2011-03-07 10:08:10 +01:00
|
|
|
/* Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
#include "debug_sync.h" // DEBUG_SYNC
|
|
|
|
#include "table.h" // TABLE, FOREIGN_KEY_INFO
|
2010-05-25 22:01:38 +02:00
|
|
|
#include "sql_class.h" // THD
|
|
|
|
#include "sql_base.h" // open_and_lock_tables
|
|
|
|
#include "sql_table.h" // write_bin_log
|
|
|
|
#include "sql_handler.h" // mysql_ha_rm_tables
|
|
|
|
#include "datadict.h" // dd_recreate_table()
|
|
|
|
#include "lock.h" // MYSQL_OPEN_TEMPORARY_ONLY
|
2010-08-16 14:53:30 +02:00
|
|
|
#include "sql_acl.h" // DROP_ACL
|
|
|
|
#include "sql_parse.h" // check_one_table_access()
|
|
|
|
#include "sql_truncate.h"
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/**
|
|
|
|
Append a list of field names to a string.
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
@param str The string.
|
|
|
|
@param fields The list of field names.
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
@return TRUE on failure, FALSE otherwise.
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
static bool fk_info_append_fields(String *str, List<LEX_STRING> *fields)
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
bool res= FALSE;
|
|
|
|
LEX_STRING *field;
|
|
|
|
List_iterator_fast<LEX_STRING> it(*fields);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
while ((field= it++))
|
2010-05-27 22:40:54 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
res|= str->append("`");
|
|
|
|
res|= str->append(field);
|
|
|
|
res|= str->append("`, ");
|
2010-05-27 22:40:54 +02:00
|
|
|
}
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
str->chop();
|
|
|
|
str->chop();
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Generate a foreign key description suitable for a error message.
|
|
|
|
|
|
|
|
@param thd Thread context.
|
|
|
|
@param fk_info The foreign key information.
|
|
|
|
|
|
|
|
@return A human-readable string describing the foreign key.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static const char *fk_info_str(THD *thd, FOREIGN_KEY_INFO *fk_info)
|
|
|
|
{
|
|
|
|
bool res= FALSE;
|
|
|
|
char buffer[STRING_BUFFER_USUAL_SIZE*2];
|
|
|
|
String str(buffer, sizeof(buffer), system_charset_info);
|
|
|
|
|
|
|
|
str.length(0);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
`db`.`tbl`, CONSTRAINT `id` FOREIGN KEY (`fk`) REFERENCES `db`.`tbl` (`fk`)
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
res|= str.append('`');
|
|
|
|
res|= str.append(fk_info->foreign_db);
|
|
|
|
res|= str.append("`.`");
|
|
|
|
res|= str.append(fk_info->foreign_table);
|
|
|
|
res|= str.append("`, CONSTRAINT `");
|
|
|
|
res|= str.append(fk_info->foreign_id);
|
|
|
|
res|= str.append("` FOREIGN KEY (");
|
|
|
|
res|= fk_info_append_fields(&str, &fk_info->foreign_fields);
|
|
|
|
res|= str.append(") REFERENCES `");
|
|
|
|
res|= str.append(fk_info->referenced_db);
|
|
|
|
res|= str.append("`.`");
|
|
|
|
res|= str.append(fk_info->referenced_table);
|
|
|
|
res|= str.append("` (");
|
|
|
|
res|= fk_info_append_fields(&str, &fk_info->referenced_fields);
|
|
|
|
res|= str.append(')');
|
|
|
|
|
|
|
|
return res ? NULL : thd->strmake(str.ptr(), str.length());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check and emit a fatal error if the table which is going to be
|
|
|
|
affected by TRUNCATE TABLE is a parent table in some non-self-
|
|
|
|
referencing foreign key.
|
|
|
|
|
|
|
|
@remark The intention is to allow truncate only for tables that
|
|
|
|
are not dependent on other tables.
|
|
|
|
|
|
|
|
@param thd Thread context.
|
|
|
|
@param table Table handle.
|
|
|
|
|
|
|
|
@retval FALSE This table is not parent in a non-self-referencing foreign
|
|
|
|
key. Statement can proceed.
|
|
|
|
@retval TRUE This table is parent in a non-self-referencing foreign key,
|
|
|
|
error was emitted.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool
|
|
|
|
fk_truncate_illegal_if_parent(THD *thd, TABLE *table)
|
|
|
|
{
|
|
|
|
FOREIGN_KEY_INFO *fk_info;
|
|
|
|
List<FOREIGN_KEY_INFO> fk_list;
|
|
|
|
List_iterator_fast<FOREIGN_KEY_INFO> it;
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/*
|
|
|
|
Bail out early if the table is not referenced by a foreign key.
|
|
|
|
In this case, the table could only be, if at all, a child table.
|
|
|
|
*/
|
|
|
|
if (! table->file->referenced_by_foreign_key())
|
|
|
|
return FALSE;
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
This table _is_ referenced by a foreign key. At this point, only
|
|
|
|
self-referencing keys are acceptable. For this reason, get the list
|
|
|
|
of foreign keys referencing this table in order to check the name
|
|
|
|
of the child (dependent) tables.
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
table->file->get_parent_foreign_key_list(thd, &fk_list);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Out of memory when building list. */
|
|
|
|
if (thd->is_error())
|
|
|
|
return TRUE;
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
it.init(fk_list);
|
|
|
|
|
|
|
|
/* Loop over the set of foreign keys for which this table is a parent. */
|
|
|
|
while ((fk_info= it++))
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
DBUG_ASSERT(!my_strcasecmp(system_charset_info,
|
|
|
|
fk_info->referenced_db->str,
|
|
|
|
table->s->db.str));
|
|
|
|
|
|
|
|
DBUG_ASSERT(!my_strcasecmp(system_charset_info,
|
|
|
|
fk_info->referenced_table->str,
|
|
|
|
table->s->table_name.str));
|
|
|
|
|
|
|
|
if (my_strcasecmp(system_charset_info, fk_info->foreign_db->str,
|
|
|
|
table->s->db.str) ||
|
|
|
|
my_strcasecmp(system_charset_info, fk_info->foreign_table->str,
|
|
|
|
table->s->table_name.str))
|
2010-05-25 22:01:38 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Table is parent in a non-self-referencing foreign key. */
|
|
|
|
if (fk_info)
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
my_error(ER_TRUNCATE_ILLEGAL_FK, MYF(0), fk_info_str(thd, fk_info));
|
|
|
|
return TRUE;
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Open and truncate a locked table.
|
|
|
|
|
|
|
|
@param thd Thread context.
|
|
|
|
@param table_ref Table list element for the table to be truncated.
|
|
|
|
@param is_tmp_table True if element refers to a temp table.
|
|
|
|
|
|
|
|
@retval 0 Success.
|
|
|
|
@retval > 0 Error code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int Truncate_statement::handler_truncate(THD *thd, TABLE_LIST *table_ref,
|
|
|
|
bool is_tmp_table)
|
|
|
|
{
|
|
|
|
int error= 0;
|
|
|
|
uint flags;
|
|
|
|
DBUG_ENTER("Truncate_statement::handler_truncate");
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
Can't recreate, the engine must mechanically delete all rows
|
|
|
|
in the table. Use open_and_lock_tables() to open a write cursor.
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
|
|
|
|
/* If it is a temporary table, no need to take locks. */
|
|
|
|
if (is_tmp_table)
|
|
|
|
flags= MYSQL_OPEN_TEMPORARY_ONLY;
|
|
|
|
else
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* We don't need to load triggers. */
|
|
|
|
DBUG_ASSERT(table_ref->trg_event_map == 0);
|
|
|
|
/*
|
|
|
|
Our metadata lock guarantees that no transaction is reading
|
|
|
|
or writing into the table. Yet, to open a write cursor we need
|
|
|
|
a thr_lock lock. Allow to open base tables only.
|
|
|
|
*/
|
|
|
|
table_ref->required_type= FRMTYPE_TABLE;
|
|
|
|
/*
|
|
|
|
Ignore pending FLUSH TABLES since we don't want to release
|
|
|
|
the MDL lock taken above and otherwise there is no way to
|
|
|
|
wait for FLUSH TABLES in deadlock-free fashion.
|
|
|
|
*/
|
|
|
|
flags= MYSQL_OPEN_IGNORE_FLUSH | MYSQL_OPEN_SKIP_TEMPORARY;
|
|
|
|
/*
|
|
|
|
Even though we have an MDL lock on the table here, we don't
|
|
|
|
pass MYSQL_OPEN_HAS_MDL_LOCK to open_and_lock_tables
|
|
|
|
since to truncate a MERGE table, we must open and lock
|
|
|
|
merge children, and on those we don't have an MDL lock.
|
|
|
|
Thus clear the ticket to satisfy MDL asserts.
|
|
|
|
*/
|
|
|
|
table_ref->mdl_request.ticket= NULL;
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Open the table as it will handle some required preparations. */
|
|
|
|
if (open_and_lock_tables(thd, table_ref, FALSE, flags))
|
|
|
|
DBUG_RETURN(1);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Whether to truncate regardless of foreign keys. */
|
|
|
|
if (! (thd->variables.option_bits & OPTION_NO_FOREIGN_KEY_CHECKS))
|
|
|
|
error= fk_truncate_illegal_if_parent(thd, table_ref->table);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
if (!error && (error= table_ref->table->file->ha_truncate()))
|
|
|
|
table_ref->table->file->print_error(error, MYF(0));
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Close and recreate a temporary table. In case of success,
|
|
|
|
write truncate statement into the binary log if in statement
|
|
|
|
mode.
|
|
|
|
|
|
|
|
@param thd Thread context.
|
|
|
|
@param table The temporary table.
|
|
|
|
|
|
|
|
@retval FALSE Success.
|
|
|
|
@retval TRUE Error.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool recreate_temporary_table(THD *thd, TABLE *table)
|
|
|
|
{
|
|
|
|
bool error= TRUE;
|
|
|
|
TABLE_SHARE *share= table->s;
|
|
|
|
HA_CREATE_INFO create_info;
|
|
|
|
handlerton *table_type= table->s->db_type();
|
|
|
|
DBUG_ENTER("recreate_temporary_table");
|
|
|
|
|
|
|
|
memset(&create_info, 0, sizeof(create_info));
|
|
|
|
|
|
|
|
table->file->info(HA_STATUS_AUTO | HA_STATUS_NO_LOCK);
|
|
|
|
|
|
|
|
/* Don't free share. */
|
|
|
|
close_temporary_table(thd, table, FALSE, FALSE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
We must use share->normalized_path.str since for temporary tables it
|
|
|
|
differs from what dd_recreate_table() would generate based
|
|
|
|
on table and schema names.
|
|
|
|
*/
|
|
|
|
ha_create_table(thd, share->normalized_path.str, share->db.str,
|
|
|
|
share->table_name.str, &create_info, 1);
|
|
|
|
|
2010-08-31 12:03:36 +02:00
|
|
|
if (open_table_uncached(thd, share->path.str, share->db.str,
|
|
|
|
share->table_name.str, TRUE))
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
|
|
|
error= FALSE;
|
|
|
|
thd->thread_specific_used= TRUE;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
rm_temporary_table(table_type, share->path.str);
|
|
|
|
|
|
|
|
free_table_share(share);
|
Bug#34043: Server loops excessively in _checkchunk() when safemalloc is enabled
Essentially, the problem is that safemalloc is excruciatingly
slow as it checks all allocated blocks for overrun at each
memory management primitive, yielding a almost exponential
slowdown for the memory management functions (malloc, realloc,
free). The overrun check basically consists of verifying some
bytes of a block for certain magic keys, which catches some
simple forms of overrun. Another minor problem is violation
of aliasing rules and that its own internal list of blocks
is prone to corruption.
Another issue with safemalloc is rather the maintenance cost
as the tool has a significant impact on the server code.
Given the magnitude of memory debuggers available nowadays,
especially those that are provided with the platform malloc
implementation, maintenance of a in-house and largely obsolete
memory debugger becomes a burden that is not worth the effort
due to its slowness and lack of support for detecting more
common forms of heap corruption.
Since there are third-party tools that can provide the same
functionality at a lower or comparable performance cost, the
solution is to simply remove safemalloc. Third-party tools
can provide the same functionality at a lower or comparable
performance cost.
The removal of safemalloc also allows a simplification of the
malloc wrappers, removing quite a bit of kludge: redefinition
of my_malloc, my_free and the removal of the unused second
argument of my_free. Since free() always check whether the
supplied pointer is null, redudant checks are also removed.
Also, this patch adds unit testing for my_malloc and moves
my_realloc implementation into the same file as the other
memory allocation primitives.
2010-07-08 23:20:08 +02:00
|
|
|
my_free(table);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
Handle locking a base table for truncate.
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
@param[in] thd Thread context.
|
|
|
|
@param[in] table_ref Table list element for the table to
|
|
|
|
be truncated.
|
|
|
|
@param[out] hton_can_recreate Set to TRUE if table can be dropped
|
|
|
|
and recreated.
|
|
|
|
|
|
|
|
@retval FALSE Success.
|
|
|
|
@retval TRUE Error.
|
|
|
|
*/
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
bool Truncate_statement::lock_table(THD *thd, TABLE_LIST *table_ref,
|
|
|
|
bool *hton_can_recreate)
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
|
|
|
TABLE *table= NULL;
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
DBUG_ENTER("Truncate_statement::lock_table");
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Lock types are set in the parser. */
|
2010-07-01 15:53:46 +02:00
|
|
|
DBUG_ASSERT(table_ref->lock_type == TL_WRITE);
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* The handler truncate protocol dictates a exclusive lock. */
|
|
|
|
DBUG_ASSERT(table_ref->mdl_request.type == MDL_EXCLUSIVE);
|
|
|
|
|
2010-05-25 22:01:38 +02:00
|
|
|
/*
|
|
|
|
Before doing anything else, acquire a metadata lock on the table,
|
|
|
|
or ensure we have one. We don't use open_and_lock_tables()
|
|
|
|
right away because we want to be able to truncate (and recreate)
|
|
|
|
corrupted tables, those that we can't fully open.
|
|
|
|
|
|
|
|
MySQL manual documents that TRUNCATE can be used to repair a
|
|
|
|
damaged table, i.e. a table that can not be fully "opened".
|
|
|
|
In particular MySQL manual says: As long as the table format
|
|
|
|
file tbl_name.frm is valid, the table can be re-created as
|
|
|
|
an empty table with TRUNCATE TABLE, even if the data or index
|
|
|
|
files have become corrupted.
|
|
|
|
*/
|
|
|
|
if (thd->locked_tables_mode)
|
|
|
|
{
|
2011-03-07 10:08:10 +01:00
|
|
|
if (!(table= find_table_for_mdl_upgrade(thd, table_ref->db,
|
2010-05-25 22:01:38 +02:00
|
|
|
table_ref->table_name, FALSE)))
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
*hton_can_recreate= ha_check_storage_engine_flag(table->s->db_type(),
|
2010-05-25 22:01:38 +02:00
|
|
|
HTON_CAN_RECREATE);
|
2010-07-01 15:53:46 +02:00
|
|
|
table_ref->mdl_request.ticket= table->mdl_ticket;
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Acquire an exclusive lock. */
|
2010-07-01 15:53:46 +02:00
|
|
|
DBUG_ASSERT(table_ref->next_global == NULL);
|
|
|
|
if (lock_table_names(thd, table_ref, NULL,
|
|
|
|
thd->variables.lock_wait_timeout,
|
|
|
|
MYSQL_OPEN_SKIP_TEMPORARY))
|
2010-05-25 22:01:38 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
if (dd_check_storage_engine_flag(thd, table_ref->db, table_ref->table_name,
|
|
|
|
HTON_CAN_RECREATE, hton_can_recreate))
|
2010-05-25 22:01:38 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
|
2010-08-16 14:53:30 +02:00
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
A storage engine can recreate or truncate the table only if there
|
|
|
|
are no references to it from anywhere, i.e. no cached TABLE in the
|
|
|
|
table cache.
|
2010-08-16 14:53:30 +02:00
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
if (thd->locked_tables_mode)
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
DEBUG_SYNC(thd, "upgrade_lock_for_truncate");
|
|
|
|
/* To remove the table from the cache we need an exclusive lock. */
|
|
|
|
if (wait_while_table_is_used(thd, table, HA_EXTRA_FORCE_REOPEN))
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
m_ticket_downgrade= table->mdl_ticket;
|
|
|
|
/* Close if table is going to be recreated. */
|
|
|
|
if (*hton_can_recreate)
|
2010-05-25 22:01:38 +02:00
|
|
|
close_all_tables_for_name(thd, table->s, FALSE);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Table is already locked exclusively. Remove cached instances. */
|
|
|
|
tdc_remove_table(thd, TDC_RT_REMOVE_ALL, table_ref->db,
|
|
|
|
table_ref->table_name, FALSE);
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Optimized delete of all rows by doing a full generate of the table.
|
|
|
|
|
|
|
|
@remark Will work even if the .MYI and .MYD files are destroyed.
|
|
|
|
In other words, it works as long as the .FRM is intact and
|
|
|
|
the engine supports re-create.
|
|
|
|
|
|
|
|
@param thd Thread context.
|
|
|
|
@param table_ref Table list element for the table to be truncated.
|
|
|
|
|
|
|
|
@retval FALSE Success.
|
|
|
|
@retval TRUE Error.
|
|
|
|
*/
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
bool Truncate_statement::truncate_table(THD *thd, TABLE_LIST *table_ref)
|
2010-05-25 22:01:38 +02:00
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
int error;
|
2010-05-25 22:01:38 +02:00
|
|
|
TABLE *table;
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
bool binlog_stmt;
|
|
|
|
DBUG_ENTER("Truncate_statement::truncate_table");
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/* Initialize, or reinitialize in case of reexecution (SP). */
|
|
|
|
m_ticket_downgrade= NULL;
|
|
|
|
|
|
|
|
/* Remove table from the HANDLER's hash. */
|
2010-05-25 22:01:38 +02:00
|
|
|
mysql_ha_rm_tables(thd, table_ref);
|
|
|
|
|
|
|
|
/* If it is a temporary table, no need to take locks. */
|
|
|
|
if ((table= find_temporary_table(thd, table_ref)))
|
|
|
|
{
|
|
|
|
/* In RBR, the statement is not binlogged if the table is temporary. */
|
|
|
|
binlog_stmt= !thd->is_current_stmt_binlog_format_row();
|
|
|
|
|
|
|
|
/* Note that a temporary table cannot be partitioned. */
|
|
|
|
if (ha_check_storage_engine_flag(table->s->db_type(), HTON_CAN_RECREATE))
|
|
|
|
{
|
|
|
|
if ((error= recreate_temporary_table(thd, table)))
|
|
|
|
binlog_stmt= FALSE; /* No need to binlog failed truncate-by-recreate. */
|
|
|
|
|
|
|
|
DBUG_ASSERT(! thd->transaction.stmt.modified_non_trans_table);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The engine does not support truncate-by-recreate. Open the
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
table and invoke the handler truncate. In such a manner this
|
|
|
|
can in fact open several tables if it's a temporary MyISAMMRG
|
|
|
|
table.
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
error= handler_truncate(thd, table_ref, TRUE);
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
No need to invalidate the query cache, queries with temporary
|
|
|
|
tables are not in the cache. No need to write to the binary
|
|
|
|
log a failed row-by-row delete even if under RBR as the table
|
|
|
|
might not exist on the slave.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
else /* It's not a temporary table. */
|
|
|
|
{
|
|
|
|
bool hton_can_recreate;
|
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
if (lock_table(thd, table_ref, &hton_can_recreate))
|
2010-05-25 22:01:38 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
|
|
|
|
if (hton_can_recreate)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The storage engine can truncate the table by creating an
|
|
|
|
empty table with the same structure.
|
|
|
|
*/
|
|
|
|
error= dd_recreate_table(thd, table_ref->db, table_ref->table_name);
|
|
|
|
|
|
|
|
if (thd->locked_tables_mode && thd->locked_tables_list.reopen_tables(thd))
|
|
|
|
thd->locked_tables_list.unlink_all_closed_tables(thd, NULL, 0);
|
|
|
|
|
|
|
|
/* No need to binlog a failed truncate-by-recreate. */
|
|
|
|
binlog_stmt= !error;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/*
|
|
|
|
The engine does not support truncate-by-recreate.
|
|
|
|
Attempt to use the handler truncate method.
|
|
|
|
*/
|
|
|
|
error= handler_truncate(thd, table_ref, FALSE);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
|
|
|
/*
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
All effects of a TRUNCATE TABLE operation are committed even if
|
|
|
|
truncation fails. Thus, the query must be written to the binary
|
|
|
|
log. The only exception is a unimplemented truncate method.
|
2010-05-25 22:01:38 +02:00
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
binlog_stmt= !error || error != HA_ERR_WRONG_COMMAND;
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
2010-10-29 16:10:53 +02:00
|
|
|
/*
|
|
|
|
If we tried to open a MERGE table and failed due to problems with the
|
|
|
|
children tables, the table will have been closed and table_ref->table
|
|
|
|
will be invalid. Reset the pointer here in any case as
|
|
|
|
query_cache_invalidate does not need a valid TABLE object.
|
|
|
|
*/
|
|
|
|
table_ref->table= NULL;
|
2010-05-25 22:01:38 +02:00
|
|
|
query_cache_invalidate3(thd, table_ref, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* DDL is logged in statement format, regardless of binlog format. */
|
|
|
|
if (binlog_stmt)
|
|
|
|
error|= write_bin_log(thd, !error, thd->query(), thd->query_length());
|
|
|
|
|
2010-05-27 22:40:54 +02:00
|
|
|
/*
|
|
|
|
A locked table ticket was upgraded to a exclusive lock. After the
|
|
|
|
the query has been written to the binary log, downgrade the lock
|
|
|
|
to a shared one.
|
|
|
|
*/
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
if (m_ticket_downgrade)
|
|
|
|
m_ticket_downgrade->downgrade_exclusive_lock(MDL_SHARED_NO_READ_WRITE);
|
2010-05-25 22:01:38 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
DBUG_RETURN(error);
|
2010-05-25 22:01:38 +02:00
|
|
|
}
|
|
|
|
|
2010-08-16 14:53:30 +02:00
|
|
|
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
/**
|
|
|
|
Execute a TRUNCATE statement at runtime.
|
|
|
|
|
|
|
|
@param thd The current thread.
|
|
|
|
|
|
|
|
@return FALSE on success.
|
|
|
|
*/
|
|
|
|
|
2010-08-16 14:53:30 +02:00
|
|
|
bool Truncate_statement::execute(THD *thd)
|
|
|
|
{
|
|
|
|
bool res= TRUE;
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
TABLE_LIST *first_table= thd->lex->select_lex.table_list.first;
|
2010-08-16 14:53:30 +02:00
|
|
|
DBUG_ENTER("Truncate_statement::execute");
|
|
|
|
|
|
|
|
if (check_one_table_access(thd, DROP_ACL, first_table))
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
DBUG_RETURN(res);
|
|
|
|
|
|
|
|
if (! (res= truncate_table(thd, first_table)))
|
2010-08-16 14:53:30 +02:00
|
|
|
my_ok(thd);
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
|
2010-08-16 14:53:30 +02:00
|
|
|
DBUG_RETURN(res);
|
|
|
|
}
|
Bug#49938: Failing assertion: inode or deadlock in fsp/fsp0fsp.c
Bug#54678: InnoDB, TRUNCATE, ALTER, I_S SELECT, crash or deadlock
- Incompatible change: truncate no longer resorts to a row by
row delete if the storage engine does not support the truncate
method. Consequently, the count of affected rows does not, in
any case, reflect the actual number of rows.
- Incompatible change: it is no longer possible to truncate a
table that participates as a parent in a foreign key constraint,
unless it is a self-referencing constraint (both parent and child
are in the same table). To work around this incompatible change
and still be able to truncate such tables, disable foreign checks
with SET foreign_key_checks=0 before truncate. Alternatively, if
foreign key checks are necessary, please use a DELETE statement
without a WHERE condition.
Problem description:
The problem was that for storage engines that do not support
truncate table via a external drop and recreate, such as InnoDB
which implements truncate via a internal drop and recreate, the
delete_all_rows method could be invoked with a shared metadata
lock, causing problems if the engine needed exclusive access
to some internal metadata. This problem originated with the
fact that there is no truncate specific handler method, which
ended up leading to a abuse of the delete_all_rows method that
is primarily used for delete operations without a condition.
Solution:
The solution is to introduce a truncate handler method that is
invoked when the engine does not support truncation via a table
drop and recreate. This method is invoked under a exclusive
metadata lock, so that there is only a single instance of the
table when the method is invoked.
Also, the method is not invoked and a error is thrown if
the table is a parent in a non-self-referencing foreign key
relationship. This was necessary to avoid inconsistency as
some integrity checks are bypassed. This is inline with the
fact that truncate is primarily a DDL operation that was
designed to quickly remove all data from a table.
2010-10-06 16:34:28 +02:00
|
|
|
|