mariadb/storage/innobase/include/page0page.inl

551 lines
15 KiB
Text
Raw Normal View History

/*****************************************************************************
Copyright (c) 1994, 2019, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file include/page0page.ic
Index page routines
Created 2/2/1994 Heikki Tuuri
*******************************************************/
#ifndef UNIV_INNOCHECKSUM
#include "rem0cmp.h"
#include "mtr0log.h"
#include "page0zip.h"
/*************************************************************//**
Sets the max trx id field value if trx_id is bigger than the previous
value. */
UNIV_INLINE
void
page_update_max_trx_id(
/*===================*/
buf_block_t* block, /*!< in/out: page */
page_zip_des_t* page_zip,/*!< in/out: compressed page whose
uncompressed part will be updated, or NULL */
trx_id_t trx_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
ut_ad(block);
ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX));
ut_ad(trx_id);
ut_ad(page_is_leaf(buf_block_get_frame(block)));
if (page_get_max_trx_id(buf_block_get_frame(block)) < trx_id) {
page_set_max_trx_id(block, page_zip, trx_id, mtr);
}
}
/*************************************************************//**
Returns the RTREE SPLIT SEQUENCE NUMBER (FIL_RTREE_SPLIT_SEQ_NUM).
@return SPLIT SEQUENCE NUMBER */
UNIV_INLINE
node_seq_t
page_get_ssn_id(
/*============*/
const page_t* page) /*!< in: page */
{
ut_ad(page);
return(static_cast<node_seq_t>(
mach_read_from_8(page + FIL_RTREE_SPLIT_SEQ_NUM)));
}
/*************************************************************//**
Sets the RTREE SPLIT SEQUENCE NUMBER field value */
UNIV_INLINE
void
page_set_ssn_id(
/*============*/
buf_block_t* block, /*!< in/out: page */
page_zip_des_t* page_zip,/*!< in/out: compressed page whose
uncompressed part will be updated, or NULL */
node_seq_t ssn_id, /*!< in: transaction id */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_SX_FIX |
MTR_MEMO_PAGE_X_FIX));
MDEV-12353: Change the redo log encoding log_t::FORMAT_10_5: physical redo log format tag log_phys_t: Buffered records in the physical format. The log record bytes will follow the last data field, making use of alignment padding that would otherwise be wasted. If there are multiple records for the same page, also those may be appended to an existing log_phys_t object if the memory is available. In the physical format, the first byte of a record identifies the record and its length (up to 15 bytes). For longer records, the immediately following bytes will encode the remaining length in a variable-length encoding. Usually, a variable-length-encoded page identifier will follow, followed by optional payload, whose length is included in the initially encoded total record length. When a mini-transaction is updating multiple fields in a page, it can avoid repeating the tablespace identifier and page number by setting the same_page flag (most significant bit) in the first byte of the log record. The byte offset of the record will be relative to where the previous record for that page ended. Until MDEV-14425 introduces a separate file-level log for redo log checkpoints and file operations, we will write the file-level records in the page-level redo log file. The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT) will be removed in MDEV-14425, and one sequential scan of the page recovery log will suffice. Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags. If the information is needed, it can be parsed from WRITE records that modify FSP_SPACE_FLAGS. MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily as part of this work, before being replaced with WRITE (along with MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES). mtr_buf_t::empty(): Check if the buffer is empty. mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty. mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record, for the same_page encoding. page_recv_t::last_offset: Reflects mtr_t::m_last_offset. Valid values for last_offset during recovery should be 0 or above 8. (The first 8 bytes of a page are the checksum and the page number, and neither are ever updated directly by log records.) Internally, the special value 1 indicates that the same_page form will not be allowed for the subsequent record. mtr_t::page_create(): Take the block descriptor as parameter, so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE record will always followed by a subtype byte, because same_page records must be longer than 1 byte. trx_undo_page_init(): Combine the writes in WRITE record. trx_undo_header_create(): Write 4 bytes using a special MEMSET record that includes 1 bytes of length and 2 bytes of payload. flst_write_addr(): Define as a static function. Combine the writes. flst_zero_both(): Replaces two flst_zero_addr() calls. flst_init(): Do not inline the function. fsp_free_seg_inode(): Zerofill the whole inode. fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT to FIL_NULL when using the physical format. btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page() must have been invoked. fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE. fil_names_dirty_and_write(): Remove the parameter mtr. Write the records using a separate mini-transaction object, because any FILE_ records must be at the start of a mini-transaction log. recv_recover_page(): Add a fil_space_t* parameter. After applying log to the a ROW_FORMAT=COMPRESSED page, invoke buf_zip_decompress() to restore the uncompressed page. buf_page_io_complete(): Remove the temporary hack to discard the uncompressed page of a ROW_FORMAT=COMPRESSED page. page_zip_write_header(): Remove. Use mtr_t::write() or mtr_t::memset() instead, and update the compressed page frame separately. trx_undo_header_add_space_for_xid(): Remove. trx_undo_seg_create(): Perform the changes that were previously made by trx_undo_header_add_space_for_xid(). btr_reset_instant(): New function: Reset the table to MariaDB 10.2 or 10.3 format when rolling back an instant ALTER TABLE operation. page_rec_find_owner_rec(): Merge with the only callers. page_cur_insert_rec_low(): Combine writes by using a local buffer. MEMMOVE data from the preceding record whenever feasible (copying at least 3 bytes). page_cur_insert_rec_zip(): Combine writes to page header fields. PageBulk::insertPage(): Issue MEMMOVE records to copy a matching part from the preceding record. PageBulk::finishPage(): Combine the writes to the page header and to the sparse page directory slots. mtr_t::write(): Only log the least significant (last) bytes of multi-byte fields that actually differ. For updating FSP_SIZE, we must always write all 4 bytes to the redo log, so that the fil_space_set_recv_size() logic in recv_sys_t::parse() will work. mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument instead of a numeric offset to the page frame. Only log the last bytes of multi-byte fields that actually differ. In fil_space_crypt_t::write_page0(), we must log also any unchanged bytes, so that recovery will recognize the record and invoke fil_crypt_parse(). Future work: MDEV-21724 Optimize page_cur_insert_rec_low() redo logging MDEV-21725 Optimize btr_page_reorganize_low() redo logging MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
2020-02-13 19:12:17 +02:00
ut_ad(!page_zip || page_zip == &block->page.zip);
constexpr uint16_t field= FIL_RTREE_SPLIT_SEQ_NUM;
MDEV-27058: Reduce the size of buf_block_t and buf_page_t buf_page_t::frame: Moved from buf_block_t::frame. All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED pages will have frame=nullptr, while all 'fat' buf_block_t will have a non-null frame pointing to aligned innodb_page_size bytes. This eliminates the need for separate states for BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE. buf_page_t::lock: Moved from buf_block_t::lock. That is, all block descriptors will have a page latch. The IO_PIN state that was used for discarding or creating the uncompressed page frame of a ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix and page X-latch. page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status of buf_page_t with a single std::atomic<uint32_t>. All modifications will use store(), fetch_add(), fetch_sub(). This space was previously wasted to alignment on 64-bit systems. We will use the following encoding that combines a state (partly read-fix or write-fix) and a buffer-fix count: buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED) buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY) buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH) buf_page_t::FREED=3 + fix: pages marked as freed in the file buf_page_t::UNFIXED=1U<<29 + fix: normal pages buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite) buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched) buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched) buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite) buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch. buf_page_t::read_complete(): Renamed from buf_page_read_complete(). Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch. buf_page_t::can_relocate(): If the page latch is being held or waited for, or the block is buffer-fixed or io-fixed, return false. (The condition on the page latch is new.) Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we will acquire the page latch before fix(), and unfix() before unlocking. buf_page_t::flush(): Replaces buf_flush_page(). Optimize the handling of FREED pages. buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held by the caller. buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates. buf_page_get_low(): Ignore guesses that are read-fixed because they may not yet be registered in buf_pool.page_hash and buf_pool.LRU. buf_page_optimistic_get(): Acquire latch before buffer-fixing. buf_page_make_young(): Leave read-fixed blocks alone, because they might not be registered in buf_pool.LRU yet. recv_sys_t::recover_deferred(), recv_sys_t::recover_low(): Possibly fix MDEV-26326, by holding a page X-latch instead of only buffer-fixing the page.
2021-11-16 19:55:06 +02:00
byte *b= my_assume_aligned<2>(&block->page.frame[field]);
if (mtr->write<8,mtr_t::MAYBE_NOP>(*block, b, ssn_id) &&
MDEV-12353: Change the redo log encoding log_t::FORMAT_10_5: physical redo log format tag log_phys_t: Buffered records in the physical format. The log record bytes will follow the last data field, making use of alignment padding that would otherwise be wasted. If there are multiple records for the same page, also those may be appended to an existing log_phys_t object if the memory is available. In the physical format, the first byte of a record identifies the record and its length (up to 15 bytes). For longer records, the immediately following bytes will encode the remaining length in a variable-length encoding. Usually, a variable-length-encoded page identifier will follow, followed by optional payload, whose length is included in the initially encoded total record length. When a mini-transaction is updating multiple fields in a page, it can avoid repeating the tablespace identifier and page number by setting the same_page flag (most significant bit) in the first byte of the log record. The byte offset of the record will be relative to where the previous record for that page ended. Until MDEV-14425 introduces a separate file-level log for redo log checkpoints and file operations, we will write the file-level records in the page-level redo log file. The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT) will be removed in MDEV-14425, and one sequential scan of the page recovery log will suffice. Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags. If the information is needed, it can be parsed from WRITE records that modify FSP_SPACE_FLAGS. MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily as part of this work, before being replaced with WRITE (along with MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES). mtr_buf_t::empty(): Check if the buffer is empty. mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty. mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record, for the same_page encoding. page_recv_t::last_offset: Reflects mtr_t::m_last_offset. Valid values for last_offset during recovery should be 0 or above 8. (The first 8 bytes of a page are the checksum and the page number, and neither are ever updated directly by log records.) Internally, the special value 1 indicates that the same_page form will not be allowed for the subsequent record. mtr_t::page_create(): Take the block descriptor as parameter, so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE record will always followed by a subtype byte, because same_page records must be longer than 1 byte. trx_undo_page_init(): Combine the writes in WRITE record. trx_undo_header_create(): Write 4 bytes using a special MEMSET record that includes 1 bytes of length and 2 bytes of payload. flst_write_addr(): Define as a static function. Combine the writes. flst_zero_both(): Replaces two flst_zero_addr() calls. flst_init(): Do not inline the function. fsp_free_seg_inode(): Zerofill the whole inode. fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT to FIL_NULL when using the physical format. btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page() must have been invoked. fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE. fil_names_dirty_and_write(): Remove the parameter mtr. Write the records using a separate mini-transaction object, because any FILE_ records must be at the start of a mini-transaction log. recv_recover_page(): Add a fil_space_t* parameter. After applying log to the a ROW_FORMAT=COMPRESSED page, invoke buf_zip_decompress() to restore the uncompressed page. buf_page_io_complete(): Remove the temporary hack to discard the uncompressed page of a ROW_FORMAT=COMPRESSED page. page_zip_write_header(): Remove. Use mtr_t::write() or mtr_t::memset() instead, and update the compressed page frame separately. trx_undo_header_add_space_for_xid(): Remove. trx_undo_seg_create(): Perform the changes that were previously made by trx_undo_header_add_space_for_xid(). btr_reset_instant(): New function: Reset the table to MariaDB 10.2 or 10.3 format when rolling back an instant ALTER TABLE operation. page_rec_find_owner_rec(): Merge with the only callers. page_cur_insert_rec_low(): Combine writes by using a local buffer. MEMMOVE data from the preceding record whenever feasible (copying at least 3 bytes). page_cur_insert_rec_zip(): Combine writes to page header fields. PageBulk::insertPage(): Issue MEMMOVE records to copy a matching part from the preceding record. PageBulk::finishPage(): Combine the writes to the page header and to the sparse page directory slots. mtr_t::write(): Only log the least significant (last) bytes of multi-byte fields that actually differ. For updating FSP_SIZE, we must always write all 4 bytes to the redo log, so that the fil_space_set_recv_size() logic in recv_sys_t::parse() will work. mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument instead of a numeric offset to the page frame. Only log the last bytes of multi-byte fields that actually differ. In fil_space_crypt_t::write_page0(), we must log also any unchanged bytes, so that recovery will recognize the record and invoke fil_crypt_parse(). Future work: MDEV-21724 Optimize page_cur_insert_rec_low() redo logging MDEV-21725 Optimize btr_page_reorganize_low() redo logging MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
2020-02-13 19:12:17 +02:00
UNIV_LIKELY_NULL(page_zip))
memcpy_aligned<2>(&page_zip->data[field], b, 8);
}
#endif /* !UNIV_INNOCHECKSUM */
#ifndef UNIV_INNOCHECKSUM
/*************************************************************//**
Returns the offset stored in the given header field.
@return offset from the start of the page, or 0 */
UNIV_INLINE
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
uint16_t
page_header_get_offs(
/*=================*/
const page_t* page, /*!< in: page */
ulint field) /*!< in: PAGE_FREE, ... */
{
ut_ad((field == PAGE_FREE)
|| (field == PAGE_LAST_INSERT)
|| (field == PAGE_HEAP_TOP));
2018-01-29 19:07:35 +02:00
uint16_t offs = page_header_get_field(page, field);
ut_ad((field != PAGE_HEAP_TOP) || offs);
return(offs);
}
/**
Reset PAGE_LAST_INSERT.
@param[in,out] block file page
@param[in,out] mtr mini-transaction */
inline void page_header_reset_last_insert(buf_block_t *block, mtr_t *mtr)
{
MDEV-12353: Change the redo log encoding log_t::FORMAT_10_5: physical redo log format tag log_phys_t: Buffered records in the physical format. The log record bytes will follow the last data field, making use of alignment padding that would otherwise be wasted. If there are multiple records for the same page, also those may be appended to an existing log_phys_t object if the memory is available. In the physical format, the first byte of a record identifies the record and its length (up to 15 bytes). For longer records, the immediately following bytes will encode the remaining length in a variable-length encoding. Usually, a variable-length-encoded page identifier will follow, followed by optional payload, whose length is included in the initially encoded total record length. When a mini-transaction is updating multiple fields in a page, it can avoid repeating the tablespace identifier and page number by setting the same_page flag (most significant bit) in the first byte of the log record. The byte offset of the record will be relative to where the previous record for that page ended. Until MDEV-14425 introduces a separate file-level log for redo log checkpoints and file operations, we will write the file-level records in the page-level redo log file. The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT) will be removed in MDEV-14425, and one sequential scan of the page recovery log will suffice. Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags. If the information is needed, it can be parsed from WRITE records that modify FSP_SPACE_FLAGS. MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily as part of this work, before being replaced with WRITE (along with MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES). mtr_buf_t::empty(): Check if the buffer is empty. mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty. mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record, for the same_page encoding. page_recv_t::last_offset: Reflects mtr_t::m_last_offset. Valid values for last_offset during recovery should be 0 or above 8. (The first 8 bytes of a page are the checksum and the page number, and neither are ever updated directly by log records.) Internally, the special value 1 indicates that the same_page form will not be allowed for the subsequent record. mtr_t::page_create(): Take the block descriptor as parameter, so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE record will always followed by a subtype byte, because same_page records must be longer than 1 byte. trx_undo_page_init(): Combine the writes in WRITE record. trx_undo_header_create(): Write 4 bytes using a special MEMSET record that includes 1 bytes of length and 2 bytes of payload. flst_write_addr(): Define as a static function. Combine the writes. flst_zero_both(): Replaces two flst_zero_addr() calls. flst_init(): Do not inline the function. fsp_free_seg_inode(): Zerofill the whole inode. fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT to FIL_NULL when using the physical format. btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page() must have been invoked. fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE. fil_names_dirty_and_write(): Remove the parameter mtr. Write the records using a separate mini-transaction object, because any FILE_ records must be at the start of a mini-transaction log. recv_recover_page(): Add a fil_space_t* parameter. After applying log to the a ROW_FORMAT=COMPRESSED page, invoke buf_zip_decompress() to restore the uncompressed page. buf_page_io_complete(): Remove the temporary hack to discard the uncompressed page of a ROW_FORMAT=COMPRESSED page. page_zip_write_header(): Remove. Use mtr_t::write() or mtr_t::memset() instead, and update the compressed page frame separately. trx_undo_header_add_space_for_xid(): Remove. trx_undo_seg_create(): Perform the changes that were previously made by trx_undo_header_add_space_for_xid(). btr_reset_instant(): New function: Reset the table to MariaDB 10.2 or 10.3 format when rolling back an instant ALTER TABLE operation. page_rec_find_owner_rec(): Merge with the only callers. page_cur_insert_rec_low(): Combine writes by using a local buffer. MEMMOVE data from the preceding record whenever feasible (copying at least 3 bytes). page_cur_insert_rec_zip(): Combine writes to page header fields. PageBulk::insertPage(): Issue MEMMOVE records to copy a matching part from the preceding record. PageBulk::finishPage(): Combine the writes to the page header and to the sparse page directory slots. mtr_t::write(): Only log the least significant (last) bytes of multi-byte fields that actually differ. For updating FSP_SIZE, we must always write all 4 bytes to the redo log, so that the fil_space_set_recv_size() logic in recv_sys_t::parse() will work. mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument instead of a numeric offset to the page frame. Only log the last bytes of multi-byte fields that actually differ. In fil_space_crypt_t::write_page0(), we must log also any unchanged bytes, so that recovery will recognize the record and invoke fil_crypt_parse(). Future work: MDEV-21724 Optimize page_cur_insert_rec_low() redo logging MDEV-21725 Optimize btr_page_reorganize_low() redo logging MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
2020-02-13 19:12:17 +02:00
constexpr uint16_t field= PAGE_HEADER + PAGE_LAST_INSERT;
MDEV-27058: Reduce the size of buf_block_t and buf_page_t buf_page_t::frame: Moved from buf_block_t::frame. All 'thin' buf_page_t describing compressed-only ROW_FORMAT=COMPRESSED pages will have frame=nullptr, while all 'fat' buf_block_t will have a non-null frame pointing to aligned innodb_page_size bytes. This eliminates the need for separate states for BUF_BLOCK_FILE_PAGE and BUF_BLOCK_ZIP_PAGE. buf_page_t::lock: Moved from buf_block_t::lock. That is, all block descriptors will have a page latch. The IO_PIN state that was used for discarding or creating the uncompressed page frame of a ROW_FORMAT=COMPRESSED block is replaced by a combination of read-fix and page X-latch. page_zip_des_t::fix: Replaces state_, buf_fix_count_, io_fix_, status of buf_page_t with a single std::atomic<uint32_t>. All modifications will use store(), fetch_add(), fetch_sub(). This space was previously wasted to alignment on 64-bit systems. We will use the following encoding that combines a state (partly read-fix or write-fix) and a buffer-fix count: buf_page_t::NOT_USED=0 (previously BUF_BLOCK_NOT_USED) buf_page_t::MEMORY=1 (previously BUF_BLOCK_MEMORY) buf_page_t::REMOVE_HASH=2 (previously BUF_BLOCK_REMOVE_HASH) buf_page_t::FREED=3 + fix: pages marked as freed in the file buf_page_t::UNFIXED=1U<<29 + fix: normal pages buf_page_t::IBUF_EXIST=2U<<29 + fix: normal pages; may need ibuf merge buf_page_t::REINIT=3U<<29 + fix: reinitialized pages (skip doublewrite) buf_page_t::READ_FIX=4U<<29 + fix: read-fixed pages (also X-latched) buf_page_t::WRITE_FIX=5U<<29 + fix: write-fixed pages (also U-latched) buf_page_t::WRITE_FIX_IBUF=6U<<29 + fix: write-fixed; may have ibuf buf_page_t::WRITE_FIX_REINIT=7U<<29 + fix: write-fixed (no doublewrite) buf_page_t::write_complete(): Change WRITE_FIX or WRITE_FIX_REINIT to UNFIXED, and WRITE_FIX_IBUF to IBUF_EXIST, before releasing the U-latch. buf_page_t::read_complete(): Renamed from buf_page_read_complete(). Change READ_FIX to UNFIXED or IBUF_EXIST, before releasing the X-latch. buf_page_t::can_relocate(): If the page latch is being held or waited for, or the block is buffer-fixed or io-fixed, return false. (The condition on the page latch is new.) Outside buf_page_get_gen(), buf_page_get_low() and buf_page_free(), we will acquire the page latch before fix(), and unfix() before unlocking. buf_page_t::flush(): Replaces buf_flush_page(). Optimize the handling of FREED pages. buf_pool_t::release_freed_page(): Assume that buf_pool.mutex is held by the caller. buf_page_t::is_read_fixed(), buf_page_t::is_write_fixed(): New predicates. buf_page_get_low(): Ignore guesses that are read-fixed because they may not yet be registered in buf_pool.page_hash and buf_pool.LRU. buf_page_optimistic_get(): Acquire latch before buffer-fixing. buf_page_make_young(): Leave read-fixed blocks alone, because they might not be registered in buf_pool.LRU yet. recv_sys_t::recover_deferred(), recv_sys_t::recover_low(): Possibly fix MDEV-26326, by holding a page X-latch instead of only buffer-fixing the page.
2021-11-16 19:55:06 +02:00
byte *b= my_assume_aligned<2>(&block->page.frame[field]);
if (mtr->write<2,mtr_t::MAYBE_NOP>(*block, b, 0U) &&
MDEV-12353: Change the redo log encoding log_t::FORMAT_10_5: physical redo log format tag log_phys_t: Buffered records in the physical format. The log record bytes will follow the last data field, making use of alignment padding that would otherwise be wasted. If there are multiple records for the same page, also those may be appended to an existing log_phys_t object if the memory is available. In the physical format, the first byte of a record identifies the record and its length (up to 15 bytes). For longer records, the immediately following bytes will encode the remaining length in a variable-length encoding. Usually, a variable-length-encoded page identifier will follow, followed by optional payload, whose length is included in the initially encoded total record length. When a mini-transaction is updating multiple fields in a page, it can avoid repeating the tablespace identifier and page number by setting the same_page flag (most significant bit) in the first byte of the log record. The byte offset of the record will be relative to where the previous record for that page ended. Until MDEV-14425 introduces a separate file-level log for redo log checkpoints and file operations, we will write the file-level records in the page-level redo log file. The record FILE_CHECKPOINT (which replaces MLOG_CHECKPOINT) will be removed in MDEV-14425, and one sequential scan of the page recovery log will suffice. Compared to MLOG_FILE_CREATE2, FILE_CREATE will not include any flags. If the information is needed, it can be parsed from WRITE records that modify FSP_SPACE_FLAGS. MLOG_ZIP_WRITE_STRING: Remove. The record was only introduced temporarily as part of this work, before being replaced with WRITE (along with MLOG_WRITE_STRING, MLOG_1BYTE, MLOG_nBYTES). mtr_buf_t::empty(): Check if the buffer is empty. mtr_t::m_n_log_recs: Remove. It suffices to check if m_log is empty. mtr_t::m_last, mtr_t::m_last_offset: End of the latest m_log record, for the same_page encoding. page_recv_t::last_offset: Reflects mtr_t::m_last_offset. Valid values for last_offset during recovery should be 0 or above 8. (The first 8 bytes of a page are the checksum and the page number, and neither are ever updated directly by log records.) Internally, the special value 1 indicates that the same_page form will not be allowed for the subsequent record. mtr_t::page_create(): Take the block descriptor as parameter, so that it can be compared to mtr_t::m_last. The INIT_INDEX_PAGE record will always followed by a subtype byte, because same_page records must be longer than 1 byte. trx_undo_page_init(): Combine the writes in WRITE record. trx_undo_header_create(): Write 4 bytes using a special MEMSET record that includes 1 bytes of length and 2 bytes of payload. flst_write_addr(): Define as a static function. Combine the writes. flst_zero_both(): Replaces two flst_zero_addr() calls. flst_init(): Do not inline the function. fsp_free_seg_inode(): Zerofill the whole inode. fsp_apply_init_file_page(): Initialize FIL_PAGE_PREV,FIL_PAGE_NEXT to FIL_NULL when using the physical format. btr_create(): Assert !page_has_siblings() because fsp_apply_init_file_page() must have been invoked. fil_ibd_create(): Do not write FILE_MODIFY after FILE_CREATE. fil_names_dirty_and_write(): Remove the parameter mtr. Write the records using a separate mini-transaction object, because any FILE_ records must be at the start of a mini-transaction log. recv_recover_page(): Add a fil_space_t* parameter. After applying log to the a ROW_FORMAT=COMPRESSED page, invoke buf_zip_decompress() to restore the uncompressed page. buf_page_io_complete(): Remove the temporary hack to discard the uncompressed page of a ROW_FORMAT=COMPRESSED page. page_zip_write_header(): Remove. Use mtr_t::write() or mtr_t::memset() instead, and update the compressed page frame separately. trx_undo_header_add_space_for_xid(): Remove. trx_undo_seg_create(): Perform the changes that were previously made by trx_undo_header_add_space_for_xid(). btr_reset_instant(): New function: Reset the table to MariaDB 10.2 or 10.3 format when rolling back an instant ALTER TABLE operation. page_rec_find_owner_rec(): Merge with the only callers. page_cur_insert_rec_low(): Combine writes by using a local buffer. MEMMOVE data from the preceding record whenever feasible (copying at least 3 bytes). page_cur_insert_rec_zip(): Combine writes to page header fields. PageBulk::insertPage(): Issue MEMMOVE records to copy a matching part from the preceding record. PageBulk::finishPage(): Combine the writes to the page header and to the sparse page directory slots. mtr_t::write(): Only log the least significant (last) bytes of multi-byte fields that actually differ. For updating FSP_SIZE, we must always write all 4 bytes to the redo log, so that the fil_space_set_recv_size() logic in recv_sys_t::parse() will work. mtr_t::memcpy(), mtr_t::zmemcpy(): Take a pointer argument instead of a numeric offset to the page frame. Only log the last bytes of multi-byte fields that actually differ. In fil_space_crypt_t::write_page0(), we must log also any unchanged bytes, so that recovery will recognize the record and invoke fil_crypt_parse(). Future work: MDEV-21724 Optimize page_cur_insert_rec_low() redo logging MDEV-21725 Optimize btr_page_reorganize_low() redo logging MDEV-21727 Optimize redo logging for ROW_FORMAT=COMPRESSED
2020-02-13 19:12:17 +02:00
UNIV_LIKELY_NULL(block->page.zip.data))
memset_aligned<2>(&block->page.zip.data[field], 0, 2);
}
/***************************************************************//**
Returns the heap number of a record.
@return heap number */
UNIV_INLINE
ulint
page_rec_get_heap_no(
/*=================*/
const rec_t* rec) /*!< in: the physical record */
{
if (page_rec_is_comp(rec)) {
return(rec_get_heap_no_new(rec));
} else {
return(rec_get_heap_no_old(rec));
}
}
/** Determine whether an index page record is a user record.
@param[in] rec record in an index page
@return true if a user record */
inline
bool
page_rec_is_user_rec(const rec_t* rec)
{
2014-05-05 18:20:28 +02:00
ut_ad(page_rec_check(rec));
return(page_rec_is_user_rec_low(page_offset(rec)));
}
/** Determine whether an index page record is the supremum record.
@param[in] rec record in an index page
@return true if the supremum record */
inline
bool
page_rec_is_supremum(const rec_t* rec)
{
2014-05-05 18:20:28 +02:00
ut_ad(page_rec_check(rec));
return(page_rec_is_supremum_low(page_offset(rec)));
}
/** Determine whether an index page record is the infimum record.
@param[in] rec record in an index page
@return true if the infimum record */
inline
bool
page_rec_is_infimum(const rec_t* rec)
{
2014-05-05 18:20:28 +02:00
ut_ad(page_rec_check(rec));
return(page_rec_is_infimum_low(page_offset(rec)));
}
/************************************************************//**
true if the record is the first user record on a page.
@return true if the first user record */
UNIV_INLINE
bool
page_rec_is_first(
/*==============*/
const rec_t* rec, /*!< in: record */
const page_t* page) /*!< in: page */
{
ut_ad(page_get_n_recs(page) > 0);
return(page_rec_get_next_const(page_get_infimum_rec(page)) == rec);
}
/************************************************************//**
true if the record is the last user record on a page.
@return true if the last user record */
UNIV_INLINE
bool
page_rec_is_last(
/*=============*/
const rec_t* rec, /*!< in: record */
const page_t* page) /*!< in: page */
{
ut_ad(page_get_n_recs(page) > 0);
return(page_rec_get_next_const(rec) == page_get_supremum_rec(page));
}
/************************************************************//**
Returns the middle record of the records on the page. If there is an
even number of records in the list, returns the first record of the
upper half-list.
@return middle record */
UNIV_INLINE
rec_t*
page_get_middle_rec(
/*================*/
page_t* page) /*!< in: page */
{
ulint middle = (ulint(page_get_n_recs(page))
+ PAGE_HEAP_NO_USER_LOW) / 2;
return(page_rec_get_nth(page, middle));
}
#endif /* !UNIV_INNOCHECKSUM */
/*************************************************************//**
Gets the page number.
@return page number */
UNIV_INLINE
uint32_t
page_get_page_no(
/*=============*/
const page_t* page) /*!< in: page */
{
ut_ad(page == page_align((page_t*) page));
return mach_read_from_4(my_assume_aligned<4>(page + FIL_PAGE_OFFSET));
}
#ifndef UNIV_INNOCHECKSUM
/*************************************************************//**
Gets the tablespace identifier.
@return space id */
UNIV_INLINE
uint32_t
page_get_space_id(
/*==============*/
const page_t* page) /*!< in: page */
{
ut_ad(page == page_align((page_t*) page));
return mach_read_from_4(my_assume_aligned<2>
(page + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID));
}
#endif /* !UNIV_INNOCHECKSUM */
/*************************************************************//**
Gets the number of user records on page (infimum and supremum records
are not user records).
@return number of user records */
UNIV_INLINE
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
uint16_t
page_get_n_recs(
/*============*/
const page_t* page) /*!< in: index page */
{
return(page_header_get_field(page, PAGE_N_RECS));
}
#ifndef UNIV_INNOCHECKSUM
/*************************************************************//**
Gets the number of dir slots in directory.
@return number of slots */
UNIV_INLINE
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
uint16_t
page_dir_get_n_slots(
/*=================*/
const page_t* page) /*!< in: index page */
{
return(page_header_get_field(page, PAGE_N_DIR_SLOTS));
}
/*************************************************************//**
Gets the number of records in the heap.
@return number of user records */
UNIV_INLINE
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
uint16_t
page_dir_get_n_heap(
/*================*/
const page_t* page) /*!< in: index page */
{
return(page_header_get_field(page, PAGE_N_HEAP) & 0x7fff);
}
/**************************************************************//**
Used to check the consistency of a record on a page.
@return TRUE if succeed */
UNIV_INLINE
ibool
page_rec_check(
/*===========*/
const rec_t* rec) /*!< in: record */
{
const page_t* page = page_align(rec);
ut_a(rec);
ut_a(page_offset(rec) <= page_header_get_field(page, PAGE_HEAP_TOP));
ut_a(page_offset(rec) >= PAGE_DATA);
return(TRUE);
}
/***************************************************************//**
Gets the number of records owned by a directory slot.
@return number of records */
UNIV_INLINE
ulint
page_dir_slot_get_n_owned(
/*======================*/
const page_dir_slot_t* slot) /*!< in: page directory slot */
{
const rec_t* rec = page_dir_slot_get_rec(slot);
if (page_rec_is_comp(slot)) {
return(rec_get_n_owned_new(rec));
} else {
return(rec_get_n_owned_old(rec));
}
}
/************************************************************//**
Calculates the space reserved for directory slots of a given number of
records. The exact value is a fraction number n * PAGE_DIR_SLOT_SIZE /
PAGE_DIR_SLOT_MIN_N_OWNED, and it is rounded upwards to an integer. */
UNIV_INLINE
ulint
page_dir_calc_reserved_space(
/*=========================*/
ulint n_recs) /*!< in: number of records */
{
return((PAGE_DIR_SLOT_SIZE * n_recs + PAGE_DIR_SLOT_MIN_N_OWNED - 1)
/ PAGE_DIR_SLOT_MIN_N_OWNED);
}
/************************************************************//**
Gets the pointer to the next record on the page.
@return pointer to next record */
UNIV_INLINE
const rec_t*
page_rec_get_next_low(
/*==================*/
const rec_t* rec, /*!< in: pointer to record */
ulint comp) /*!< in: nonzero=compact page layout */
{
const page_t *page= page_align(rec);
ut_ad(page_rec_check(rec));
ulint offs= rec_get_next_offs(rec, comp);
if (!offs)
return nullptr;
if (UNIV_UNLIKELY(offs < (comp ? PAGE_NEW_SUPREMUM : PAGE_OLD_SUPREMUM)))
return nullptr;
if (UNIV_UNLIKELY(offs > page_header_get_field(page, PAGE_HEAP_TOP)))
return nullptr;
ut_ad(page_rec_is_infimum(rec) ||
(!page_is_leaf(page) && !page_has_prev(page)) ||
!(rec_get_info_bits(page + offs, comp) & REC_INFO_MIN_REC_FLAG));
return page + offs;
}
/************************************************************//**
Gets the pointer to the next record on the page.
@return pointer to next record */
UNIV_INLINE
rec_t*
page_rec_get_next(
/*==============*/
rec_t* rec) /*!< in: pointer to record */
{
return((rec_t*) page_rec_get_next_low(rec, page_rec_is_comp(rec)));
}
/************************************************************//**
Gets the pointer to the next record on the page.
@return pointer to next record */
UNIV_INLINE
const rec_t*
page_rec_get_next_const(
/*====================*/
const rec_t* rec) /*!< in: pointer to record */
{
return(page_rec_get_next_low(rec, page_rec_is_comp(rec)));
}
#endif /* UNIV_INNOCHECKSUM */
/************************************************************//**
Returns the sum of the sizes of the records in the record list, excluding
the infimum and supremum records.
@return data in bytes */
UNIV_INLINE
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
uint16_t
page_get_data_size(
/*===============*/
const page_t* page) /*!< in: index page */
{
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC The -Wconversion in GCC seems to be stricter than in clang. GCC at least since version 4.4.7 issues truncation warnings for assignments to bitfields, while clang 10 appears to only issue warnings when the sizes in bytes rounded to the nearest integer powers of 2 are different. Before GCC 10.0.0, -Wconversion required more casts and would not allow some operations, such as x<<=1 or x+=1 on a data type that is narrower than int. GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining about x|=y even when x and y are compatible types that are narrower than int. Hence, we must rewrite some x|=y as x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion. In GCC 6 and later, the warning for assigning wider to bitfields that are narrower than 8, 16, or 32 bits can be suppressed by applying a bitwise & with the exact bitmask of the bitfield. For older GCC, we must disable -Wconversion for GCC 4 or 5 in such cases. The bitwise negation operator appears to promote short integers to a wider type, and hence we must add explicit truncation casts around them. Microsoft Visual C does not allow a static_cast to truncate a constant, such as static_cast<byte>(1) truncating int. Hence, we will use the constructor-style cast byte(~1) for such cases. This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0, clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019) on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 19:46:41 +02:00
unsigned ret = page_header_get_field(page, PAGE_HEAP_TOP)
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
- (page_is_comp(page)
? PAGE_NEW_SUPREMUM_END
: PAGE_OLD_SUPREMUM_END)
- page_header_get_field(page, PAGE_GARBAGE);
ut_ad(ret < srv_page_size);
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC The -Wconversion in GCC seems to be stricter than in clang. GCC at least since version 4.4.7 issues truncation warnings for assignments to bitfields, while clang 10 appears to only issue warnings when the sizes in bytes rounded to the nearest integer powers of 2 are different. Before GCC 10.0.0, -Wconversion required more casts and would not allow some operations, such as x<<=1 or x+=1 on a data type that is narrower than int. GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining about x|=y even when x and y are compatible types that are narrower than int. Hence, we must rewrite some x|=y as x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion. In GCC 6 and later, the warning for assigning wider to bitfields that are narrower than 8, 16, or 32 bits can be suppressed by applying a bitwise & with the exact bitmask of the bitfield. For older GCC, we must disable -Wconversion for GCC 4 or 5 in such cases. The bitwise negation operator appears to promote short integers to a wider type, and hence we must add explicit truncation casts around them. Microsoft Visual C does not allow a static_cast to truncate a constant, such as static_cast<byte>(1) truncating int. Hence, we will use the constructor-style cast byte(~1) for such cases. This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0, clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019) on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 19:46:41 +02:00
return static_cast<uint16_t>(ret);
}
#ifndef UNIV_INNOCHECKSUM
/*************************************************************//**
Calculates free space if a page is emptied.
@return free space */
UNIV_INLINE
ulint
page_get_free_space_of_empty(
/*=========================*/
ulint comp) /*!< in: nonzero=compact page layout */
{
if (comp) {
return((ulint)(srv_page_size
- PAGE_NEW_SUPREMUM_END
- PAGE_DIR
- 2 * PAGE_DIR_SLOT_SIZE));
}
return((ulint)(srv_page_size
- PAGE_OLD_SUPREMUM_END
- PAGE_DIR
- 2 * PAGE_DIR_SLOT_SIZE));
}
/************************************************************//**
Each user record on a page, and also the deleted user records in the heap
takes its size plus the fraction of the dir cell size /
PAGE_DIR_SLOT_MIN_N_OWNED bytes for it. If the sum of these exceeds the
value of page_get_free_space_of_empty, the insert is impossible, otherwise
it is allowed. This function returns the maximum combined size of records
which can be inserted on top of the record heap.
@return maximum combined size for inserted records */
UNIV_INLINE
ulint
page_get_max_insert_size(
/*=====================*/
const page_t* page, /*!< in: index page */
ulint n_recs) /*!< in: number of records */
{
ulint occupied;
ulint free_space;
if (page_is_comp(page)) {
occupied = page_header_get_field(page, PAGE_HEAP_TOP)
- PAGE_NEW_SUPREMUM_END
+ page_dir_calc_reserved_space(
n_recs + page_dir_get_n_heap(page) - 2);
free_space = page_get_free_space_of_empty(TRUE);
} else {
occupied = page_header_get_field(page, PAGE_HEAP_TOP)
- PAGE_OLD_SUPREMUM_END
+ page_dir_calc_reserved_space(
n_recs + page_dir_get_n_heap(page) - 2);
free_space = page_get_free_space_of_empty(FALSE);
}
/* Above the 'n_recs +' part reserves directory space for the new
inserted records; the '- 2' excludes page infimum and supremum
records */
if (occupied > free_space) {
return(0);
}
return(free_space - occupied);
}
/************************************************************//**
Returns the maximum combined size of records which can be inserted on top
of the record heap if a page is first reorganized.
@return maximum combined size for inserted records */
UNIV_INLINE
ulint
page_get_max_insert_size_after_reorganize(
/*======================================*/
const page_t* page, /*!< in: index page */
ulint n_recs) /*!< in: number of records */
{
ulint occupied;
ulint free_space;
occupied = page_get_data_size(page)
+ page_dir_calc_reserved_space(n_recs + page_get_n_recs(page));
free_space = page_get_free_space_of_empty(page_is_comp(page));
if (occupied > free_space) {
return(0);
}
return(free_space - occupied);
}
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
/** Read the PAGE_DIRECTION field from a byte.
@param[in] ptr pointer to PAGE_DIRECTION_B
@return the value of the PAGE_DIRECTION field */
inline
byte
page_ptr_get_direction(const byte* ptr)
{
ut_ad(page_offset(ptr) == PAGE_HEADER + PAGE_DIRECTION_B);
return *ptr & ((1U << 3) - 1);
}
/** Read the PAGE_INSTANT field.
@param[in] page index page
@return the value of the PAGE_INSTANT field */
inline
uint16_t
page_get_instant(const page_t* page)
{
uint16_t i = page_header_get_field(page, PAGE_INSTANT);
#ifdef UNIV_DEBUG
switch (fil_page_get_type(page)) {
case FIL_PAGE_TYPE_INSTANT:
ut_ad(page_get_direction(page) <= PAGE_NO_DIRECTION);
ut_ad(i >> 3);
break;
case FIL_PAGE_INDEX:
ut_ad(i <= PAGE_NO_DIRECTION || !page_is_comp(page));
break;
case FIL_PAGE_RTREE:
ut_ad(i <= PAGE_NO_DIRECTION);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
break;
default:
ut_ad("invalid page type" == 0);
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
break;
}
#endif /* UNIV_DEBUG */
Fix all warnings given by UBSAN The easiest way to compile and test the server with UBSAN is to run: ./BUILD/compile-pentium64-ubsan and then run mysql-test-run. After this commit, one should be able to run this without any UBSAN warnings. There is still a few compiler warnings that should be fixed at some point, but these do not expose any real bugs. The 'special' cases where we disable, suppress or circumvent UBSAN are: - ref10 source (as here we intentionally do some shifts that UBSAN complains about. - x86 version of optimized int#korr() methods. UBSAN do not like unaligned memory access of integers. Fixed by using byte_order_generic.h when compiling with UBSAN - We use smaller thread stack with ASAN and UBSAN, which forced me to disable a few tests that prints the thread stack size. - Verifying class types does not work for shared libraries. I added suppression in mysql-test-run.pl for this case. - Added '#ifdef WITH_UBSAN' when using integer arithmetic where it is safe to have overflows (two cases, in item_func.cc). Things fixed: - Don't left shift signed values (byte_order_generic.h, mysqltest.c, item_sum.cc and many more) - Don't assign not non existing values to enum variables. - Ensure that bool and enum values are properly initialized in constructors. This was needed as UBSAN checks that these types has correct values when one copies an object. (gcalc_tools.h, ha_partition.cc, item_sum.cc, partition_element.h ...) - Ensure we do not called handler functions on unallocated objects or deleted objects. (events.cc, sql_acl.cc). - Fixed bugs in Item_sp::Item_sp() where we did not call constructor on Query_arena object. - Fixed several cast of objects to an incompatible class! (Item.cc, Item_buff.cc, item_timefunc.cc, opt_subselect.cc, sql_acl.cc, sql_select.cc ...) - Ensure we do not do integer arithmetic that causes over or underflows. This includes also ++ and -- of integers. (Item_func.cc, Item_strfunc.cc, item_timefunc.cc, sql_base.cc ...) - Added JSON_VALUE_UNITIALIZED to json_value_types and ensure that value_type is initialized to this instead of to -1, which is not a valid enum value for json_value_types. - Ensure we do not call memcpy() when second argument could be null. - Fixed that Item_func_str::make_empty_result() creates an empty string instead of a null string (safer as it ensures we do not do arithmetic on null strings). Other things: - Changed struct st_position to an OBJECT and added an initialization function to it to ensure that we do not copy or use uninitialized members. The change to a class was also motived that we used "struct st_position" and POSITION randomly trough the code which was confusing. - Notably big rewrite in sql_acl.cc to avoid using deleted objects. - Changed in sql_partition to use '^' instead of '-'. This is safe as the operator is either 0 or 0x8000000000000000ULL. - Added check for select_nr < INT_MAX in JOIN::build_explain() to avoid bug when get_select() could return NULL. - Reordered elements in POSITION for better alignment. - Changed sql_test.cc::print_plan() to use pointers instead of objects. - Fixed bug in find_set() where could could execute '1 << -1'. - Added variable have_sanitizer, used by mtr. (This variable was before only in 10.5 and up). It can now have one of two values: ASAN or UBSAN. - Moved ~Archive_share() from ha_archive.cc to ha_archive.h and marked it virtual. This was an effort to get UBSAN to work with loaded storage engines. I kept the change as the new place is better. - Added in CONNECT engine COLBLK::SetName(), to get around a wrong cast in tabutil.cpp. - Added HAVE_REPLICATION around usage of rgi_slave, to get embedded server to compile with UBSAN. (Patch from Marko). - Added #ifdef for powerpc64 to avoid a bug in old gcc versions related to integer arithmetic. Changes that should not be needed but had to be done to suppress warnings from UBSAN: - Added static_cast<<uint16_t>> around shift to get rid of a LOT of compiler warnings when using UBSAN. - Had to change some '/' of 2 base integers to shift to get rid of some compile time warnings. Reviewed by: - Json changes: Alexey Botchkov - Charset changes in ctype-uca.c: Alexander Barkov - InnoDB changes & Embedded server: Marko Mäkelä - sql_acl.cc changes: Vicențiu Ciorbaru - build_explain() changes: Sergey Petrunia
2021-04-18 15:29:13 +03:00
return static_cast<uint16_t>(i >> 3); /* i / 8 */
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 07:00:05 +03:00
}
#endif /* !UNIV_INNOCHECKSUM */