2013-04-16 23:59:47 -04:00
|
|
|
/* -*- mode: C; c-basic-offset: 4 -*- */
|
2013-04-16 23:59:49 -04:00
|
|
|
#ident "$Id$"
|
2013-04-16 23:59:47 -04:00
|
|
|
#ident "Copyright (c) 2007-2011 Tokutek Inc. All rights reserved."
|
|
|
|
|
|
|
|
// it used to be the case that we copied the left and right keys of a
|
|
|
|
// range to be prelocked but never freed them, this test checks that they
|
|
|
|
// are freed (as of this time, this happens in destroy_bfe_for_prefetch)
|
|
|
|
|
|
|
|
#include "test.h"
|
|
|
|
|
|
|
|
#include "includes.h"
|
|
|
|
|
|
|
|
static TOKUTXN const null_txn = 0;
|
|
|
|
static DB * const null_db = 0;
|
|
|
|
static const char fname[]= __FILE__ ".brt";
|
|
|
|
|
|
|
|
static int omt_long_cmp(OMTVALUE p, void *q)
|
|
|
|
{
|
|
|
|
LEAFENTRY a = p, b = q;
|
|
|
|
void *ak, *bk;
|
|
|
|
u_int32_t al, bl;
|
|
|
|
ak = le_key_and_len(a, &al);
|
|
|
|
bk = le_key_and_len(b, &bl);
|
|
|
|
assert(al == sizeof(long) && bl == sizeof(long));
|
|
|
|
long *ai = (long *) ak;
|
|
|
|
long *bi = (long *) bk;
|
|
|
|
return (*ai > *bi) - (*ai < *bi);
|
|
|
|
}
|
|
|
|
|
|
|
|
static LEAFENTRY
|
|
|
|
le_fastmalloc(char *key, int keylen, char *val, int vallen)
|
|
|
|
{
|
|
|
|
LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) +
|
|
|
|
keylen + vallen);
|
|
|
|
resource_assert(r);
|
|
|
|
r->type = LE_CLEAN;
|
|
|
|
r->keylen = keylen;
|
|
|
|
r->u.clean.vallen = vallen;
|
|
|
|
memcpy(&r->u.clean.key_val[0], key, keylen);
|
|
|
|
memcpy(&r->u.clean.key_val[keylen], val, vallen);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2013-04-16 23:59:49 -04:00
|
|
|
static void
|
|
|
|
test_split_on_boundary(void)
|
|
|
|
{
|
2013-04-16 23:59:47 -04:00
|
|
|
const int nodesize = 1024, eltsize = 64, bnsize = 256;
|
|
|
|
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->keylen)
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
|
|
|
|
const int eltsperbn = bnsize / eltsize;
|
|
|
|
struct brtnode sn;
|
|
|
|
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
|
|
|
|
int r;
|
|
|
|
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
|
|
sn.nodesize = nodesize;
|
|
|
|
sn.flags = 0x11223344;
|
|
|
|
sn.thisnodename.b = 20;
|
|
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
|
|
sn.height = 0;
|
|
|
|
const int nelts = 2 * nodesize / eltsize;
|
|
|
|
sn.n_children = nelts * eltsize / bnsize;
|
|
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY elts[nelts];
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
|
|
MALLOC_N(sn.n_children - 1, sn.childkeys);
|
|
|
|
sn.totalchildkeylens = 0;
|
|
|
|
for (int bn = 0; bn < sn.n_children; ++bn) {
|
|
|
|
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
|
|
|
|
BP_STATE(&sn,bn) = PT_AVAIL;
|
|
|
|
set_BLB(&sn, bn, toku_create_empty_bn());
|
|
|
|
BLB_NBYTESINBUF(&sn,bn) = 0;
|
|
|
|
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
|
|
|
|
long k;
|
|
|
|
for (int i = 0; i < eltsperbn; ++i) {
|
|
|
|
k = bn * eltsperbn + i;
|
|
|
|
char val[vallen];
|
|
|
|
memset(val, k, sizeof val);
|
|
|
|
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
|
|
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
|
|
|
|
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
}
|
|
|
|
if (bn < sn.n_children - 1) {
|
|
|
|
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
|
|
|
|
sn.totalchildkeylens += (sizeof k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-04-16 23:59:47 -04:00
|
|
|
unlink(fname);
|
2013-04-16 23:59:47 -04:00
|
|
|
CACHETABLE ct;
|
|
|
|
BRT brt;
|
2013-04-16 23:59:47 -04:00
|
|
|
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
|
2013-04-16 23:59:47 -04:00
|
|
|
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
|
|
|
|
|
|
|
|
BRTNODE nodea, nodeb;
|
|
|
|
DBT splitk;
|
|
|
|
// if we haven't done it right, we should hit the assert in the top of move_leafentries
|
|
|
|
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE);
|
|
|
|
|
2013-04-16 23:59:47 -04:00
|
|
|
toku_unpin_brtnode(brt, nodeb);
|
|
|
|
r = toku_close_brt(brt, NULL); assert(r == 0);
|
|
|
|
r = toku_cachetable_close(&ct); assert(r == 0);
|
2013-04-16 23:59:47 -04:00
|
|
|
|
|
|
|
if (splitk.data) {
|
|
|
|
toku_free(splitk.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < sn.n_children - 1; ++i) {
|
|
|
|
kv_pair_free(sn.childkeys[i]);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
2013-04-16 23:59:47 -04:00
|
|
|
toku_omt_free_items(BLB_BUFFER(&sn, i));
|
2013-04-16 23:59:47 -04:00
|
|
|
destroy_basement_node(BLB(&sn, i));
|
|
|
|
}
|
|
|
|
toku_free(sn.bp);
|
|
|
|
toku_free(sn.childkeys);
|
2013-04-16 23:59:49 -04:00
|
|
|
}
|
|
|
|
|
2013-04-16 23:59:49 -04:00
|
|
|
static void
|
|
|
|
test_split_at_begin(void)
|
|
|
|
{
|
|
|
|
const int nodesize = 1024, eltsize = 64, bnsize = 256;
|
|
|
|
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->keylen)
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
|
|
|
|
const int eltsperbn = bnsize / eltsize;
|
|
|
|
struct brtnode sn;
|
|
|
|
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
|
|
|
|
int r;
|
|
|
|
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
|
|
sn.nodesize = nodesize;
|
|
|
|
sn.flags = 0x11223344;
|
|
|
|
sn.thisnodename.b = 20;
|
|
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
|
|
sn.height = 0;
|
|
|
|
const int nelts = 2 * nodesize / eltsize;
|
|
|
|
sn.n_children = nelts * eltsize / bnsize;
|
|
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY elts[nelts];
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
|
|
MALLOC_N(sn.n_children - 1, sn.childkeys);
|
|
|
|
sn.totalchildkeylens = 0;
|
|
|
|
long totalbytes = 0;
|
|
|
|
for (int bn = 0; bn < sn.n_children; ++bn) {
|
|
|
|
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
|
|
|
|
BP_STATE(&sn,bn) = PT_AVAIL;
|
|
|
|
set_BLB(&sn, bn, toku_create_empty_bn());
|
|
|
|
BLB_NBYTESINBUF(&sn,bn) = 0;
|
|
|
|
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
|
|
|
|
long k;
|
|
|
|
for (int i = 0; i < eltsperbn; ++i) {
|
|
|
|
k = bn * eltsperbn + i;
|
|
|
|
if (bn == 0 && i == 0) {
|
|
|
|
// we'll add the first element later when we know how big
|
|
|
|
// to make it
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
char val[vallen];
|
|
|
|
memset(val, k, sizeof val);
|
|
|
|
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
|
|
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
|
|
|
|
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
}
|
|
|
|
if (bn < sn.n_children - 1) {
|
|
|
|
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
|
|
|
|
sn.totalchildkeylens += (sizeof k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{ // now add the first element
|
|
|
|
int bn = 0; long k = 0;
|
|
|
|
char val[totalbytes + 3];
|
|
|
|
memset(val, k, sizeof val);
|
|
|
|
elts[k] = le_fastmalloc((char *) &k, keylen, val, totalbytes + 3);
|
|
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
|
|
|
|
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
}
|
|
|
|
|
|
|
|
unlink(fname);
|
|
|
|
CACHETABLE ct;
|
|
|
|
BRT brt;
|
|
|
|
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
|
|
|
|
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
|
|
|
|
|
|
|
|
BRTNODE nodea, nodeb;
|
|
|
|
DBT splitk;
|
|
|
|
// if we haven't done it right, we should hit the assert in the top of move_leafentries
|
|
|
|
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE);
|
|
|
|
|
|
|
|
toku_unpin_brtnode(brt, nodeb);
|
|
|
|
r = toku_close_brt(brt, NULL); assert(r == 0);
|
|
|
|
r = toku_cachetable_close(&ct); assert(r == 0);
|
|
|
|
|
|
|
|
if (splitk.data) {
|
|
|
|
toku_free(splitk.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < sn.n_children - 1; ++i) {
|
|
|
|
kv_pair_free(sn.childkeys[i]);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
|
|
toku_omt_free_items(BLB_BUFFER(&sn, i));
|
|
|
|
destroy_basement_node(BLB(&sn, i));
|
|
|
|
}
|
|
|
|
toku_free(sn.bp);
|
|
|
|
toku_free(sn.childkeys);
|
|
|
|
}
|
|
|
|
|
2013-04-16 23:59:49 -04:00
|
|
|
static void
|
|
|
|
test_split_at_end(void)
|
|
|
|
{
|
|
|
|
const int nodesize = 1024, eltsize = 64, bnsize = 256;
|
|
|
|
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->keylen)
|
|
|
|
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
|
|
|
|
const int eltsperbn = bnsize / eltsize;
|
|
|
|
struct brtnode sn;
|
|
|
|
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
|
|
|
|
int r;
|
|
|
|
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
|
|
sn.nodesize = nodesize;
|
|
|
|
sn.flags = 0x11223344;
|
|
|
|
sn.thisnodename.b = 20;
|
|
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
|
|
sn.height = 0;
|
|
|
|
const int nelts = 2 * nodesize / eltsize;
|
|
|
|
sn.n_children = nelts * eltsize / bnsize;
|
|
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY elts[nelts];
|
|
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
|
|
MALLOC_N(sn.n_children - 1, sn.childkeys);
|
|
|
|
sn.totalchildkeylens = 0;
|
|
|
|
long totalbytes = 0;
|
|
|
|
for (int bn = 0; bn < sn.n_children; ++bn) {
|
|
|
|
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
|
|
|
|
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
|
|
|
|
BP_STATE(&sn,bn) = PT_AVAIL;
|
|
|
|
set_BLB(&sn, bn, toku_create_empty_bn());
|
|
|
|
BLB_NBYTESINBUF(&sn,bn) = 0;
|
|
|
|
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
|
|
|
|
long k;
|
|
|
|
for (int i = 0; i < eltsperbn; ++i) {
|
|
|
|
k = bn * eltsperbn + i;
|
|
|
|
if (bn < sn.n_children - 1 || i < eltsperbn - 1) {
|
|
|
|
char val[vallen];
|
|
|
|
memset(val, k, sizeof val);
|
|
|
|
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
|
|
|
|
} else { // the last element
|
|
|
|
char val[totalbytes + 3]; // just to be sure
|
|
|
|
memset(val, k, sizeof val);
|
|
|
|
elts[k] = le_fastmalloc((char *) &k, keylen, val, totalbytes + 3);
|
|
|
|
}
|
|
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
|
|
|
|
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
|
|
|
|
}
|
|
|
|
if (bn < sn.n_children - 1) {
|
|
|
|
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
|
|
|
|
sn.totalchildkeylens += (sizeof k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unlink(fname);
|
|
|
|
CACHETABLE ct;
|
|
|
|
BRT brt;
|
|
|
|
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
|
|
|
|
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
|
|
|
|
|
|
|
|
BRTNODE nodea, nodeb;
|
|
|
|
DBT splitk;
|
|
|
|
// if we haven't done it right, we should hit the assert in the top of move_leafentries
|
|
|
|
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE);
|
|
|
|
|
|
|
|
toku_unpin_brtnode(brt, nodeb);
|
|
|
|
r = toku_close_brt(brt, NULL); assert(r == 0);
|
|
|
|
r = toku_cachetable_close(&ct); assert(r == 0);
|
|
|
|
|
|
|
|
if (splitk.data) {
|
|
|
|
toku_free(splitk.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < sn.n_children - 1; ++i) {
|
|
|
|
kv_pair_free(sn.childkeys[i]);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
|
|
toku_omt_free_items(BLB_BUFFER(&sn, i));
|
|
|
|
destroy_basement_node(BLB(&sn, i));
|
|
|
|
}
|
|
|
|
toku_free(sn.bp);
|
|
|
|
toku_free(sn.childkeys);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
|
|
|
|
toku_memory_check = 1;
|
|
|
|
|
|
|
|
test_split_on_boundary();
|
2013-04-16 23:59:49 -04:00
|
|
|
test_split_at_begin();
|
2013-04-16 23:59:49 -04:00
|
|
|
test_split_at_end();
|
2013-04-16 23:59:47 -04:00
|
|
|
|
2013-04-16 23:59:47 -04:00
|
|
|
return 0;
|
|
|
|
}
|