04:00
|
|
|
bool have_a_case() { return MY_TEST(handled_sj_equalities); }
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
void check_ref_access_part1(JOIN_TAB *s, uint key, KEYUSE *start_key,
|
|
|
|
table_map found_part)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Check if we can use LooseScan semi-join strategy. We can if
|
|
|
|
1. This is the right table at right location
|
|
|
|
2. All IN-equalities are either
|
|
|
|
- "bound", ie. the outer_expr part refers to the preceding tables
|
|
|
|
- "handled", ie. covered by the index we're considering
|
|
|
|
3. Index order allows to enumerate subquery's duplicate groups in
|
|
|
|
order. This happens when the index definition matches this
|
|
|
|
pattern:
|
|
|
|
|
|
|
|
(handled_col|bound_col)* (other_col|bound_col)
|
|
|
|
|
|
|
|
*/
|
|
|
|
if (try_loosescan && // (1)
|
2011-04-25 17:22:25 +02:00
|
|
|
(handled_sj_equalities | bound_sj_equalities) == // (2)
|
|
|
|
PREV_BITS(ulonglong, s->emb_sj_nest->sj_in_exprs) && // (2)
|
2010-02-16 00:53:06 +03:00
|
|
|
(PREV_BITS(key_part_map, max_loose_keypart+1) & // (3)
|
|
|
|
(found_part | loose_scan_keyparts)) == // (3)
|
2011-11-21 09:06:35 -08:00
|
|
|
PREV_BITS(key_part_map, max_loose_keypart+1) && // (3)
|
2013-09-20 14:47:38 +04:00
|
|
|
!key_uses_partial_cols(s->table->s, key))
|
2010-02-16 00:53:06 +03:00
|
|
|
{
|
|
|
|
if (s->quick && s->quick->index == key &&
|
|
|
|
s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
|
|
|
|
{
|
|
|
|
quick_uses_applicable_index= TRUE;
|
|
|
|
quick_max_loose_keypart= max_loose_keypart;
|
|
|
|
}
|
|
|
|
DBUG_PRINT("info", ("Can use LooseScan scan"));
|
|
|
|
|
2015-08-05 20:43:25 +03:00
|
|
|
if (found_part & 1)
|
|
|
|
{
|
|
|
|
/* Can use LooseScan on ref access if the first key part is bound */
|
|
|
|
part1_conds_met= TRUE;
|
|
|
|
}
|
|
|
|
|
2010-02-16 00:53:06 +03:00
|
|
|
/*
|
|
|
|
Check if this is a special case where there are no usable bound
|
|
|
|
IN-equalities, i.e. we have
|
|
|
|
|
|
|
|
outer_expr IN (SELECT innertbl.key FROM ...)
|
|
|
|
|
|
|
|
and outer_expr cannot be evaluated yet, so it's actually full
|
2015-08-05 20:43:25 +03:00
|
|
|
index scan and not a ref access.
|
|
|
|
We can do full index scan if it uses index-only.
|
2010-02-16 00:53:06 +03:00
|
|
|
*/
|
|
|
|
if (!(found_part & 1 ) && /* no usable ref access for 1st key part */
|
|
|
|
s->table->covering_keys.is_set(key))
|
|
|
|
{
|
Changing all cost calculation to be given in milliseconds
This makes it easier to compare different costs and also allows
the optimizer to optimizer different storage engines more reliably.
- Added tests/check_costs.pl, a tool to verify optimizer cost calculations.
- Most engine costs has been found with this program. All steps to
calculate the new costs are documented in Docs/optimizer_costs.txt
- User optimizer_cost variables are given in microseconds (as individual
costs can be very small). Internally they are stored in ms.
- Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost
(9 ms) to common SSD cost (400MB/sec).
- Removed cost calculations for hard disks (rotation etc).
- Changed the following handler functions to return IO_AND_CPU_COST.
This makes it easy to apply different cost modifiers in ha_..time()
functions for io and cpu costs.
- scan_time()
- rnd_pos_time() & rnd_pos_call_time()
- keyread_time()
- Enhanched keyread_time() to calculate the full cost of reading of a set
of keys with a given number of ranges and optional number of blocks that
need to be accessed.
- Removed read_time() as keyread_time() + rnd_pos_time() can do the same
thing and more.
- Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks.
Used heap table costs for json_table. The rest are using default engine
costs.
- Added the following new optimizer variables:
- optimizer_disk_read_ratio
- optimizer_disk_read_cost
- optimizer_key_lookup_cost
- optimizer_row_lookup_cost
- optimizer_row_next_find_cost
- optimizer_scan_cost
- Moved all engine specific cost to OPTIMIZER_COSTS structure.
- Changed costs to use 'records_out' instead of 'records_read' when
recalculating costs.
- Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h.
This allows one to change costs without having to compile a lot of
files.
- Updated costs for filter lookup.
- Use a better cost estimate in best_extension_by_limited_search()
for the sorting cost.
- Fixed previous issues with 'filtered' explain column as we are now
using 'records_out' (min rows seen for table) to calculate filtering.
This greatly simplifies the filtering code in
JOIN_TAB::save_explain_data().
This change caused a lot of queries to be optimized differently than
before, which exposed different issues in the optimizer that needs to
be fixed. These fixes are in the following commits. To not have to
change the same test case over and over again, the changes in the test
cases are done in a single commit after all the critical change sets
are done.
InnoDB changes:
- Updated InnoDB to not divide big range cost with 2.
- Added cost for InnoDB (innobase_update_optimizer_costs()).
- Don't mark clustered primary key with HA_KEYREAD_ONLY. This will
prevent that the optimizer is trying to use index-only scans on
the clustered key.
- Disabled ha_innobase::scan_time() and ha_innobase::read_time() and
ha_innobase::rnd_pos_time() as the default engine cost functions now
works good for InnoDB.
Other things:
- Added --show-query-costs (\Q) option to mysql.cc to show the query
cost after each query (good when working with query costs).
- Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust
the value that user is given. This is used to change cost from
microseconds (user input) to milliseconds (what the server is
internally using).
- Added include/my_tracker.h ; Useful include file to quickly test
costs of a function.
- Use handler::set_table() in all places instead of 'table= arg'.
- Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and
shown in microseconds for the user but stored as milliseconds.
This is to make the numbers easier to read for the user (less
pre-zeros). Implemented in 'Sys_var_optimizer_cost' class.
- In test_quick_select() do not use index scans if 'no_keyread' is set
for the table. This is what we do in other places of the server.
- Added THD parameter to Unique::get_use_cost() and
check_index_intersect_extension() and similar functions to be able
to provide costs to called functions.
- Changed 'records' to 'rows' in optimizer_trace.
- Write more information to optimizer_trace.
- Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3)
to calculate usage space of keys in b-trees. (Before we used numeric
constants).
- Removed code that assumed that b-trees has similar costs as binary
trees. Replaced with engine calls that returns the cost.
- Added Bitmap::find_first_bit()
- Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia).
- Added records_init and records_after_filter to POSITION to remember
more of what best_access_patch() calculates.
- table_after_join_selectivity() changed to recalculate 'records_out'
based on the new fields from best_access_patch()
Bug fixes:
- Some queries did not update last_query_cost (was 0). Fixed by moving
setting thd->...last_query_cost in JOIN::optimize().
- Write '0' as number of rows for const tables with a matching row.
Some internals:
- Engine cost are stored in OPTIMIZER_COSTS structure. When a
handlerton is created, we also created a new cost variable for the
handlerton. We also create a new variable if the user changes a
optimizer cost for a not yet loaded handlerton either with command
line arguments or with SET
@@global.engine.optimizer_cost_variable=xx.
- There are 3 global OPTIMIZER_COSTS variables:
default_optimizer_costs The default costs + changes from the
command line without an engine specifier.
heap_optimizer_costs Heap table costs, used for temporary tables
tmp_table_optimizer_costs The cost for the default on disk internal
temporary table (MyISAM or Aria)
- The engine cost for a table is stored in table_share. To speed up
accesses the handler has a pointer to this. The cost is copied
to the table on first access. If one wants to change the cost one
must first update the global engine cost and then do a FLUSH TABLES.
This was done to be able to access the costs for an open table
without any locks.
- When a handlerton is created, the cost are updated the following way:
See sql/keycaches.cc for details:
- Use 'default_optimizer_costs' as a base
- Call hton->update_optimizer_costs() to override with the engines
default costs.
- Override the costs that the user has specified for the engine.
- One handler open, copy the engine cost from handlerton to TABLE_SHARE.
- Call handler::update_optimizer_costs() to allow the engine to update
cost for this particular table.
- There are two costs stored in THD. These are copied to the handler
when the table is used in a query:
- optimizer_where_cost
- optimizer_scan_setup_cost
- Simply code in best_access_path() by storing all cost result in a
structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
|
|
|
double records, read_time;
|
2015-08-05 20:43:25 +03:00
|
|
|
part1_conds_met= TRUE;
|
2022-09-30 17:10:37 +03:00
|
|
|
handler *file= s->table->file;
|
2010-02-16 00:53:06 +03:00
|
|
|
DBUG_PRINT("info", ("Can use full index scan for LooseScan"));
|
|
|
|
|
|
|
|
/* Calculate the cost of complete loose index scan. */
|
2022-09-30 17:10:37 +03:00
|
|
|
records= rows2double(file->stats.records);
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
/* The cost is entire index scan cost (divided by 2) */
|
2022-09-30 17:10:37 +03:00
|
|
|
read_time= file->cost(file->ha_keyread_and_copy_time(key, 1,
|
|
|
|
(ha_rows) records,
|
|
|
|
0));
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
Now find out how many different keys we will get (for now we
|
|
|
|
ignore the fact that we have "keypart_i=const" restriction for
|
|
|
|
some key components, that may make us think think that loose
|
|
|
|
scan will produce more distinct records than it actually will)
|
|
|
|
*/
|
|
|
|
ulong rpc;
|
|
|
|
if ((rpc= s->table->key_info[key].rec_per_key[max_loose_keypart]))
|
|
|
|
records= records / rpc;
|
|
|
|
|
|
|
|
// TODO: previous version also did /2
|
|
|
|
if (read_time < best_loose_scan_cost)
|
|
|
|
{
|
|
|
|
best_loose_scan_key= key;
|
|
|
|
best_loose_scan_cost= read_time;
|
|
|
|
best_loose_scan_records= records;
|
|
|
|
best_max_loose_keypart= max_loose_keypart;
|
|
|
|
best_loose_scan_start_key= start_key;
|
2019-09-10 23:51:42 +03:00
|
|
|
best_ref_depend_map= 0;
|
2010-02-16 00:53:06 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void check_ref_access_part2(uint key, KEYUSE *start_key, double records,
|
2019-09-10 23:51:42 +03:00
|
|
|
double read_time, table_map ref_depend_map_arg)
|
2010-02-16 00:53:06 +03:00
|
|
|
{
|
|
|
|
if (part1_conds_met && read_time < best_loose_scan_cost)
|
|
|
|
{
|
|
|
|
/* TODO use rec-per-key-based fanout calculations */
|
|
|
|
best_loose_scan_key= key;
|
|
|
|
best_loose_scan_cost= read_time;
|
|
|
|
best_loose_scan_records= records;
|
|
|
|
best_max_loose_keypart= max_loose_keypart;
|
|
|
|
best_loose_scan_start_key= start_key;
|
2019-09-10 23:51:42 +03:00
|
|
|
best_ref_depend_map= ref_depend_map_arg;
|
2010-02-16 00:53:06 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void check_range_access(JOIN *join, uint idx, QUICK_SELECT_I *quick)
|
|
|
|
{
|
|
|
|
/* TODO: this the right part restriction: */
|
|
|
|
if (quick_uses_applicable_index && idx == join->const_tables &&
|
|
|
|
quick->read_time < best_loose_scan_cost)
|
|
|
|
{
|
|
|
|
best_loose_scan_key= quick->index;
|
|
|
|
best_loose_scan_cost= quick->read_time;
|
|
|
|
/* this is ok because idx == join->const_tables */
|
|
|
|
best_loose_scan_records= rows2double(quick->records);
|
|
|
|
best_max_loose_keypart= quick_max_loose_keypart;
|
|
|
|
best_loose_scan_start_key= NULL;
|
2019-09-10 23:51:42 +03:00
|
|
|
best_ref_depend_map= 0;
|
2010-02-16 00:53:06 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-02-21 12:04:37 +03:00
|
|
|
void save_to_position(JOIN_TAB *tab, double record_count,
|
|
|
|
double records_out,
|
|
|
|
POSITION *pos)
|
2010-02-16 00:53:06 +03:00
|
|
|
{
|
|
|
|
pos->read_time= best_loose_scan_cost;
|
|
|
|
if (best_loose_scan_cost != DBL_MAX)
|
|
|
|
{
|
2023-02-21 12:04:37 +03:00
|
|
|
/*
|
|
|
|
Make sure LooseScan plan doesn't produce more rows than
|
|
|
|
the records_out of other table access method.
|
|
|
|
*/
|
|
|
|
set_if_smaller(best_loose_scan_records, records_out);
|
|
|
|
|
2022-11-21 18:17:14 +03:00
|
|
|
pos->loops= record_count;
|
2010-02-16 00:53:06 +03:00
|
|
|
pos->records_read= best_loose_scan_records;
|
2023-02-21 12:04:37 +03:00
|
|
|
pos->records_init= pos->records_read;
|
|
|
|
pos->records_out= best_loose_scan_records;
|
2010-02-16 00:53:06 +03:00
|
|
|
pos->key= best_loose_scan_start_key;
|
2013-03-11 07:44:24 -07:00
|
|
|
pos->cond_selectivity= 1.0;
|
2011-11-23 04:25:52 +04:00
|
|
|
pos->loosescan_picker.loosescan_key= best_loose_scan_key;
|
|
|
|
pos->loosescan_picker.loosescan_parts= best_max_loose_keypart + 1;
|
2010-02-16 00:53:06 +03:00
|
|
|
pos->use_join_buffer= FALSE;
|
2023-05-09 13:09:00 +03:00
|
|
|
pos->firstmatch_with_join_buf= FALSE;
|
2010-02-16 00:53:06 +03:00
|
|
|
pos->table= tab;
|
2019-02-03 14:56:12 -08:00
|
|
|
pos->range_rowid_filter_info= tab->range_rowid_filter_info;
|
2019-09-10 23:51:42 +03:00
|
|
|
pos->ref_depend_map= best_ref_depend_map;
|
2010-02-16 00:53:06 +03:00
|
|
|
DBUG_PRINT("info", ("Produced a LooseScan plan, key %s, %s",
|
2017-06-18 12:28:40 +03:00
|
|
|
tab->table->key_info[best_loose_scan_key].name.str,
|
2010-02-16 00:53:06 +03:00
|
|
|
best_loose_scan_start_key? "(ref access)":
|
|
|
|
"(range/index access)"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2022-06-06 22:21:22 +03:00
|
|
|
void optimize_semi_joins(JOIN *join, table_map remaining_tables, uint idx,
|
|
|
|
double *current_record_count,
|
|
|
|
double *current_read_time, POSITION *loose_scan_pos);
|
|
|
|
void update_sj_state(JOIN *join, const JOIN_TAB *new_tab,
|
|
|
|
uint idx, table_map remaining_tables);
|
2010-02-16 00:53:06 +03:00
|
|
|
void restore_prev_sj_state(const table_map remaining_tables,
|
2021-10-06 12:31:19 +03:00
|
|
|
const JOIN_TAB *tab, uint idx);
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
2011-06-22 01:57:28 +04:00
|
|
|
|
|
|
|
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab);
|
|
|
|
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab);
|
2019-09-22 01:17:30 +05:30
|
|
|
uint get_number_of_tables_at_top_level(JOIN *join);
|
2010-02-16 00:53:06 +03:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Temporary table used by semi-join DuplicateElimination strategy
|
|
|
|
|
|
|
|
This consists of the temptable itself and data needed to put records
|
|
|
|
into it. The table's DDL is as follows:
|
|
|
|
|
|
|
|
CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col));
|
|
|
|
|
|
|
|
where the primary key can be replaced with unique constraint if n exceeds
|
|
|
|
the limit (as it is always done for query execution-time temptables).
|
|
|
|
|
|
|
|
The record value is a concatenation of rowids of tables from the join we're
|
|
|
|
executing. If a join table is on the inner side of the outer join, we
|
|
|
|
assume that its rowid can be NULL and provide means to store this rowid in
|
|
|
|
the tuple.
|
|
|
|
*/
|
|
|
|
|
|
|
|
class SJ_TMP_TABLE : public Sql_alloc
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/*
|
|
|
|
Array of pointers to tables whose rowids compose the temporary table
|
|
|
|
record.
|
|
|
|
*/
|
|
|
|
class TAB
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
JOIN_TAB *join_tab;
|
|
|
|
uint rowid_offset;
|
|
|
|
ushort null_byte;
|
|
|
|
uchar null_bit;
|
|
|
|
};
|
|
|
|
TAB *tabs;
|
|
|
|
TAB *tabs_end;
|
|
|
|
|
|
|
|
/*
|
|
|
|
is_degenerate==TRUE means this is a special case where the temptable record
|
|
|
|
has zero length (and presence of a unique key means that the temptable can
|
|
|
|
have either 0 or 1 records).
|
|
|
|
In this case we don't create the physical temptable but instead record
|
|
|
|
its state in SJ_TMP_TABLE::have_degenerate_row.
|
|
|
|
*/
|
|
|
|
bool is_degenerate;
|
|
|
|
|
|
|
|
/*
|
|
|
|
When is_degenerate==TRUE: the contents of the table (whether it has the
|
|
|
|
record or not).
|
|
|
|
*/
|
|
|
|
bool have_degenerate_row;
|
|
|
|
|
|
|
|
/* table record parameters */
|
|
|
|
uint null_bits;
|
|
|
|
uint null_bytes;
|
|
|
|
uint rowid_len;
|
|
|
|
|
|
|
|
/* The temporary table itself (NULL means not created yet) */
|
|
|
|
TABLE *tmp_table;
|
|
|
|
|
|
|
|
/*
|
|
|
|
These are the members we got from temptable creation code. We'll need
|
|
|
|
them if we'll need to convert table from HEAP to MyISAM/Maria.
|
|
|
|
*/
|
fixes for test failures
and small collateral changes
mysql-test/lib/My/Test.pm:
somehow with "print" we get truncated writes sometimes
mysql-test/suite/perfschema/r/digest_table_full.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/dml_handler.result:
host table is not ported over yet
mysql-test/suite/perfschema/r/information_schema.result:
host table is not ported over yet
mysql-test/suite/perfschema/r/nesting.result:
this differs, because we don't rewrite general log queries, and multi-statement
packets are logged as a one entry. this result file is identical to what mysql-5.6.5
produces with the --log-raw option.
mysql-test/suite/perfschema/r/relaylog.result:
MariaDB modifies the binlog index file directly, while MySQL 5.6 has a feature "crash-safe binlog index" and modifies a special "crash-safe" shadow copy of the index file and then moves it over. That's why this test shows "NONE" index file writes in MySQL and "MANY" in MariaDB.
mysql-test/suite/perfschema/r/server_init.result:
MariaDB initializes the "manager" resources from the "manager" thread, and starts this thread only when --flush-time is not 0. MySQL 5.6 initializes "manager" resources unconditionally on server startup.
mysql-test/suite/perfschema/r/stage_mdl_global.result:
this differs, because MariaDB disables query cache when query_cache_size=0. MySQL does not
do that, and this causes useless mutex locks and waits.
mysql-test/suite/perfschema/r/statement_digest.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/statement_digest_consumers.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/perfschema/r/statement_digest_long_query.result:
md5 hashes of statement digests differ, because yacc token codes are different in mariadb
mysql-test/suite/rpl/r/rpl_mixed_drop_create_temp_table.result:
will be updated to match 5.6 when alfranio.correia@oracle.com-20110512172919-c1b5kmum4h52g0ni and anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y are merged
mysql-test/suite/rpl/r/rpl_non_direct_mixed_mixing_engines.result:
will be updated to match 5.6 when anders.song@greatopensource.com-20110105052107-zoab0bsf5a6xxk2y is merged
2012-09-27 20:09:46 +02:00
|
|
|
TMP_ENGINE_COLUMNDEF *start_recinfo;
|
|
|
|
TMP_ENGINE_COLUMNDEF *recinfo;
|
2010-02-16 00:53:06 +03:00
|
|
|
|
2011-11-25 05:56:58 +04:00
|
|
|
SJ_TMP_TABLE *next_flush_table;
|
2011-11-25 23:54:36 +04:00
|
|
|
|
|
|
|
int sj_weedout_delete_rows();
|
|
|
|
int sj_weedout_check_row(THD *thd);
|
|
|
|
bool create_sj_weedout_tmp_table(THD *thd);
|
2010-02-16 00:53:06 +03:00
|
|
|
};
|
|
|
|
|
2015-08-05 20:43:25 +03:00
|
|
|
int setup_semijoin_loosescan(JOIN *join);
|
2010-02-16 00:53:06 +03:00
|
|
|
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
|
|
|
|
uint no_jbuf_after);
|
|
|
|
void destroy_sj_tmp_tables(JOIN *join);
|
|
|
|
int clear_sj_tmp_tables(JOIN *join);
|
|
|
|
int rewrite_to_index_subquery_engine(JOIN *join);
|
|
|
|
|
|
|
|
|
2010-05-23 23:13:18 +04:00
|
|
|
void get_delayed_table_estimates(TABLE *table,
|
|
|
|
ha_rows *out_rows,
|
|
|
|
double *scan_time,
|
|
|
|
double *startup_cost);
|
2010-04-25 12:23:52 +04:00
|
|
|
|
2010-07-10 20:51:12 +03:00
|
|
|
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab);
|
2010-02-16 00:53:06 +03:00
|
|
|
|