mariadb/ft/ft-verify.cc

400 lines
18 KiB
C++
Raw Normal View History

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007-2012 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
/* Verify a BRT. */
/* Check:
* The tree is of uniform depth (and the height is correct at every node)
* For each pivot key: the max of the stuff to the left is <= the pivot key < the min of the stuff to the right.
* For each leaf node: All the keys are in strictly increasing order.
* For each nonleaf node: All the messages have keys that are between the associated pivot keys ( left_pivot_key < message <= right_pivot_key)
*/
#include "includes.h"
#include <ft-flusher.h>
#include "ft-cachetable-wrappers.h"
static int
compare_pairs (FT_HANDLE brt, const DBT *a, const DBT *b) {
FAKE_DB(db, &brt->ft->cmp_descriptor);
int cmp = brt->ft->compare_fun(&db, a, b);
return cmp;
}
static int
compare_leafentries (FT_HANDLE brt, LEAFENTRY a, LEAFENTRY b) {
DBT x,y;
FAKE_DB(db, &brt->ft->cmp_descriptor);
int cmp = brt->ft->compare_fun(&db,
toku_fill_dbt(&x, le_key(a), le_keylen(a)),
toku_fill_dbt(&y, le_key(b), le_keylen(b)));
return cmp;
}
static int
compare_pair_to_leafentry (FT_HANDLE brt, const DBT *a, LEAFENTRY b) {
DBT y;
FAKE_DB(db, &brt->ft->cmp_descriptor);
int cmp = brt->ft->compare_fun(&db, a, toku_fill_dbt(&y, le_key(b), le_keylen(b)));
return cmp;
}
static int
compare_pair_to_key (FT_HANDLE brt, const DBT *a, bytevec key, ITEMLEN keylen) {
DBT y;
FAKE_DB(db, &brt->ft->cmp_descriptor);
int cmp = brt->ft->compare_fun(&db, a, toku_fill_dbt(&y, key, keylen));
return cmp;
}
static int
verify_msg_in_child_buffer(FT_HANDLE brt, enum ft_msg_type type, MSN msn, bytevec key, ITEMLEN keylen, bytevec UU(data), ITEMLEN UU(datalen), XIDS UU(xids), const DBT *lesser_pivot, const DBT *greatereq_pivot)
__attribute__((warn_unused_result));
static int
verify_msg_in_child_buffer(FT_HANDLE brt, enum ft_msg_type type, MSN msn, bytevec key, ITEMLEN keylen, bytevec UU(data), ITEMLEN UU(datalen), XIDS UU(xids), const DBT *lesser_pivot, const DBT *greatereq_pivot) {
int result = 0;
if (msn.msn == ZERO_MSN.msn)
result = EINVAL;
switch (type) {
default:
break;
case FT_INSERT:
case FT_INSERT_NO_OVERWRITE:
case FT_DELETE_ANY:
case FT_ABORT_ANY:
case FT_COMMIT_ANY:
// verify key in bounds
if (lesser_pivot) {
int compare = compare_pair_to_key(brt, lesser_pivot, key, keylen);
if (compare >= 0)
result = EINVAL;
}
if (result == 0 && greatereq_pivot) {
int compare = compare_pair_to_key(brt, greatereq_pivot, key, keylen);
if (compare < 0)
result = EINVAL;
}
break;
}
return result;
}
static LEAFENTRY
get_ith_leafentry (BASEMENTNODE bn, int i) {
OMTVALUE le_v;
int r = toku_omt_fetch(bn->buffer, i, &le_v);
invariant(r == 0); // this is a bad failure if it happens.
return (LEAFENTRY)le_v;
}
#define VERIFY_ASSERTION(predicate, i, string) ({ \
if(!(predicate)) { \
if (verbose) { \
fprintf(stderr, "%s:%d: Looking at child %d of block %" PRId64 ": %s\n", __FILE__, __LINE__, i, blocknum.b, string); \
} \
result = TOKUDB_NEEDS_REPAIR; \
if (!keep_going_on_failure) goto done; \
}})
struct count_msgs_extra {
int count;
MSN msn;
FIFO fifo;
};
// template-only function, but must be extern
int count_msgs(const long &offset, const uint32_t UU(idx), struct count_msgs_extra &e);
int
count_msgs(const long &offset, const uint32_t UU(idx), struct count_msgs_extra &e)
{
const struct fifo_entry *entry = toku_fifo_get_entry(e.fifo, offset);
if (entry->msn.msn == e.msn.msn) {
e.count++;
}
return 0;
}
struct verify_message_tree_extra {
FIFO fifo;
bool broadcast;
bool is_fresh;
int i;
int verbose;
BLOCKNUM blocknum;
int keep_going_on_failure;
};
// template-only function, but must be extern
int verify_message_tree(const long &offset, const uint32_t UU(idx), struct verify_message_tree_extra &e);
int
verify_message_tree(const long &offset, const uint32_t UU(idx), struct verify_message_tree_extra &e)
{
int verbose = e.verbose;
BLOCKNUM blocknum = e.blocknum;
int keep_going_on_failure = e.keep_going_on_failure;
int result = 0;
const struct fifo_entry *entry = toku_fifo_get_entry(e.fifo, offset);
if (e.broadcast) {
VERIFY_ASSERTION(ft_msg_type_applies_all((enum ft_msg_type) entry->type) || ft_msg_type_does_nothing((enum ft_msg_type) entry->type),
e.i, "message found in broadcast list that is not a broadcast");
} else {
VERIFY_ASSERTION(ft_msg_type_applies_once((enum ft_msg_type) entry->type),
e.i, "message found in fresh or stale message tree that does not apply once");
if (e.is_fresh) {
VERIFY_ASSERTION(entry->is_fresh,
e.i, "message found in fresh message tree that is not fresh");
} else {
VERIFY_ASSERTION(!entry->is_fresh,
e.i, "message found in stale message tree that is fresh");
}
}
done:
return result;
}
static int
verify_sorted_by_key_msn(FT_HANDLE brt, FIFO fifo, const off_omt_t &mt) {
int result = 0;
size_t last_offset = 0;
for (u_int32_t i = 0; i < mt.size(); i++) {
long offset;
int r = mt.fetch(i, &offset);
assert_zero(r);
if (i > 0) {
struct toku_fifo_entry_key_msn_cmp_extra extra = { .desc = &brt->ft->cmp_descriptor, .cmp = brt->ft->compare_fun, .fifo = fifo };
if (toku_fifo_entry_key_msn_cmp(extra, last_offset, offset) >= 0) {
result = TOKUDB_NEEDS_REPAIR;
break;
}
}
last_offset = offset;
}
return result;
}
static int
count_eq_key_msn(FT_HANDLE brt, FIFO fifo, const off_omt_t &mt, const DBT *key, MSN msn) {
struct toku_fifo_entry_key_msn_heaviside_extra extra = {
.desc = &brt->ft->cmp_descriptor, .cmp = brt->ft->compare_fun, .fifo = fifo, .key = key, .msn = msn
};
int r = mt.find_zero<struct toku_fifo_entry_key_msn_heaviside_extra, toku_fifo_entry_key_msn_heaviside>(extra, nullptr, nullptr);
int count;
if (r == 0) {
count = 1;
} else {
assert(r == DB_NOTFOUND);
count = 0;
}
return count;
}
void
toku_get_node_for_verify(
BLOCKNUM blocknum,
FT_HANDLE brt,
FTNODE* nodep
)
{
u_int32_t fullhash = toku_cachetable_hash(brt->ft->cf, blocknum);
struct ftnode_fetch_extra bfe;
fill_bfe_for_full_read(&bfe, brt->ft);
toku_pin_ftnode_off_client_thread(
brt->ft,
blocknum,
fullhash,
&bfe,
TRUE, // may_modify_node, safe to set to TRUE
0,
NULL,
nodep
);
}
// input is a pinned node, on exit, node is unpinned
int
toku_verify_ftnode (FT_HANDLE brt,
MSN rootmsn, MSN parentmsn,
FTNODE node, int height,
const DBT *lesser_pivot, // Everything in the subtree should be > lesser_pivot. (lesser_pivot==NULL if there is no lesser pivot.)
const DBT *greatereq_pivot, // Everything in the subtree should be <= lesser_pivot. (lesser_pivot==NULL if there is no lesser pivot.)
int (*progress_callback)(void *extra, float progress), void *progress_extra,
int recurse, int verbose, int keep_going_on_failure)
{
int result=0;
MSN this_msn;
BLOCKNUM blocknum = node->thisnodename;
//printf("%s:%d pin %p\n", __FILE__, __LINE__, node_v);
toku_assert_entire_node_in_memory(node);
this_msn = node->max_msn_applied_to_node_on_disk;
if (rootmsn.msn == ZERO_MSN.msn) {
assert(parentmsn.msn == ZERO_MSN.msn);
rootmsn = this_msn;
parentmsn = this_msn;
}
if (height >= 0) {
invariant(height == node->height); // this is a bad failure if wrong
}
if (node->height > 0) {
VERIFY_ASSERTION((parentmsn.msn >= this_msn.msn), 0, "node msn must be descending down tree, newest messages at top");
}
// Verify that all the pivot keys are in order.
for (int i = 0; i < node->n_children-2; i++) {
int compare = compare_pairs(brt, &node->childkeys[i], &node->childkeys[i+1]);
VERIFY_ASSERTION(compare < 0, i, "Value is >= the next value");
}
// Verify that all the pivot keys are lesser_pivot < pivot <= greatereq_pivot
for (int i = 0; i < node->n_children-1; i++) {
if (lesser_pivot) {
int compare = compare_pairs(brt, lesser_pivot, &node->childkeys[i]);
VERIFY_ASSERTION(compare < 0, i, "Pivot is >= the lower-bound pivot");
}
if (greatereq_pivot) {
int compare = compare_pairs(brt, greatereq_pivot, &node->childkeys[i]);
VERIFY_ASSERTION(compare >= 0, i, "Pivot is < the upper-bound pivot");
}
}
for (int i = 0; i < node->n_children; i++) {
const DBT *curr_less_pivot = (i==0) ? lesser_pivot : &node->childkeys[i-1];
const DBT *curr_geq_pivot = (i==node->n_children-1) ? greatereq_pivot : &node->childkeys[i];
if (node->height > 0) {
MSN last_msn = ZERO_MSN;
// Verify that messages in the buffers are in the right place.
NONLEAF_CHILDINFO bnc = BNC(node, i);
VERIFY_ASSERTION(verify_sorted_by_key_msn(brt, bnc->buffer, bnc->fresh_message_tree) == 0, i, "fresh_message_tree");
VERIFY_ASSERTION(verify_sorted_by_key_msn(brt, bnc->buffer, bnc->stale_message_tree) == 0, i, "stale_message_tree");
FIFO_ITERATE(bnc->buffer, key, keylen, data, datalen, itype, msn, xid, is_fresh,
({
enum ft_msg_type type = (enum ft_msg_type) itype;
int r = verify_msg_in_child_buffer(brt, type, msn, key, keylen, data, datalen, xid,
curr_less_pivot,
curr_geq_pivot);
VERIFY_ASSERTION(r==0, i, "A message in the buffer is out of place");
VERIFY_ASSERTION((msn.msn > last_msn.msn), i, "msn per msg must be monotonically increasing toward newer messages in buffer");
VERIFY_ASSERTION((msn.msn <= this_msn.msn), i, "all messages must have msn within limit of this node's max_msn_applied_to_node_in_memory");
if (ft_msg_type_applies_once(type)) {
int count;
DBT keydbt;
toku_fill_dbt(&keydbt, key, keylen);
count = count_eq_key_msn(brt, bnc->buffer, bnc->fresh_message_tree, toku_fill_dbt(&keydbt, key, keylen), msn);
if (is_fresh) {
VERIFY_ASSERTION(count == 1, i, "a fresh message was not found in the fresh message tree");
} else {
VERIFY_ASSERTION(count == 0, i, "a stale message was found in the fresh message tree");
}
count = count_eq_key_msn(brt, bnc->buffer, bnc->stale_message_tree, &keydbt, msn);
if (is_fresh) {
VERIFY_ASSERTION(count == 0, i, "a fresh message was found in the stale message tree");
} else {
VERIFY_ASSERTION(count == 1, i, "a stale message was not found in the stale message tree");
}
} else {
VERIFY_ASSERTION(ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type), i, "a message was found that does not apply either to all or to only one key");
struct count_msgs_extra extra = { .count = 0, .msn = msn, .fifo = bnc->buffer };
bnc->broadcast_list.iterate<struct count_msgs_extra, count_msgs>(extra);
VERIFY_ASSERTION(extra.count == 1, i, "a broadcast message was not found in the broadcast list");
}
last_msn = msn;
}));
struct verify_message_tree_extra extra = { .fifo = bnc->buffer, .broadcast = false, .is_fresh = true, .i = i, .verbose = verbose, .blocknum = node->thisnodename, .keep_going_on_failure = keep_going_on_failure };
int r = bnc->fresh_message_tree.iterate<struct verify_message_tree_extra, verify_message_tree>(extra);
if (r != 0) { result = r; goto done; }
extra.is_fresh = false;
r = bnc->stale_message_tree.iterate<struct verify_message_tree_extra, verify_message_tree>(extra);
if (r != 0) { result = r; goto done; }
extra.broadcast = true;
r = bnc->broadcast_list.iterate<struct verify_message_tree_extra, verify_message_tree>(extra);
if (r != 0) { result = r; goto done; }
}
else {
BASEMENTNODE bn = BLB(node, i);
for (u_int32_t j = 0; j < toku_omt_size(bn->buffer); j++) {
VERIFY_ASSERTION((rootmsn.msn >= this_msn.msn), 0, "leaf may have latest msn, but cannot be greater than root msn");
LEAFENTRY le = get_ith_leafentry(bn, j);
if (curr_less_pivot) {
int compare = compare_pair_to_leafentry(brt, curr_less_pivot, le);
VERIFY_ASSERTION(compare < 0, j, "The leafentry is >= the lower-bound pivot");
}
if (curr_geq_pivot) {
int compare = compare_pair_to_leafentry(brt, curr_geq_pivot, le);
VERIFY_ASSERTION(compare >= 0, j, "The leafentry is < the upper-bound pivot");
}
if (0 < j) {
LEAFENTRY prev_le = get_ith_leafentry(bn, j-1);
int compare = compare_leafentries(brt, prev_le, le);
VERIFY_ASSERTION(compare < 0, j, "Adjacent leafentries are out of order");
}
}
}
}
// Verify that the subtrees have the right properties.
if (recurse && node->height > 0) {
for (int i = 0; i < node->n_children; i++) {
FTNODE child_node;
toku_get_node_for_verify(BP_BLOCKNUM(node, i), brt, &child_node);
int r = toku_verify_ftnode(brt, rootmsn, this_msn,
child_node, node->height-1,
(i==0) ? lesser_pivot : &node->childkeys[i-1],
(i==node->n_children-1) ? greatereq_pivot : &node->childkeys[i],
progress_callback, progress_extra,
recurse, verbose, keep_going_on_failure);
if (r) {
result = r;
if (!keep_going_on_failure || result != TOKUDB_NEEDS_REPAIR) goto done;
}
}
}
done:
{
int r = toku_cachetable_unpin(
brt->ft->cf,
node->thisnodename,
toku_cachetable_hash(brt->ft->cf, node->thisnodename),
CACHETABLE_CLEAN,
make_ftnode_pair_attr(node)
);
assert_zero(r); // this is a bad failure if it happens.
}
if (result == 0 && progress_callback)
result = progress_callback(progress_extra, 0.0);
return result;
}
int
toku_verify_ft_with_progress (FT_HANDLE brt, int (*progress_callback)(void *extra, float progress), void *progress_extra, int verbose, int keep_on_going) {
assert(brt->ft);
FTNODE root_node = NULL;
{
toku_ft_grab_treelock(brt->ft);
u_int32_t root_hash;
CACHEKEY root_key;
toku_calculate_root_offset_pointer(brt->ft, &root_key, &root_hash);
toku_get_node_for_verify(root_key, brt, &root_node);
toku_ft_release_treelock(brt->ft);
}
int r = toku_verify_ftnode(brt, ZERO_MSN, ZERO_MSN, root_node, -1, NULL, NULL, progress_callback, progress_extra, 1, verbose, keep_on_going);
if (r == 0) {
toku_ft_lock(brt->ft);
brt->ft->h->time_of_last_verification = time(NULL);
brt->ft->h->dirty = 1;
toku_ft_unlock(brt->ft);
}
return r;
}
int
toku_verify_ft (FT_HANDLE brt) {
return toku_verify_ft_with_progress(brt, NULL, NULL, 0, 0);
}