mariadb/storage/innobase/buf/buf0dump.cc

825 lines
21 KiB
C++
Raw Normal View History

/*****************************************************************************
Copyright (c) 2011, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2021, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
2019-05-11 19:25:02 +03:00
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file buf/buf0dump.cc
Implements a buffer pool dump/load.
Created April 08, 2011 Vasil Dimov
*******************************************************/
#include "my_global.h"
2020-04-28 19:39:40 +03:00
#include "mysqld.h"
#include "my_sys.h"
#include "mysql/psi/mysql_stage.h"
#include "mysql/psi/psi.h"
2013-03-26 00:03:13 +02:00
#include "buf0buf.h"
#include "buf0dump.h"
#include "dict0dict.h"
#include "os0file.h"
#include "os0thread.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "sync0rw.h"
#include "ut0byte.h"
#include <algorithm>
#include "mysql/service_wsrep.h" /* wsrep_recovery */
#include <my_service_manager.h>
static void buf_do_load_dump();
enum status_severity {
STATUS_INFO,
STATUS_ERR
};
#define SHUTTING_DOWN() (srv_shutdown_state != SRV_SHUTDOWN_NONE)
/* Flags that tell the buffer pool dump/load thread which action should it
take after being waked up. */
static volatile bool buf_dump_should_start;
static volatile bool buf_load_should_start;
static bool buf_load_abort_flag;
/** Start the buffer pool dump/load task and instructs it to start a dump. */
void buf_dump_start()
{
buf_dump_should_start= true;
buf_do_load_dump();
}
/** Start the buffer pool dump/load task and instructs it to start a load. */
void buf_load_start()
{
buf_load_should_start= true;
buf_do_load_dump();
}
/*****************************************************************//**
Sets the global variable that feeds MySQL's innodb_buffer_pool_dump_status
to the specified string. The format and the following parameters are the
same as the ones used for printf(3). The value of this variable can be
retrieved by:
SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_DUMP_STATUS';
or by:
SHOW STATUS LIKE 'innodb_buffer_pool_dump_status'; */
2016-06-21 14:21:03 +02:00
static MY_ATTRIBUTE((nonnull, format(printf, 2, 3)))
void
buf_dump_status(
/*============*/
enum status_severity severity,/*!< in: status severity */
const char* fmt, /*!< in: format */
...) /*!< in: extra parameters according
to fmt */
{
va_list ap;
va_start(ap, fmt);
vsnprintf(
export_vars.innodb_buffer_pool_dump_status,
sizeof(export_vars.innodb_buffer_pool_dump_status),
fmt, ap);
switch (severity) {
case STATUS_INFO:
ib::info() << export_vars.innodb_buffer_pool_dump_status;
break;
case STATUS_ERR:
ib::error() << export_vars.innodb_buffer_pool_dump_status;
break;
}
va_end(ap);
}
/*****************************************************************//**
Sets the global variable that feeds MySQL's innodb_buffer_pool_load_status
to the specified string. The format and the following parameters are the
same as the ones used for printf(3). The value of this variable can be
retrieved by:
SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_LOAD_STATUS';
or by:
SHOW STATUS LIKE 'innodb_buffer_pool_load_status'; */
2016-06-21 14:21:03 +02:00
static MY_ATTRIBUTE((nonnull, format(printf, 2, 3)))
void
buf_load_status(
/*============*/
enum status_severity severity,/*!< in: status severity */
const char* fmt, /*!< in: format */
...) /*!< in: extra parameters according to fmt */
{
va_list ap;
va_start(ap, fmt);
vsnprintf(
export_vars.innodb_buffer_pool_load_status,
sizeof(export_vars.innodb_buffer_pool_load_status),
fmt, ap);
switch (severity) {
case STATUS_INFO:
ib::info() << export_vars.innodb_buffer_pool_load_status;
break;
case STATUS_ERR:
ib::error() << export_vars.innodb_buffer_pool_load_status;
break;
}
va_end(ap);
}
/** Returns the directory path where the buffer pool dump file will be created.
@return directory path */
static
const char*
get_buf_dump_dir()
{
const char* dump_dir;
/* The dump file should be created in the default data directory if
innodb_data_home_dir is set as an empty string. */
if (!*srv_data_home) {
dump_dir = fil_path_to_mysql_datadir;
} else {
dump_dir = srv_data_home;
}
return(dump_dir);
}
/** Generate the path to the buffer pool dump/load file.
@param[out] path generated path
@param[in] path_size size of 'path', used as in snprintf(3). */
2020-04-28 19:39:40 +03:00
static void buf_dump_generate_path(char *path, size_t path_size)
2016-02-16 12:07:18 +01:00
{
char buf[FN_REFLEN];
2020-04-28 19:39:40 +03:00
mysql_mutex_lock(&LOCK_global_system_variables);
snprintf(buf, sizeof(buf), "%s%c%s", get_buf_dump_dir(),
OS_PATH_SEPARATOR, srv_buf_dump_filename);
2020-04-28 19:39:40 +03:00
mysql_mutex_unlock(&LOCK_global_system_variables);
os_file_type_t type;
bool exists = false;
bool ret;
ret = os_file_status(buf, &exists, &type);
/* For realpath() to succeed the file must exist. */
if (ret && exists) {
/* my_realpath() assumes the destination buffer is big enough
to hold FN_REFLEN bytes. */
ut_a(path_size >= FN_REFLEN);
2016-02-16 12:07:18 +01:00
my_realpath(path, buf, 0);
2016-02-16 12:07:18 +01:00
} else {
/* If it does not exist, then resolve only srv_data_home
and append srv_buf_dump_filename to it. */
char srv_data_home_full[FN_REFLEN];
my_realpath(srv_data_home_full, get_buf_dump_dir(), 0);
2016-02-16 12:07:18 +01:00
if (srv_data_home_full[strlen(srv_data_home_full) - 1]
== OS_PATH_SEPARATOR) {
snprintf(path, path_size, "%s%s",
srv_data_home_full,
srv_buf_dump_filename);
} else {
snprintf(path, path_size, "%s%c%s",
srv_data_home_full,
OS_PATH_SEPARATOR,
srv_buf_dump_filename);
}
}
2016-02-16 12:07:18 +01:00
}
/*****************************************************************//**
Perform a buffer pool dump into the file specified by
innodb_buffer_pool_filename. If any errors occur then the value of
innodb_buffer_pool_dump_status will be set accordingly, see buf_dump_status().
The dump filename can be specified by (relative to srv_data_home):
SET GLOBAL innodb_buffer_pool_filename='filename'; */
static
void
buf_dump(
/*=====*/
ibool obey_shutdown) /*!< in: quit if we are in a shutting down
state */
{
#define SHOULD_QUIT() (SHUTTING_DOWN() && obey_shutdown)
char full_filename[OS_FILE_MAX_PATH];
char tmp_filename[OS_FILE_MAX_PATH + sizeof "incomplete"];
char now[32];
FILE* f;
int ret;
buf_dump_generate_path(full_filename, sizeof(full_filename));
snprintf(tmp_filename, sizeof(tmp_filename),
"%s.incomplete", full_filename);
buf_dump_status(STATUS_INFO, "Dumping buffer pool(s) to %s",
full_filename);
#if defined(__GLIBC__) || defined(__WIN__) || O_CLOEXEC == 0
f = fopen(tmp_filename, "w" STR_O_CLOEXEC);
#else
{
int fd;
fd = open(tmp_filename, O_CREAT | O_TRUNC | O_CLOEXEC | O_WRONLY, 0640);
if (fd >= 0) {
f = fdopen(fd, "w");
}
else {
f = NULL;
}
}
#endif
if (f == NULL) {
buf_dump_status(STATUS_ERR,
"Cannot open '%s' for writing: %s",
tmp_filename, strerror(errno));
return;
}
const buf_page_t* bpage;
page_id_t* dump;
ulint n_pages;
ulint j;
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 12:10:42 +03:00
mysql_mutex_lock(&buf_pool.mutex);
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
n_pages = UT_LIST_GET_LEN(buf_pool.LRU);
/* skip empty buffer pools */
if (n_pages == 0) {
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 12:10:42 +03:00
mysql_mutex_unlock(&buf_pool.mutex);
goto done;
}
if (srv_buf_pool_dump_pct != 100) {
ulint t_pages;
/* limit the number of total pages dumped to X% of the
total number of pages */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
t_pages = buf_pool.curr_size * srv_buf_pool_dump_pct / 100;
if (n_pages > t_pages) {
buf_dump_status(STATUS_INFO,
"Restricted to " ULINTPF
" pages due to "
"innodb_buf_pool_dump_pct=%lu",
t_pages, srv_buf_pool_dump_pct);
n_pages = t_pages;
}
if (n_pages == 0) {
n_pages = 1;
}
}
dump = static_cast<page_id_t*>(ut_malloc_nokey(
n_pages * sizeof(*dump)));
if (dump == NULL) {
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 12:10:42 +03:00
mysql_mutex_unlock(&buf_pool.mutex);
fclose(f);
buf_dump_status(STATUS_ERR,
"Cannot allocate " ULINTPF " bytes: %s",
(ulint) (n_pages * sizeof(*dump)),
strerror(errno));
/* leave tmp_filename to exist */
return;
}
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
for (bpage = UT_LIST_GET_FIRST(buf_pool.LRU), j = 0;
bpage != NULL && j < n_pages;
bpage = UT_LIST_GET_NEXT(LRU, bpage)) {
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 12:35:46 +03:00
ut_a(bpage->in_file());
const page_id_t id(bpage->id());
if (id.space() == SRV_TMP_SPACE_ID) {
/* Ignore the innodb_temporary tablespace. */
continue;
}
if (bpage->status == buf_page_t::FREED) {
continue;
}
dump[j++] = id;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 12:10:42 +03:00
mysql_mutex_unlock(&buf_pool.mutex);
ut_a(j <= n_pages);
n_pages = j;
for (j = 0; j < n_pages && !SHOULD_QUIT(); j++) {
ret = fprintf(f, "%u,%u\n",
dump[j].space(), dump[j].page_no());
if (ret < 0) {
ut_free(dump);
fclose(f);
buf_dump_status(STATUS_ERR,
"Cannot write to '%s': %s",
tmp_filename, strerror(errno));
/* leave tmp_filename to exist */
return;
}
if (SHUTTING_DOWN() && !(j & 1023)) {
service_manager_extend_timeout(
INNODB_EXTEND_TIMEOUT_INTERVAL,
"Dumping buffer pool page "
ULINTPF "/" ULINTPF, j + 1, n_pages);
}
}
ut_free(dump);
done:
ret = fclose(f);
if (ret != 0) {
buf_dump_status(STATUS_ERR,
"Cannot close '%s': %s",
tmp_filename, strerror(errno));
return;
}
/* else */
ret = unlink(full_filename);
if (ret != 0 && errno != ENOENT) {
buf_dump_status(STATUS_ERR,
"Cannot delete '%s': %s",
full_filename, strerror(errno));
/* leave tmp_filename to exist */
return;
}
/* else */
ret = rename(tmp_filename, full_filename);
if (ret != 0) {
buf_dump_status(STATUS_ERR,
"Cannot rename '%s' to '%s': %s",
tmp_filename, full_filename,
strerror(errno));
/* leave tmp_filename to exist */
return;
}
/* else */
/* success */
ut_sprintf_timestamp(now);
buf_dump_status(STATUS_INFO,
"Buffer pool(s) dump completed at %s", now);
/* Though dumping doesn't related to an incomplete load,
we reset this to 0 here to indicate that a shutdown can also perform
a dump */
export_vars.innodb_buffer_pool_load_incomplete = 0;
}
/*****************************************************************//**
Artificially delay the buffer pool loading if necessary. The idea of
this function is to prevent hogging the server with IO and slowing down
too much normal client queries. */
UNIV_INLINE
void
buf_load_throttle_if_needed(
/*========================*/
ulint* last_check_time, /*!< in/out: milliseconds since epoch
of the last time we did check if
throttling is needed, we do the check
every srv_io_capacity IO ops. */
ulint* last_activity_count,
ulint n_io) /*!< in: number of IO ops done since
buffer pool load has started */
{
if (n_io % srv_io_capacity < srv_io_capacity - 1) {
return;
}
if (*last_check_time == 0 || *last_activity_count == 0) {
*last_check_time = ut_time_ms();
*last_activity_count = srv_get_activity_count();
return;
}
/* srv_io_capacity IO operations have been performed by buffer pool
load since the last time we were here. */
/* If no other activity, then keep going without any delay. */
if (srv_get_activity_count() == *last_activity_count) {
return;
}
/* There has been other activity, throttle. */
ulint now = ut_time_ms();
ulint elapsed_time = now - *last_check_time;
/* Notice that elapsed_time is not the time for the last
srv_io_capacity IO operations performed by BP load. It is the
time elapsed since the last time we detected that there has been
other activity. This has a small and acceptable deficiency, e.g.:
1. BP load runs and there is no other activity.
2. Other activity occurs, we run N IO operations after that and
enter here (where 0 <= N < srv_io_capacity).
3. last_check_time is very old and we do not sleep at this time, but
only update last_check_time and last_activity_count.
4. We run srv_io_capacity more IO operations and call this function
again.
5. There has been more other activity and thus we enter here.
6. Now last_check_time is recent and we sleep if necessary to prevent
more than srv_io_capacity IO operations per second.
The deficiency is that we could have slept at 3., but for this we
would have to update last_check_time before the
"cur_activity_count == *last_activity_count" check and calling
ut_time_ms() that often may turn out to be too expensive. */
if (elapsed_time < 1000 /* 1 sec (1000 milli secs) */) {
os_thread_sleep((1000 - elapsed_time) * 1000 /* micro secs */);
}
*last_check_time = ut_time_ms();
*last_activity_count = srv_get_activity_count();
}
/*****************************************************************//**
Perform a buffer pool load from the file specified by
innodb_buffer_pool_filename. If any errors occur then the value of
innodb_buffer_pool_load_status will be set accordingly, see buf_load_status().
The dump filename can be specified by (relative to srv_data_home):
SET GLOBAL innodb_buffer_pool_filename='filename'; */
static
void
buf_load()
/*======*/
{
char full_filename[OS_FILE_MAX_PATH];
char now[32];
FILE* f;
page_id_t* dump;
ulint dump_n;
ulint i;
uint32_t space_id;
uint32_t page_no;
int fscanf_ret;
/* Ignore any leftovers from before */
buf_load_abort_flag = false;
buf_dump_generate_path(full_filename, sizeof(full_filename));
buf_load_status(STATUS_INFO,
"Loading buffer pool(s) from %s", full_filename);
f = fopen(full_filename, "r" STR_O_CLOEXEC);
if (f == NULL) {
buf_load_status(STATUS_INFO,
"Cannot open '%s' for reading: %s",
full_filename, strerror(errno));
return;
}
/* else */
/* First scan the file to estimate how many entries are in it.
This file is tiny (approx 500KB per 1GB buffer pool), reading it
two times is fine. */
dump_n = 0;
while (fscanf(f, "%u,%u", &space_id, &page_no) == 2
&& !SHUTTING_DOWN()) {
dump_n++;
}
if (!SHUTTING_DOWN() && !feof(f)) {
/* fscanf() returned != 2 */
const char* what;
if (ferror(f)) {
what = "reading";
} else {
what = "parsing";
}
fclose(f);
buf_load_status(STATUS_ERR, "Error %s '%s',"
" unable to load buffer pool (stage 1)",
what, full_filename);
return;
}
/* If dump is larger than the buffer pool(s), then we ignore the
extra trailing. This could happen if a dump is made, then buffer
pool is shrunk and then load is attempted. */
MDEV-21962 Allocate buf_pool statically Thanks to MDEV-15058, there is only one InnoDB buffer pool. Allocating buf_pool statically removes one level of pointer indirection and makes code more readable, and removes the awkward initialization of some buf_pool members. While doing this, we will also declare some buf_pool_t data members private and replace some functions with member functions. This is mostly affecting buffer pool resizing. This is not aiming to be a complete rewrite of buf_pool_t to a proper class. Most of the buffer pool interface, such as buf_page_get_gen(), will remain in the C programming style for now. buf_pool_t::withdrawing: Replaces buf_pool_withdrawing. buf_pool_t::withdraw_clock_: Replaces buf_withdraw_clock. buf_pool_t::create(): Repalces buf_pool_init(). buf_pool_t::close(): Replaces buf_pool_free(). buf_bool_t::will_be_withdrawn(): Replaces buf_block_will_be_withdrawn(), buf_frame_will_be_withdrawn(). buf_pool_t::clear_hash_index(): Replaces buf_pool_clear_hash_index(). buf_pool_t::get_n_pages(): Replaces buf_pool_get_n_pages(). buf_pool_t::validate(): Replaces buf_validate(). buf_pool_t::print(): Replaces buf_print(). buf_pool_t::block_from_ahi(): Replaces buf_block_from_ahi(). buf_pool_t::is_block_field(): Replaces buf_pointer_is_block_field(). buf_pool_t::is_block_mutex(): Replaces buf_pool_is_block_mutex(). buf_pool_t::is_block_lock(): Replaces buf_pool_is_block_lock(). buf_pool_t::is_obsolete(): Replaces buf_pool_is_obsolete(). buf_pool_t::io_buf: Make default-constructible. buf_pool_t::io_buf::create(): Delayed 'constructor' buf_pool_t::io_buf::close(): Early 'destructor' HazardPointer: Make default-constructible. Define all member functions inline, also for derived classes.
2020-03-18 21:48:00 +02:00
dump_n = std::min(dump_n, buf_pool.get_n_pages());
if (dump_n != 0) {
dump = static_cast<page_id_t*>(ut_malloc_nokey(
dump_n * sizeof(*dump)));
} else {
fclose(f);
ut_sprintf_timestamp(now);
buf_load_status(STATUS_INFO,
"Buffer pool(s) load completed at %s"
" (%s was empty)", now, full_filename);
return;
}
if (dump == NULL) {
fclose(f);
buf_load_status(STATUS_ERR,
2017-06-06 11:50:42 +03:00
"Cannot allocate " ULINTPF " bytes: %s",
dump_n * sizeof(*dump),
strerror(errno));
return;
}
rewind(f);
export_vars.innodb_buffer_pool_load_incomplete = 1;
for (i = 0; i < dump_n && !SHUTTING_DOWN(); i++) {
fscanf_ret = fscanf(f, "%u,%u", &space_id, &page_no);
if (fscanf_ret != 2) {
if (feof(f)) {
break;
}
/* else */
ut_free(dump);
fclose(f);
buf_load_status(STATUS_ERR,
"Error parsing '%s', unable"
" to load buffer pool (stage 2)",
full_filename);
return;
}
if (space_id > ULINT32_MASK || page_no > ULINT32_MASK) {
ut_free(dump);
fclose(f);
buf_load_status(STATUS_ERR,
"Error parsing '%s': bogus"
" space,page %u,%u at line " ULINTPF
", unable to load buffer pool",
full_filename,
space_id, page_no,
i);
return;
}
dump[i] = page_id_t(space_id, page_no);
}
/* Set dump_n to the actual number of initialized elements,
i could be smaller than dump_n here if the file got truncated after
we read it the first time. */
dump_n = i;
fclose(f);
if (dump_n == 0) {
ut_free(dump);
ut_sprintf_timestamp(now);
buf_load_status(STATUS_INFO,
"Buffer pool(s) load completed at %s"
" (%s was empty or had errors)", now, full_filename);
return;
}
if (!SHUTTING_DOWN()) {
std::sort(dump, dump + dump_n);
}
ulint last_check_time = 0;
ulint last_activity_cnt = 0;
/* Avoid calling the expensive fil_space_t::get() for each
page within the same tablespace. dump[] is sorted by (space, page),
so all pages from a given tablespace are consecutive. */
ulint cur_space_id = dump[0].space();
fil_space_t* space = fil_space_t::get(cur_space_id);
ulint zip_size = space ? space->zip_size() : 0;
PSI_stage_progress* pfs_stage_progress __attribute__((unused))
= mysql_set_stage(srv_stage_buffer_pool_load.m_key);
mysql_stage_set_work_estimated(pfs_stage_progress, dump_n);
mysql_stage_set_work_completed(pfs_stage_progress, 0);
for (i = 0; i < dump_n && !SHUTTING_DOWN(); i++) {
/* space_id for this iteration of the loop */
const ulint this_space_id = dump[i].space();
if (this_space_id == SRV_TMP_SPACE_ID) {
/* Ignore the innodb_temporary tablespace. */
continue;
}
if (this_space_id != cur_space_id) {
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
if (space) {
space->release();
}
cur_space_id = this_space_id;
space = fil_space_t::get(cur_space_id);
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
if (!space) {
continue;
}
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
zip_size = space->zip_size();
}
/* JAN: TODO: As we use background page read below,
if tablespace is encrypted we cant use it. */
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
if (!space || dump[i].page_no() >= space->get_size() ||
(space->crypt_data &&
space->crypt_data->encryption != FIL_ENCRYPTION_OFF &&
space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED)) {
continue;
}
MDEV-23855: Improve InnoDB log checkpoint performance After MDEV-15053, MDEV-22871, MDEV-23399 shifted the scalability bottleneck, log checkpoints became a new bottleneck. If innodb_io_capacity is set low or innodb_max_dirty_pct_lwm is set high and the workload fits in the buffer pool, the page cleaner thread will perform very little flushing. When we reach the capacity of the circular redo log file ib_logfile0 and must initiate a checkpoint, some 'furious flushing' will be necessary. (If innodb_flush_sync=OFF, then flushing would continue at the innodb_io_capacity rate, and writers would be throttled.) We have the best chance of advancing the checkpoint LSN immediately after a page flush batch has been completed. Hence, it is best to perform checkpoints after every batch in the page cleaner thread, attempting to run once per second. By initiating high-priority flushing in the page cleaner as early as possible, we aim to make the throughput more stable. The function buf_flush_wait_flushed() used to sleep for 10ms, hoping that the page cleaner thread would do something during that time. The observed end result was that a large number of threads that call log_free_check() would end up sleeping while nothing useful is happening. We will revise the design so that in the default innodb_flush_sync=ON mode, buf_flush_wait_flushed() will wake up the page cleaner thread to perform the necessary flushing, and it will wait for a signal from the page cleaner thread. If innodb_io_capacity is set to a low value (causing the page cleaner to throttle its work), a write workload would initially perform well, until the capacity of the circular ib_logfile0 is reached and log_free_check() will trigger checkpoints. At that point, the extra waiting in buf_flush_wait_flushed() will start reducing throughput. The page cleaner thread will also initiate log checkpoints after each buf_flush_lists() call, because that is the best point of time for the checkpoint LSN to advance by the maximum amount. Even in 'furious flushing' mode we invoke buf_flush_lists() with innodb_io_capacity_max pages at a time, and at the start of each batch (in the log_flush() callback function that runs in a separate task) we will invoke os_aio_wait_until_no_pending_writes(). This tweak allows the checkpoint to advance in smaller steps and significantly reduces the maximum latency. On an Intel Optane 960 NVMe SSD on Linux, it reduced from 4.6 seconds to 74 milliseconds. On Microsoft Windows with a slower SSD, it reduced from more than 180 seconds to 0.6 seconds. We will make innodb_adaptive_flushing=OFF simply flush innodb_io_capacity per second whenever the dirty proportion of buffer pool pages exceeds innodb_max_dirty_pages_pct_lwm. For innodb_adaptive_flushing=ON we try to make page_cleaner_flush_pages_recommendation() more consistent and predictable: if we are below innodb_adaptive_flushing_lwm, let us flush pages according to the return value of af_get_pct_for_dirty(). innodb_max_dirty_pages_pct_lwm: Revert the change of the default value that was made in MDEV-23399. The value innodb_max_dirty_pages_pct_lwm=0 guarantees that a shutdown of an idle server will be fast. Users might be surprised if normal shutdown suddenly became slower when upgrading within a GA release series. innodb_checkpoint_usec: Remove. The master task will no longer perform periodic log checkpoints. It is the duty of the page cleaner thread. log_sys.max_modified_age: Remove. The current span of the buf_pool.flush_list expressed in LSN only matters for adaptive flushing (outside the 'furious flushing' condition). For the correctness of checkpoints, the only thing that matters is the checkpoint age (log_sys.lsn - log_sys.last_checkpoint_lsn). This run-time constant was also reported as log_max_modified_age_sync. log_sys.max_checkpoint_age_async: Remove. This does not serve any purpose, because the checkpoints will now be triggered by the page cleaner thread. We will retain the log_sys.max_checkpoint_age limit for engaging 'furious flushing'. page_cleaner.slot: Remove. It turns out that page_cleaner_slot.flush_list_time was duplicating page_cleaner.slot.flush_time and page_cleaner.slot.flush_list_pass was duplicating page_cleaner.flush_pass. Likewise, there were some redundant monitor counters, because the page cleaner thread no longer performs any buf_pool.LRU flushing, and because there only is one buf_flush_page_cleaner thread. buf_flush_sync_lsn: Protect writes by buf_pool.flush_list_mutex. buf_pool_t::get_oldest_modification(): Add a parameter to specify the return value when no persistent data pages are dirty. Require the caller to hold buf_pool.flush_list_mutex. log_buf_pool_get_oldest_modification(): Take the fall-back LSN as a parameter. All callers will also invoke log_sys.get_lsn(). log_preflush_pool_modified_pages(): Replaced with buf_flush_wait_flushed(). buf_flush_wait_flushed(): Implement two limits. If not enough buffer pool has been flushed, signal the page cleaner (unless innodb_flush_sync=OFF) and wait for the page cleaner to complete. If the page cleaner thread is not running (which can be the case durign shutdown), initiate the flush and wait for it directly. buf_flush_ahead(): If innodb_flush_sync=ON (the default), submit a new buf_flush_sync_lsn target for the page cleaner but do not wait for the flushing to finish. log_get_capacity(), log_get_max_modified_age_async(): Remove, to make it easier to see that af_get_pct_for_lsn() is not acquiring any mutexes. page_cleaner_flush_pages_recommendation(): Protect all access to buf_pool.flush_list with buf_pool.flush_list_mutex. Previously there were some race conditions in the calculation. buf_flush_sync_for_checkpoint(): New function to process buf_flush_sync_lsn in the page cleaner thread. At the end of each batch, we try to wake up any blocked buf_flush_wait_flushed(). If everything up to buf_flush_sync_lsn has been flushed, we will reset buf_flush_sync_lsn=0. The page cleaner thread will keep 'furious flushing' until the limit is reached. Any threads that are waiting in buf_flush_wait_flushed() will be able to resume as soon as their own limit has been satisfied. buf_flush_page_cleaner: Prioritize buf_flush_sync_lsn and do not sleep as long as it is set. Do not update any page_cleaner statistics for this special mode of operation. In the normal mode (buf_flush_sync_lsn is not set for innodb_flush_sync=ON), try to wake up once per second. No longer check whether srv_inc_activity_count() has been called. After each batch, try to perform a log checkpoint, because the best chances for the checkpoint LSN to advance by the maximum amount are upon completing a flushing batch. log_t: Move buf_free, max_buf_free possibly to the same cache line with log_sys.mutex. log_margin_checkpoint_age(): Simplify the logic, and replace a 0.1-second sleep with a call to buf_flush_wait_flushed() to initiate flushing. Moved to the same compilation unit with the only caller. log_close(): Clean up the calculations. (Should be no functional change.) Return whether flush-ahead is needed. Moved to the same compilation unit with the only caller. mtr_t::finish_write(): Return whether flush-ahead is needed. mtr_t::commit(): Invoke buf_flush_ahead() when needed. Let us avoid external calls in mtr_t::commit() and make the logic easier to follow by having related code in a single compilation unit. Also, we will invoke srv_stats.log_write_requests.inc() only once per mini-transaction commit, while not holding mutexes. log_checkpoint_margin(): Only care about log_sys.max_checkpoint_age. Upon reaching log_sys.max_checkpoint_age where we must wait to prevent the log from getting corrupted, let us wait for at most 1MiB of LSN at a time, before rechecking the condition. This should allow writers to proceed even if the redo log capacity has been reached and 'furious flushing' is in progress. We no longer care about log_sys.max_modified_age_sync or log_sys.max_modified_age_async. The log_sys.max_modified_age_sync could be a relic from the time when there was a srv_master_thread that wrote dirty pages to data files. Also, we no longer have any log_sys.max_checkpoint_age_async limit, because log checkpoints will now be triggered by the page cleaner thread upon completing buf_flush_lists(). log_set_capacity(): Simplify the calculations of the limit (no functional change). log_checkpoint_low(): Split from log_checkpoint(). Moved to the same compilation unit with the caller. log_make_checkpoint(): Only wait for everything to be flushed until the current LSN. create_log_file(): After checkpoint, invoke log_write_up_to() to ensure that the FILE_CHECKPOINT record has been written. This avoids ut_ad(!srv_log_file_created) in create_log_file_rename(). srv_start(): Do not call recv_recovery_from_checkpoint_start() if the log has just been created. Set fil_system.space_id_reuse_warned before dict_boot() has been executed, and clear it after recovery has finished. dict_boot(): Initialize fil_system.max_assigned_id. srv_check_activity(): Remove. The activity count is counting transaction commits and therefore mostly interesting for the purge of history. BtrBulk::insert(): Do not explicitly wake up the page cleaner, but do invoke srv_inc_activity_count(), because that counter is still being used in buf_load_throttle_if_needed() for some heuristics. (It might be cleaner to execute buf_load() in the page cleaner thread!) Reviewed by: Vladislav Vaintroub
2020-10-26 16:35:47 +02:00
if (space->is_stopping()) {
space->release();
MDEV-23855: Improve InnoDB log checkpoint performance After MDEV-15053, MDEV-22871, MDEV-23399 shifted the scalability bottleneck, log checkpoints became a new bottleneck. If innodb_io_capacity is set low or innodb_max_dirty_pct_lwm is set high and the workload fits in the buffer pool, the page cleaner thread will perform very little flushing. When we reach the capacity of the circular redo log file ib_logfile0 and must initiate a checkpoint, some 'furious flushing' will be necessary. (If innodb_flush_sync=OFF, then flushing would continue at the innodb_io_capacity rate, and writers would be throttled.) We have the best chance of advancing the checkpoint LSN immediately after a page flush batch has been completed. Hence, it is best to perform checkpoints after every batch in the page cleaner thread, attempting to run once per second. By initiating high-priority flushing in the page cleaner as early as possible, we aim to make the throughput more stable. The function buf_flush_wait_flushed() used to sleep for 10ms, hoping that the page cleaner thread would do something during that time. The observed end result was that a large number of threads that call log_free_check() would end up sleeping while nothing useful is happening. We will revise the design so that in the default innodb_flush_sync=ON mode, buf_flush_wait_flushed() will wake up the page cleaner thread to perform the necessary flushing, and it will wait for a signal from the page cleaner thread. If innodb_io_capacity is set to a low value (causing the page cleaner to throttle its work), a write workload would initially perform well, until the capacity of the circular ib_logfile0 is reached and log_free_check() will trigger checkpoints. At that point, the extra waiting in buf_flush_wait_flushed() will start reducing throughput. The page cleaner thread will also initiate log checkpoints after each buf_flush_lists() call, because that is the best point of time for the checkpoint LSN to advance by the maximum amount. Even in 'furious flushing' mode we invoke buf_flush_lists() with innodb_io_capacity_max pages at a time, and at the start of each batch (in the log_flush() callback function that runs in a separate task) we will invoke os_aio_wait_until_no_pending_writes(). This tweak allows the checkpoint to advance in smaller steps and significantly reduces the maximum latency. On an Intel Optane 960 NVMe SSD on Linux, it reduced from 4.6 seconds to 74 milliseconds. On Microsoft Windows with a slower SSD, it reduced from more than 180 seconds to 0.6 seconds. We will make innodb_adaptive_flushing=OFF simply flush innodb_io_capacity per second whenever the dirty proportion of buffer pool pages exceeds innodb_max_dirty_pages_pct_lwm. For innodb_adaptive_flushing=ON we try to make page_cleaner_flush_pages_recommendation() more consistent and predictable: if we are below innodb_adaptive_flushing_lwm, let us flush pages according to the return value of af_get_pct_for_dirty(). innodb_max_dirty_pages_pct_lwm: Revert the change of the default value that was made in MDEV-23399. The value innodb_max_dirty_pages_pct_lwm=0 guarantees that a shutdown of an idle server will be fast. Users might be surprised if normal shutdown suddenly became slower when upgrading within a GA release series. innodb_checkpoint_usec: Remove. The master task will no longer perform periodic log checkpoints. It is the duty of the page cleaner thread. log_sys.max_modified_age: Remove. The current span of the buf_pool.flush_list expressed in LSN only matters for adaptive flushing (outside the 'furious flushing' condition). For the correctness of checkpoints, the only thing that matters is the checkpoint age (log_sys.lsn - log_sys.last_checkpoint_lsn). This run-time constant was also reported as log_max_modified_age_sync. log_sys.max_checkpoint_age_async: Remove. This does not serve any purpose, because the checkpoints will now be triggered by the page cleaner thread. We will retain the log_sys.max_checkpoint_age limit for engaging 'furious flushing'. page_cleaner.slot: Remove. It turns out that page_cleaner_slot.flush_list_time was duplicating page_cleaner.slot.flush_time and page_cleaner.slot.flush_list_pass was duplicating page_cleaner.flush_pass. Likewise, there were some redundant monitor counters, because the page cleaner thread no longer performs any buf_pool.LRU flushing, and because there only is one buf_flush_page_cleaner thread. buf_flush_sync_lsn: Protect writes by buf_pool.flush_list_mutex. buf_pool_t::get_oldest_modification(): Add a parameter to specify the return value when no persistent data pages are dirty. Require the caller to hold buf_pool.flush_list_mutex. log_buf_pool_get_oldest_modification(): Take the fall-back LSN as a parameter. All callers will also invoke log_sys.get_lsn(). log_preflush_pool_modified_pages(): Replaced with buf_flush_wait_flushed(). buf_flush_wait_flushed(): Implement two limits. If not enough buffer pool has been flushed, signal the page cleaner (unless innodb_flush_sync=OFF) and wait for the page cleaner to complete. If the page cleaner thread is not running (which can be the case durign shutdown), initiate the flush and wait for it directly. buf_flush_ahead(): If innodb_flush_sync=ON (the default), submit a new buf_flush_sync_lsn target for the page cleaner but do not wait for the flushing to finish. log_get_capacity(), log_get_max_modified_age_async(): Remove, to make it easier to see that af_get_pct_for_lsn() is not acquiring any mutexes. page_cleaner_flush_pages_recommendation(): Protect all access to buf_pool.flush_list with buf_pool.flush_list_mutex. Previously there were some race conditions in the calculation. buf_flush_sync_for_checkpoint(): New function to process buf_flush_sync_lsn in the page cleaner thread. At the end of each batch, we try to wake up any blocked buf_flush_wait_flushed(). If everything up to buf_flush_sync_lsn has been flushed, we will reset buf_flush_sync_lsn=0. The page cleaner thread will keep 'furious flushing' until the limit is reached. Any threads that are waiting in buf_flush_wait_flushed() will be able to resume as soon as their own limit has been satisfied. buf_flush_page_cleaner: Prioritize buf_flush_sync_lsn and do not sleep as long as it is set. Do not update any page_cleaner statistics for this special mode of operation. In the normal mode (buf_flush_sync_lsn is not set for innodb_flush_sync=ON), try to wake up once per second. No longer check whether srv_inc_activity_count() has been called. After each batch, try to perform a log checkpoint, because the best chances for the checkpoint LSN to advance by the maximum amount are upon completing a flushing batch. log_t: Move buf_free, max_buf_free possibly to the same cache line with log_sys.mutex. log_margin_checkpoint_age(): Simplify the logic, and replace a 0.1-second sleep with a call to buf_flush_wait_flushed() to initiate flushing. Moved to the same compilation unit with the only caller. log_close(): Clean up the calculations. (Should be no functional change.) Return whether flush-ahead is needed. Moved to the same compilation unit with the only caller. mtr_t::finish_write(): Return whether flush-ahead is needed. mtr_t::commit(): Invoke buf_flush_ahead() when needed. Let us avoid external calls in mtr_t::commit() and make the logic easier to follow by having related code in a single compilation unit. Also, we will invoke srv_stats.log_write_requests.inc() only once per mini-transaction commit, while not holding mutexes. log_checkpoint_margin(): Only care about log_sys.max_checkpoint_age. Upon reaching log_sys.max_checkpoint_age where we must wait to prevent the log from getting corrupted, let us wait for at most 1MiB of LSN at a time, before rechecking the condition. This should allow writers to proceed even if the redo log capacity has been reached and 'furious flushing' is in progress. We no longer care about log_sys.max_modified_age_sync or log_sys.max_modified_age_async. The log_sys.max_modified_age_sync could be a relic from the time when there was a srv_master_thread that wrote dirty pages to data files. Also, we no longer have any log_sys.max_checkpoint_age_async limit, because log checkpoints will now be triggered by the page cleaner thread upon completing buf_flush_lists(). log_set_capacity(): Simplify the calculations of the limit (no functional change). log_checkpoint_low(): Split from log_checkpoint(). Moved to the same compilation unit with the caller. log_make_checkpoint(): Only wait for everything to be flushed until the current LSN. create_log_file(): After checkpoint, invoke log_write_up_to() to ensure that the FILE_CHECKPOINT record has been written. This avoids ut_ad(!srv_log_file_created) in create_log_file_rename(). srv_start(): Do not call recv_recovery_from_checkpoint_start() if the log has just been created. Set fil_system.space_id_reuse_warned before dict_boot() has been executed, and clear it after recovery has finished. dict_boot(): Initialize fil_system.max_assigned_id. srv_check_activity(): Remove. The activity count is counting transaction commits and therefore mostly interesting for the purge of history. BtrBulk::insert(): Do not explicitly wake up the page cleaner, but do invoke srv_inc_activity_count(), because that counter is still being used in buf_load_throttle_if_needed() for some heuristics. (It might be cleaner to execute buf_load() in the page cleaner thread!) Reviewed by: Vladislav Vaintroub
2020-10-26 16:35:47 +02:00
space = nullptr;
continue;
}
space->reacquire();
buf_read_page_background(space, dump[i], zip_size);
if (buf_load_abort_flag) {
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
if (space) {
space->release();
}
buf_load_abort_flag = false;
ut_free(dump);
buf_load_status(
STATUS_INFO,
"Buffer pool(s) load aborted on request");
/* Premature end, set estimated = completed = i and
end the current stage event. */
mysql_stage_set_work_estimated(pfs_stage_progress, i);
mysql_stage_set_work_completed(pfs_stage_progress, i);
mysql_end_stage();
return;
}
buf_load_throttle_if_needed(
&last_check_time, &last_activity_cnt, i);
#ifdef UNIV_DEBUG
if ((i+1) >= srv_buf_pool_load_pages_abort) {
buf_load_abort_flag = true;
}
#endif
}
MDEV-23855: Remove fil_system.LRU and reduce fil_system.mutex contention Also fixes MDEV-23929: innodb_flush_neighbors is not being ignored for system tablespace on SSD When the maximum configured number of file is exceeded, InnoDB will close data files. We used to maintain a fil_system.LRU list and a counter fil_node_t::n_pending to achieve this, at the huge cost of multiple fil_system.mutex operations per I/O operation. fil_node_open_file_low(): Implement a FIFO replacement policy: The last opened file will be moved to the end of fil_system.space_list, and files will be closed from the start of the list. However, we will not move tablespaces in fil_system.space_list while i_s_tablespaces_encryption_fill_table() is executing (producing output for INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION) because it may cause information of some tablespaces to go missing. We also avoid this in mariabackup --backup because datafiles_iter_next() assumes that the ordering is not changed. IORequest: Fold more parameters to IORequest::type. fil_space_t::io(): Replaces fil_io(). fil_space_t::flush(): Replaces fil_flush(). OS_AIO_IBUF: Remove. We will always issue synchronous reads of the change buffer pages in buf_read_page_low(). We will always ignore some errors for background reads. This should reduce fil_system.mutex contention a little. fil_node_t::complete_write(): Replaces fil_node_t::complete_io(). On both read and write completion, fil_space_t::release_for_io() will have to be called. fil_space_t::io(): Do not acquire fil_system.mutex in the normal code path. xb_delta_open_matching_space(): Do not try to open the system tablespace which was already opened. This fixes a file sharing violation in mariabackup --prepare --incremental. Reviewed by: Vladislav Vaintroub
2020-10-26 15:59:30 +02:00
if (space) {
space->release();
}
ut_free(dump);
ut_sprintf_timestamp(now);
if (i == dump_n) {
buf_load_status(STATUS_INFO,
"Buffer pool(s) load completed at %s", now);
export_vars.innodb_buffer_pool_load_incomplete = 0;
} else if (!buf_load_abort_flag) {
buf_load_status(STATUS_INFO,
"Buffer pool(s) load aborted due to user instigated abort at %s",
now);
/* intentionally don't reset innodb_buffer_pool_load_incomplete
as we don't want a shutdown to save the buffer pool */
} else {
buf_load_status(STATUS_INFO,
"Buffer pool(s) load aborted due to shutdown at %s",
now);
/* intentionally don't reset innodb_buffer_pool_load_incomplete
as we want to abort without saving the buffer pool */
}
/* Make sure that estimated = completed when we end. */
mysql_stage_set_work_completed(pfs_stage_progress, dump_n);
/* End the stage progress event. */
mysql_end_stage();
}
/** Abort a currently running buffer pool load. */
void buf_load_abort()
{
buf_load_abort_flag= true;
}
/*****************************************************************//**
This is the main task for buffer pool dump/load. when scheduled
either performs a dump or load, depending on server state, state of the variables etc- */
static void buf_dump_load_func(void *)
{
2013-03-26 00:03:13 +02:00
ut_ad(!srv_read_only_mode);
static bool first_time = true;
if (first_time && srv_buffer_pool_load_at_startup) {
#ifdef WITH_WSREP
2019-01-23 15:30:00 +04:00
if (!get_wsrep_recovery()) {
#endif /* WITH_WSREP */
buf_load();
#ifdef WITH_WSREP
}
#endif /* WITH_WSREP */
}
first_time = false;
while (!SHUTTING_DOWN()) {
if (buf_dump_should_start) {
buf_dump_should_start = false;
buf_dump(true);
}
if (buf_load_should_start) {
buf_load_should_start = false;
buf_load();
}
if (!buf_dump_should_start && !buf_load_should_start) {
return;
}
}
/* In shutdown */
if (srv_buffer_pool_dump_at_shutdown && srv_fast_shutdown != 2) {
if (export_vars.innodb_buffer_pool_load_incomplete) {
buf_dump_status(STATUS_INFO,
"Dumping of buffer pool not started"
" as load was incomplete");
#ifdef WITH_WSREP
2019-01-23 15:30:00 +04:00
} else if (get_wsrep_recovery()) {
#endif /* WITH_WSREP */
} else {
buf_dump(false/* do complete dump at shutdown */);
}
}
}
/* Execute task with max.concurrency */
static tpool::task_group tpool_group(1);
static tpool::waitable_task buf_dump_load_task(buf_dump_load_func, &tpool_group);
static bool load_dump_enabled;
/** Start async buffer pool load, if srv_buffer_pool_load_at_startup was set.*/
void buf_load_at_startup()
{
load_dump_enabled= true;
if (srv_buffer_pool_load_at_startup)
buf_do_load_dump();
}
static void buf_do_load_dump()
{
if (load_dump_enabled && !buf_dump_load_task.is_running())
srv_thread_pool->submit_task(&buf_dump_load_task);
}
/** Wait for currently running load/dumps to finish*/
void buf_load_dump_end()
{
ut_ad(SHUTTING_DOWN());
buf_dump_load_task.wait();
}