2014-02-26 19:11:54 +01:00
|
|
|
/*****************************************************************************
|
|
|
|
|
2017-09-20 01:38:26 +02:00
|
|
|
Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved.
|
2020-02-12 13:45:21 +01:00
|
|
|
Copyright (c) 2014, 2020, MariaDB Corporation.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
|
|
Foundation; version 2 of the License.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
2019-05-11 18:25:02 +02:00
|
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/**************************************************//**
|
|
|
|
@file lock/lock0lock.cc
|
|
|
|
The transaction lock system
|
|
|
|
|
|
|
|
Created 5/7/1996 Heikki Tuuri
|
|
|
|
*******************************************************/
|
|
|
|
|
|
|
|
#define LOCK_MODULE_IMPLEMENTATION
|
|
|
|
|
2018-11-19 10:42:14 +01:00
|
|
|
#include "univ.i"
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
#include <mysql/service_thd_error_context.h>
|
2016-10-18 03:56:05 +02:00
|
|
|
#include <sql_class.h>
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
#include "lock0lock.h"
|
|
|
|
#include "lock0priv.h"
|
2016-08-12 10:17:45 +02:00
|
|
|
#include "dict0mem.h"
|
2014-02-26 19:11:54 +01:00
|
|
|
#include "trx0purge.h"
|
|
|
|
#include "trx0sys.h"
|
|
|
|
#include "ut0vec.h"
|
2018-11-19 10:42:14 +01:00
|
|
|
#include "btr0cur.h"
|
2016-09-06 08:43:16 +02:00
|
|
|
#include "row0sel.h"
|
|
|
|
#include "row0mysql.h"
|
2018-03-11 22:34:23 +01:00
|
|
|
#include "row0vers.h"
|
2016-09-06 08:43:16 +02:00
|
|
|
#include "pars0pars.h"
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
#include <set>
|
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
#ifdef WITH_WSREP
|
2016-09-10 16:04:44 +02:00
|
|
|
#include <mysql/service_wsrep.h>
|
2016-09-06 08:43:16 +02:00
|
|
|
#endif /* WITH_WSREP */
|
2014-09-27 22:29:10 +02:00
|
|
|
|
2016-10-18 03:56:05 +02:00
|
|
|
/** Lock scheduling algorithm */
|
2018-02-14 14:18:55 +01:00
|
|
|
ulong innodb_lock_schedule_algorithm;
|
2016-10-18 03:56:05 +02:00
|
|
|
|
2016-07-28 07:08:52 +02:00
|
|
|
/** The value of innodb_deadlock_detect */
|
|
|
|
my_bool innobase_deadlock_detect;
|
|
|
|
|
2016-10-18 03:56:05 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a waiting record lock request still has to wait in a queue.
|
|
|
|
@return lock that is causing the wait */
|
|
|
|
static
|
|
|
|
const lock_t*
|
|
|
|
lock_rec_has_to_wait_in_queue(
|
|
|
|
/*==========================*/
|
2016-10-23 19:36:26 +02:00
|
|
|
const lock_t* wait_lock); /*!< in: waiting record lock */
|
2016-10-18 03:56:05 +02:00
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
/** Grant a lock to a waiting lock request and release the waiting transaction
|
|
|
|
after lock_reset_lock_and_trx_wait() has been called. */
|
|
|
|
static void lock_grant_after_reset(lock_t* lock);
|
2016-10-19 07:37:52 +02:00
|
|
|
|
2016-10-17 12:52:14 +02:00
|
|
|
extern "C" void thd_rpl_deadlock_check(MYSQL_THD thd, MYSQL_THD other_thd);
|
|
|
|
extern "C" int thd_need_wait_reports(const MYSQL_THD thd);
|
2016-09-06 08:43:16 +02:00
|
|
|
extern "C" int thd_need_ordering_with(const MYSQL_THD thd, const MYSQL_THD other_thd);
|
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
/** Pretty-print a table lock.
|
2015-05-26 09:01:12 +02:00
|
|
|
@param[in,out] file output stream
|
|
|
|
@param[in] lock table lock */
|
2019-07-25 11:08:50 +02:00
|
|
|
static void lock_table_print(FILE* file, const lock_t* lock);
|
2015-05-26 09:01:12 +02:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
/** Pretty-print a record lock.
|
2015-05-26 09:01:12 +02:00
|
|
|
@param[in,out] file output stream
|
2019-07-25 11:08:50 +02:00
|
|
|
@param[in] lock record lock
|
|
|
|
@param[in,out] mtr mini-transaction for accessing the record */
|
|
|
|
static void lock_rec_print(FILE* file, const lock_t* lock, mtr_t& mtr);
|
2016-10-18 03:56:05 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Deadlock checker. */
|
|
|
|
class DeadlockChecker {
|
|
|
|
public:
|
2019-07-25 11:08:50 +02:00
|
|
|
/** Check if a joining lock request results in a deadlock.
|
|
|
|
If a deadlock is found, we will resolve the deadlock by
|
|
|
|
choosing a victim transaction and rolling it back.
|
|
|
|
We will attempt to resolve all deadlocks.
|
|
|
|
|
|
|
|
@param[in] lock the lock request
|
|
|
|
@param[in,out] trx transaction requesting the lock
|
|
|
|
|
|
|
|
@return trx if it was chosen as victim
|
|
|
|
@retval NULL if another victim was chosen,
|
|
|
|
or there is no deadlock (any more) */
|
|
|
|
static const trx_t* check_and_resolve(const lock_t* lock, trx_t* trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
private:
|
|
|
|
/** Do a shallow copy. Default destructor OK.
|
|
|
|
@param trx the start transaction (start node)
|
|
|
|
@param wait_lock lock that a transaction wants
|
2019-07-25 11:08:50 +02:00
|
|
|
@param mark_start visited node counter
|
|
|
|
@param report_waiters whether to call thd_rpl_deadlock_check() */
|
2016-08-12 10:17:45 +02:00
|
|
|
DeadlockChecker(
|
|
|
|
const trx_t* trx,
|
|
|
|
const lock_t* wait_lock,
|
|
|
|
ib_uint64_t mark_start,
|
2016-10-17 12:52:14 +02:00
|
|
|
bool report_waiters)
|
2016-08-12 10:17:45 +02:00
|
|
|
:
|
|
|
|
m_cost(),
|
|
|
|
m_start(trx),
|
|
|
|
m_too_deep(),
|
|
|
|
m_wait_lock(wait_lock),
|
|
|
|
m_mark_start(mark_start),
|
|
|
|
m_n_elems(),
|
2016-10-17 12:52:14 +02:00
|
|
|
m_report_waiters(report_waiters)
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Check if the search is too deep. */
|
|
|
|
bool is_too_deep() const
|
|
|
|
{
|
|
|
|
return(m_n_elems > LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK
|
|
|
|
|| m_cost > LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Save current state.
|
|
|
|
@param lock lock to push on the stack.
|
|
|
|
@param heap_no the heap number to push on the stack.
|
|
|
|
@return false if stack is full. */
|
|
|
|
bool push(const lock_t* lock, ulint heap_no)
|
|
|
|
{
|
|
|
|
ut_ad((lock_get_type_low(lock) & LOCK_REC)
|
|
|
|
|| (lock_get_type_low(lock) & LOCK_TABLE));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(((lock_get_type_low(lock) & LOCK_TABLE) != 0)
|
|
|
|
== (heap_no == ULINT_UNDEFINED));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Ensure that the stack is bounded. */
|
|
|
|
if (m_n_elems >= UT_ARR_SIZE(s_states)) {
|
|
|
|
return(false);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
state_t& state = s_states[m_n_elems++];
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
state.m_lock = lock;
|
|
|
|
state.m_wait_lock = m_wait_lock;
|
|
|
|
state.m_heap_no =heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(true);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Restore state.
|
|
|
|
@param[out] lock current lock
|
|
|
|
@param[out] heap_no current heap_no */
|
|
|
|
void pop(const lock_t*& lock, ulint& heap_no)
|
|
|
|
{
|
|
|
|
ut_a(m_n_elems > 0);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
const state_t& state = s_states[--m_n_elems];
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = state.m_lock;
|
|
|
|
heap_no = state.m_heap_no;
|
|
|
|
m_wait_lock = state.m_wait_lock;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Check whether the node has been visited.
|
|
|
|
@param lock lock to check
|
|
|
|
@return true if the node has been visited */
|
|
|
|
bool is_visited(const lock_t* lock) const
|
|
|
|
{
|
|
|
|
return(lock->trx->lock.deadlock_mark > m_mark_start);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Get the next lock in the queue that is owned by a transaction
|
|
|
|
whose sub-tree has not already been searched.
|
|
|
|
Note: "next" here means PREV for table locks.
|
|
|
|
@param lock Lock in queue
|
|
|
|
@param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED
|
|
|
|
@return next lock or NULL if at end of queue */
|
|
|
|
const lock_t* get_next_lock(const lock_t* lock, ulint heap_no) const;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Get the first lock to search. The search starts from the current
|
|
|
|
wait_lock. What we are really interested in is an edge from the
|
|
|
|
current wait_lock's owning transaction to another transaction that has
|
|
|
|
a lock ahead in the queue. We skip locks where the owning transaction's
|
|
|
|
sub-tree has already been searched.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
Note: The record locks are traversed from the oldest lock to the
|
|
|
|
latest. For table locks we go from latest to oldest.
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
For record locks, we first position the iterator on first lock on
|
|
|
|
the page and then reposition on the actual heap_no. This is required
|
|
|
|
due to the way the record lock has is implemented.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
@param[out] heap_no if rec lock, else ULINT_UNDEFINED.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
@return first lock or NULL */
|
|
|
|
const lock_t* get_first_lock(ulint* heap_no) const;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Notify that a deadlock has been detected and print the conflicting
|
|
|
|
transaction info.
|
|
|
|
@param lock lock causing deadlock */
|
|
|
|
void notify(const lock_t* lock) const;
|
|
|
|
|
|
|
|
/** Select the victim transaction that should be rolledback.
|
|
|
|
@return victim transaction */
|
|
|
|
const trx_t* select_victim() const;
|
|
|
|
|
|
|
|
/** Rollback transaction selected as the victim. */
|
|
|
|
void trx_rollback();
|
|
|
|
|
|
|
|
/** Looks iteratively for a deadlock. Note: the joining transaction
|
|
|
|
may have been granted its lock by the deadlock checks.
|
|
|
|
|
|
|
|
@return 0 if no deadlock else the victim transaction.*/
|
|
|
|
const trx_t* search();
|
|
|
|
|
|
|
|
/** Print transaction data to the deadlock file and possibly to stderr.
|
|
|
|
@param trx transaction
|
|
|
|
@param max_query_len max query length to print */
|
|
|
|
static void print(const trx_t* trx, ulint max_query_len);
|
|
|
|
|
|
|
|
/** rewind(3) the file used for storing the latest detected deadlock
|
|
|
|
and print a heading message to stderr if printing of all deadlocks to
|
|
|
|
stderr is enabled. */
|
|
|
|
static void start_print();
|
|
|
|
|
|
|
|
/** Print lock data to the deadlock file and possibly to stderr.
|
|
|
|
@param lock record or table type lock */
|
|
|
|
static void print(const lock_t* lock);
|
|
|
|
|
|
|
|
/** Print a message to the deadlock file and possibly to stderr.
|
|
|
|
@param msg message to print */
|
|
|
|
static void print(const char* msg);
|
|
|
|
|
|
|
|
/** Print info about transaction that was rolled back.
|
|
|
|
@param trx transaction rolled back
|
|
|
|
@param lock lock trx wants */
|
|
|
|
static void rollback_print(const trx_t* trx, const lock_t* lock);
|
|
|
|
|
|
|
|
private:
|
|
|
|
/** DFS state information, used during deadlock checking. */
|
|
|
|
struct state_t {
|
|
|
|
const lock_t* m_lock; /*!< Current lock */
|
|
|
|
const lock_t* m_wait_lock; /*!< Waiting for lock */
|
|
|
|
ulint m_heap_no; /*!< heap number if rec lock */
|
|
|
|
};
|
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
/** Used in deadlock tracking. Protected by lock_sys.mutex. */
|
2016-08-12 10:17:45 +02:00
|
|
|
static ib_uint64_t s_lock_mark_counter;
|
|
|
|
|
|
|
|
/** Calculation steps thus far. It is the count of the nodes visited. */
|
|
|
|
ulint m_cost;
|
|
|
|
|
|
|
|
/** Joining transaction that is requesting a lock in an
|
|
|
|
incompatible mode */
|
|
|
|
const trx_t* m_start;
|
|
|
|
|
|
|
|
/** TRUE if search was too deep and was aborted */
|
|
|
|
bool m_too_deep;
|
|
|
|
|
|
|
|
/** Lock that trx wants */
|
|
|
|
const lock_t* m_wait_lock;
|
|
|
|
|
|
|
|
/** Value of lock_mark_count at the start of the deadlock check. */
|
|
|
|
ib_uint64_t m_mark_start;
|
|
|
|
|
|
|
|
/** Number of states pushed onto the stack */
|
|
|
|
size_t m_n_elems;
|
|
|
|
|
|
|
|
/** This is to avoid malloc/free calls. */
|
|
|
|
static state_t s_states[MAX_STACK_SIZE];
|
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
/** Set if thd_rpl_deadlock_check() should be called for waits. */
|
|
|
|
const bool m_report_waiters;
|
2014-07-08 12:54:47 +02:00
|
|
|
};
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Counter to mark visited nodes during deadlock search. */
|
|
|
|
ib_uint64_t DeadlockChecker::s_lock_mark_counter = 0;
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** The stack used for deadlock searches. */
|
|
|
|
DeadlockChecker::state_t DeadlockChecker::s_states[MAX_STACK_SIZE];
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG
|
2014-02-26 19:11:54 +01:00
|
|
|
/*********************************************************************//**
|
|
|
|
Validates the lock system.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return TRUE if ok */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
|
|
|
bool
|
|
|
|
lock_validate();
|
|
|
|
/*============*/
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Validates the record lock queues on a page.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return TRUE if ok */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
|
|
|
ibool
|
|
|
|
lock_rec_validate_page(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* block) /*!< in: buffer block */
|
2016-09-06 08:43:16 +02:00
|
|
|
MY_ATTRIBUTE((warn_unused_result));
|
2014-02-26 19:11:54 +01:00
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
|
|
|
/* The lock system */
|
2018-02-22 17:46:42 +01:00
|
|
|
lock_sys_t lock_sys;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/** We store info on the latest deadlock error to this buffer. InnoDB
|
|
|
|
Monitor will then fetch it and print */
|
2015-05-27 15:34:45 +02:00
|
|
|
static bool lock_deadlock_found = false;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/** Only created if !srv_read_only_mode */
|
|
|
|
static FILE* lock_latest_err_file;
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Reports that a transaction id is insensible, i.e., in the future. */
|
2020-06-04 09:24:10 +02:00
|
|
|
ATTRIBUTE_COLD
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
|
|
|
lock_report_trx_id_insanity(
|
|
|
|
/*========================*/
|
|
|
|
trx_id_t trx_id, /*!< in: trx id */
|
|
|
|
const rec_t* rec, /*!< in: user record */
|
|
|
|
dict_index_t* index, /*!< in: index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets, /*!< in: rec_get_offsets(rec, index) */
|
2017-12-22 15:15:41 +01:00
|
|
|
trx_id_t max_trx_id) /*!< in: trx_sys.get_max_trx_id() */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::error()
|
2020-06-04 09:24:10 +02:00
|
|
|
<< "Transaction id " << ib::hex(trx_id)
|
2016-08-12 10:17:45 +02:00
|
|
|
<< " associated with record" << rec_offsets_print(rec, offsets)
|
|
|
|
<< " in index " << index->name
|
|
|
|
<< " of table " << index->table->name
|
|
|
|
<< " is greater than the global counter " << max_trx_id
|
|
|
|
<< "! The table is corrupted.";
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks that a transaction id is sensible, i.e., not in the future.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return true if ok */
|
2014-02-26 19:11:54 +01:00
|
|
|
bool
|
|
|
|
lock_check_trx_id_sanity(
|
|
|
|
/*=====================*/
|
|
|
|
trx_id_t trx_id, /*!< in: trx id */
|
|
|
|
const rec_t* rec, /*!< in: user record */
|
|
|
|
dict_index_t* index, /*!< in: index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets) /*!< in: rec_get_offsets(rec, index) */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2020-06-06 16:29:41 +02:00
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
|
|
|
|
|
|
|
trx_id_t max_trx_id= trx_sys.get_max_trx_id();
|
|
|
|
ut_ad(max_trx_id || srv_force_recovery >= SRV_FORCE_NO_UNDO_LOG_SCAN);
|
|
|
|
|
|
|
|
if (UNIV_LIKELY(max_trx_id != 0) && UNIV_UNLIKELY(trx_id >= max_trx_id))
|
|
|
|
{
|
|
|
|
lock_report_trx_id_insanity(trx_id, rec, index, offsets, max_trx_id);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks that a record is seen in a consistent read.
|
|
|
|
@return true if sees, or false if an earlier version of the record
|
|
|
|
should be retrieved */
|
|
|
|
bool
|
|
|
|
lock_clust_rec_cons_read_sees(
|
|
|
|
/*==========================*/
|
|
|
|
const rec_t* rec, /*!< in: user record which should be read or
|
|
|
|
passed over by a read cursor */
|
|
|
|
dict_index_t* index, /*!< in: clustered index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */
|
2016-08-12 10:17:45 +02:00
|
|
|
ReadView* view) /*!< in: consistent read view */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(dict_index_is_clust(index));
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Temp-tables are not shared across connections and multiple
|
|
|
|
transactions from different connections cannot simultaneously
|
|
|
|
operate on same temp-table and so read of temp-table is
|
|
|
|
always consistent read. */
|
2018-03-06 22:33:35 +01:00
|
|
|
if (index->table->is_temporary()) {
|
2016-08-12 10:17:45 +02:00
|
|
|
return(true);
|
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/* NOTE that we call this function while holding the search
|
|
|
|
system latch. */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_id_t trx_id = row_get_rec_trx_id(rec, index, offsets);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(view->changes_visible(trx_id, index->table->name));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks that a non-clustered index record is seen in a consistent read.
|
|
|
|
|
|
|
|
NOTE that a non-clustered index page contains so little information on
|
|
|
|
its modifications that also in the case false, the present version of
|
|
|
|
rec may be the right, but we must check this from the clustered index
|
|
|
|
record.
|
|
|
|
|
|
|
|
@return true if certainly sees, or false if an earlier version of the
|
|
|
|
clustered index record might be needed */
|
|
|
|
bool
|
|
|
|
lock_sec_rec_cons_read_sees(
|
|
|
|
/*========================*/
|
|
|
|
const rec_t* rec, /*!< in: user record which
|
|
|
|
should be read or passed over
|
|
|
|
by a read cursor */
|
2016-08-12 10:17:45 +02:00
|
|
|
const dict_index_t* index, /*!< in: index */
|
|
|
|
const ReadView* view) /*!< in: consistent read view */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
2018-02-07 16:40:33 +01:00
|
|
|
ut_ad(!index->is_primary());
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* NOTE that we might call this function while holding the search
|
|
|
|
system latch. */
|
|
|
|
|
2018-05-12 08:38:46 +02:00
|
|
|
if (index->table->is_temporary()) {
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* Temp-tables are not shared across connections and multiple
|
|
|
|
transactions from different connections cannot simultaneously
|
|
|
|
operate on same temp-table and so read of temp-table is
|
|
|
|
always consistent read. */
|
|
|
|
|
|
|
|
return(true);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_id_t max_trx_id = page_get_max_trx_id(page_align(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(max_trx_id > 0);
|
|
|
|
|
|
|
|
return(view->sees(max_trx_id));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
/**
|
|
|
|
Creates the lock system at database start.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
@param[in] n_cells number of slots in lock hash table
|
|
|
|
*/
|
|
|
|
void lock_sys_t::create(ulint n_cells)
|
|
|
|
{
|
|
|
|
ut_ad(this == &lock_sys);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
m_initialised= true;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
waiting_threads = static_cast<srv_slot_t*>
|
|
|
|
(ut_zalloc_nokey(srv_max_n_threads * sizeof *waiting_threads));
|
|
|
|
last_slot = waiting_threads;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
mutex_create(LATCH_ID_LOCK_SYS, &mutex);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
mutex_create(LATCH_ID_LOCK_SYS_WAIT, &wait_mutex);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
rec_hash.create(n_cells);
|
|
|
|
prdt_hash.create(n_cells);
|
|
|
|
prdt_page_hash.create(n_cells);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (!srv_read_only_mode) {
|
2018-03-15 03:47:28 +01:00
|
|
|
lock_latest_err_file = os_file_create_tmpfile();
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_a(lock_latest_err_file);
|
|
|
|
}
|
2019-10-29 22:37:12 +01:00
|
|
|
timeout_timer_active = false;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Calculates the fold value of a lock: used in migrating the hash table.
|
|
|
|
@param[in] lock record lock object
|
|
|
|
@return folded value */
|
|
|
|
static
|
|
|
|
ulint
|
|
|
|
lock_rec_lock_fold(
|
|
|
|
const lock_t* lock)
|
|
|
|
{
|
|
|
|
return(lock_rec_fold(lock->un_member.rec_lock.space,
|
|
|
|
lock->un_member.rec_lock.page_no));
|
|
|
|
}
|
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
Resize the lock hash table.
|
|
|
|
|
|
|
|
@param[in] n_cells number of slots in lock hash table
|
|
|
|
*/
|
|
|
|
void lock_sys_t::resize(ulint n_cells)
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
2018-02-22 17:46:42 +01:00
|
|
|
ut_ad(this == &lock_sys);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
mutex_enter(&mutex);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
hash_table_t old_hash(rec_hash);
|
|
|
|
rec_hash.create(n_cells);
|
|
|
|
HASH_MIGRATE(&old_hash, &rec_hash, lock_t, hash,
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_lock_fold);
|
2020-06-18 11:26:28 +02:00
|
|
|
old_hash.free();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
old_hash = prdt_hash;
|
2020-06-18 11:26:28 +02:00
|
|
|
prdt_hash.create(n_cells);
|
|
|
|
HASH_MIGRATE(&old_hash, &prdt_hash, lock_t, hash,
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_lock_fold);
|
2020-06-18 11:26:28 +02:00
|
|
|
old_hash.free();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
old_hash = prdt_page_hash;
|
2020-06-18 11:26:28 +02:00
|
|
|
prdt_page_hash.create(n_cells);
|
|
|
|
HASH_MIGRATE(&old_hash, &prdt_page_hash, lock_t, hash,
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_lock_fold);
|
2020-06-18 11:26:28 +02:00
|
|
|
old_hash.free();
|
2018-02-22 17:46:42 +01:00
|
|
|
mutex_exit(&mutex);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
|
|
|
|
/** Closes the lock system at database shutdown. */
|
|
|
|
void lock_sys_t::close()
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2018-02-22 17:46:42 +01:00
|
|
|
ut_ad(this == &lock_sys);
|
|
|
|
|
|
|
|
if (!m_initialised) return;
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
if (lock_latest_err_file != NULL) {
|
2019-05-23 10:55:03 +02:00
|
|
|
my_fclose(lock_latest_err_file, MYF(MY_WME));
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_latest_err_file = NULL;
|
|
|
|
}
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
rec_hash.free();
|
|
|
|
prdt_hash.free();
|
|
|
|
prdt_page_hash.free();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
mutex_destroy(&mutex);
|
|
|
|
mutex_destroy(&wait_mutex);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
for (ulint i = srv_max_n_threads; i--; ) {
|
|
|
|
if (os_event_t& event = waiting_threads[i].event) {
|
|
|
|
os_event_destroy(event);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-22 17:46:42 +01:00
|
|
|
ut_free(waiting_threads);
|
|
|
|
m_initialised= false;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Gets the size of a lock struct.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return size in bytes */
|
2014-02-26 19:11:54 +01:00
|
|
|
ulint
|
|
|
|
lock_get_size(void)
|
|
|
|
/*===============*/
|
|
|
|
{
|
|
|
|
return((ulint) sizeof(lock_t));
|
|
|
|
}
|
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
static inline void lock_grant_have_trx_mutex(lock_t* lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
lock_grant_after_reset(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Gets the gap flag of a record lock.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return LOCK_GAP or 0 */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
|
|
|
ulint
|
|
|
|
lock_rec_get_gap(
|
|
|
|
/*=============*/
|
|
|
|
const lock_t* lock) /*!< in: record lock */
|
|
|
|
{
|
|
|
|
ut_ad(lock);
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
return(lock->type_mode & LOCK_GAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Gets the LOCK_REC_NOT_GAP flag of a record lock.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return LOCK_REC_NOT_GAP or 0 */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
|
|
|
ulint
|
|
|
|
lock_rec_get_rec_not_gap(
|
|
|
|
/*=====================*/
|
|
|
|
const lock_t* lock) /*!< in: record lock */
|
|
|
|
{
|
|
|
|
ut_ad(lock);
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
return(lock->type_mode & LOCK_REC_NOT_GAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Gets the waiting insert flag of a record lock.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return LOCK_INSERT_INTENTION or 0 */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
|
|
|
ulint
|
|
|
|
lock_rec_get_insert_intention(
|
|
|
|
/*==========================*/
|
|
|
|
const lock_t* lock) /*!< in: record lock */
|
|
|
|
{
|
|
|
|
ut_ad(lock);
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
return(lock->type_mode & LOCK_INSERT_INTENTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a lock request for a new lock has to wait for request lock2.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return TRUE if new lock has to wait for lock2 to be removed */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
2018-02-13 20:27:30 +01:00
|
|
|
bool
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_rec_has_to_wait(
|
|
|
|
/*=================*/
|
2016-08-12 10:17:45 +02:00
|
|
|
bool for_locking,
|
|
|
|
/*!< in is called locking or releasing */
|
2014-02-26 19:11:54 +01:00
|
|
|
const trx_t* trx, /*!< in: trx of new lock */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned type_mode,/*!< in: precise mode of the new lock
|
2014-02-26 19:11:54 +01:00
|
|
|
to set: LOCK_S or LOCK_X, possibly
|
|
|
|
ORed to LOCK_GAP or LOCK_REC_NOT_GAP,
|
|
|
|
LOCK_INSERT_INTENTION */
|
|
|
|
const lock_t* lock2, /*!< in: another record lock; NOTE that
|
|
|
|
it is assumed that this has a lock bit
|
|
|
|
set on the same record as in the new
|
|
|
|
lock we are setting */
|
2016-08-12 10:17:45 +02:00
|
|
|
bool lock_is_on_supremum)
|
|
|
|
/*!< in: TRUE if we are setting the
|
2014-02-26 19:11:54 +01:00
|
|
|
lock on the 'supremum' record of an
|
|
|
|
index page: we know then that the lock
|
|
|
|
request is really for a 'gap' type lock */
|
|
|
|
{
|
|
|
|
ut_ad(trx && lock2);
|
|
|
|
ut_ad(lock_get_type_low(lock2) == LOCK_REC);
|
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if (trx == lock2->trx
|
|
|
|
|| lock_mode_compatible(
|
|
|
|
static_cast<lock_mode>(LOCK_MODE_MASK & type_mode),
|
|
|
|
lock_get_mode(lock2))) {
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
/* We have somewhat complex rules when gap type record locks
|
|
|
|
cause waits */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if ((lock_is_on_supremum || (type_mode & LOCK_GAP))
|
|
|
|
&& !(type_mode & LOCK_INSERT_INTENTION)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
/* Gap type locks without LOCK_INSERT_INTENTION flag
|
|
|
|
do not need to wait for anything. This is because
|
|
|
|
different users can have conflicting lock types
|
|
|
|
on gaps. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if (!(type_mode & LOCK_INSERT_INTENTION) && lock_rec_get_gap(lock2)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
/* Record lock (LOCK_ORDINARY or LOCK_REC_NOT_GAP
|
|
|
|
does not need to wait for a gap type lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if ((type_mode & LOCK_GAP) && lock_rec_get_rec_not_gap(lock2)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
/* Lock on gap does not need to wait for
|
|
|
|
a LOCK_REC_NOT_GAP type lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if (lock_rec_get_insert_intention(lock2)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
/* No lock request needs to wait for an insert
|
|
|
|
intention lock to be removed. This is ok since our
|
|
|
|
rules allow conflicting locks on gaps. This eliminates
|
|
|
|
a spurious deadlock caused by a next-key lock waiting
|
|
|
|
for an insert intention lock; when the insert
|
|
|
|
intention lock was granted, the insert deadlocked on
|
|
|
|
the waiting next-key lock.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
Also, insert intention locks do not disturb each
|
|
|
|
other. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if ((type_mode & LOCK_GAP || lock_rec_get_gap(lock2))
|
|
|
|
&& !thd_need_ordering_with(trx->mysql_thd, lock2->trx->mysql_thd)) {
|
|
|
|
/* If the upper server layer has already decided on the
|
|
|
|
commit order between the transaction requesting the
|
|
|
|
lock and the transaction owning the lock, we do not
|
|
|
|
need to wait for gap locks. Such ordeering by the upper
|
|
|
|
server layer happens in parallel replication, where the
|
|
|
|
commit order is fixed to match the original order on the
|
|
|
|
master.
|
|
|
|
|
|
|
|
Such gap locks are mainly needed to get serialisability
|
|
|
|
between transactions so that they will be binlogged in
|
|
|
|
the correct order so that statement-based replication
|
|
|
|
will give the correct results. Since the right order
|
|
|
|
was already determined on the master, we do not need
|
|
|
|
to enforce it again here.
|
|
|
|
|
|
|
|
Skipping the locks is not essential for correctness,
|
|
|
|
since in case of deadlock we will just kill the later
|
|
|
|
transaction and retry it. But it can save some
|
|
|
|
unnecessary rollbacks and retries. */
|
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:27:30 +01:00
|
|
|
}
|
MDEV-5262, MDEV-5914, MDEV-5941, MDEV-6020: Deadlocks during parallel
replication causing replication to fail.
Remove the temporary fix for MDEV-5914, which used READ COMMITTED for parallel
replication worker threads. Replace it with a better, more selective solution.
The issue is with certain edge cases of InnoDB gap locks, for example between
INSERT and ranged DELETE. It is possible for the gap lock set by the DELETE to
block the INSERT, if the DELETE runs first, while the record lock set by
INSERT does not block the DELETE, if the INSERT runs first. This can cause a
conflict between the two in parallel replication on the slave even though they
ran without conflicts on the master.
With this patch, InnoDB will ask the server layer about the two involved
transactions before blocking on a gap lock. If the server layer tells InnoDB
that the transactions are already fixed wrt. commit order, as they are in
parallel replication, InnoDB will ignore the gap lock and allow the two
transactions to proceed in parallel, avoiding the conflict.
Improve the fix for MDEV-6020. When InnoDB itself detects a deadlock, it now
asks the server layer for any preferences about which transaction to roll
back. In case of parallel replication with two transactions T1 and T2 fixed to
commit T1 before T2, the server layer will ask InnoDB to roll back T2 as the
deadlock victim, not T1. This helps in some cases to avoid excessive deadlock
rollback, as T2 will in any case need to wait for T1 to complete before it can
itself commit.
Also some misc. fixes found during development and testing:
- Remove thd_rpl_is_parallel(), it is not used or needed.
- Use KILL_CONNECTION instead of KILL_QUERY when a parallel replication
worker thread is killed to resolve a deadlock with fixed commit
ordering. There are some cases, eg. in sql/sql_parse.cc, where a KILL_QUERY
can be ignored if the query otherwise completed successfully, and this
could cause the deadlock kill to be lost, so that the deadlock was not
correctly resolved.
- Fix random test failure due to missing wait_for_binlog_checkpoint.inc.
- Make sure that deadlock or other temporary errors during parallel
replication are not printed to the the error log; there were some places
around the replication code with extra error logging. These conditions can
occur occasionally and are handled automatically without breaking
replication, so they should not pollute the error log.
- Fix handling of rgi->gtid_sub_id. We need to be able to access this also at
the end of a transaction, to be able to detect and resolve deadlocks due to
commit ordering. But this value was also used as a flag to mark whether
record_gtid() had been called, by being set to zero, losing the value. Now,
introduce a separate flag rgi->gtid_pending, so rgi->gtid_sub_id remains
valid for the entire duration of the transaction.
- Fix one place where the code to handle ignored errors called reset_killed()
unconditionally, even if no error was caught that should be ignored. This
could cause loss of a deadlock kill signal, breaking deadlock detection and
resolution.
- Fix a couple of missing mysql_reset_thd_for_next_command(). This could
cause a prior error condition to remain for the next event executed,
causing assertions about errors already being set and possibly giving
incorrect error handling for following event executions.
- Fix code that cleared thd->rgi_slave in the parallel replication worker
threads after each event execution; this caused the deadlock detection and
handling code to not be able to correctly process the associated
transactions as belonging to replication worker threads.
- Remove useless error code in slave_background_kill_request().
- Fix bug where wfc->wakeup_error was not cleared at
wait_for_commit::unregister_wait_for_prior_commit(). This could cause the
error condition to wrongly propagate to a later wait_for_prior_commit(),
causing spurious ER_PRIOR_COMMIT_FAILED errors.
- Do not put the binlog background thread into the processlist. It causes
too many result differences in mtr, but also it probably is not useful
for users to pollute the process list with a system thread that does not
really perform any user-visible tasks...
2014-06-10 10:13:15 +02:00
|
|
|
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
2018-02-13 20:27:30 +01:00
|
|
|
/* if BF thread is locking and has conflict with another BF
|
|
|
|
thread, we need to look at trx ordering and lock types */
|
|
|
|
if (wsrep_thd_is_BF(trx->mysql_thd, FALSE)
|
2020-08-10 17:40:57 +02:00
|
|
|
&& wsrep_thd_is_BF(lock2->trx->mysql_thd, FALSE)) {
|
2019-07-25 14:31:11 +02:00
|
|
|
mtr_t mtr;
|
2018-02-13 20:27:30 +01:00
|
|
|
|
2020-06-05 15:51:26 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-02-13 20:27:30 +01:00
|
|
|
ib::info() << "BF-BF lock conflict, locking: "
|
|
|
|
<< for_locking;
|
2019-07-25 14:31:11 +02:00
|
|
|
lock_rec_print(stderr, lock2, mtr);
|
2018-02-13 20:27:30 +01:00
|
|
|
ib::info()
|
|
|
|
<< " SQL1: " << wsrep_thd_query(trx->mysql_thd)
|
|
|
|
<< " SQL2: "
|
|
|
|
<< wsrep_thd_query(lock2->trx->mysql_thd);
|
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2019-01-23 12:30:00 +01:00
|
|
|
if ((type_mode & LOCK_MODE_MASK) == LOCK_X
|
2018-02-13 20:27:30 +01:00
|
|
|
&& (lock2->type_mode & LOCK_MODE_MASK) == LOCK_X) {
|
2020-06-05 15:51:26 +02:00
|
|
|
if (for_locking || UNIV_UNLIKELY(wsrep_debug)) {
|
2018-02-13 20:27:30 +01:00
|
|
|
/* exclusive lock conflicts are not
|
|
|
|
accepted */
|
|
|
|
ib::info()
|
|
|
|
<< "BF-BF X lock conflict,mode: "
|
|
|
|
<< type_mode
|
|
|
|
<< " supremum: " << lock_is_on_supremum
|
|
|
|
<< "conflicts states: my "
|
2019-01-23 12:30:00 +01:00
|
|
|
<< wsrep_thd_transaction_state_str(
|
|
|
|
trx->mysql_thd)
|
2018-02-13 20:27:30 +01:00
|
|
|
<< " locked "
|
2019-01-23 12:30:00 +01:00
|
|
|
<< wsrep_thd_transaction_state_str(
|
|
|
|
lock2->trx->mysql_thd);
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, lock2, mtr);
|
2016-09-06 08:43:16 +02:00
|
|
|
ib::info() << " SQL1: "
|
2018-02-13 20:27:30 +01:00
|
|
|
<< wsrep_thd_query(trx->mysql_thd)
|
|
|
|
<< " SQL2: "
|
|
|
|
<< wsrep_thd_query(
|
|
|
|
lock2->trx->mysql_thd);
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2018-02-13 20:27:30 +01:00
|
|
|
if (for_locking) {
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
2018-02-13 20:27:30 +01:00
|
|
|
} else {
|
|
|
|
/* if lock2->index->n_uniq <=
|
|
|
|
lock2->index->n_user_defined_cols
|
|
|
|
operation is on uniq index
|
|
|
|
*/
|
|
|
|
if (wsrep_debug) {
|
|
|
|
ib::info()
|
|
|
|
<< "BF conflict, modes: " << type_mode
|
|
|
|
<< ":" << lock2->type_mode
|
|
|
|
<< " idx: " << lock2->index->name()
|
|
|
|
<< " table: "
|
2020-06-05 15:51:26 +02:00
|
|
|
<< lock2->index->table->name
|
2018-02-13 20:27:30 +01:00
|
|
|
<< " n_uniq: " << lock2->index->n_uniq
|
|
|
|
<< " n_user: "
|
|
|
|
<< lock2->index->n_user_defined_cols
|
|
|
|
<< " SQL1: "
|
|
|
|
<< wsrep_thd_query(trx->mysql_thd)
|
|
|
|
<< " SQL2: "
|
|
|
|
<< wsrep_thd_query(
|
|
|
|
lock2->trx->mysql_thd);
|
|
|
|
}
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2018-02-13 20:27:30 +01:00
|
|
|
#endif /* WITH_WSREP */
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return true;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a lock request lock1 has to wait for request lock2.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return TRUE if lock1 has to wait for lock2 to be removed */
|
2018-02-13 20:03:26 +01:00
|
|
|
bool
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_has_to_wait(
|
|
|
|
/*=============*/
|
|
|
|
const lock_t* lock1, /*!< in: waiting lock */
|
|
|
|
const lock_t* lock2) /*!< in: another lock; NOTE that it is
|
|
|
|
assumed that this has a lock bit set
|
|
|
|
on the same record as in lock1 if the
|
|
|
|
locks are record locks */
|
|
|
|
{
|
|
|
|
ut_ad(lock1 && lock2);
|
|
|
|
|
2018-02-13 20:03:26 +01:00
|
|
|
if (lock1->trx == lock2->trx
|
|
|
|
|| lock_mode_compatible(lock_get_mode(lock1),
|
|
|
|
lock_get_mode(lock2))) {
|
2018-02-16 20:15:51 +01:00
|
|
|
return false;
|
2018-02-13 20:03:26 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 20:03:26 +01:00
|
|
|
if (lock_get_type_low(lock1) != LOCK_REC) {
|
2018-02-16 20:15:51 +01:00
|
|
|
return true;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2018-02-13 20:03:26 +01:00
|
|
|
ut_ad(lock_get_type_low(lock2) == LOCK_REC);
|
|
|
|
|
|
|
|
if (lock1->type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)) {
|
2018-02-16 20:15:51 +01:00
|
|
|
return lock_prdt_has_to_wait(lock1->trx, lock1->type_mode,
|
2018-02-13 20:03:26 +01:00
|
|
|
lock_get_prdt_from_lock(lock1),
|
2018-02-16 20:15:51 +01:00
|
|
|
lock2);
|
2018-02-13 20:03:26 +01:00
|
|
|
}
|
|
|
|
|
2018-02-16 20:15:51 +01:00
|
|
|
return lock_rec_has_to_wait(
|
|
|
|
false, lock1->trx, lock1->type_mode, lock2,
|
|
|
|
lock_rec_get_nth_bit(lock1, PAGE_HEAP_NO_SUPREMUM));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*============== RECORD LOCK BASIC FUNCTIONS ============================*/
|
|
|
|
|
|
|
|
/**********************************************************************//**
|
|
|
|
Looks for a set bit in a record lock bitmap. Returns ULINT_UNDEFINED,
|
|
|
|
if none found.
|
|
|
|
@return bit index == heap number of the record, or ULINT_UNDEFINED if
|
|
|
|
none found */
|
|
|
|
ulint
|
|
|
|
lock_rec_find_set_bit(
|
|
|
|
/*==================*/
|
|
|
|
const lock_t* lock) /*!< in: record lock with at least one bit set */
|
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (lock_rec_get_nth_bit(lock, i)) {
|
|
|
|
|
|
|
|
return(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(ULINT_UNDEFINED);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Determines if there are explicit record locks on a page.
|
|
|
|
@return an explicit record lock on the page, or NULL if there are none */
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_t*
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_expl_exist_on_page(
|
|
|
|
/*========================*/
|
|
|
|
ulint space, /*!< in: space id */
|
2014-02-26 19:11:54 +01:00
|
|
|
ulint page_no)/*!< in: page number */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Only used in ibuf pages, so rec_hash is good enough */
|
2020-06-18 11:26:28 +02:00
|
|
|
lock = lock_rec_get_first_on_page_addr(&lock_sys.rec_hash,
|
2016-08-12 10:17:45 +02:00
|
|
|
space, page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Resets the record lock bitmap to zero. NOTE: does not touch the wait_lock
|
|
|
|
pointer in the transaction! This function is used in lock object creation
|
|
|
|
and resetting. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_bitmap_reset(
|
|
|
|
/*==================*/
|
|
|
|
lock_t* lock) /*!< in: record lock */
|
|
|
|
{
|
|
|
|
ulint n_bytes;
|
|
|
|
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
/* Reset to zero the bitmap which resides immediately after the lock
|
|
|
|
struct */
|
|
|
|
|
|
|
|
n_bytes = lock_rec_get_n_bits(lock) / 8;
|
|
|
|
|
|
|
|
ut_ad((lock_rec_get_n_bits(lock) % 8) == 0);
|
|
|
|
|
|
|
|
memset(&lock[1], 0, n_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Copies a record lock to heap.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return copy of lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
|
|
|
lock_t*
|
|
|
|
lock_rec_copy(
|
|
|
|
/*==========*/
|
|
|
|
const lock_t* lock, /*!< in: record lock */
|
|
|
|
mem_heap_t* heap) /*!< in: memory heap */
|
|
|
|
{
|
|
|
|
ulint size;
|
|
|
|
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
size = sizeof(lock_t) + lock_rec_get_n_bits(lock) / 8;
|
|
|
|
|
|
|
|
return(static_cast<lock_t*>(mem_heap_dup(heap, lock, size)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Gets the previous record lock set on a record.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return previous lock on the same record, NULL if none exists */
|
2014-02-26 19:11:54 +01:00
|
|
|
const lock_t*
|
|
|
|
lock_rec_get_prev(
|
|
|
|
/*==============*/
|
|
|
|
const lock_t* in_lock,/*!< in: record lock */
|
|
|
|
ulint heap_no)/*!< in: heap number of the record */
|
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t* lock;
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
lock_t* found_lock = NULL;
|
|
|
|
hash_table_t* hash;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
|
|
|
|
|
|
|
|
space = in_lock->un_member.rec_lock.space;
|
|
|
|
page_no = in_lock->un_member.rec_lock.page_no;
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
hash = lock_hash_get(in_lock->type_mode);
|
|
|
|
|
|
|
|
for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
/* No op */;
|
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
|
|
|
|
|
|
|
ut_ad(lock);
|
|
|
|
|
|
|
|
if (lock == in_lock) {
|
|
|
|
|
|
|
|
return(found_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lock_rec_get_nth_bit(lock, heap_no)) {
|
|
|
|
|
|
|
|
found_lock = lock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*============= FUNCTIONS FOR ANALYZING RECORD LOCK QUEUE ================*/
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a transaction has a GRANTED explicit lock on rec stronger or equal
|
|
|
|
to precise_mode.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return lock or NULL */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
|
|
|
lock_t*
|
|
|
|
lock_rec_has_expl(
|
|
|
|
/*==============*/
|
|
|
|
ulint precise_mode,/*!< in: LOCK_S or LOCK_X
|
|
|
|
possibly ORed to LOCK_GAP or
|
|
|
|
LOCK_REC_NOT_GAP, for a
|
|
|
|
supremum record we regard this
|
|
|
|
always a gap type request */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
|
|
const trx_t* trx) /*!< in: transaction */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad((precise_mode & LOCK_MODE_MASK) == LOCK_S
|
|
|
|
|| (precise_mode & LOCK_MODE_MASK) == LOCK_X);
|
|
|
|
ut_ad(!(precise_mode & LOCK_INSERT_INTENTION));
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
|
|
|
|
if (lock->trx == trx
|
|
|
|
&& !lock_rec_get_insert_intention(lock)
|
|
|
|
&& lock_mode_stronger_or_eq(
|
|
|
|
lock_get_mode(lock),
|
2016-08-12 10:17:45 +02:00
|
|
|
static_cast<lock_mode>(
|
2014-02-26 19:11:54 +01:00
|
|
|
precise_mode & LOCK_MODE_MASK))
|
2014-05-06 21:13:16 +02:00
|
|
|
&& !lock_get_wait(lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
&& (!lock_rec_get_rec_not_gap(lock)
|
|
|
|
|| (precise_mode & LOCK_REC_NOT_GAP)
|
|
|
|
|| heap_no == PAGE_HEAP_NO_SUPREMUM)
|
|
|
|
&& (!lock_rec_get_gap(lock)
|
|
|
|
|| (precise_mode & LOCK_GAP)
|
|
|
|
|| heap_no == PAGE_HEAP_NO_SUPREMUM)) {
|
|
|
|
|
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if some other transaction has a lock request in the queue.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return lock or NULL */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t*
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_rec_other_has_expl_req(
|
|
|
|
/*========================*/
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mode mode, /*!< in: LOCK_S or LOCK_X */
|
2014-02-26 19:11:54 +01:00
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
2016-08-12 10:17:45 +02:00
|
|
|
bool wait, /*!< in: whether also waiting locks
|
|
|
|
are taken into account */
|
2014-02-26 19:11:54 +01:00
|
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
|
|
const trx_t* trx) /*!< in: transaction, or NULL if
|
|
|
|
requests by all transactions
|
|
|
|
are taken into account */
|
|
|
|
{
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(mode == LOCK_X || mode == LOCK_S);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Only GAP lock can be on SUPREMUM, and we are not looking for
|
|
|
|
GAP lock */
|
|
|
|
if (heap_no == PAGE_HEAP_NO_SUPREMUM) {
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock_t* lock = lock_rec_get_first(&lock_sys.rec_hash,
|
|
|
|
block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
2017-12-07 11:26:29 +01:00
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (lock->trx != trx
|
2016-08-12 10:17:45 +02:00
|
|
|
&& !lock_rec_get_gap(lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
&& (wait || !lock_get_wait(lock))
|
|
|
|
&& lock_mode_stronger_or_eq(lock_get_mode(lock), mode)) {
|
|
|
|
|
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
static
|
|
|
|
void
|
|
|
|
wsrep_kill_victim(
|
2016-08-12 10:17:45 +02:00
|
|
|
/*==============*/
|
2014-08-06 14:39:15 +02:00
|
|
|
const trx_t * const trx,
|
|
|
|
const lock_t *lock)
|
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(trx_mutex_own(lock->trx));
|
|
|
|
|
2016-06-08 14:19:01 +02:00
|
|
|
/* quit for native mysql */
|
2020-04-27 10:18:11 +02:00
|
|
|
if (!trx->is_wsrep()) return;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-01-23 12:30:00 +01:00
|
|
|
if (!wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-08-03 14:15:40 +02:00
|
|
|
my_bool bf_other = wsrep_thd_is_BF(lock->trx->mysql_thd, FALSE);
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2019-01-23 12:30:00 +01:00
|
|
|
if ((!bf_other) ||
|
|
|
|
(wsrep_thd_order_before(
|
2014-08-06 14:39:15 +02:00
|
|
|
trx->mysql_thd, lock->trx->mysql_thd))) {
|
|
|
|
|
|
|
|
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "WSREP: BF victim waiting\n";
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
/* cannot release lock, until our lock
|
|
|
|
is in the queue*/
|
|
|
|
} else if (lock->trx != trx) {
|
|
|
|
if (wsrep_log_conflicts) {
|
2019-01-23 12:30:00 +01:00
|
|
|
ib::info() << "*** Priority TRANSACTION:";
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2017-12-27 12:38:23 +01:00
|
|
|
trx_print_latched(stderr, trx, 3000);
|
2014-08-06 14:39:15 +02:00
|
|
|
|
|
|
|
if (bf_other) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "*** Priority TRANSACTION:";
|
2014-08-06 14:39:15 +02:00
|
|
|
} else {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "*** Victim TRANSACTION:";
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
2017-12-27 12:38:23 +01:00
|
|
|
trx_print_latched(stderr, lock->trx, 3000);
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "*** WAITING FOR THIS LOCK TO BE GRANTED:";
|
2014-08-06 14:39:15 +02:00
|
|
|
|
|
|
|
if (lock_get_type(lock) == LOCK_REC) {
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, lock, mtr);
|
2014-08-06 14:39:15 +02:00
|
|
|
} else {
|
|
|
|
lock_table_print(stderr, lock);
|
|
|
|
}
|
2016-09-06 08:43:16 +02:00
|
|
|
|
|
|
|
ib::info() << " SQL1: "
|
|
|
|
<< wsrep_thd_query(trx->mysql_thd);
|
|
|
|
ib::info() << " SQL2: "
|
|
|
|
<< wsrep_thd_query(lock->trx->mysql_thd);
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
wsrep_innobase_kill_one_trx(trx->mysql_thd,
|
2020-05-14 08:17:14 +02:00
|
|
|
lock->trx, true);
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if some other transaction has a conflicting explicit lock request
|
|
|
|
in the queue, so that we have to wait.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return lock or NULL */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t*
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_rec_other_has_conflicting(
|
|
|
|
/*===========================*/
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned mode, /*!< in: LOCK_S or LOCK_X,
|
2014-02-26 19:11:54 +01:00
|
|
|
possibly ORed to LOCK_GAP or
|
|
|
|
LOC_REC_NOT_GAP,
|
|
|
|
LOCK_INSERT_INTENTION */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
|
|
const trx_t* trx) /*!< in: our transaction */
|
|
|
|
{
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
bool is_supremum = (heap_no == PAGE_HEAP_NO_SUPREMUM);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
2017-12-07 11:26:29 +01:00
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_rec_has_to_wait(true, trx, mode, lock, is_supremum)) {
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 10:18:11 +02:00
|
|
|
if (trx->is_wsrep()) {
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_enter(lock->trx);
|
2017-12-07 11:26:29 +01:00
|
|
|
/* Below function will roll back either trx
|
|
|
|
or lock->trx depending on priority of the
|
|
|
|
transaction. */
|
|
|
|
wsrep_kill_victim(const_cast<trx_t*>(trx), lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_exit(lock->trx);
|
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
#endif /* WITH_WSREP */
|
2014-02-26 19:11:54 +01:00
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if some transaction has an implicit x-lock on a record in a secondary
|
|
|
|
index.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return transaction id of the transaction which has the x-lock, or 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
NOTE that this function can return false positives but never false
|
|
|
|
negatives. The caller must confirm all positive results by calling
|
|
|
|
trx_is_active(). */
|
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t*
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_sec_rec_some_has_impl(
|
|
|
|
/*=======================*/
|
2017-12-13 12:40:41 +01:00
|
|
|
trx_t* caller_trx,/*!<in/out: trx of current thread */
|
2014-02-26 19:11:54 +01:00
|
|
|
const rec_t* rec, /*!< in: user record */
|
|
|
|
dict_index_t* index, /*!< in: secondary index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets)/*!< in: rec_get_offsets(rec, index) */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
trx_id_t max_trx_id;
|
|
|
|
const page_t* page = page_align(rec);
|
|
|
|
|
|
|
|
ut_ad(!lock_mutex_own());
|
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
max_trx_id = page_get_max_trx_id(page);
|
|
|
|
|
|
|
|
/* Some transaction may have an implicit x-lock on the record only
|
|
|
|
if the max trx id for the page >= min trx id for the trx list, or
|
2019-08-28 14:27:35 +02:00
|
|
|
database recovery is running. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-22 15:15:41 +01:00
|
|
|
if (max_trx_id < trx_sys.get_min_trx_id()) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx = 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
} else if (!lock_check_trx_id_sanity(max_trx_id, rec, index, offsets)) {
|
|
|
|
|
|
|
|
/* The page is corrupt: try to avoid a crash by returning 0 */
|
2016-08-12 10:17:45 +02:00
|
|
|
trx = 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* In this case it is possible that some transaction has an implicit
|
|
|
|
x-lock. We have to look in the clustered index. */
|
|
|
|
|
|
|
|
} else {
|
2017-12-13 12:40:41 +01:00
|
|
|
trx = row_vers_impl_x_locked(caller_trx, rec, index, offsets);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Return approximate number or record locks (bits set in the bitmap) for
|
|
|
|
this transaction. Since delete-marked records may be removed, the
|
|
|
|
record count will not be precise.
|
2018-02-22 17:46:42 +01:00
|
|
|
The caller must be holding lock_sys.mutex. */
|
2014-02-26 19:11:54 +01:00
|
|
|
ulint
|
|
|
|
lock_number_of_rows_locked(
|
|
|
|
/*=======================*/
|
|
|
|
const trx_lock_t* trx_lock) /*!< in: transaction locks */
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
return(trx_lock->n_rec_locks);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Return the number of table locks for a transaction.
|
2018-02-22 17:46:42 +01:00
|
|
|
The caller must be holding lock_sys.mutex. */
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint
|
|
|
|
lock_number_of_tables_locked(
|
|
|
|
/*=========================*/
|
|
|
|
const trx_lock_t* trx_lock) /*!< in: transaction locks */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
const lock_t* lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint n_tables = 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
for (lock = UT_LIST_GET_FIRST(trx_lock->trx_locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(lock) == LOCK_TABLE) {
|
|
|
|
n_tables++;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(n_tables);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*============== RECORD LOCK CREATION AND QUEUE MANAGEMENT =============*/
|
|
|
|
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-06-04 09:24:10 +02:00
|
|
|
ATTRIBUTE_COLD
|
2014-08-06 14:39:15 +02:00
|
|
|
static
|
|
|
|
void
|
|
|
|
wsrep_print_wait_locks(
|
2016-08-12 10:17:45 +02:00
|
|
|
/*===================*/
|
2014-08-06 14:39:15 +02:00
|
|
|
lock_t* c_lock) /* conflicting lock to print */
|
|
|
|
{
|
2020-06-04 09:24:10 +02:00
|
|
|
if (c_lock->trx->lock.wait_lock != c_lock) {
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "WSREP: c_lock != wait lock";
|
2016-09-06 08:43:16 +02:00
|
|
|
ib::info() << " SQL: "
|
|
|
|
<< wsrep_thd_query(c_lock->trx->mysql_thd);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
if (lock_get_type_low(c_lock) & LOCK_TABLE) {
|
2014-08-06 14:39:15 +02:00
|
|
|
lock_table_print(stderr, c_lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, c_lock, mtr);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(c_lock->trx->lock.wait_lock) & LOCK_TABLE) {
|
2014-08-06 14:39:15 +02:00
|
|
|
lock_table_print(stderr, c_lock->trx->lock.wait_lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
2019-07-24 19:50:59 +02:00
|
|
|
lock_rec_print(stderr, c_lock->trx->lock.wait_lock,
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/** Create a new record lock and inserts it to the lock queue,
|
|
|
|
without checking for deadlocks or conflicts.
|
|
|
|
@param[in] type_mode lock mode and wait flag; type will be replaced
|
|
|
|
with LOCK_REC
|
|
|
|
@param[in] space tablespace id
|
|
|
|
@param[in] page_no index page number
|
|
|
|
@param[in] page R-tree index page, or NULL
|
|
|
|
@param[in] heap_no record heap number in the index page
|
|
|
|
@param[in] index the index tree
|
|
|
|
@param[in,out] trx transaction
|
|
|
|
@param[in] holds_trx_mutex whether the caller holds trx->mutex
|
|
|
|
@return created lock */
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t*
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_rec_create_low(
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
lock_t* c_lock, /*!< conflicting lock */
|
|
|
|
que_thr_t* thr, /*!< thread owning trx */
|
|
|
|
#endif
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned type_mode,
|
2018-03-11 22:34:23 +01:00
|
|
|
ulint space,
|
|
|
|
ulint page_no,
|
|
|
|
const page_t* page,
|
|
|
|
ulint heap_no,
|
2016-08-12 10:17:45 +02:00
|
|
|
dict_index_t* index,
|
2018-03-11 22:34:23 +01:00
|
|
|
trx_t* trx,
|
|
|
|
bool holds_trx_mutex)
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_t* lock;
|
|
|
|
ulint n_bits;
|
|
|
|
ulint n_bytes;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
2018-03-11 22:34:23 +01:00
|
|
|
ut_ad(holds_trx_mutex == trx_mutex_own(trx));
|
|
|
|
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
/* Non-locking autocommit read-only transactions should not set
|
|
|
|
any locks. See comment in trx_set_rw_mode explaining why this
|
|
|
|
conditional check is required in debug code. */
|
|
|
|
if (holds_trx_mutex) {
|
|
|
|
check_trx_state(trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2018-03-11 22:34:23 +01:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* If rec is the supremum record, then we reset the gap and
|
|
|
|
LOCK_REC_NOT_GAP bits, as all locks on the supremum are
|
|
|
|
automatically of the gap type */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (UNIV_UNLIKELY(heap_no == PAGE_HEAP_NO_SUPREMUM)) {
|
|
|
|
ut_ad(!(type_mode & LOCK_REC_NOT_GAP));
|
|
|
|
type_mode = type_mode & ~(LOCK_GAP | LOCK_REC_NOT_GAP);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (UNIV_LIKELY(!(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)))) {
|
|
|
|
/* Make lock bitmap bigger by a safety margin */
|
|
|
|
n_bits = page_dir_get_n_heap(page) + LOCK_PAGE_BITMAP_MARGIN;
|
|
|
|
n_bytes = 1 + n_bits / 8;
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
2018-03-11 22:34:23 +01:00
|
|
|
ut_ad(heap_no == PRDT_HEAPNO);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* The lock is always on PAGE_HEAP_NO_INFIMUM (0), so
|
|
|
|
we only need 1 bit (which round up to 1 byte) for
|
|
|
|
lock bit setting */
|
|
|
|
n_bytes = 1;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (type_mode & LOCK_PREDICATE) {
|
|
|
|
ulint tmp = UNIV_WORD_SIZE - 1;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* We will attach predicate structure after lock.
|
|
|
|
Make sure the memory is aligned on 8 bytes,
|
|
|
|
the mem_heap_alloc will align it with
|
|
|
|
MEM_SPACE_NEEDED anyway. */
|
|
|
|
n_bytes = (n_bytes + sizeof(lock_prdt_t) + tmp) & ~tmp;
|
|
|
|
ut_ad(n_bytes == sizeof(lock_prdt_t) + UNIV_WORD_SIZE);
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-08-13 10:46:22 +02:00
|
|
|
if (trx->lock.rec_cached >= UT_ARR_SIZE(trx->lock.rec_pool)
|
|
|
|
|| sizeof *lock + n_bytes > sizeof *trx->lock.rec_pool) {
|
2018-03-11 22:34:23 +01:00
|
|
|
lock = static_cast<lock_t*>(
|
|
|
|
mem_heap_alloc(trx->lock.lock_heap,
|
|
|
|
sizeof *lock + n_bytes));
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
2018-08-13 10:46:22 +02:00
|
|
|
lock = &trx->lock.rec_pool[trx->lock.rec_cached++].lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock->trx = trx;
|
MDEV-21907: InnoDB: Enable -Wconversion on clang and GCC
The -Wconversion in GCC seems to be stricter than in clang.
GCC at least since version 4.4.7 issues truncation warnings for
assignments to bitfields, while clang 10 appears to only issue
warnings when the sizes in bytes rounded to the nearest integer
powers of 2 are different.
Before GCC 10.0.0, -Wconversion required more casts and would not
allow some operations, such as x<<=1 or x+=1 on a data type that
is narrower than int.
GCC 5 (but not GCC 4, GCC 6, or any later version) is complaining
about x|=y even when x and y are compatible types that are narrower
than int. Hence, we must rewrite some x|=y as
x=static_cast<byte>(x|y) or similar, or we must disable -Wconversion.
In GCC 6 and later, the warning for assigning wider to bitfields
that are narrower than 8, 16, or 32 bits can be suppressed by
applying a bitwise & with the exact bitmask of the bitfield.
For older GCC, we must disable -Wconversion for GCC 4 or 5 in such
cases.
The bitwise negation operator appears to promote short integers
to a wider type, and hence we must add explicit truncation casts
around them. Microsoft Visual C does not allow a static_cast to
truncate a constant, such as static_cast<byte>(1) truncating int.
Hence, we will use the constructor-style cast byte(~1) for such cases.
This has been tested at least with GCC 4.8.5, 5.4.0, 7.4.0, 9.2.1, 10.0.0,
clang 9.0.1, 10.0.0, and MSVC 14.22.27905 (Microsoft Visual Studio 2019)
on 64-bit and 32-bit targets (IA-32, AMD64, POWER 8, POWER 9, ARMv8).
2020-03-12 18:46:41 +01:00
|
|
|
lock->type_mode = (type_mode & unsigned(~LOCK_TYPE_MASK)) | LOCK_REC;
|
2014-02-26 19:11:54 +01:00
|
|
|
lock->index = index;
|
2018-03-11 22:34:23 +01:00
|
|
|
lock->un_member.rec_lock.space = uint32_t(space);
|
|
|
|
lock->un_member.rec_lock.page_no = uint32_t(page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (UNIV_LIKELY(!(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)))) {
|
|
|
|
lock->un_member.rec_lock.n_bits = uint32_t(n_bytes * 8);
|
|
|
|
} else {
|
|
|
|
/* Predicate lock always on INFIMUM (0) */
|
|
|
|
lock->un_member.rec_lock.n_bits = 8;
|
|
|
|
}
|
|
|
|
lock_rec_bitmap_reset(lock);
|
|
|
|
lock_rec_set_nth_bit(lock, heap_no);
|
|
|
|
index->table->n_rec_locks++;
|
2018-07-04 20:37:55 +02:00
|
|
|
ut_ad(index->table->get_ref_count() > 0 || !index->table->can_be_evicted);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (c_lock && trx->is_wsrep()
|
2018-03-11 22:34:23 +01:00
|
|
|
&& wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
|
|
|
|
lock_t *hash = (lock_t *)c_lock->hash;
|
|
|
|
lock_t *prev = NULL;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-08-03 14:15:40 +02:00
|
|
|
while (hash && wsrep_thd_is_BF(hash->trx->mysql_thd, FALSE)
|
2019-01-23 12:30:00 +01:00
|
|
|
&& wsrep_thd_order_before(hash->trx->mysql_thd,
|
2018-03-11 22:34:23 +01:00
|
|
|
trx->mysql_thd)) {
|
|
|
|
prev = hash;
|
|
|
|
hash = (lock_t *)hash->hash;
|
|
|
|
}
|
|
|
|
lock->hash = hash;
|
|
|
|
if (prev) {
|
|
|
|
prev->hash = lock;
|
|
|
|
} else {
|
|
|
|
c_lock->hash = lock;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* delayed conflict resolution '...kill_one_trx' was not called,
|
|
|
|
* if victim was waiting for some other lock
|
|
|
|
*/
|
|
|
|
trx_mutex_enter(c_lock->trx);
|
|
|
|
if (c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
2015-02-24 09:33:49 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-11 22:34:23 +01:00
|
|
|
wsrep_print_wait_locks(c_lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx->lock.que_state = TRX_QUE_LOCK_WAIT;
|
|
|
|
lock_set_lock_and_trx_wait(lock, trx);
|
|
|
|
UT_LIST_ADD_LAST(trx->lock.trx_locks, lock);
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx->lock.wait_thr = thr;
|
|
|
|
thr->state = QUE_THR_LOCK_WAIT;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* have to release trx mutex for the duration of
|
|
|
|
victim lock release. This will eventually call
|
|
|
|
lock_grant, which wants to grant trx mutex again
|
|
|
|
*/
|
|
|
|
if (holds_trx_mutex) {
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
|
|
|
lock_cancel_waiting_and_release(
|
|
|
|
c_lock->trx->lock.wait_lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (holds_trx_mutex) {
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx_mutex_exit(c_lock->trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-11 22:34:23 +01:00
|
|
|
ib::info() << "WSREP: c_lock canceled "
|
|
|
|
<< ib::hex(c_lock->trx->id)
|
|
|
|
<< " SQL: "
|
|
|
|
<< wsrep_thd_query(
|
|
|
|
c_lock->trx->mysql_thd);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* have to bail out here to avoid lock_set_lock... */
|
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
trx_mutex_exit(c_lock->trx);
|
|
|
|
} else
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
if (!(type_mode & (LOCK_WAIT | LOCK_PREDICATE | LOCK_PRDT_PAGE))
|
|
|
|
&& innodb_lock_schedule_algorithm
|
|
|
|
== INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
|
|
|
|
&& !thd_is_replication_slave_thread(trx->mysql_thd)) {
|
2020-06-18 11:26:28 +02:00
|
|
|
HASH_PREPEND(lock_t, hash, &lock_sys.rec_hash,
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_rec_fold(space, page_no), lock);
|
|
|
|
} else {
|
|
|
|
HASH_INSERT(lock_t, hash, lock_hash_get(type_mode),
|
|
|
|
lock_rec_fold(space, page_no), lock);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (!holds_trx_mutex) {
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
}
|
|
|
|
ut_ad(trx_mutex_own(trx));
|
|
|
|
if (type_mode & LOCK_WAIT) {
|
|
|
|
lock_set_lock_and_trx_wait(lock, trx);
|
|
|
|
}
|
|
|
|
UT_LIST_ADD_LAST(trx->lock.trx_locks, lock);
|
|
|
|
if (!holds_trx_mutex) {
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
MONITOR_INC(MONITOR_RECLOCK_CREATED);
|
2018-03-11 22:34:23 +01:00
|
|
|
MONITOR_INC(MONITOR_NUM_RECLOCK);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
return lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
2016-10-19 07:37:52 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Check if lock1 has higher priority than lock2.
|
|
|
|
NULL has lowest priority.
|
|
|
|
If neither of them is wait lock, the first one has higher priority.
|
|
|
|
If only one of them is a wait lock, it has lower priority.
|
2016-12-01 19:50:00 +01:00
|
|
|
If either is a high priority transaction, the lock has higher priority.
|
2016-10-19 07:37:52 +02:00
|
|
|
Otherwise, the one with an older transaction has higher priority.
|
|
|
|
@returns true if lock1 has higher priority, false otherwise. */
|
2019-07-24 19:43:24 +02:00
|
|
|
static bool has_higher_priority(lock_t *lock1, lock_t *lock2)
|
2016-10-19 07:37:52 +02:00
|
|
|
{
|
|
|
|
if (lock1 == NULL) {
|
|
|
|
return false;
|
|
|
|
} else if (lock2 == NULL) {
|
|
|
|
return true;
|
|
|
|
}
|
2016-12-07 08:18:41 +01:00
|
|
|
// Granted locks has higher priority.
|
2016-10-19 07:37:52 +02:00
|
|
|
if (!lock_get_wait(lock1)) {
|
|
|
|
return true;
|
|
|
|
} else if (!lock_get_wait(lock2)) {
|
|
|
|
return false;
|
|
|
|
}
|
2016-10-22 16:19:41 +02:00
|
|
|
return lock1->trx->start_time_micro <= lock2->trx->start_time_micro;
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Insert a lock to the hash list according to the mode (whether it is a wait
|
|
|
|
lock) and the age of the transaction the it is associated with.
|
|
|
|
If the lock is not a wait lock, insert it to the head of the hash list.
|
|
|
|
Otherwise, insert it to the middle of the wait locks according to the age of
|
|
|
|
the transaciton. */
|
|
|
|
static
|
2016-10-22 16:19:41 +02:00
|
|
|
dberr_t
|
2016-10-19 07:37:52 +02:00
|
|
|
lock_rec_insert_by_trx_age(
|
2016-10-23 19:36:26 +02:00
|
|
|
lock_t *in_lock) /*!< in: lock to be insert */{
|
2016-10-23 19:17:30 +02:00
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
2016-10-19 07:37:52 +02:00
|
|
|
ulint rec_fold;
|
|
|
|
lock_t* node;
|
|
|
|
lock_t* next;
|
2016-10-23 19:36:26 +02:00
|
|
|
hash_table_t* hash;
|
|
|
|
hash_cell_t* cell;
|
2016-10-19 07:37:52 +02:00
|
|
|
|
2016-10-23 19:36:26 +02:00
|
|
|
space = in_lock->un_member.rec_lock.space;
|
|
|
|
page_no = in_lock->un_member.rec_lock.page_no;
|
2016-10-19 07:37:52 +02:00
|
|
|
rec_fold = lock_rec_fold(space, page_no);
|
2016-10-23 19:36:26 +02:00
|
|
|
hash = lock_hash_get(in_lock->type_mode);
|
2020-06-18 11:26:28 +02:00
|
|
|
cell = &hash->array[hash->calc_hash(rec_fold)];
|
2016-10-19 07:37:52 +02:00
|
|
|
|
|
|
|
node = (lock_t *) cell->node;
|
|
|
|
// If in_lock is not a wait lock, we insert it to the head of the list.
|
2016-12-02 16:28:39 +01:00
|
|
|
if (node == NULL || !lock_get_wait(in_lock) || has_higher_priority(in_lock, node)) {
|
2016-10-19 07:37:52 +02:00
|
|
|
cell->node = in_lock;
|
|
|
|
in_lock->hash = node;
|
2016-10-23 19:36:26 +02:00
|
|
|
if (lock_get_wait(in_lock)) {
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant_have_trx_mutex(in_lock);
|
2016-10-23 19:36:26 +02:00
|
|
|
return DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
2016-10-22 16:19:41 +02:00
|
|
|
return DB_SUCCESS;
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
|
|
|
while (node != NULL && has_higher_priority((lock_t *) node->hash,
|
|
|
|
in_lock)) {
|
|
|
|
node = (lock_t *) node->hash;
|
|
|
|
}
|
|
|
|
next = (lock_t *) node->hash;
|
|
|
|
node->hash = in_lock;
|
2016-10-23 19:36:26 +02:00
|
|
|
in_lock->hash = next;
|
|
|
|
|
|
|
|
if (lock_get_wait(in_lock) && !lock_rec_has_to_wait_in_queue(in_lock)) {
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant_have_trx_mutex(in_lock);
|
2016-10-23 19:36:26 +02:00
|
|
|
if (cell->node != in_lock) {
|
|
|
|
// Move it to the front of the queue
|
|
|
|
node->hash = in_lock->hash;
|
|
|
|
next = (lock_t *) cell->node;
|
|
|
|
cell->node = in_lock;
|
|
|
|
in_lock->hash = next;
|
|
|
|
}
|
|
|
|
return DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
|
|
|
|
|
|
|
return DB_SUCCESS;
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
|
|
|
|
2017-08-10 13:00:51 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
2016-10-19 07:37:52 +02:00
|
|
|
static
|
|
|
|
bool
|
|
|
|
lock_queue_validate(
|
2016-10-23 19:36:26 +02:00
|
|
|
const lock_t *in_lock) /*!< in: lock whose hash list is to be validated */
|
2016-10-19 07:37:52 +02:00
|
|
|
{
|
2016-10-23 19:36:26 +02:00
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
ulint rec_fold;
|
|
|
|
hash_table_t* hash;
|
|
|
|
hash_cell_t* cell;
|
|
|
|
lock_t* next;
|
2017-07-03 10:35:44 +02:00
|
|
|
bool wait_lock __attribute__((unused))= false;
|
2016-10-23 19:36:26 +02:00
|
|
|
|
|
|
|
if (in_lock == NULL) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
space = in_lock->un_member.rec_lock.space;
|
|
|
|
page_no = in_lock->un_member.rec_lock.page_no;
|
|
|
|
rec_fold = lock_rec_fold(space, page_no);
|
|
|
|
hash = lock_hash_get(in_lock->type_mode);
|
2020-06-18 11:26:28 +02:00
|
|
|
cell = &hash->array[hash->calc_hash(rec_fold)];
|
2016-10-23 19:36:26 +02:00
|
|
|
next = (lock_t *) cell->node;
|
|
|
|
while (next != NULL) {
|
|
|
|
// If this is a granted lock, check that there's no wait lock before it.
|
|
|
|
if (!lock_get_wait(next)) {
|
|
|
|
ut_ad(!wait_lock);
|
|
|
|
} else {
|
|
|
|
wait_lock = true;
|
|
|
|
}
|
|
|
|
next = next->hash;
|
|
|
|
}
|
|
|
|
return true;
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
2017-08-10 13:00:51 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2016-10-19 07:37:52 +02:00
|
|
|
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_insert_to_head(
|
|
|
|
lock_t *in_lock, /*!< in: lock to be insert */
|
2016-10-23 19:36:26 +02:00
|
|
|
ulint rec_fold) /*!< in: rec_fold of the page */
|
2016-10-19 07:37:52 +02:00
|
|
|
{
|
2016-10-23 19:36:26 +02:00
|
|
|
hash_table_t* hash;
|
|
|
|
hash_cell_t* cell;
|
|
|
|
lock_t* node;
|
|
|
|
|
|
|
|
if (in_lock == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
hash = lock_hash_get(in_lock->type_mode);
|
2020-06-18 11:26:28 +02:00
|
|
|
cell = &hash->array[hash->calc_hash(rec_fold)];
|
2016-10-23 19:36:26 +02:00
|
|
|
node = (lock_t *) cell->node;
|
|
|
|
if (node != in_lock) {
|
|
|
|
cell->node = in_lock;
|
|
|
|
in_lock->hash = node;
|
|
|
|
}
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/** Enqueue a waiting request for a lock which cannot be granted immediately.
|
|
|
|
Check for deadlocks.
|
|
|
|
@param[in] type_mode the requested lock mode (LOCK_S or LOCK_X)
|
|
|
|
possibly ORed with LOCK_GAP or
|
|
|
|
LOCK_REC_NOT_GAP, ORed with
|
|
|
|
LOCK_INSERT_INTENTION if this
|
|
|
|
waiting lock request is set
|
|
|
|
when performing an insert of
|
|
|
|
an index record
|
|
|
|
@param[in] block leaf page in the index
|
|
|
|
@param[in] heap_no record heap number in the block
|
|
|
|
@param[in] index index tree
|
|
|
|
@param[in,out] thr query thread
|
|
|
|
@param[in] prdt minimum bounding box (spatial index)
|
|
|
|
@retval DB_LOCK_WAIT if the waiting lock was enqueued
|
|
|
|
@retval DB_DEADLOCK if this transaction was chosen as the victim
|
|
|
|
@retval DB_SUCCESS_LOCKED_REC if the other transaction was chosen as a victim
|
|
|
|
(or it happened to commit) */
|
|
|
|
dberr_t
|
|
|
|
lock_rec_enqueue_waiting(
|
2017-12-07 11:26:29 +01:00
|
|
|
#ifdef WITH_WSREP
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_t* c_lock, /*!< conflicting lock */
|
|
|
|
#endif
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned type_mode,
|
2018-03-11 22:34:23 +01:00
|
|
|
const buf_block_t* block,
|
|
|
|
ulint heap_no,
|
|
|
|
dict_index_t* index,
|
|
|
|
que_thr_t* thr,
|
|
|
|
lock_prdt_t* prdt)
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
2018-03-11 22:34:23 +01:00
|
|
|
ut_ad(!srv_read_only_mode);
|
|
|
|
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx_t* trx = thr_get_trx(thr);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
ut_ad(trx_mutex_own(trx));
|
|
|
|
ut_a(!que_thr_stop(thr));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
switch (trx_get_dict_operation(trx)) {
|
|
|
|
case TRX_DICT_OP_NONE:
|
|
|
|
break;
|
|
|
|
case TRX_DICT_OP_TABLE:
|
|
|
|
case TRX_DICT_OP_INDEX:
|
|
|
|
ib::error() << "A record lock wait happens in a dictionary"
|
|
|
|
" operation. index "
|
|
|
|
<< index->name
|
|
|
|
<< " of table "
|
|
|
|
<< index->table->name
|
|
|
|
<< ". " << BUG_REPORT_MSG;
|
|
|
|
ut_ad(0);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2018-03-27 22:17:25 +02:00
|
|
|
if (trx->mysql_thd && thd_lock_wait_timeout(trx->mysql_thd) == 0) {
|
|
|
|
trx->error_state = DB_LOCK_WAIT_TIMEOUT;
|
|
|
|
return DB_LOCK_WAIT_TIMEOUT;
|
|
|
|
}
|
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
/* Enqueue the lock request that will wait to be granted, note that
|
|
|
|
we already own the trx mutex. */
|
|
|
|
lock_t* lock = lock_rec_create(
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef WITH_WSREP
|
2018-03-11 22:34:23 +01:00
|
|
|
c_lock, thr,
|
|
|
|
#endif
|
|
|
|
type_mode | LOCK_WAIT, block, heap_no, index, trx, TRUE);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (prdt && type_mode & LOCK_PREDICATE) {
|
|
|
|
lock_prdt_set_prdt(lock, prdt);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
if (ut_d(const trx_t* victim =)
|
2018-03-11 22:34:23 +01:00
|
|
|
DeadlockChecker::check_and_resolve(lock, trx)) {
|
|
|
|
ut_ad(victim == trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_rec_reset_nth_bit(lock, heap_no);
|
|
|
|
return DB_DEADLOCK;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (!trx->lock.wait_lock) {
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If there was a deadlock but we chose another
|
|
|
|
transaction as a victim, it is possible that we
|
|
|
|
already have the lock now granted! */
|
2017-12-07 11:26:29 +01:00
|
|
|
#ifdef WITH_WSREP
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-11 22:34:23 +01:00
|
|
|
ib::info() << "WSREP: BF thread got lock granted early, ID " << ib::hex(trx->id)
|
|
|
|
<< " query: " << wsrep_thd_query(trx->mysql_thd);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx->lock.que_state = TRX_QUE_LOCK_WAIT;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
trx->lock.was_chosen_as_deadlock_victim = false;
|
2019-07-25 11:08:50 +02:00
|
|
|
trx->lock.wait_started = time(NULL);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
ut_a(que_thr_stop(thr));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
DBUG_LOG("ib_lock", "trx " << ib::hex(trx->id)
|
|
|
|
<< " waits for lock in index " << index->name
|
|
|
|
<< " of table " << index->table->name);
|
2016-10-23 19:36:26 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
MONITOR_INC(MONITOR_LOCKREC_WAIT);
|
2016-10-23 19:36:26 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (innodb_lock_schedule_algorithm
|
|
|
|
== INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
|
|
|
|
&& !prdt
|
|
|
|
&& !thd_is_replication_slave_thread(lock->trx->mysql_thd)) {
|
2020-06-18 11:26:28 +02:00
|
|
|
HASH_DELETE(lock_t, hash, &lock_sys.rec_hash,
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_rec_lock_fold(lock), lock);
|
2016-10-23 19:36:26 +02:00
|
|
|
dberr_t res = lock_rec_insert_by_trx_age(lock);
|
|
|
|
if (res != DB_SUCCESS) {
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
}
|
2016-10-19 07:37:52 +02:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
return DB_LOCK_WAIT;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Adds a record lock request in the record queue. The request is normally
|
|
|
|
added as the last in the queue, but if there are no waiting lock requests
|
|
|
|
on the record, and the request to be added is not a waiting request, we
|
|
|
|
can reuse a suitable record lock object already existing on the same page,
|
|
|
|
just setting the appropriate bit in its bitmap. This is a low-level function
|
|
|
|
which does NOT check for deadlocks or lock compatibility!
|
|
|
|
@return lock where the bit was set */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_add_to_queue(
|
|
|
|
/*==================*/
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned type_mode,/*!< in: lock mode, wait, gap
|
2016-08-12 10:17:45 +02:00
|
|
|
etc. flags; type is ignored
|
|
|
|
and replaced by LOCK_REC */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no,/*!< in: heap number of the record */
|
|
|
|
dict_index_t* index, /*!< in: index of record */
|
|
|
|
trx_t* trx, /*!< in/out: transaction */
|
|
|
|
bool caller_owns_trx_mutex)
|
|
|
|
/*!< in: TRUE if caller owns the
|
|
|
|
transaction mutex */
|
|
|
|
{
|
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(caller_owns_trx_mutex == trx_mutex_own(trx));
|
|
|
|
ut_ad(dict_index_is_clust(index)
|
|
|
|
|| dict_index_get_online_status(index) != ONLINE_INDEX_CREATION);
|
|
|
|
switch (type_mode & LOCK_MODE_MASK) {
|
|
|
|
case LOCK_X:
|
|
|
|
case LOCK_S:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ut_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(type_mode & (LOCK_WAIT | LOCK_GAP))) {
|
|
|
|
lock_mode mode = (type_mode & LOCK_MODE_MASK) == LOCK_S
|
|
|
|
? LOCK_X
|
|
|
|
: LOCK_S;
|
|
|
|
const lock_t* other_lock
|
|
|
|
= lock_rec_other_has_expl_req(
|
|
|
|
mode, block, false, heap_no, trx);
|
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (other_lock && trx->is_wsrep() &&
|
2016-08-12 10:17:45 +02:00
|
|
|
!wsrep_thd_is_BF(trx->mysql_thd, FALSE) &&
|
2020-08-03 14:15:40 +02:00
|
|
|
!wsrep_thd_is_BF(other_lock->trx->mysql_thd, FALSE)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
ib::info() << "WSREP BF lock conflict for my lock:\n BF:" <<
|
|
|
|
((wsrep_thd_is_BF(trx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
|
2019-01-23 12:30:00 +01:00
|
|
|
wsrep_thd_client_state_str(trx->mysql_thd) << " conflict: " <<
|
|
|
|
wsrep_thd_transaction_state_str(trx->mysql_thd) << " seqno: " <<
|
2016-08-12 10:17:45 +02:00
|
|
|
wsrep_thd_trx_seqno(trx->mysql_thd) << " SQL: " <<
|
|
|
|
wsrep_thd_query(trx->mysql_thd);
|
2016-09-06 08:43:16 +02:00
|
|
|
trx_t* otrx = other_lock->trx;
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "WSREP other lock:\n BF:" <<
|
|
|
|
((wsrep_thd_is_BF(otrx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
|
2019-01-23 12:30:00 +01:00
|
|
|
wsrep_thd_client_state_str(otrx->mysql_thd) << " conflict: " <<
|
|
|
|
wsrep_thd_transaction_state_str(otrx->mysql_thd) << " seqno: " <<
|
2016-08-12 10:17:45 +02:00
|
|
|
wsrep_thd_trx_seqno(otrx->mysql_thd) << " SQL: " <<
|
|
|
|
wsrep_thd_query(otrx->mysql_thd);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
ut_a(!other_lock);
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
|
|
|
type_mode |= LOCK_REC;
|
|
|
|
|
|
|
|
/* If rec is the supremum record, then we can reset the gap bit, as
|
|
|
|
all locks on the supremum are automatically of the gap type, and we
|
|
|
|
try to avoid unnecessary memory consumption of a new record lock
|
|
|
|
struct for a gap type lock */
|
|
|
|
|
|
|
|
if (heap_no == PAGE_HEAP_NO_SUPREMUM) {
|
|
|
|
ut_ad(!(type_mode & LOCK_REC_NOT_GAP));
|
|
|
|
|
|
|
|
/* There should never be LOCK_REC_NOT_GAP on a supremum
|
|
|
|
record, but let us play safe */
|
|
|
|
|
|
|
|
type_mode &= ~(LOCK_GAP | LOCK_REC_NOT_GAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_t* lock;
|
|
|
|
lock_t* first_lock;
|
|
|
|
hash_table_t* hash = lock_hash_get(type_mode);
|
|
|
|
|
|
|
|
/* Look for a waiting lock request on the same record or on a gap */
|
|
|
|
|
|
|
|
for (first_lock = lock = lock_rec_get_first_on_page(hash, block);
|
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
|
|
|
|
|
|
|
if (lock_get_wait(lock)
|
|
|
|
&& lock_rec_get_nth_bit(lock, heap_no)) {
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lock == NULL && !(type_mode & LOCK_WAIT)) {
|
|
|
|
|
|
|
|
/* Look for a similar record lock on the same page:
|
|
|
|
if one is found and there are no waiting lock requests,
|
|
|
|
we can just set the bit */
|
|
|
|
|
|
|
|
lock = lock_rec_find_similar_on_page(
|
|
|
|
type_mode, heap_no, first_lock, trx);
|
|
|
|
|
|
|
|
if (lock != NULL) {
|
|
|
|
|
|
|
|
lock_rec_set_nth_bit(lock, heap_no);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
lock_rec_create(
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
NULL, NULL,
|
|
|
|
#endif
|
|
|
|
type_mode, block, heap_no, index, trx, caller_owns_trx_mutex);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Tries to lock the specified record in the mode requested. If not immediately
|
|
|
|
possible, enqueues a waiting lock request. This is a low-level function
|
|
|
|
which does NOT look at implicit locks! Checks lock compatibility within
|
|
|
|
explicit locks. This function sets a normal next-key lock, or in the case
|
|
|
|
of a page supremum record, a gap type lock.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
|
|
|
dberr_t
|
|
|
|
lock_rec_lock(
|
|
|
|
/*==========*/
|
2016-08-12 10:17:45 +02:00
|
|
|
bool impl, /*!< in: if true, no lock is set
|
2014-02-26 19:11:54 +01:00
|
|
|
if no wait is necessary: we
|
|
|
|
assume that the caller will
|
|
|
|
set an implicit lock */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned mode, /*!< in: lock mode: LOCK_X or
|
2014-02-26 19:11:54 +01:00
|
|
|
LOCK_S possibly ORed to either
|
|
|
|
LOCK_GAP or LOCK_REC_NOT_GAP */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no,/*!< in: heap number of record */
|
|
|
|
dict_index_t* index, /*!< in: index of record */
|
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
|
|
{
|
2018-01-22 20:58:52 +01:00
|
|
|
trx_t *trx= thr_get_trx(thr);
|
|
|
|
dberr_t err= DB_SUCCESS;
|
|
|
|
|
|
|
|
ut_ad(!srv_read_only_mode);
|
|
|
|
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S ||
|
|
|
|
(LOCK_MODE_MASK & mode) == LOCK_X);
|
|
|
|
ut_ad((mode & LOCK_TYPE_MASK) == LOCK_GAP ||
|
|
|
|
(mode & LOCK_TYPE_MASK) == LOCK_REC_NOT_GAP ||
|
|
|
|
(mode & LOCK_TYPE_MASK) == 0);
|
|
|
|
ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index));
|
|
|
|
DBUG_EXECUTE_IF("innodb_report_deadlock", return DB_DEADLOCK;);
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S ||
|
|
|
|
lock_table_has(trx, index->table, LOCK_IS));
|
|
|
|
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X ||
|
|
|
|
lock_table_has(trx, index->table, LOCK_IX));
|
|
|
|
|
2020-02-24 20:17:16 +01:00
|
|
|
if (lock_table_has(trx, index->table,
|
|
|
|
static_cast<lock_mode>(LOCK_MODE_MASK & mode)));
|
2020-06-18 11:26:28 +02:00
|
|
|
else if (lock_t *lock= lock_rec_get_first_on_page(&lock_sys.rec_hash, block))
|
2018-01-22 20:58:52 +01:00
|
|
|
{
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
if (lock_rec_get_next_on_page(lock) ||
|
|
|
|
lock->trx != trx ||
|
2018-04-28 14:49:09 +02:00
|
|
|
lock->type_mode != (ulint(mode) | LOCK_REC) ||
|
2018-01-22 20:58:52 +01:00
|
|
|
lock_rec_get_n_bits(lock) <= heap_no)
|
|
|
|
{
|
2018-01-23 10:23:35 +01:00
|
|
|
/* Do nothing if the trx already has a strong enough lock on rec */
|
|
|
|
if (!lock_rec_has_expl(mode, block, heap_no, trx))
|
|
|
|
{
|
2018-03-29 21:07:17 +02:00
|
|
|
if (
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
lock_t *c_lock=
|
|
|
|
#endif
|
|
|
|
lock_rec_other_has_conflicting(mode, block, heap_no, trx))
|
2018-01-23 10:23:35 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
If another transaction has a non-gap conflicting
|
|
|
|
request in the queue, as this transaction does not
|
|
|
|
have a lock strong enough already granted on the
|
2018-03-28 17:06:27 +02:00
|
|
|
record, we have to wait. */
|
|
|
|
err = lock_rec_enqueue_waiting(
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
c_lock,
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
mode, block, heap_no, index, thr, NULL);
|
2018-01-23 10:23:35 +01:00
|
|
|
}
|
|
|
|
else if (!impl)
|
|
|
|
{
|
|
|
|
/* Set the requested lock on the record. */
|
|
|
|
lock_rec_add_to_queue(LOCK_REC | mode, block, heap_no, index, trx,
|
|
|
|
true);
|
|
|
|
err= DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
|
|
|
}
|
2018-01-22 20:58:52 +01:00
|
|
|
}
|
|
|
|
else if (!impl)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
If the nth bit of the record lock is already set then we do not set
|
|
|
|
a new lock bit, otherwise we do set
|
|
|
|
*/
|
|
|
|
if (!lock_rec_get_nth_bit(lock, heap_no))
|
|
|
|
{
|
|
|
|
lock_rec_set_nth_bit(lock, heap_no);
|
|
|
|
err= DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Simplified and faster path for the most common cases
|
|
|
|
Note that we don't own the trx mutex.
|
|
|
|
*/
|
|
|
|
if (!impl)
|
2018-03-28 17:06:27 +02:00
|
|
|
lock_rec_create(
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
NULL, NULL,
|
|
|
|
#endif
|
|
|
|
mode, block, heap_no, index, trx, false);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-01-22 20:58:52 +01:00
|
|
|
err= DB_SUCCESS_LOCKED_REC;
|
|
|
|
}
|
|
|
|
lock_mutex_exit();
|
|
|
|
MONITOR_ATOMIC_INC(MONITOR_NUM_RECLOCK_REQ);
|
|
|
|
return err;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a waiting record lock request still has to wait in a queue.
|
2016-08-12 10:17:45 +02:00
|
|
|
@return lock that is causing the wait */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
|
|
|
const lock_t*
|
|
|
|
lock_rec_has_to_wait_in_queue(
|
|
|
|
/*==========================*/
|
|
|
|
const lock_t* wait_lock) /*!< in: waiting record lock */
|
|
|
|
{
|
|
|
|
const lock_t* lock;
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
ulint heap_no;
|
|
|
|
ulint bit_mask;
|
|
|
|
ulint bit_offset;
|
2016-08-12 10:17:45 +02:00
|
|
|
hash_table_t* hash;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-08-03 14:15:40 +02:00
|
|
|
ut_ad(wait_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_wait(wait_lock));
|
|
|
|
ut_ad(lock_get_type_low(wait_lock) == LOCK_REC);
|
|
|
|
|
|
|
|
space = wait_lock->un_member.rec_lock.space;
|
|
|
|
page_no = wait_lock->un_member.rec_lock.page_no;
|
|
|
|
heap_no = lock_rec_find_set_bit(wait_lock);
|
|
|
|
|
|
|
|
bit_offset = heap_no / 8;
|
2017-05-10 08:07:50 +02:00
|
|
|
bit_mask = static_cast<ulint>(1) << (heap_no % 8);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
hash = lock_hash_get(wait_lock->type_mode);
|
|
|
|
|
|
|
|
for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no);
|
2020-08-04 08:56:09 +02:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
lock &&
|
|
|
|
#endif
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != wait_lock;
|
|
|
|
lock = lock_rec_get_next_on_page_const(lock)) {
|
|
|
|
const byte* p = (const byte*) &lock[1];
|
|
|
|
|
|
|
|
if (heap_no < lock_rec_get_n_bits(lock)
|
|
|
|
&& (p[bit_offset] & bit_mask)
|
|
|
|
&& lock_has_to_wait(wait_lock, lock)) {
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
if (wsrep_thd_is_BF(wait_lock->trx->mysql_thd, FALSE) &&
|
2020-08-03 14:15:40 +02:00
|
|
|
wsrep_thd_is_BF(lock->trx->mysql_thd, FALSE)) {
|
|
|
|
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
2017-12-07 11:26:29 +01:00
|
|
|
ib::info() << "WSREP: waiting BF trx: " << ib::hex(wait_lock->trx->id)
|
|
|
|
<< " query: " << wsrep_thd_query(wait_lock->trx->mysql_thd);
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, wait_lock, mtr);
|
2017-12-07 11:26:29 +01:00
|
|
|
ib::info() << "WSREP: do not wait another BF trx: " << ib::hex(lock->trx->id)
|
|
|
|
<< " query: " << wsrep_thd_query(lock->trx->mysql_thd);
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, lock, mtr);
|
2017-12-07 11:26:29 +01:00
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
/* don't wait for another BF lock */
|
|
|
|
continue;
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
/** Grant a lock to a waiting lock request and release the waiting transaction
|
|
|
|
after lock_reset_lock_and_trx_wait() has been called. */
|
|
|
|
static void lock_grant_after_reset(lock_t* lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
2018-03-13 16:37:03 +01:00
|
|
|
ut_ad(trx_mutex_own(lock->trx));
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
if (lock_get_mode(lock) == LOCK_AUTO_INC) {
|
|
|
|
dict_table_t* table = lock->un_member.tab_lock.table;
|
2016-09-06 08:43:16 +02:00
|
|
|
|
|
|
|
if (table->autoinc_trx == lock->trx) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::error() << "Transaction already had an"
|
2016-09-06 08:43:16 +02:00
|
|
|
<< " AUTO-INC lock!";
|
|
|
|
} else {
|
2014-02-26 19:11:54 +01:00
|
|
|
table->autoinc_trx = lock->trx;
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
ib_vector_push(lock->trx->autoinc_locks, &lock);
|
2016-09-06 08:43:16 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
DBUG_PRINT("ib_lock", ("wait for trx " TRX_ID_FMT " ends",
|
|
|
|
trx_get_id_for_print(lock->trx)));
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/* If we are resolving a deadlock by choosing another transaction
|
|
|
|
as a victim, then our original transaction may not be in the
|
|
|
|
TRX_QUE_LOCK_WAIT state, and there is no need to end the lock wait
|
|
|
|
for it */
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2014-05-06 21:13:16 +02:00
|
|
|
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
2014-02-26 19:11:54 +01:00
|
|
|
que_thr_t* thr;
|
2017-01-12 12:30:10 +01:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
thr = que_thr_end_lock_wait(lock->trx);
|
2017-01-12 12:30:10 +01:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
if (thr != NULL) {
|
|
|
|
lock_wait_release_thread_if_suspended(thr);
|
2016-09-06 08:43:16 +02:00
|
|
|
}
|
|
|
|
}
|
2018-03-13 16:37:03 +01:00
|
|
|
}
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
/** Grant a lock to a waiting lock request and release the waiting transaction. */
|
|
|
|
static void lock_grant(lock_t* lock)
|
|
|
|
{
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
trx_mutex_enter(lock->trx);
|
|
|
|
lock_grant_after_reset(lock);
|
|
|
|
trx_mutex_exit(lock->trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Cancels a waiting record lock request and releases the waiting transaction
|
|
|
|
that requested it. NOTE: does NOT check if waiting lock requests behind this
|
|
|
|
one can now be granted! */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_cancel(
|
|
|
|
/*============*/
|
|
|
|
lock_t* lock) /*!< in: waiting record lock request */
|
|
|
|
{
|
|
|
|
que_thr_t* thr;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
|
|
|
|
/* Reset the bit (there can be only one set bit) in the lock bitmap */
|
|
|
|
lock_rec_reset_nth_bit(lock, lock_rec_find_set_bit(lock));
|
|
|
|
|
|
|
|
/* Reset the wait flag and the back pointer to lock in trx */
|
|
|
|
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
|
|
|
|
/* The following function releases the trx from lock wait */
|
|
|
|
|
|
|
|
trx_mutex_enter(lock->trx);
|
|
|
|
|
|
|
|
thr = que_thr_end_lock_wait(lock->trx);
|
|
|
|
|
|
|
|
if (thr != NULL) {
|
|
|
|
lock_wait_release_thread_if_suspended(thr);
|
|
|
|
}
|
|
|
|
|
|
|
|
trx_mutex_exit(lock->trx);
|
|
|
|
}
|
|
|
|
|
2016-10-18 03:56:05 +02:00
|
|
|
static
|
|
|
|
void
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant_and_move_on_page(ulint rec_fold, ulint space, ulint page_no)
|
2016-10-19 07:37:52 +02:00
|
|
|
{
|
2016-10-23 19:36:26 +02:00
|
|
|
lock_t* lock;
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_t* previous = static_cast<lock_t*>(
|
2020-06-18 11:26:28 +02:00
|
|
|
lock_sys.rec_hash.array[lock_sys.rec_hash.calc_hash(rec_fold)].
|
|
|
|
node);
|
2016-10-23 19:36:26 +02:00
|
|
|
if (previous == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (previous->un_member.rec_lock.space == space &&
|
|
|
|
previous->un_member.rec_lock.page_no == page_no) {
|
|
|
|
lock = previous;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
while (previous->hash &&
|
|
|
|
(previous->hash->un_member.rec_lock.space != space ||
|
|
|
|
previous->hash->un_member.rec_lock.page_no != page_no)) {
|
|
|
|
previous = previous->hash;
|
|
|
|
}
|
|
|
|
lock = previous->hash;
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_ad(previous->hash == lock || previous == lock);
|
|
|
|
/* Grant locks if there are no conflicting locks ahead.
|
|
|
|
Move granted locks to the head of the list. */
|
2018-03-13 16:37:03 +01:00
|
|
|
while (lock) {
|
2016-10-23 19:36:26 +02:00
|
|
|
/* If the lock is a wait lock on this page, and it does not need to wait. */
|
2018-03-13 16:37:03 +01:00
|
|
|
if (lock_get_wait(lock)
|
|
|
|
&& lock->un_member.rec_lock.space == space
|
|
|
|
&& lock->un_member.rec_lock.page_no == page_no
|
|
|
|
&& !lock_rec_has_to_wait_in_queue(lock)) {
|
|
|
|
lock_grant(lock);
|
2017-12-07 11:26:29 +01:00
|
|
|
|
2016-10-23 19:36:26 +02:00
|
|
|
if (previous != NULL) {
|
|
|
|
/* Move the lock to the head of the list. */
|
|
|
|
HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock);
|
|
|
|
lock_rec_insert_to_head(lock, rec_fold);
|
|
|
|
} else {
|
|
|
|
/* Already at the head of the list. */
|
|
|
|
previous = lock;
|
|
|
|
}
|
|
|
|
/* Move on to the next lock. */
|
|
|
|
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, previous));
|
|
|
|
} else {
|
|
|
|
previous = lock;
|
|
|
|
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, lock));
|
|
|
|
}
|
|
|
|
}
|
2016-10-18 03:56:05 +02:00
|
|
|
}
|
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
/** Remove a record lock request, waiting or granted, from the queue and
|
|
|
|
grant locks to other transactions in the queue if they now are entitled
|
|
|
|
to a lock. NOTE: all record locks contained in in_lock are removed.
|
|
|
|
@param[in,out] in_lock record lock */
|
|
|
|
static void lock_rec_dequeue_from_page(lock_t* in_lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
2016-08-12 10:17:45 +02:00
|
|
|
hash_table_t* lock_hash;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
|
|
|
|
/* We may or may not be holding in_lock->trx->mutex here. */
|
|
|
|
|
|
|
|
space = in_lock->un_member.rec_lock.space;
|
|
|
|
page_no = in_lock->un_member.rec_lock.page_no;
|
|
|
|
|
|
|
|
in_lock->index->table->n_rec_locks--;
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_hash = lock_hash_get(in_lock->type_mode);
|
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
ulint rec_fold = lock_rec_fold(space, page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
HASH_DELETE(lock_t, hash, lock_hash, rec_fold, in_lock);
|
|
|
|
UT_LIST_REMOVE(in_lock->trx->lock.trx_locks, in_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
MONITOR_INC(MONITOR_RECLOCK_REMOVED);
|
|
|
|
MONITOR_DEC(MONITOR_NUM_RECLOCK);
|
2016-10-23 19:36:26 +02:00
|
|
|
|
2016-10-18 03:56:05 +02:00
|
|
|
if (innodb_lock_schedule_algorithm
|
2018-03-13 16:37:03 +01:00
|
|
|
== INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS
|
2020-06-18 11:26:28 +02:00
|
|
|
|| lock_hash != &lock_sys.rec_hash
|
2018-03-13 16:37:03 +01:00
|
|
|
|| thd_is_replication_slave_thread(in_lock->trx->mysql_thd)) {
|
2016-10-18 03:56:05 +02:00
|
|
|
/* Check if waiting locks in the queue can now be granted:
|
|
|
|
grant locks if there are no conflicting locks ahead. Stop at
|
|
|
|
the first X lock that is waiting or has been granted. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
for (lock_t* lock = lock_rec_get_first_on_page_addr(
|
|
|
|
lock_hash, space, page_no);
|
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-10-18 03:56:05 +02:00
|
|
|
if (lock_get_wait(lock)
|
2018-03-13 16:37:03 +01:00
|
|
|
&& !lock_rec_has_to_wait_in_queue(lock)) {
|
2016-10-18 03:56:05 +02:00
|
|
|
/* Grant the lock */
|
|
|
|
ut_ad(lock->trx != in_lock->trx);
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant(lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2016-10-18 03:56:05 +02:00
|
|
|
}
|
2017-12-07 11:26:29 +01:00
|
|
|
} else {
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant_and_move_on_page(rec_fold, space, page_no);
|
2017-12-07 11:26:29 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Removes a record lock request, waiting or granted, from the queue. */
|
|
|
|
void
|
|
|
|
lock_rec_discard(
|
|
|
|
/*=============*/
|
|
|
|
lock_t* in_lock) /*!< in: record lock object: all
|
|
|
|
record locks which are contained
|
|
|
|
in this lock object are removed */
|
|
|
|
{
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
trx_lock_t* trx_lock;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_type_low(in_lock) == LOCK_REC);
|
|
|
|
|
|
|
|
trx_lock = &in_lock->trx->lock;
|
|
|
|
|
|
|
|
space = in_lock->un_member.rec_lock.space;
|
|
|
|
page_no = in_lock->un_member.rec_lock.page_no;
|
|
|
|
|
|
|
|
in_lock->index->table->n_rec_locks--;
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
HASH_DELETE(lock_t, hash, lock_hash_get(in_lock->type_mode),
|
|
|
|
lock_rec_fold(space, page_no), in_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
UT_LIST_REMOVE(trx_lock->trx_locks, in_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
MONITOR_INC(MONITOR_RECLOCK_REMOVED);
|
|
|
|
MONITOR_DEC(MONITOR_NUM_RECLOCK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Removes record lock objects set on an index page which is discarded. This
|
|
|
|
function does not move locks, or check for waiting locks, therefore the
|
|
|
|
lock bitmaps must already be reset when this function is called. */
|
|
|
|
static
|
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_free_all_from_discard_page_low(
|
|
|
|
/*====================================*/
|
|
|
|
ulint space,
|
|
|
|
ulint page_no,
|
|
|
|
hash_table_t* lock_hash)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
lock_t* next_lock;
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = lock_rec_get_first_on_page_addr(lock_hash, space, page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
while (lock != NULL) {
|
|
|
|
ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED);
|
|
|
|
ut_ad(!lock_get_wait(lock));
|
|
|
|
|
|
|
|
next_lock = lock_rec_get_next_on_page(lock);
|
|
|
|
|
|
|
|
lock_rec_discard(lock);
|
|
|
|
|
|
|
|
lock = next_lock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Removes record lock objects set on an index page which is discarded. This
|
|
|
|
function does not move locks, or check for waiting locks, therefore the
|
|
|
|
lock bitmaps must already be reset when this function is called. */
|
|
|
|
void
|
|
|
|
lock_rec_free_all_from_discard_page(
|
|
|
|
/*================================*/
|
|
|
|
const buf_block_t* block) /*!< in: page to be discarded */
|
|
|
|
{
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
space = block->page.id().space();
|
|
|
|
page_no = block->page.id().page_no();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
lock_rec_free_all_from_discard_page_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
space, page_no, &lock_sys.rec_hash);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_free_all_from_discard_page_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
space, page_no, &lock_sys.prdt_hash);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_free_all_from_discard_page_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
space, page_no, &lock_sys.prdt_page_hash);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*============= RECORD LOCK MOVING AND INHERITING ===================*/
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Resets the lock bits for a single record. Releases transactions waiting for
|
|
|
|
lock requests here. */
|
|
|
|
static
|
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_reset_and_release_wait_low(
|
|
|
|
/*================================*/
|
|
|
|
hash_table_t* hash, /*!< in: hash table */
|
2014-02-26 19:11:54 +01:00
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no)/*!< in: heap number of record */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = lock_rec_get_first(hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
|
2014-05-06 21:13:16 +02:00
|
|
|
if (lock_get_wait(lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_rec_cancel(lock);
|
|
|
|
} else {
|
|
|
|
lock_rec_reset_nth_bit(lock, heap_no);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Resets the lock bits for a single record. Releases transactions waiting for
|
|
|
|
lock requests here. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_reset_and_release_wait(
|
|
|
|
/*============================*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing
|
|
|
|
the record */
|
|
|
|
ulint heap_no)/*!< in: heap number of record */
|
|
|
|
{
|
|
|
|
lock_rec_reset_and_release_wait_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.rec_hash, block, heap_no);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
lock_rec_reset_and_release_wait_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_hash, block, PAGE_HEAP_NO_INFIMUM);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_reset_and_release_wait_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_page_hash, block, PAGE_HEAP_NO_INFIMUM);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*************************************************************//**
|
|
|
|
Makes a record to inherit the locks (except LOCK_INSERT_INTENTION type)
|
|
|
|
of another record as gap type locks, but does not reset the lock bits of
|
|
|
|
the other record. Also waiting lock requests on rec are inherited as
|
|
|
|
GRANTED gap locks. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_inherit_to_gap(
|
|
|
|
/*====================*/
|
|
|
|
const buf_block_t* heir_block, /*!< in: block containing the
|
|
|
|
record which inherits */
|
|
|
|
const buf_block_t* block, /*!< in: block containing the
|
|
|
|
record from which inherited;
|
|
|
|
does NOT reset the locks on
|
|
|
|
this record */
|
|
|
|
ulint heir_heap_no, /*!< in: heap_no of the
|
|
|
|
inheriting record */
|
|
|
|
ulint heap_no) /*!< in: heap_no of the
|
|
|
|
donating record */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2019-05-22 13:49:38 +02:00
|
|
|
/* At READ UNCOMMITTED or READ COMMITTED isolation level,
|
|
|
|
we do not want locks set
|
2014-02-26 19:11:54 +01:00
|
|
|
by an UPDATE or a DELETE to be inherited as gap type locks. But we
|
2015-10-09 17:21:46 +02:00
|
|
|
DO want S-locks/X-locks(taken for replace) set by a consistency
|
2016-08-12 10:17:45 +02:00
|
|
|
constraint to be inherited also then. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
|
|
|
|
if (!lock_rec_get_insert_intention(lock)
|
2019-05-22 13:49:38 +02:00
|
|
|
&& (lock->trx->isolation_level > TRX_ISO_READ_COMMITTED
|
|
|
|
|| lock_get_mode(lock) !=
|
|
|
|
(lock->trx->duplicates ? LOCK_S : LOCK_X))) {
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_rec_add_to_queue(
|
2020-03-10 19:05:17 +01:00
|
|
|
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
|
2014-02-26 19:11:54 +01:00
|
|
|
heir_block, heir_heap_no, lock->index,
|
|
|
|
lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Makes a record to inherit the gap locks (except LOCK_INSERT_INTENTION type)
|
|
|
|
of another record as gap type locks, but does not reset the lock bits of the
|
|
|
|
other record. Also waiting lock requests are inherited as GRANTED gap locks. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_inherit_to_gap_if_gap_lock(
|
|
|
|
/*================================*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block */
|
|
|
|
ulint heir_heap_no, /*!< in: heap_no of
|
|
|
|
record which inherits */
|
|
|
|
ulint heap_no) /*!< in: heap_no of record
|
|
|
|
from which inherited;
|
|
|
|
does NOT reset the locks
|
|
|
|
on this record */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
|
|
|
|
if (!lock_rec_get_insert_intention(lock)
|
|
|
|
&& (heap_no == PAGE_HEAP_NO_SUPREMUM
|
|
|
|
|| !lock_rec_get_rec_not_gap(lock))) {
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
2020-03-10 19:05:17 +01:00
|
|
|
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
|
2014-02-26 19:11:54 +01:00
|
|
|
block, heir_heap_no, lock->index,
|
|
|
|
lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Moves the locks of a record to another record and resets the lock bits of
|
|
|
|
the donating record. */
|
2015-05-26 09:01:12 +02:00
|
|
|
static
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_move_low(
|
|
|
|
/*==============*/
|
|
|
|
hash_table_t* lock_hash, /*!< in: hash table to use */
|
2014-02-26 19:11:54 +01:00
|
|
|
const buf_block_t* receiver, /*!< in: buffer block containing
|
|
|
|
the receiving record */
|
|
|
|
const buf_block_t* donator, /*!< in: buffer block containing
|
|
|
|
the donating record */
|
|
|
|
ulint receiver_heap_no,/*!< in: heap_no of the record
|
|
|
|
which gets the locks; there
|
|
|
|
must be no lock requests
|
|
|
|
on it! */
|
|
|
|
ulint donator_heap_no)/*!< in: heap_no of the record
|
|
|
|
which gives the locks */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If the lock is predicate lock, it resides on INFIMUM record */
|
|
|
|
ut_ad(lock_rec_get_first(
|
|
|
|
lock_hash, receiver, receiver_heap_no) == NULL
|
2020-06-18 11:26:28 +02:00
|
|
|
|| lock_hash == &lock_sys.prdt_hash
|
|
|
|
|| lock_hash == &lock_sys.prdt_page_hash);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = lock_rec_get_first(lock_hash,
|
|
|
|
donator, donator_heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next(donator_heap_no, lock)) {
|
|
|
|
|
2020-03-10 19:05:17 +01:00
|
|
|
const auto type_mode = lock->type_mode;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock_rec_reset_nth_bit(lock, donator_heap_no);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (type_mode & LOCK_WAIT) {
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note that we FIRST reset the bit, and then set the lock:
|
|
|
|
the function works also if donator == receiver */
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
|
|
|
type_mode, receiver, receiver_heap_no,
|
|
|
|
lock->index, lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
ut_ad(!lock_rec_get_first(&lock_sys.rec_hash,
|
|
|
|
donator, donator_heap_no));
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/** Move all the granted locks to the front of the given lock list.
|
|
|
|
All the waiting locks will be at the end of the list.
|
|
|
|
@param[in,out] lock_list the given lock list. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_move_granted_locks_to_front(
|
|
|
|
UT_LIST_BASE_NODE_T(lock_t)& lock_list)
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
|
|
|
|
bool seen_waiting_lock = false;
|
|
|
|
|
|
|
|
for (lock = UT_LIST_GET_FIRST(lock_list); lock;
|
|
|
|
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
|
|
|
|
|
|
|
|
if (!seen_waiting_lock) {
|
|
|
|
if (lock->is_waiting()) {
|
|
|
|
seen_waiting_lock = true;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_ad(seen_waiting_lock);
|
|
|
|
|
|
|
|
if (!lock->is_waiting()) {
|
|
|
|
lock_t* prev = UT_LIST_GET_PREV(trx_locks, lock);
|
|
|
|
ut_a(prev);
|
2019-04-29 13:33:46 +02:00
|
|
|
ut_list_move_to_front(lock_list, lock);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = prev;
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2015-05-26 09:01:12 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Moves the locks of a record to another record and resets the lock bits of
|
|
|
|
the donating record. */
|
|
|
|
UNIV_INLINE
|
|
|
|
void
|
|
|
|
lock_rec_move(
|
|
|
|
/*==========*/
|
|
|
|
const buf_block_t* receiver, /*!< in: buffer block containing
|
|
|
|
the receiving record */
|
|
|
|
const buf_block_t* donator, /*!< in: buffer block containing
|
|
|
|
the donating record */
|
|
|
|
ulint receiver_heap_no,/*!< in: heap_no of the record
|
|
|
|
which gets the locks; there
|
|
|
|
must be no lock requests
|
|
|
|
on it! */
|
|
|
|
ulint donator_heap_no)/*!< in: heap_no of the record
|
|
|
|
which gives the locks */
|
|
|
|
{
|
2020-06-18 11:26:28 +02:00
|
|
|
lock_rec_move_low(&lock_sys.rec_hash, receiver, donator,
|
2015-05-26 09:01:12 +02:00
|
|
|
receiver_heap_no, donator_heap_no);
|
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when we have reorganized a page. NOTE: we copy
|
|
|
|
also the locks set on the infimum of the page; the infimum may carry
|
|
|
|
locks if an update of a record is occurring on the page, and its locks
|
|
|
|
were temporarily stored on the infimum. */
|
|
|
|
void
|
|
|
|
lock_move_reorganize_page(
|
|
|
|
/*======================*/
|
|
|
|
const buf_block_t* block, /*!< in: old index page, now
|
|
|
|
reorganized */
|
|
|
|
const buf_block_t* oblock) /*!< in: copy of the old, not
|
|
|
|
reorganized page */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
UT_LIST_BASE_NODE_T(lock_t) old_locks;
|
|
|
|
mem_heap_t* heap = NULL;
|
|
|
|
ulint comp;
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* FIXME: This needs to deal with predicate lock too */
|
2020-06-18 11:26:28 +02:00
|
|
|
lock = lock_rec_get_first_on_page(&lock_sys.rec_hash, block);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (lock == NULL) {
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
|
|
|
|
/* Copy first all the locks on the page to heap and reset the
|
|
|
|
bitmaps in the original locks; chain the copies of the locks
|
|
|
|
using the trx_locks field in them. */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
UT_LIST_INIT(old_locks, &lock_t::trx_locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
do {
|
|
|
|
/* Make a copy of the lock */
|
|
|
|
lock_t* old_lock = lock_rec_copy(lock, heap);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
UT_LIST_ADD_LAST(old_locks, old_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* Reset bitmap of lock */
|
|
|
|
lock_rec_bitmap_reset(lock);
|
|
|
|
|
|
|
|
if (lock_get_wait(lock)) {
|
|
|
|
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
lock = lock_rec_get_next_on_page(lock);
|
|
|
|
} while (lock != NULL);
|
|
|
|
|
|
|
|
comp = page_is_comp(block->frame);
|
|
|
|
ut_ad(comp == page_is_comp(oblock->frame));
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_move_granted_locks_to_front(old_locks);
|
|
|
|
|
|
|
|
DBUG_EXECUTE_IF("do_lock_reverse_page_reorganize",
|
2019-04-29 13:33:46 +02:00
|
|
|
ut_list_reverse(old_locks););
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
for (lock = UT_LIST_GET_FIRST(old_locks); lock;
|
|
|
|
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/* NOTE: we copy also the locks set on the infimum and
|
|
|
|
supremum of the page; the infimum may carry locks if an
|
|
|
|
update of a record is occurring on the page, and its locks
|
|
|
|
were temporarily stored on the infimum */
|
2016-08-12 10:17:45 +02:00
|
|
|
const rec_t* rec1 = page_get_infimum_rec(
|
|
|
|
buf_block_get_frame(block));
|
|
|
|
const rec_t* rec2 = page_get_infimum_rec(
|
|
|
|
buf_block_get_frame(oblock));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* Set locks according to old locks */
|
|
|
|
for (;;) {
|
|
|
|
ulint old_heap_no;
|
|
|
|
ulint new_heap_no;
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_d(const rec_t* const orec = rec1);
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(page_rec_is_metadata(rec1)
|
|
|
|
== page_rec_is_metadata(rec2));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (comp) {
|
|
|
|
old_heap_no = rec_get_heap_no_new(rec2);
|
|
|
|
new_heap_no = rec_get_heap_no_new(rec1);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1 = page_rec_get_next_low(rec1, TRUE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, TRUE);
|
|
|
|
} else {
|
|
|
|
old_heap_no = rec_get_heap_no_old(rec2);
|
|
|
|
new_heap_no = rec_get_heap_no_old(rec1);
|
|
|
|
ut_ad(!memcmp(rec1, rec2,
|
|
|
|
rec_get_data_size_old(rec2)));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1 = page_rec_get_next_low(rec1, FALSE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, FALSE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Clear the bit in old_lock. */
|
|
|
|
if (old_heap_no < lock->un_member.rec_lock.n_bits
|
|
|
|
&& lock_rec_reset_nth_bit(lock, old_heap_no)) {
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(orec));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/* NOTE that the old lock bitmap could be too
|
|
|
|
small for the new heap number! */
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
|
|
|
lock->type_mode, block, new_heap_no,
|
|
|
|
lock->index, lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (new_heap_no == PAGE_HEAP_NO_SUPREMUM) {
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_ad(old_heap_no == PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-04-21 04:51:27 +02:00
|
|
|
ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
mem_heap_free(heap);
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG_LOCK_VALIDATE
|
|
|
|
ut_ad(lock_rec_validate_page(block));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Moves the explicit locks on user records to another page if a record
|
|
|
|
list end is moved to another page. */
|
|
|
|
void
|
|
|
|
lock_move_rec_list_end(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* new_block, /*!< in: index page to move to */
|
|
|
|
const buf_block_t* block, /*!< in: index page */
|
|
|
|
const rec_t* rec) /*!< in: record on page: this
|
|
|
|
is the first record moved */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
const ulint comp = page_rec_is_comp(rec);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(buf_block_get_frame(block) == page_align(rec));
|
|
|
|
ut_ad(comp == page_is_comp(buf_block_get_frame(new_block)));
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Note: when we move locks from record to record, waiting locks
|
|
|
|
and possible granted gap type locks behind them are enqueued in
|
|
|
|
the original order, because new elements are inserted to a hash
|
|
|
|
table to the end of the hash chain, and lock_rec_add_to_queue
|
|
|
|
does not reuse locks if there are waiters in the queue. */
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first_on_page(&lock_sys.rec_hash, block);
|
|
|
|
lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
const rec_t* rec1 = rec;
|
|
|
|
const rec_t* rec2;
|
2020-03-10 19:05:17 +01:00
|
|
|
const auto type_mode = lock->type_mode;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (comp) {
|
|
|
|
if (page_offset(rec1) == PAGE_NEW_INFIMUM) {
|
|
|
|
rec1 = page_rec_get_next_low(rec1, TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
rec2 = page_rec_get_next_low(
|
|
|
|
buf_block_get_frame(new_block)
|
|
|
|
+ PAGE_NEW_INFIMUM, TRUE);
|
|
|
|
} else {
|
|
|
|
if (page_offset(rec1) == PAGE_OLD_INFIMUM) {
|
|
|
|
rec1 = page_rec_get_next_low(rec1, FALSE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec2 = page_rec_get_next_low(
|
|
|
|
buf_block_get_frame(new_block)
|
|
|
|
+ PAGE_OLD_INFIMUM, FALSE);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy lock requests on user records to new page and
|
|
|
|
reset the lock bits on the old */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (;;) {
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(page_rec_is_metadata(rec1)
|
|
|
|
== page_rec_is_metadata(rec2));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_d(const rec_t* const orec = rec1);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint rec1_heap_no;
|
|
|
|
ulint rec2_heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (comp) {
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1_heap_no = rec_get_heap_no_new(rec1);
|
|
|
|
|
|
|
|
if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) {
|
|
|
|
break;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec2_heap_no = rec_get_heap_no_new(rec2);
|
|
|
|
rec1 = page_rec_get_next_low(rec1, TRUE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, TRUE);
|
|
|
|
} else {
|
|
|
|
rec1_heap_no = rec_get_heap_no_old(rec1);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) {
|
|
|
|
break;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec2_heap_no = rec_get_heap_no_old(rec2);
|
|
|
|
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(rec_get_data_size_old(rec1)
|
|
|
|
== rec_get_data_size_old(rec2));
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!memcmp(rec1, rec2,
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
rec_get_data_size_old(rec1)));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
rec1 = page_rec_get_next_low(rec1, FALSE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
|
|
|
|
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(orec));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (type_mode & LOCK_WAIT) {
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
2016-08-12 10:17:45 +02:00
|
|
|
type_mode, new_block, rec2_heap_no,
|
2014-02-26 19:11:54 +01:00
|
|
|
lock->index, lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG_LOCK_VALIDATE
|
|
|
|
ut_ad(lock_rec_validate_page(block));
|
|
|
|
ut_ad(lock_rec_validate_page(new_block));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Moves the explicit locks on user records to another page if a record
|
|
|
|
list start is moved to another page. */
|
|
|
|
void
|
|
|
|
lock_move_rec_list_start(
|
|
|
|
/*=====================*/
|
|
|
|
const buf_block_t* new_block, /*!< in: index page to
|
|
|
|
move to */
|
|
|
|
const buf_block_t* block, /*!< in: index page */
|
|
|
|
const rec_t* rec, /*!< in: record on page:
|
|
|
|
this is the first
|
|
|
|
record NOT copied */
|
|
|
|
const rec_t* old_end) /*!< in: old
|
|
|
|
previous-to-last
|
|
|
|
record on new_page
|
|
|
|
before the records
|
|
|
|
were copied */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
const ulint comp = page_rec_is_comp(rec);
|
|
|
|
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
ut_ad(new_block->frame == page_align(old_end));
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(comp == page_rec_is_comp(old_end));
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first_on_page(&lock_sys.rec_hash, block);
|
|
|
|
lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
const rec_t* rec1;
|
|
|
|
const rec_t* rec2;
|
2020-03-10 19:05:17 +01:00
|
|
|
const auto type_mode = lock->type_mode;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (comp) {
|
|
|
|
rec1 = page_rec_get_next_low(
|
|
|
|
buf_block_get_frame(block)
|
|
|
|
+ PAGE_NEW_INFIMUM, TRUE);
|
|
|
|
rec2 = page_rec_get_next_low(old_end, TRUE);
|
|
|
|
} else {
|
|
|
|
rec1 = page_rec_get_next_low(
|
|
|
|
buf_block_get_frame(block)
|
|
|
|
+ PAGE_OLD_INFIMUM, FALSE);
|
|
|
|
rec2 = page_rec_get_next_low(old_end, FALSE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* Copy lock requests on user records to new page and
|
|
|
|
reset the lock bits on the old */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
while (rec1 != rec) {
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(page_rec_is_metadata(rec1)
|
|
|
|
== page_rec_is_metadata(rec2));
|
2017-12-15 12:50:30 +01:00
|
|
|
ut_d(const rec_t* const prev = rec1);
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint rec1_heap_no;
|
|
|
|
ulint rec2_heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (comp) {
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1_heap_no = rec_get_heap_no_new(rec1);
|
|
|
|
rec2_heap_no = rec_get_heap_no_new(rec2);
|
|
|
|
|
|
|
|
rec1 = page_rec_get_next_low(rec1, TRUE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, TRUE);
|
2014-02-26 19:11:54 +01:00
|
|
|
} else {
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1_heap_no = rec_get_heap_no_old(rec1);
|
|
|
|
rec2_heap_no = rec_get_heap_no_old(rec2);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!memcmp(rec1, rec2,
|
|
|
|
rec_get_data_size_old(rec2)));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec1 = page_rec_get_next_low(rec1, FALSE);
|
|
|
|
rec2 = page_rec_get_next_low(rec2, FALSE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
|
|
|
|
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(prev));
|
2017-12-15 12:50:30 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (type_mode & LOCK_WAIT) {
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
2016-08-12 10:17:45 +02:00
|
|
|
type_mode, new_block, rec2_heap_no,
|
2014-02-26 19:11:54 +01:00
|
|
|
lock->index, lock->trx, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
|
|
ulint i;
|
|
|
|
|
|
|
|
for (i = PAGE_HEAP_NO_USER_LOW;
|
|
|
|
i < lock_rec_get_n_bits(lock); i++) {
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_rec_get_nth_bit(lock, i)) {
|
|
|
|
ib::fatal()
|
|
|
|
<< "lock_move_rec_list_start():"
|
|
|
|
<< i << " not moved in "
|
|
|
|
<< (void*) lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG_LOCK_VALIDATE
|
|
|
|
ut_ad(lock_rec_validate_page(block));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Moves the explicit locks on user records to another page if a record
|
|
|
|
list start is moved to another page. */
|
|
|
|
void
|
|
|
|
lock_rtr_move_rec_list(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* new_block, /*!< in: index page to
|
|
|
|
move to */
|
|
|
|
const buf_block_t* block, /*!< in: index page */
|
|
|
|
rtr_rec_move_t* rec_move, /*!< in: recording records
|
|
|
|
moved */
|
|
|
|
ulint num_move) /*!< in: num of rec to move */
|
|
|
|
{
|
|
|
|
lock_t* lock;
|
|
|
|
ulint comp;
|
|
|
|
|
|
|
|
if (!num_move) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
comp = page_rec_is_comp(rec_move[0].old_rec);
|
|
|
|
|
|
|
|
ut_ad(block->frame == page_align(rec_move[0].old_rec));
|
|
|
|
ut_ad(new_block->frame == page_align(rec_move[0].new_rec));
|
|
|
|
ut_ad(comp == page_rec_is_comp(rec_move[0].new_rec));
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first_on_page(&lock_sys.rec_hash, block);
|
|
|
|
lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = lock_rec_get_next_on_page(lock)) {
|
|
|
|
ulint moved = 0;
|
|
|
|
const rec_t* rec1;
|
|
|
|
const rec_t* rec2;
|
2020-03-10 19:05:17 +01:00
|
|
|
const auto type_mode = lock->type_mode;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* Copy lock requests on user records to new page and
|
|
|
|
reset the lock bits on the old */
|
|
|
|
|
|
|
|
while (moved < num_move) {
|
|
|
|
ulint rec1_heap_no;
|
|
|
|
ulint rec2_heap_no;
|
|
|
|
|
|
|
|
rec1 = rec_move[moved].old_rec;
|
|
|
|
rec2 = rec_move[moved].new_rec;
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec1));
|
|
|
|
ut_ad(!page_rec_is_metadata(rec2));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
if (comp) {
|
|
|
|
rec1_heap_no = rec_get_heap_no_new(rec1);
|
|
|
|
rec2_heap_no = rec_get_heap_no_new(rec2);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
rec1_heap_no = rec_get_heap_no_old(rec1);
|
|
|
|
rec2_heap_no = rec_get_heap_no_old(rec2);
|
|
|
|
|
|
|
|
ut_ad(!memcmp(rec1, rec2,
|
|
|
|
rec_get_data_size_old(rec2)));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rec1_heap_no < lock->un_member.rec_lock.n_bits
|
|
|
|
&& lock_rec_reset_nth_bit(lock, rec1_heap_no)) {
|
|
|
|
if (type_mode & LOCK_WAIT) {
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_rec_add_to_queue(
|
|
|
|
type_mode, new_block, rec2_heap_no,
|
|
|
|
lock->index, lock->trx, FALSE);
|
|
|
|
|
|
|
|
rec_move[moved].moved = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
moved++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG_LOCK_VALIDATE
|
|
|
|
ut_ad(lock_rec_validate_page(block));
|
|
|
|
#endif
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is split to the right. */
|
|
|
|
void
|
|
|
|
lock_update_split_right(
|
|
|
|
/*====================*/
|
|
|
|
const buf_block_t* right_block, /*!< in: right page */
|
|
|
|
const buf_block_t* left_block) /*!< in: left page */
|
|
|
|
{
|
|
|
|
ulint heap_no = lock_get_min_heap_no(right_block);
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Move the locks on the supremum of the left page to the supremum
|
|
|
|
of the right page */
|
|
|
|
|
|
|
|
lock_rec_move(right_block, left_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
|
|
|
/* Inherit the locks to the supremum of left page from the successor
|
|
|
|
of the infimum on right page */
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(left_block, right_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, heap_no);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is merged to the right. */
|
|
|
|
void
|
|
|
|
lock_update_merge_right(
|
|
|
|
/*====================*/
|
|
|
|
const buf_block_t* right_block, /*!< in: right page to
|
|
|
|
which merged */
|
|
|
|
const rec_t* orig_succ, /*!< in: original
|
|
|
|
successor of infimum
|
|
|
|
on the right page
|
|
|
|
before merge */
|
|
|
|
const buf_block_t* left_block) /*!< in: merged index
|
|
|
|
page which will be
|
|
|
|
discarded */
|
|
|
|
{
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(orig_succ));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Inherit the locks from the supremum of the left page to the
|
|
|
|
original successor of infimum on the right page, to which the left
|
|
|
|
page was merged */
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(right_block, left_block,
|
|
|
|
page_rec_get_heap_no(orig_succ),
|
|
|
|
PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
|
|
|
/* Reset the locks on the supremum of the left page, releasing
|
|
|
|
waiting transactions */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_reset_and_release_wait_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* there should exist no page lock on the left page,
|
|
|
|
otherwise, it will be blocked from merge */
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
ut_ad(!lock_rec_get_first_on_page_addr(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_page_hash,
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
left_block->page.id().space(),
|
|
|
|
left_block->page.id().page_no()));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock_rec_free_all_from_discard_page(left_block);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when the root page is copied to another in
|
|
|
|
btr_root_raise_and_insert. Note that we leave lock structs on the
|
|
|
|
root page, even though they do not make sense on other than leaf
|
|
|
|
pages: the reason is that in a pessimistic update the infimum record
|
|
|
|
of the root page will act as a dummy carrier of the locks of the record
|
|
|
|
to be updated. */
|
|
|
|
void
|
|
|
|
lock_update_root_raise(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* block, /*!< in: index page to which copied */
|
|
|
|
const buf_block_t* root) /*!< in: root page */
|
|
|
|
{
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Move the locks on the supremum of the root to the supremum
|
|
|
|
of block */
|
|
|
|
|
|
|
|
lock_rec_move(block, root,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is copied to another and the original page
|
|
|
|
is removed from the chain of leaf pages, except if page is the root! */
|
|
|
|
void
|
|
|
|
lock_update_copy_and_discard(
|
|
|
|
/*=========================*/
|
|
|
|
const buf_block_t* new_block, /*!< in: index page to
|
|
|
|
which copied */
|
|
|
|
const buf_block_t* block) /*!< in: index page;
|
|
|
|
NOT the root! */
|
|
|
|
{
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Move the locks on the supremum of the old page to the supremum
|
|
|
|
of new_page */
|
|
|
|
|
|
|
|
lock_rec_move(new_block, block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
lock_rec_free_all_from_discard_page(block);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is split to the left. */
|
|
|
|
void
|
|
|
|
lock_update_split_left(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* right_block, /*!< in: right page */
|
|
|
|
const buf_block_t* left_block) /*!< in: left page */
|
|
|
|
{
|
|
|
|
ulint heap_no = lock_get_min_heap_no(right_block);
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Inherit the locks to the supremum of the left page from the
|
|
|
|
successor of the infimum on the right page */
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(left_block, right_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, heap_no);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is merged to the left. */
|
|
|
|
void
|
|
|
|
lock_update_merge_left(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* left_block, /*!< in: left page to
|
|
|
|
which merged */
|
|
|
|
const rec_t* orig_pred, /*!< in: original predecessor
|
|
|
|
of supremum on the left page
|
|
|
|
before merge */
|
|
|
|
const buf_block_t* right_block) /*!< in: merged index page
|
|
|
|
which will be discarded */
|
|
|
|
{
|
|
|
|
const rec_t* left_next_rec;
|
|
|
|
|
|
|
|
ut_ad(left_block->frame == page_align(orig_pred));
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
left_next_rec = page_rec_get_next_const(orig_pred);
|
|
|
|
|
|
|
|
if (!page_rec_is_supremum(left_next_rec)) {
|
|
|
|
|
|
|
|
/* Inherit the locks on the supremum of the left page to the
|
|
|
|
first record which was moved from the right page */
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(left_block, left_block,
|
|
|
|
page_rec_get_heap_no(left_next_rec),
|
|
|
|
PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
|
|
|
/* Reset the locks on the supremum of the left page,
|
|
|
|
releasing waiting transactions */
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_reset_and_release_wait_low(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Move the locks from the supremum of right page to the supremum
|
|
|
|
of the left page */
|
|
|
|
|
|
|
|
lock_rec_move(left_block, right_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* there should exist no page lock on the right page,
|
|
|
|
otherwise, it will be blocked from merge */
|
2018-03-27 21:57:04 +02:00
|
|
|
ut_ad(!lock_rec_get_first_on_page_addr(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_page_hash,
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
right_block->page.id().space(),
|
|
|
|
right_block->page.id().page_no()));
|
2014-08-06 14:28:58 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_free_all_from_discard_page(right_block);
|
2014-08-06 14:28:58 +02:00
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*************************************************************//**
|
|
|
|
Resets the original locks on heir and replaces them with gap type locks
|
|
|
|
inherited from rec. */
|
|
|
|
void
|
|
|
|
lock_rec_reset_and_inherit_gap_locks(
|
|
|
|
/*=================================*/
|
|
|
|
const buf_block_t* heir_block, /*!< in: block containing the
|
|
|
|
record which inherits */
|
|
|
|
const buf_block_t* block, /*!< in: block containing the
|
|
|
|
record from which inherited;
|
|
|
|
does NOT reset the locks on
|
|
|
|
this record */
|
|
|
|
ulint heir_heap_no, /*!< in: heap_no of the
|
|
|
|
inheriting record */
|
|
|
|
ulint heap_no) /*!< in: heap_no of the
|
|
|
|
donating record */
|
|
|
|
{
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
lock_rec_reset_and_release_wait(heir_block, heir_heap_no);
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(heir_block, block, heir_heap_no, heap_no);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is discarded. */
|
|
|
|
void
|
|
|
|
lock_update_discard(
|
|
|
|
/*================*/
|
|
|
|
const buf_block_t* heir_block, /*!< in: index page
|
|
|
|
which will inherit the locks */
|
|
|
|
ulint heir_heap_no, /*!< in: heap_no of the record
|
|
|
|
which will inherit the locks */
|
|
|
|
const buf_block_t* block) /*!< in: index page
|
|
|
|
which will be discarded */
|
|
|
|
{
|
2018-03-11 22:34:23 +01:00
|
|
|
const page_t* page = block->frame;
|
2014-02-26 19:11:54 +01:00
|
|
|
const rec_t* rec;
|
|
|
|
ulint heap_no;
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
if (lock_rec_get_first_on_page(&lock_sys.rec_hash, block)) {
|
|
|
|
ut_ad(!lock_rec_get_first_on_page(&lock_sys.prdt_hash, block));
|
|
|
|
ut_ad(!lock_rec_get_first_on_page(&lock_sys.prdt_page_hash,
|
2018-11-19 10:40:10 +01:00
|
|
|
block));
|
|
|
|
/* Inherit all the locks on the page to the record and
|
|
|
|
reset all the locks on the page */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
if (page_is_comp(page)) {
|
|
|
|
rec = page + PAGE_NEW_INFIMUM;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
do {
|
|
|
|
heap_no = rec_get_heap_no_new(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_inherit_to_gap(heir_block, block,
|
|
|
|
heir_heap_no, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_reset_and_release_wait(
|
|
|
|
block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
rec = page + rec_get_next_offs(rec, TRUE);
|
|
|
|
} while (heap_no != PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
} else {
|
|
|
|
rec = page + PAGE_OLD_INFIMUM;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
do {
|
|
|
|
heap_no = rec_get_heap_no_old(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_inherit_to_gap(heir_block, block,
|
|
|
|
heir_heap_no, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_reset_and_release_wait(
|
|
|
|
block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
rec = page + rec_get_next_offs(rec, FALSE);
|
|
|
|
} while (heap_no != PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_free_all_from_discard_page_low(
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
block->page.id().space(), block->page.id().page_no(),
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.rec_hash);
|
2018-11-19 10:40:10 +01:00
|
|
|
} else {
|
|
|
|
lock_rec_free_all_from_discard_page_low(
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
block->page.id().space(), block->page.id().page_no(),
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_hash);
|
2018-11-19 10:40:10 +01:00
|
|
|
lock_rec_free_all_from_discard_page_low(
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
block->page.id().space(), block->page.id().page_no(),
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.prdt_page_hash);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a new user record is inserted. */
|
|
|
|
void
|
|
|
|
lock_update_insert(
|
|
|
|
/*===============*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec) /*!< in: the inserted record */
|
|
|
|
{
|
|
|
|
ulint receiver_heap_no;
|
|
|
|
ulint donator_heap_no;
|
|
|
|
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/* Inherit the gap-locking locks for rec, in gap mode, from the next
|
|
|
|
record */
|
|
|
|
|
|
|
|
if (page_rec_is_comp(rec)) {
|
|
|
|
receiver_heap_no = rec_get_heap_no_new(rec);
|
|
|
|
donator_heap_no = rec_get_heap_no_new(
|
|
|
|
page_rec_get_next_low(rec, TRUE));
|
|
|
|
} else {
|
|
|
|
receiver_heap_no = rec_get_heap_no_old(rec);
|
|
|
|
donator_heap_no = rec_get_heap_no_old(
|
|
|
|
page_rec_get_next_low(rec, FALSE));
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap_if_gap_lock(
|
|
|
|
block, receiver_heap_no, donator_heap_no);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a record is removed. */
|
|
|
|
void
|
|
|
|
lock_update_delete(
|
|
|
|
/*===============*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec) /*!< in: the record to be removed */
|
|
|
|
{
|
|
|
|
const page_t* page = block->frame;
|
|
|
|
ulint heap_no;
|
|
|
|
ulint next_heap_no;
|
|
|
|
|
|
|
|
ut_ad(page == page_align(rec));
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
if (page_is_comp(page)) {
|
|
|
|
heap_no = rec_get_heap_no_new(rec);
|
|
|
|
next_heap_no = rec_get_heap_no_new(page
|
|
|
|
+ rec_get_next_offs(rec,
|
|
|
|
TRUE));
|
|
|
|
} else {
|
|
|
|
heap_no = rec_get_heap_no_old(rec);
|
|
|
|
next_heap_no = rec_get_heap_no_old(page
|
|
|
|
+ rec_get_next_offs(rec,
|
|
|
|
FALSE));
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
/* Let the next record inherit the locks from rec, in gap mode */
|
|
|
|
|
|
|
|
lock_rec_inherit_to_gap(block, block, next_heap_no, heap_no);
|
|
|
|
|
|
|
|
/* Reset the lock bits on rec and release waiting transactions */
|
|
|
|
|
|
|
|
lock_rec_reset_and_release_wait(block, heap_no);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Stores on the page infimum record the explicit locks of another record.
|
|
|
|
This function is used to store the lock state of a record when it is
|
|
|
|
updated and the size of the record changes in the update. The record
|
|
|
|
is moved in such an update, perhaps to another page. The infimum record
|
|
|
|
acts as a dummy carrier record, taking care of lock releases while the
|
|
|
|
actual record is being moved. */
|
|
|
|
void
|
|
|
|
lock_rec_store_on_page_infimum(
|
|
|
|
/*===========================*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec) /*!< in: record whose lock state
|
|
|
|
is stored on the infimum
|
|
|
|
record of the same page; lock
|
|
|
|
bits are reset on the
|
|
|
|
record */
|
|
|
|
{
|
|
|
|
ulint heap_no = page_rec_get_heap_no(rec);
|
|
|
|
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
lock_rec_move(block, block, PAGE_HEAP_NO_INFIMUM, heap_no);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Restores the state of explicit lock requests on a single record, where the
|
|
|
|
state was stored on the infimum of the page. */
|
|
|
|
void
|
|
|
|
lock_rec_restore_from_page_infimum(
|
|
|
|
/*===============================*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec, /*!< in: record whose lock state
|
|
|
|
is restored */
|
|
|
|
const buf_block_t* donator)/*!< in: page (rec is not
|
|
|
|
necessarily on this page)
|
|
|
|
whose infimum stored the lock
|
|
|
|
state; lock bits are reset on
|
|
|
|
the infimum */
|
|
|
|
{
|
|
|
|
ulint heap_no = page_rec_get_heap_no(rec);
|
|
|
|
|
|
|
|
lock_mutex_enter();
|
|
|
|
|
|
|
|
lock_rec_move(block, donator, heap_no, PAGE_HEAP_NO_INFIMUM);
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*========================= TABLE LOCKS ==============================*/
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Functor for accessing the embedded node within a table lock. */
|
|
|
|
struct TableLockGetNode {
|
|
|
|
ut_list_node<lock_t>& operator() (lock_t& elem)
|
|
|
|
{
|
|
|
|
return(elem.un_member.tab_lock.locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
};
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Creates a table lock object and adds it as the last in the lock queue
|
|
|
|
of the table. Does NOT check for deadlocks or lock compatibility.
|
|
|
|
@return own: new lock object */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INLINE
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t*
|
|
|
|
lock_table_create(
|
|
|
|
/*==============*/
|
|
|
|
dict_table_t* table, /*!< in/out: database table
|
|
|
|
in dictionary cache */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned type_mode,/*!< in: lock mode possibly ORed with
|
2016-08-12 10:17:45 +02:00
|
|
|
LOCK_WAIT */
|
2018-03-13 13:15:46 +01:00
|
|
|
trx_t* trx /*!< in: trx */
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
, lock_t* c_lock = NULL /*!< in: conflicting lock */
|
|
|
|
#endif
|
|
|
|
)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(table && trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_ad(lock_mutex_own());
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx_mutex_own(trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
check_trx_state(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if ((type_mode & LOCK_MODE_MASK) == LOCK_AUTO_INC) {
|
|
|
|
++table->n_waiting_or_granted_auto_inc_locks;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* For AUTOINC locking we reuse the lock instance only if
|
|
|
|
there is no wait involved else we allocate the waiting lock
|
|
|
|
from the transaction lock heap. */
|
|
|
|
if (type_mode == LOCK_AUTO_INC) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = table->autoinc_lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
table->autoinc_trx = trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ib_vector_push(trx->autoinc_locks, &lock);
|
|
|
|
|
2018-08-13 10:46:22 +02:00
|
|
|
} else if (trx->lock.table_cached
|
|
|
|
< UT_ARR_SIZE(trx->lock.table_pool)) {
|
|
|
|
lock = &trx->lock.table_pool[trx->lock.table_cached++];
|
2014-02-26 19:11:54 +01:00
|
|
|
} else {
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = static_cast<lock_t*>(
|
|
|
|
mem_heap_alloc(trx->lock.lock_heap, sizeof(*lock)));
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock->type_mode = ib_uint32_t(type_mode | LOCK_TABLE);
|
|
|
|
lock->trx = trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock->un_member.tab_lock.table = table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-07-04 20:37:55 +02:00
|
|
|
ut_ad(table->get_ref_count() > 0 || !table->can_be_evicted);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
UT_LIST_ADD_LAST(trx->lock.trx_locks, lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (c_lock && trx->is_wsrep()) {
|
2018-03-16 13:35:42 +01:00
|
|
|
if (wsrep_thd_is_BF(trx->mysql_thd, FALSE)) {
|
|
|
|
ut_list_insert(table->locks, c_lock, lock,
|
|
|
|
TableLockGetNode());
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-16 13:35:42 +01:00
|
|
|
ib::info() << "table lock BF conflict for "
|
|
|
|
<< ib::hex(c_lock->trx->id)
|
|
|
|
<< " SQL: "
|
|
|
|
<< wsrep_thd_query(
|
|
|
|
c_lock->trx->mysql_thd);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ut_list_append(table->locks, lock, TableLockGetNode());
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-16 13:35:42 +01:00
|
|
|
trx_mutex_enter(c_lock->trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-16 13:35:42 +01:00
|
|
|
if (c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
|
|
|
c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-16 13:35:42 +01:00
|
|
|
wsrep_print_wait_locks(c_lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-16 13:35:42 +01:00
|
|
|
/* The lock release will call lock_grant(),
|
|
|
|
which would acquire trx->mutex again. */
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
lock_cancel_waiting_and_release(
|
|
|
|
c_lock->trx->lock.wait_lock);
|
|
|
|
trx_mutex_enter(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2018-03-16 13:35:42 +01:00
|
|
|
ib::info() << "WSREP: c_lock canceled "
|
|
|
|
<< ib::hex(c_lock->trx->id)
|
|
|
|
<< " SQL: "
|
|
|
|
<< wsrep_thd_query(
|
|
|
|
c_lock->trx->mysql_thd);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_exit(c_lock->trx);
|
2018-03-16 13:35:42 +01:00
|
|
|
} else
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* WITH_WSREP */
|
2018-03-16 13:35:42 +01:00
|
|
|
ut_list_append(table->locks, lock, TableLockGetNode());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (type_mode & LOCK_WAIT) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_set_lock_and_trx_wait(lock, trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock->trx->lock.table_locks.push_back(lock);
|
|
|
|
|
|
|
|
MONITOR_INC(MONITOR_TABLELOCK_CREATED);
|
|
|
|
MONITOR_INC(MONITOR_NUM_TABLELOCK);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Pops autoinc lock requests from the transaction's autoinc_locks. We
|
|
|
|
handle the case where there are gaps in the array and they need to
|
|
|
|
be popped off the stack. */
|
|
|
|
UNIV_INLINE
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_pop_autoinc_locks(
|
|
|
|
/*=========================*/
|
|
|
|
trx_t* trx) /*!< in/out: transaction that owns the AUTOINC locks */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!ib_vector_is_empty(trx->autoinc_locks));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Skip any gaps, gaps are NULL lock entries in the
|
|
|
|
trx->autoinc_locks vector. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
do {
|
|
|
|
ib_vector_pop(trx->autoinc_locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (ib_vector_is_empty(trx->autoinc_locks)) {
|
|
|
|
return;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
} while (*(lock_t**) ib_vector_get_last(trx->autoinc_locks) == NULL);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Removes an autoinc lock request from the transaction's autoinc_locks. */
|
|
|
|
UNIV_INLINE
|
|
|
|
void
|
|
|
|
lock_table_remove_autoinc_lock(
|
|
|
|
/*===========================*/
|
|
|
|
lock_t* lock, /*!< in: table lock */
|
|
|
|
trx_t* trx) /*!< in/out: transaction that owns the lock */
|
|
|
|
{
|
|
|
|
lock_t* autoinc_lock;
|
|
|
|
lint i = ib_vector_size(trx->autoinc_locks) - 1;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(lock_get_mode(lock) == LOCK_AUTO_INC);
|
|
|
|
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
ut_ad(!ib_vector_is_empty(trx->autoinc_locks));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* With stored functions and procedures the user may drop
|
|
|
|
a table within the same "statement". This special case has
|
|
|
|
to be handled by deleting only those AUTOINC locks that were
|
|
|
|
held by the table being dropped. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
autoinc_lock = *static_cast<lock_t**>(
|
|
|
|
ib_vector_get(trx->autoinc_locks, i));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* This is the default fast case. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (autoinc_lock == lock) {
|
|
|
|
lock_table_pop_autoinc_locks(trx);
|
|
|
|
} else {
|
|
|
|
/* The last element should never be NULL */
|
|
|
|
ut_a(autoinc_lock != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Handle freeing the locks from within the stack. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
while (--i >= 0) {
|
|
|
|
autoinc_lock = *static_cast<lock_t**>(
|
|
|
|
ib_vector_get(trx->autoinc_locks, i));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (autoinc_lock == lock) {
|
|
|
|
void* null_var = NULL;
|
|
|
|
ib_vector_set(trx->autoinc_locks, i, &null_var);
|
|
|
|
return;
|
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Must find the autoinc lock. */
|
|
|
|
ut_error;
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Removes a table lock request from the queue and the trx list of locks;
|
|
|
|
this is a low-level function which does NOT check if waiting requests
|
|
|
|
can now be granted. */
|
|
|
|
UNIV_INLINE
|
|
|
|
void
|
|
|
|
lock_table_remove_low(
|
|
|
|
/*==================*/
|
|
|
|
lock_t* lock) /*!< in/out: table lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx;
|
|
|
|
dict_table_t* table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx = lock->trx;
|
|
|
|
table = lock->un_member.tab_lock.table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Remove the table from the transaction's AUTOINC vector, if
|
|
|
|
the lock that is being released is an AUTOINC lock. */
|
|
|
|
if (lock_get_mode(lock) == LOCK_AUTO_INC) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The table's AUTOINC lock can get transferred to
|
|
|
|
another transaction before we get here. */
|
|
|
|
if (table->autoinc_trx == trx) {
|
|
|
|
table->autoinc_trx = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The locks must be freed in the reverse order from
|
|
|
|
the one in which they were acquired. This is to avoid
|
|
|
|
traversing the AUTOINC lock vector unnecessarily.
|
|
|
|
|
|
|
|
We only store locks that were granted in the
|
|
|
|
trx->autoinc_locks vector (see lock_table_create()
|
|
|
|
and lock_grant()). Therefore it can be empty and we
|
|
|
|
need to check for that. */
|
|
|
|
|
|
|
|
if (!lock_get_wait(lock)
|
|
|
|
&& !ib_vector_is_empty(trx->autoinc_locks)) {
|
|
|
|
|
|
|
|
lock_table_remove_autoinc_lock(lock, trx);
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_a(table->n_waiting_or_granted_auto_inc_locks > 0);
|
|
|
|
table->n_waiting_or_granted_auto_inc_locks--;
|
|
|
|
}
|
|
|
|
|
|
|
|
UT_LIST_REMOVE(trx->lock.trx_locks, lock);
|
|
|
|
ut_list_remove(table->locks, lock, TableLockGetNode());
|
|
|
|
|
|
|
|
MONITOR_INC(MONITOR_TABLELOCK_REMOVED);
|
|
|
|
MONITOR_DEC(MONITOR_NUM_TABLELOCK);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Enqueues a waiting request for a table lock which cannot be granted
|
|
|
|
immediately. Checks for deadlocks.
|
2018-03-11 22:34:23 +01:00
|
|
|
@retval DB_LOCK_WAIT if the waiting lock was enqueued
|
|
|
|
@retval DB_DEADLOCK if this transaction was chosen as the victim
|
|
|
|
@retval DB_SUCCESS if the other transaction committed or aborted */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_table_enqueue_waiting(
|
|
|
|
/*=======================*/
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned mode, /*!< in: lock mode this transaction is
|
2016-08-12 10:17:45 +02:00
|
|
|
requesting */
|
|
|
|
dict_table_t* table, /*!< in/out: table */
|
2018-03-13 13:15:46 +01:00
|
|
|
que_thr_t* thr /*!< in: query thread */
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
, lock_t* c_lock /*!< in: conflicting lock or NULL */
|
|
|
|
#endif
|
|
|
|
)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx;
|
|
|
|
lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!srv_read_only_mode);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
ut_ad(trx_mutex_own(trx));
|
2018-03-13 10:07:34 +01:00
|
|
|
ut_a(!que_thr_stop(thr));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
switch (trx_get_dict_operation(trx)) {
|
|
|
|
case TRX_DICT_OP_NONE:
|
|
|
|
break;
|
|
|
|
case TRX_DICT_OP_TABLE:
|
|
|
|
case TRX_DICT_OP_INDEX:
|
|
|
|
ib::error() << "A table lock wait happens in a dictionary"
|
|
|
|
" operation. Table " << table->name
|
|
|
|
<< ". " << BUG_REPORT_MSG;
|
|
|
|
ut_ad(0);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (trx->is_wsrep() && trx->lock.was_chosen_as_deadlock_victim) {
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_DEADLOCK);
|
|
|
|
}
|
|
|
|
#endif /* WITH_WSREP */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
/* Enqueue the lock request that will wait to be granted */
|
2020-03-10 19:05:17 +01:00
|
|
|
lock = lock_table_create(table, mode | LOCK_WAIT, trx
|
2018-03-13 13:15:46 +01:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
, c_lock
|
|
|
|
#endif
|
|
|
|
);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-07-28 07:08:52 +02:00
|
|
|
const trx_t* victim_trx =
|
2019-07-25 11:08:50 +02:00
|
|
|
DeadlockChecker::check_and_resolve(lock, trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (victim_trx != 0) {
|
|
|
|
ut_ad(victim_trx == trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The order here is important, we don't want to
|
|
|
|
lose the state of the lock before calling remove. */
|
|
|
|
lock_table_remove_low(lock);
|
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_DEADLOCK);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
} else if (trx->lock.wait_lock == NULL) {
|
|
|
|
/* Deadlock resolution chose another transaction as a victim,
|
|
|
|
and we accidentally got our lock granted! */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx->lock.que_state = TRX_QUE_LOCK_WAIT;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
trx->lock.wait_started = time(NULL);
|
2016-08-12 10:17:45 +02:00
|
|
|
trx->lock.was_chosen_as_deadlock_victim = false;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(que_thr_stop(thr));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
MONITOR_INC(MONITOR_TABLELOCK_WAIT);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_LOCK_WAIT);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if other transactions have an incompatible mode lock request in
|
|
|
|
the lock queue.
|
|
|
|
@return lock or NULL */
|
|
|
|
UNIV_INLINE
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t*
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_other_has_incompatible(
|
|
|
|
/*==============================*/
|
|
|
|
const trx_t* trx, /*!< in: transaction, or NULL if all
|
|
|
|
transactions should be included */
|
|
|
|
ulint wait, /*!< in: LOCK_WAIT if also
|
|
|
|
waiting locks are taken into
|
|
|
|
account, or 0 if not */
|
|
|
|
const dict_table_t* table, /*!< in: table */
|
|
|
|
lock_mode mode) /*!< in: lock mode */
|
|
|
|
{
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t* lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = UT_LIST_GET_LAST(table->locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock->trx != trx
|
|
|
|
&& !lock_mode_compatible(lock_get_mode(lock), mode)
|
|
|
|
&& (wait || !lock_get_wait(lock))) {
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2014-08-06 14:39:15 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (lock->trx->is_wsrep()) {
|
2020-06-04 09:24:10 +02:00
|
|
|
if (UNIV_UNLIKELY(wsrep_debug)) {
|
2016-09-06 08:43:16 +02:00
|
|
|
ib::info() << "WSREP: table lock abort for table:"
|
2020-06-04 09:24:10 +02:00
|
|
|
<< table->name;
|
2016-09-06 08:43:16 +02:00
|
|
|
ib::info() << " SQL: "
|
|
|
|
<< wsrep_thd_query(lock->trx->mysql_thd);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
trx_mutex_enter(lock->trx);
|
|
|
|
wsrep_kill_victim((trx_t *)trx, (lock_t *)lock);
|
|
|
|
trx_mutex_exit(lock->trx);
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
#endif /* WITH_WSREP */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(lock);
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(NULL);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Locks the specified database table in the mode given. If the lock cannot
|
|
|
|
be granted immediately, the query thread is put to wait.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_table(
|
|
|
|
/*=======*/
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set,
|
2016-08-12 10:17:45 +02:00
|
|
|
does nothing */
|
|
|
|
dict_table_t* table, /*!< in/out: database table
|
|
|
|
in dictionary cache */
|
|
|
|
lock_mode mode, /*!< in: lock mode */
|
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
|
|
{
|
|
|
|
trx_t* trx;
|
|
|
|
dberr_t err;
|
2017-12-07 11:26:29 +01:00
|
|
|
lock_t* wait_for;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
ut_ad(table && thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Given limited visibility of temp-table we can avoid
|
|
|
|
locking overhead */
|
|
|
|
if ((flags & BTR_NO_LOCKING_FLAG)
|
|
|
|
|| srv_read_only_mode
|
2018-05-12 08:38:46 +02:00
|
|
|
|| table->is_temporary()) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(flags == 0);
|
2014-07-09 13:02:52 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx = thr_get_trx(thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Look for equal or stronger locks the same trx already
|
|
|
|
has on the table. No need to acquire the lock mutex here
|
|
|
|
because only this transacton can add/access table locks
|
|
|
|
to/from trx_t::table_locks. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_table_has(trx, table, mode)) {
|
2014-07-09 13:02:52 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Read only transactions can write to temp tables, we don't want
|
|
|
|
to promote them to RW transactions. Their updates cannot be visible
|
|
|
|
to other transactions. Therefore we can keep them out
|
|
|
|
of the read views. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if ((mode == LOCK_IX || mode == LOCK_X)
|
|
|
|
&& !trx->read_only
|
|
|
|
&& trx->rsegs.m_redo.rseg == 0) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_set_rw_mode(trx);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
DBUG_EXECUTE_IF("fatal-semaphore-timeout",
|
2017-01-04 17:45:23 +01:00
|
|
|
{ os_thread_sleep(3600000000LL); });
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* We have to check if the new lock is compatible with any locks
|
|
|
|
other transactions have in the table lock queue. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
wait_for = lock_table_other_has_incompatible(
|
|
|
|
trx, LOCK_WAIT, table, mode);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_enter(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Another trx has a request on the table in an incompatible
|
|
|
|
mode: this trx may have to wait */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (wait_for != NULL) {
|
2020-03-10 19:05:17 +01:00
|
|
|
err = lock_table_enqueue_waiting(flags | mode, table,
|
2018-04-28 14:49:09 +02:00
|
|
|
thr
|
2018-03-13 13:15:46 +01:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
, wait_for
|
|
|
|
#endif
|
|
|
|
);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
2020-03-10 19:05:17 +01:00
|
|
|
lock_table_create(table, flags | mode, trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(!flags || mode == LOCK_S || mode == LOCK_X);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
err = DB_SUCCESS;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
trx_mutex_exit(trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
return(err);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Creates a table IX lock object for a resurrected transaction. */
|
2014-07-09 13:02:52 +02:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_ix_resurrect(
|
|
|
|
/*====================*/
|
|
|
|
dict_table_t* table, /*!< in/out: table */
|
|
|
|
trx_t* trx) /*!< in/out: transaction */
|
2014-07-08 12:54:47 +02:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx->is_recovered);
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_table_has(trx, table, LOCK_IX)) {
|
|
|
|
return;
|
2014-07-08 12:54:47 +02:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* We have to check if the new lock is compatible with any locks
|
|
|
|
other transactions have in the table lock queue. */
|
|
|
|
|
|
|
|
ut_ad(!lock_table_other_has_incompatible(
|
|
|
|
trx, LOCK_WAIT, table, LOCK_IX));
|
|
|
|
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
lock_table_create(table, LOCK_IX, trx);
|
|
|
|
lock_mutex_exit();
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if a waiting table lock request still has to wait in a queue.
|
|
|
|
@return TRUE if still has to wait */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
bool
|
|
|
|
lock_table_has_to_wait_in_queue(
|
2014-02-26 19:11:54 +01:00
|
|
|
/*============================*/
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* wait_lock) /*!< in: waiting table lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
const dict_table_t* table;
|
|
|
|
const lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_get_wait(wait_lock));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
table = wait_lock->un_member.tab_lock.table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = UT_LIST_GET_FIRST(table->locks);
|
|
|
|
lock != wait_lock;
|
|
|
|
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_has_to_wait(wait_lock, lock)) {
|
2014-07-08 12:54:47 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(true);
|
2014-07-09 13:02:52 +02:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(false);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Removes a table lock request, waiting or granted, from the queue and grants
|
|
|
|
locks to other transactions in the queue, if they now are entitled to a
|
|
|
|
lock. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_table_dequeue(
|
|
|
|
/*===============*/
|
|
|
|
lock_t* in_lock)/*!< in/out: table lock object; transactions waiting
|
|
|
|
behind will get their lock requests granted, if
|
|
|
|
they are now qualified to it */
|
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_a(lock_get_type_low(in_lock) == LOCK_TABLE);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t* lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, in_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_remove_low(in_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Check if waiting locks in the queue can now be granted: grant
|
|
|
|
locks if there are no conflicting locks ahead. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (/* No op */;
|
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_wait(lock)
|
|
|
|
&& !lock_table_has_to_wait_in_queue(lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Grant the lock */
|
|
|
|
ut_ad(in_lock->trx != lock->trx);
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
/** Sets a lock on a table based on the given mode.
|
|
|
|
@param[in] table table to lock
|
|
|
|
@param[in,out] trx transaction
|
|
|
|
@param[in] mode LOCK_X or LOCK_S
|
|
|
|
@return error code or DB_SUCCESS. */
|
|
|
|
dberr_t
|
|
|
|
lock_table_for_trx(
|
|
|
|
dict_table_t* table,
|
|
|
|
trx_t* trx,
|
|
|
|
enum lock_mode mode)
|
|
|
|
{
|
|
|
|
mem_heap_t* heap;
|
|
|
|
que_thr_t* thr;
|
|
|
|
dberr_t err;
|
|
|
|
sel_node_t* node;
|
|
|
|
heap = mem_heap_create(512);
|
|
|
|
|
|
|
|
node = sel_node_create(heap);
|
|
|
|
thr = pars_complete_graph_for_exec(node, trx, heap, NULL);
|
|
|
|
thr->graph->state = QUE_FORK_ACTIVE;
|
|
|
|
|
|
|
|
/* We use the select query graph as the dummy graph needed
|
|
|
|
in the lock module call */
|
|
|
|
|
|
|
|
thr = static_cast<que_thr_t*>(
|
|
|
|
que_fork_get_first_thr(
|
|
|
|
static_cast<que_fork_t*>(que_node_get_parent(thr))));
|
|
|
|
|
2020-04-30 09:33:54 +02:00
|
|
|
thr->start_running();
|
2016-09-06 08:43:16 +02:00
|
|
|
|
|
|
|
run_again:
|
|
|
|
thr->run_node = thr;
|
|
|
|
thr->prev_node = thr->common.parent;
|
|
|
|
|
|
|
|
err = lock_table(0, table, mode, thr);
|
|
|
|
|
|
|
|
trx->error_state = err;
|
|
|
|
|
|
|
|
if (UNIV_LIKELY(err == DB_SUCCESS)) {
|
2020-04-30 09:33:54 +02:00
|
|
|
thr->stop_no_error();
|
2016-09-06 08:43:16 +02:00
|
|
|
} else {
|
|
|
|
que_thr_stop_for_mysql(thr);
|
|
|
|
|
2018-03-13 10:07:34 +01:00
|
|
|
if (row_mysql_handle_errors(&err, trx, thr, NULL)) {
|
2016-09-06 08:43:16 +02:00
|
|
|
goto run_again;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
que_graph_free(thr->graph);
|
|
|
|
trx->op_info = "";
|
|
|
|
|
|
|
|
return(err);
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*=========================== LOCK RELEASE ==============================*/
|
2016-10-19 07:37:52 +02:00
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_grant_and_move_on_rec(
|
2016-10-23 19:36:26 +02:00
|
|
|
lock_t* first_lock,
|
|
|
|
ulint heap_no)
|
2016-10-19 07:37:52 +02:00
|
|
|
{
|
2016-10-23 19:36:26 +02:00
|
|
|
lock_t* lock;
|
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
|
|
|
ulint rec_fold;
|
|
|
|
|
|
|
|
space = first_lock->un_member.rec_lock.space;
|
|
|
|
page_no = first_lock->un_member.rec_lock.page_no;
|
|
|
|
rec_fold = lock_rec_fold(space, page_no);
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
lock_t* previous = static_cast<lock_t*>(
|
|
|
|
lock_sys.rec_hash.array[lock_sys.rec_hash.calc_hash(rec_fold)]
|
|
|
|
.node);
|
2016-10-23 19:36:26 +02:00
|
|
|
if (previous == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (previous == first_lock) {
|
|
|
|
lock = previous;
|
|
|
|
} else {
|
|
|
|
while (previous->hash &&
|
|
|
|
previous->hash != first_lock) {
|
|
|
|
previous = previous->hash;
|
|
|
|
}
|
|
|
|
lock = previous->hash;
|
|
|
|
}
|
|
|
|
/* Grant locks if there are no conflicting locks ahead.
|
|
|
|
Move granted locks to the head of the list. */
|
|
|
|
for (;lock != NULL;) {
|
|
|
|
|
|
|
|
/* If the lock is a wait lock on this page, and it does not need to wait. */
|
|
|
|
if (lock->un_member.rec_lock.space == space
|
|
|
|
&& lock->un_member.rec_lock.page_no == page_no
|
|
|
|
&& lock_rec_get_nth_bit(lock, heap_no)
|
|
|
|
&& lock_get_wait(lock)
|
|
|
|
&& !lock_rec_has_to_wait_in_queue(lock)) {
|
|
|
|
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant(lock);
|
2016-10-23 19:36:26 +02:00
|
|
|
|
|
|
|
if (previous != NULL) {
|
|
|
|
/* Move the lock to the head of the list. */
|
|
|
|
HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock);
|
|
|
|
lock_rec_insert_to_head(lock, rec_fold);
|
|
|
|
} else {
|
|
|
|
/* Already at the head of the list. */
|
|
|
|
previous = lock;
|
|
|
|
}
|
|
|
|
/* Move on to the next lock. */
|
|
|
|
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, previous));
|
|
|
|
} else {
|
|
|
|
previous = lock;
|
|
|
|
lock = static_cast<lock_t *>(HASH_GET_NEXT(hash, lock));
|
|
|
|
}
|
|
|
|
}
|
2016-10-19 07:37:52 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*************************************************************//**
|
|
|
|
Removes a granted record lock of a transaction from the queue and grants
|
|
|
|
locks to other transactions waiting in the queue if they now are entitled
|
|
|
|
to a lock. */
|
|
|
|
void
|
|
|
|
lock_rec_unlock(
|
|
|
|
/*============*/
|
|
|
|
trx_t* trx, /*!< in/out: transaction that has
|
|
|
|
set a record lock */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec, /*!< in: record */
|
|
|
|
lock_mode lock_mode)/*!< in: LOCK_S or LOCK_X */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_t* first_lock;
|
|
|
|
lock_t* lock;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx);
|
|
|
|
ut_ad(rec);
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
ut_ad(!trx->lock.wait_lock);
|
|
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
|
|
|
trx_mutex_enter(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
first_lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Find the last lock with the same lock_mode and transaction
|
|
|
|
on the record. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = first_lock; lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
if (lock->trx == trx && lock_get_mode(lock) == lock_mode) {
|
|
|
|
goto released;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
|
|
|
trx_mutex_exit(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
|
|
|
ib::error err;
|
|
|
|
err << "Unlock row could not find a " << lock_mode
|
|
|
|
<< " mode lock on the record. Current statement: ";
|
2017-05-22 08:20:20 +02:00
|
|
|
size_t stmt_len;
|
|
|
|
if (const char* stmt = innobase_get_stmt_unsafe(
|
|
|
|
trx->mysql_thd, &stmt_len)) {
|
|
|
|
err.write(stmt, stmt_len);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return;
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
released:
|
|
|
|
ut_a(!lock_get_wait(lock));
|
|
|
|
lock_rec_reset_nth_bit(lock, heap_no);
|
2016-10-23 19:36:26 +02:00
|
|
|
|
|
|
|
if (innodb_lock_schedule_algorithm
|
|
|
|
== INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS ||
|
|
|
|
thd_is_replication_slave_thread(lock->trx->mysql_thd)) {
|
|
|
|
|
|
|
|
/* Check if we can now grant waiting lock requests */
|
|
|
|
|
|
|
|
for (lock = first_lock; lock != NULL;
|
|
|
|
lock = lock_rec_get_next(heap_no, lock)) {
|
|
|
|
if (lock_get_wait(lock)
|
|
|
|
&& !lock_rec_has_to_wait_in_queue(lock)) {
|
|
|
|
|
|
|
|
/* Grant the lock */
|
|
|
|
ut_ad(trx != lock->trx);
|
2018-03-13 16:37:03 +01:00
|
|
|
lock_grant(lock);
|
2016-10-23 19:36:26 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
2020-06-18 11:26:28 +02:00
|
|
|
lock_grant_and_move_on_rec(first_lock, heap_no);
|
2016-10-23 19:36:26 +02:00
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
/*********************************************************************//**
|
|
|
|
Check if a transaction that has X or IX locks has set the dict_op
|
|
|
|
code correctly. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_check_dict_lock(
|
|
|
|
/*==================*/
|
|
|
|
const lock_t* lock) /*!< in: lock to check */
|
|
|
|
{
|
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
2018-11-22 14:36:50 +01:00
|
|
|
ut_ad(!lock->index->table->is_temporary());
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Check if the transcation locked a record
|
|
|
|
in a system table in X mode. It should have set
|
|
|
|
the dict_op code correctly if it did. */
|
|
|
|
if (lock->index->table->id < DICT_HDR_FIRST_ID
|
|
|
|
&& lock_get_mode(lock) == LOCK_X) {
|
2014-08-06 14:39:15 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_get_mode(lock) != LOCK_IX);
|
|
|
|
ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE);
|
2014-08-06 14:39:15 +02:00
|
|
|
}
|
|
|
|
} else {
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-22 14:36:50 +01:00
|
|
|
const dict_table_t* table = lock->un_member.tab_lock.table;
|
|
|
|
ut_ad(!table->is_temporary());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Check if the transcation locked a system table
|
|
|
|
in IX mode. It should have set the dict_op code
|
|
|
|
correctly if it did. */
|
|
|
|
if (table->id < DICT_HDR_FIRST_ID
|
|
|
|
&& (lock_get_mode(lock) == LOCK_X
|
|
|
|
|| lock_get_mode(lock) == LOCK_IX)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE);
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-05 14:57:39 +02:00
|
|
|
/** Release the explicit locks of a committing transaction,
|
|
|
|
and release possible other transactions waiting because of these locks. */
|
|
|
|
void lock_release(trx_t* trx)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint count = 0;
|
2017-12-22 15:15:41 +01:00
|
|
|
trx_id_t max_trx_id = trx_sys.get_max_trx_id();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-09-05 14:57:39 +02:00
|
|
|
lock_mutex_enter();
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_mutex_own(trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-05 14:57:39 +02:00
|
|
|
for (lock_t* lock = UT_LIST_GET_LAST(trx->lock.trx_locks);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_LAST(trx->lock.trx_locks)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_d(lock_check_dict_lock(lock));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
2016-10-23 19:17:30 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_dequeue_from_page(lock);
|
|
|
|
} else {
|
|
|
|
dict_table_t* table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
table = lock->un_member.tab_lock.table;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_mode(lock) != LOCK_IS
|
|
|
|
&& trx->undo_no != 0) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The trx may have modified the table. We
|
|
|
|
block the use of the MySQL query cache for
|
|
|
|
all currently active transactions. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-06-18 10:56:37 +02:00
|
|
|
table->query_cache_inv_trx_id = max_trx_id;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_dequeue(lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (count == LOCK_RELEASE_INTERVAL) {
|
2018-03-11 22:34:23 +01:00
|
|
|
/* Release the mutex for a while, so that we
|
2016-08-12 10:17:45 +02:00
|
|
|
do not monopolize it */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
count = 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
++count;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2019-09-05 14:57:39 +02:00
|
|
|
|
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* True if a lock mode is S or X */
|
|
|
|
#define IS_LOCK_S_OR_X(lock) \
|
|
|
|
(lock_get_mode(lock) == LOCK_S \
|
|
|
|
|| lock_get_mode(lock) == LOCK_X)
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Removes table locks of the transaction on a table to be dropped. */
|
|
|
|
static
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_trx_table_locks_remove(
|
|
|
|
/*========================*/
|
|
|
|
const lock_t* lock_to_remove) /*!< in: lock to remove */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx = lock_to_remove->trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* It is safe to read this because we are holding the lock mutex */
|
|
|
|
if (!trx->lock.cancel) {
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
} else {
|
|
|
|
ut_ad(trx_mutex_own(trx));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-08-13 11:34:12 +02:00
|
|
|
for (lock_list::iterator it = trx->lock.table_locks.begin(),
|
|
|
|
end = trx->lock.table_locks.end(); it != end; ++it) {
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock = *it;
|
|
|
|
|
2018-08-13 11:34:12 +02:00
|
|
|
ut_ad(!lock || trx == lock->trx);
|
|
|
|
ut_ad(!lock || lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
ut_ad(!lock || lock->un_member.tab_lock.table);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock == lock_to_remove) {
|
|
|
|
*it = NULL;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!trx->lock.cancel) {
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!trx->lock.cancel) {
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Lock must exist in the vector. */
|
|
|
|
ut_error;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*===================== VALIDATION AND DEBUGGING ====================*/
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2015-05-26 09:01:12 +02:00
|
|
|
/** Print info of a table lock.
|
|
|
|
@param[in,out] file output stream
|
|
|
|
@param[in] lock table lock */
|
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
void
|
2015-05-26 09:01:12 +02:00
|
|
|
lock_table_print(FILE* file, const lock_t* lock)
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_a(lock_get_type_low(lock) == LOCK_TABLE);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fputs("TABLE LOCK table ", file);
|
|
|
|
ut_print_name(file, lock->trx,
|
|
|
|
lock->un_member.tab_lock.table->name.m_name);
|
|
|
|
fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_mode(lock) == LOCK_S) {
|
|
|
|
fputs(" lock mode S", file);
|
|
|
|
} else if (lock_get_mode(lock) == LOCK_X) {
|
|
|
|
ut_ad(lock->trx->id != 0);
|
|
|
|
fputs(" lock mode X", file);
|
|
|
|
} else if (lock_get_mode(lock) == LOCK_IS) {
|
|
|
|
fputs(" lock mode IS", file);
|
|
|
|
} else if (lock_get_mode(lock) == LOCK_IX) {
|
|
|
|
ut_ad(lock->trx->id != 0);
|
|
|
|
fputs(" lock mode IX", file);
|
|
|
|
} else if (lock_get_mode(lock) == LOCK_AUTO_INC) {
|
|
|
|
fputs(" lock mode AUTO-INC", file);
|
|
|
|
} else {
|
|
|
|
fprintf(file, " unknown lock mode %lu",
|
|
|
|
(ulong) lock_get_mode(lock));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_wait(lock)) {
|
|
|
|
fputs(" waiting", file);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
putc('\n', file);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
/** Pretty-print a record lock.
|
2015-05-26 09:01:12 +02:00
|
|
|
@param[in,out] file output stream
|
2019-07-25 11:08:50 +02:00
|
|
|
@param[in] lock record lock
|
|
|
|
@param[in,out] mtr mini-transaction for accessing the record */
|
|
|
|
static void lock_rec_print(FILE* file, const lock_t* lock, mtr_t& mtr)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint space;
|
|
|
|
ulint page_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_a(lock_get_type_low(lock) == LOCK_REC);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
space = lock->un_member.rec_lock.space;
|
|
|
|
page_no = lock->un_member.rec_lock.page_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, "RECORD LOCKS space id %lu page no %lu n bits %lu "
|
|
|
|
"index %s of table ",
|
|
|
|
(ulong) space, (ulong) page_no,
|
|
|
|
(ulong) lock_rec_get_n_bits(lock),
|
|
|
|
lock->index->name());
|
2018-03-23 16:25:56 +01:00
|
|
|
ut_print_name(file, lock->trx, lock->index->table->name.m_name);
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_mode(lock) == LOCK_S) {
|
|
|
|
fputs(" lock mode S", file);
|
|
|
|
} else if (lock_get_mode(lock) == LOCK_X) {
|
|
|
|
fputs(" lock_mode X", file);
|
|
|
|
} else {
|
|
|
|
ut_error;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_rec_get_gap(lock)) {
|
|
|
|
fputs(" locks gap before rec", file);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_rec_get_rec_not_gap(lock)) {
|
|
|
|
fputs(" locks rec but not gap", file);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_rec_get_insert_intention(lock)) {
|
|
|
|
fputs(" insert intention", file);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_wait(lock)) {
|
|
|
|
fputs(" waiting", file);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
putc('\n', file);
|
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
mem_heap_t* heap = NULL;
|
2020-04-28 02:46:51 +02:00
|
|
|
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
|
|
|
|
rec_offs* offsets = offsets_;
|
2019-07-25 11:08:50 +02:00
|
|
|
rec_offs_init(offsets_);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr.start();
|
|
|
|
const buf_block_t* block = buf_page_try_get(page_id_t(space, page_no),
|
|
|
|
&mtr);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) {
|
|
|
|
|
|
|
|
if (!lock_rec_get_nth_bit(lock, i)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
fprintf(file, "Record lock, heap no %lu", (ulong) i);
|
|
|
|
|
|
|
|
if (block) {
|
2017-09-19 18:20:11 +02:00
|
|
|
ut_ad(page_is_leaf(block->frame));
|
2016-08-12 10:17:45 +02:00
|
|
|
const rec_t* rec;
|
|
|
|
|
|
|
|
rec = page_find_rec_with_heap_no(
|
|
|
|
buf_block_get_frame(block), i);
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
offsets = rec_get_offsets(
|
2017-09-19 18:20:11 +02:00
|
|
|
rec, lock->index, offsets, true,
|
2016-08-12 10:17:45 +02:00
|
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
|
|
|
|
putc(' ', file);
|
|
|
|
rec_print_new(file, rec, offsets);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
putc('\n', file);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr.commit();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
mem_heap_free(heap);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
/* Print the number of lock structs from lock_print_info_summary() only
|
|
|
|
in non-production builds for performance reasons, see
|
|
|
|
http://bugs.mysql.com/36942 */
|
|
|
|
#define PRINT_NUM_OF_LOCK_STRUCTS
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
|
|
|
#ifdef PRINT_NUM_OF_LOCK_STRUCTS
|
|
|
|
/*********************************************************************//**
|
|
|
|
Calculates the number of record lock structs in the record lock hash table.
|
|
|
|
@return number of record locks */
|
2020-06-18 11:26:28 +02:00
|
|
|
static ulint lock_get_n_rec_locks()
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint n_locks = 0;
|
|
|
|
ulint i;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (i = 0; i < lock_sys.rec_hash.n_cells; i++) {
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = static_cast<const lock_t*>(
|
2020-06-18 11:26:28 +02:00
|
|
|
HASH_GET_FIRST(&lock_sys.rec_hash, i));
|
2016-08-12 10:17:45 +02:00
|
|
|
lock != 0;
|
|
|
|
lock = static_cast<const lock_t*>(
|
|
|
|
HASH_GET_NEXT(hash, lock))) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
n_locks++;
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(n_locks);
|
|
|
|
}
|
|
|
|
#endif /* PRINT_NUM_OF_LOCK_STRUCTS */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Prints info of locks for all transactions.
|
|
|
|
@return FALSE if not able to obtain lock mutex
|
|
|
|
and exits without printing info */
|
|
|
|
ibool
|
|
|
|
lock_print_info_summary(
|
|
|
|
/*====================*/
|
|
|
|
FILE* file, /*!< in: file where to print */
|
|
|
|
ibool nowait) /*!< in: whether to wait for the lock mutex */
|
|
|
|
{
|
|
|
|
/* if nowait is FALSE, wait on the lock mutex,
|
|
|
|
otherwise return immediately if fail to obtain the
|
|
|
|
mutex. */
|
|
|
|
if (!nowait) {
|
|
|
|
lock_mutex_enter();
|
|
|
|
} else if (lock_mutex_enter_nowait()) {
|
|
|
|
fputs("FAIL TO OBTAIN LOCK MUTEX,"
|
|
|
|
" SKIP LOCK INFO PRINTING\n", file);
|
|
|
|
return(FALSE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_deadlock_found) {
|
|
|
|
fputs("------------------------\n"
|
|
|
|
"LATEST DETECTED DEADLOCK\n"
|
|
|
|
"------------------------\n", file);
|
|
|
|
|
|
|
|
if (!srv_read_only_mode) {
|
|
|
|
ut_copy_file(file, lock_latest_err_file);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fputs("------------\n"
|
|
|
|
"TRANSACTIONS\n"
|
|
|
|
"------------\n", file);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, "Trx id counter " TRX_ID_FMT "\n",
|
2017-12-22 15:15:41 +01:00
|
|
|
trx_sys.get_max_trx_id());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file,
|
|
|
|
"Purge done for trx's n:o < " TRX_ID_FMT
|
2018-05-15 13:39:50 +02:00
|
|
|
" undo n:o < " TRX_ID_FMT " state: %s\n"
|
2018-10-25 15:37:16 +02:00
|
|
|
"History list length %u\n",
|
2018-02-22 08:30:41 +01:00
|
|
|
purge_sys.tail.trx_no(),
|
2018-05-15 13:39:50 +02:00
|
|
|
purge_sys.tail.undo_no,
|
|
|
|
purge_sys.enabled()
|
|
|
|
? (purge_sys.running() ? "running"
|
|
|
|
: purge_sys.paused() ? "stopped" : "running but idle")
|
|
|
|
: "disabled",
|
2018-10-25 15:37:16 +02:00
|
|
|
uint32_t{trx_sys.rseg_history_len});
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef PRINT_NUM_OF_LOCK_STRUCTS
|
|
|
|
fprintf(file,
|
|
|
|
"Total number of lock structs in row lock hash table %lu\n",
|
|
|
|
(ulong) lock_get_n_rec_locks());
|
|
|
|
#endif /* PRINT_NUM_OF_LOCK_STRUCTS */
|
|
|
|
return(TRUE);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Prints transaction lock wait and MVCC state.
|
|
|
|
@param[in,out] file file where to print
|
2019-07-25 11:08:50 +02:00
|
|
|
@param[in] trx transaction
|
|
|
|
@param[in] now current time */
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_trx_print_wait_and_mvcc_state(FILE* file, const trx_t* trx, time_t now)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, "---");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_print_latched(file, trx, 600);
|
2020-05-15 23:13:02 +02:00
|
|
|
trx->read_view.print_limits(file);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file,
|
|
|
|
"------- TRX HAS BEEN WAITING %lu SEC"
|
|
|
|
" FOR THIS LOCK TO BE GRANTED:\n",
|
2019-07-25 11:08:50 +02:00
|
|
|
(ulong) difftime(now, trx->lock.wait_started));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(trx->lock.wait_lock) == LOCK_REC) {
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
|
|
|
lock_rec_print(file, trx->lock.wait_lock, mtr);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
|
|
|
lock_table_print(file, trx->lock.wait_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, "------------------\n");
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
2017-12-27 12:38:23 +01:00
|
|
|
Prints info of locks for a transaction. */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2017-12-27 12:38:23 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_trx_print_locks(
|
|
|
|
/*=================*/
|
|
|
|
FILE* file, /*!< in/out: File to write */
|
2017-12-27 12:38:23 +01:00
|
|
|
const trx_t* trx) /*!< in: current transaction */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
2017-12-27 12:38:23 +01:00
|
|
|
uint32_t i= 0;
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Iterate over the transaction's locks. */
|
2017-12-27 12:38:23 +01:00
|
|
|
for (lock_t *lock = UT_LIST_GET_FIRST(trx->lock.trx_locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_NEXT(trx_locks, lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(file, lock, mtr);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
|
|
|
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
|
|
|
|
lock_table_print(file, lock);
|
|
|
|
}
|
|
|
|
|
2017-12-27 12:38:23 +01:00
|
|
|
if (++i == 10) {
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
fprintf(file,
|
|
|
|
"10 LOCKS PRINTED FOR THIS TRX:"
|
|
|
|
" SUPPRESSING FURTHER PRINTS\n");
|
|
|
|
|
|
|
|
break;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
2017-12-27 12:38:23 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-04-29 16:54:10 +02:00
|
|
|
/** Functor to display all transactions */
|
2019-04-29 15:23:21 +02:00
|
|
|
struct lock_print_info
|
2017-12-27 12:38:23 +01:00
|
|
|
{
|
2019-09-26 12:18:22 +02:00
|
|
|
lock_print_info(FILE* file, time_t now) :
|
|
|
|
file(file), now(now),
|
|
|
|
purge_trx(purge_sys.query ? purge_sys.query->trx : NULL)
|
|
|
|
{}
|
2019-04-29 15:23:21 +02:00
|
|
|
|
2020-06-16 22:57:51 +02:00
|
|
|
void operator()(const trx_t &trx) const
|
2017-12-27 12:38:23 +01:00
|
|
|
{
|
2020-06-16 22:57:51 +02:00
|
|
|
if (UNIV_UNLIKELY(&trx == purge_trx))
|
2019-04-29 15:23:21 +02:00
|
|
|
return;
|
2020-06-16 22:57:51 +02:00
|
|
|
lock_trx_print_wait_and_mvcc_state(file, &trx, now);
|
2017-12-27 12:38:23 +01:00
|
|
|
|
2020-06-16 22:57:51 +02:00
|
|
|
if (trx.will_lock && srv_print_innodb_lock_monitor)
|
|
|
|
lock_trx_print_locks(file, &trx);
|
2017-12-27 12:38:23 +01:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-04-29 15:23:21 +02:00
|
|
|
FILE* const file;
|
2019-07-25 11:08:50 +02:00
|
|
|
const time_t now;
|
2019-09-26 12:18:22 +02:00
|
|
|
const trx_t* const purge_trx;
|
2019-04-29 15:23:21 +02:00
|
|
|
};
|
2017-12-27 12:38:23 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Prints info of locks for each transaction. This function assumes that the
|
|
|
|
caller holds the lock mutex and more importantly it will release the lock
|
|
|
|
mutex on behalf of the caller. (This should be fixed in the future). */
|
|
|
|
void
|
|
|
|
lock_print_info_all_transactions(
|
|
|
|
/*=============================*/
|
|
|
|
FILE* file) /*!< in/out: file where to print */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
fprintf(file, "LIST OF TRANSACTIONS FOR EACH SESSION:\n");
|
|
|
|
|
2020-06-16 22:57:51 +02:00
|
|
|
trx_sys.trx_list.for_each(lock_print_info(file, time(nullptr)));
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_validate());
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
2014-02-26 19:11:54 +01:00
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Find the the lock in the trx_t::trx_lock_t::table_locks vector.
|
|
|
|
@return true if found */
|
|
|
|
static
|
|
|
|
bool
|
|
|
|
lock_trx_table_locks_find(
|
|
|
|
/*======================*/
|
|
|
|
trx_t* trx, /*!< in: trx to validate */
|
|
|
|
const lock_t* find_lock) /*!< in: lock to find */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
bool found = false;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
ut_ad(trx_mutex_own(trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-08-13 11:34:12 +02:00
|
|
|
for (lock_list::const_iterator it = trx->lock.table_locks.begin(),
|
|
|
|
end = trx->lock.table_locks.end(); it != end; ++it) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock = *it;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock == NULL) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
continue;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
} else if (lock == find_lock) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Can't be duplicates. */
|
|
|
|
ut_a(!found);
|
|
|
|
found = true;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(trx == lock->trx);
|
|
|
|
ut_a(lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
ut_a(lock->un_member.tab_lock.table != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(found);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Validates the lock queue on a table.
|
|
|
|
@return TRUE if ok */
|
|
|
|
static
|
|
|
|
ibool
|
|
|
|
lock_table_queue_validate(
|
|
|
|
/*======================*/
|
|
|
|
const dict_table_t* table) /*!< in: table */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock;
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (lock = UT_LIST_GET_FIRST(table->locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* lock->trx->state cannot change from or to NOT_STARTED
|
2019-09-05 14:57:39 +02:00
|
|
|
while we are holding the lock_sys.mutex. It may change
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
from ACTIVE or PREPARED to PREPARED or COMMITTED. */
|
|
|
|
trx_mutex_enter(lock->trx);
|
2018-03-26 15:28:21 +02:00
|
|
|
check_trx_state(lock->trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
if (lock->trx->state == TRX_STATE_COMMITTED_IN_MEMORY) {
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
} else if (!lock_get_wait(lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(!lock_table_other_has_incompatible(
|
|
|
|
lock->trx, 0, table,
|
|
|
|
lock_get_mode(lock)));
|
|
|
|
} else {
|
|
|
|
ut_a(lock_table_has_to_wait_in_queue(lock));
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_a(lock_trx_table_locks_find(lock->trx, lock));
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
trx_mutex_exit(lock->trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return(TRUE);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Validates the lock queue on a single record.
|
|
|
|
@return TRUE if ok */
|
|
|
|
static
|
2018-02-06 18:14:05 +01:00
|
|
|
bool
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_queue_validate(
|
|
|
|
/*====================*/
|
2018-02-06 18:14:05 +01:00
|
|
|
bool locked_lock_trx_sys,
|
2016-08-12 10:17:45 +02:00
|
|
|
/*!< in: if the caller holds
|
|
|
|
both the lock mutex and
|
|
|
|
trx_sys_t->lock. */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block containing rec */
|
|
|
|
const rec_t* rec, /*!< in: record to look at */
|
|
|
|
const dict_index_t* index, /*!< in: index, or NULL if not known */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets)/*!< in: rec_get_offsets(rec, index) */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(rec);
|
|
|
|
ut_a(block->frame == page_align(rec));
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own() == locked_lock_trx_sys);
|
|
|
|
ut_ad(!index || dict_index_is_clust(index)
|
|
|
|
|| !dict_index_is_online_ddl(index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!locked_lock_trx_sys) {
|
|
|
|
lock_mutex_enter();
|
|
|
|
}
|
2015-02-10 14:15:27 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!page_rec_is_user_rec(rec)) {
|
2015-02-10 14:15:27 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash,
|
2016-08-12 10:17:45 +02:00
|
|
|
block, heap_no);
|
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next_const(heap_no, lock)) {
|
2015-02-10 14:15:27 +01:00
|
|
|
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
ut_ad(!index || lock->index == index);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
trx_mutex_enter(lock->trx);
|
|
|
|
ut_ad(!trx_is_ac_nl_ro(lock->trx));
|
|
|
|
ut_ad(trx_state_eq(lock->trx,
|
|
|
|
TRX_STATE_COMMITTED_IN_MEMORY)
|
|
|
|
|| !lock_get_wait(lock)
|
|
|
|
|| lock_rec_has_to_wait_in_queue(lock));
|
|
|
|
trx_mutex_exit(lock->trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
func_exit:
|
|
|
|
if (!locked_lock_trx_sys) {
|
|
|
|
lock_mutex_exit();
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
return true;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2018-11-26 09:10:49 +01:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
2018-11-26 09:10:49 +01:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
const trx_id_t impl_trx_id = index && index->is_primary()
|
|
|
|
? lock_clust_rec_some_has_impl(rec, index, offsets)
|
|
|
|
: 0;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
if (trx_t *impl_trx = impl_trx_id
|
|
|
|
? trx_sys.find(current_trx(), impl_trx_id, false)
|
|
|
|
: 0) {
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
/* impl_trx could have been committed before we
|
|
|
|
acquire its mutex, but not thereafter. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
mutex_enter(&impl_trx->mutex);
|
|
|
|
ut_ad(impl_trx->state != TRX_STATE_NOT_STARTED);
|
|
|
|
if (impl_trx->state == TRX_STATE_COMMITTED_IN_MEMORY) {
|
2018-03-13 13:19:03 +01:00
|
|
|
} else if (const lock_t* other_lock
|
|
|
|
= lock_rec_other_has_expl_req(
|
|
|
|
LOCK_S, block, true, heap_no,
|
|
|
|
impl_trx)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The impl_trx is holding an implicit lock on the
|
|
|
|
given record 'rec'. So there cannot be another
|
|
|
|
explicit granted lock. Also, there can be another
|
|
|
|
explicit waiting lock only if the impl_trx has an
|
|
|
|
explicit granted lock. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-27 12:28:13 +02:00
|
|
|
if (other_lock->trx->is_wsrep()) {
|
2018-03-13 13:19:03 +01:00
|
|
|
if (!lock_get_wait(other_lock) ) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "WSREP impl BF lock conflict for my impl lock:\n BF:" <<
|
|
|
|
((wsrep_thd_is_BF(impl_trx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
|
2019-01-23 12:30:00 +01:00
|
|
|
wsrep_thd_client_state_str(impl_trx->mysql_thd) << " conflict: " <<
|
|
|
|
wsrep_thd_transaction_state_str(impl_trx->mysql_thd) << " seqno: " <<
|
2016-08-12 10:17:45 +02:00
|
|
|
wsrep_thd_trx_seqno(impl_trx->mysql_thd) << " SQL: " <<
|
|
|
|
wsrep_thd_query(impl_trx->mysql_thd);
|
|
|
|
|
|
|
|
trx_t* otrx = other_lock->trx;
|
|
|
|
|
|
|
|
ib::info() << "WSREP other lock:\n BF:" <<
|
|
|
|
((wsrep_thd_is_BF(otrx->mysql_thd, FALSE)) ? "BF" : "normal") << " exec: " <<
|
2019-01-23 12:30:00 +01:00
|
|
|
wsrep_thd_client_state_str(otrx->mysql_thd) << " conflict: " <<
|
|
|
|
wsrep_thd_transaction_state_str(otrx->mysql_thd) << " seqno: " <<
|
2016-08-12 10:17:45 +02:00
|
|
|
wsrep_thd_trx_seqno(otrx->mysql_thd) << " SQL: " <<
|
|
|
|
wsrep_thd_query(otrx->mysql_thd);
|
2016-09-06 08:43:16 +02:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:19:03 +01:00
|
|
|
if (!lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no,
|
|
|
|
impl_trx)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib::info() << "WSREP impl BF lock conflict";
|
2016-09-06 08:43:16 +02:00
|
|
|
}
|
2018-03-13 13:19:03 +01:00
|
|
|
} else
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* WITH_WSREP */
|
2018-03-13 13:19:03 +01:00
|
|
|
ut_ad(lock_get_wait(other_lock));
|
|
|
|
ut_ad(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no, impl_trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
|
|
|
|
mutex_exit(&impl_trx->mutex);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock != NULL;
|
|
|
|
lock = lock_rec_get_next_const(heap_no, lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_is_ac_nl_ro(lock->trx));
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (index) {
|
|
|
|
ut_a(lock->index == index);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!lock_rec_get_gap(lock) && !lock_get_wait(lock)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mode mode;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_mode(lock) == LOCK_S) {
|
|
|
|
mode = LOCK_X;
|
|
|
|
} else {
|
|
|
|
mode = LOCK_S;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* other_lock
|
|
|
|
= lock_rec_other_has_expl_req(
|
|
|
|
mode, block, false, heap_no,
|
|
|
|
lock->trx);
|
|
|
|
#ifdef WITH_WSREP
|
2016-12-01 11:44:12 +01:00
|
|
|
ut_a(!other_lock
|
|
|
|
|| wsrep_thd_is_BF(lock->trx->mysql_thd, FALSE)
|
|
|
|
|| wsrep_thd_is_BF(other_lock->trx->mysql_thd, FALSE));
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#else
|
|
|
|
ut_a(!other_lock);
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
} else if (lock_get_wait(lock) && !lock_rec_get_gap(lock)) {
|
|
|
|
|
|
|
|
ut_a(lock_rec_has_to_wait_in_queue(lock));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-10-23 19:36:26 +02:00
|
|
|
|
|
|
|
ut_ad(innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS ||
|
|
|
|
lock_queue_validate(lock));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-09-04 16:52:04 +02:00
|
|
|
goto func_exit;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Validates the record lock queues on a page.
|
|
|
|
@return TRUE if ok */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
ibool
|
|
|
|
lock_rec_validate_page(
|
|
|
|
/*===================*/
|
|
|
|
const buf_block_t* block) /*!< in: buffer block */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t* lock;
|
|
|
|
const rec_t* rec;
|
|
|
|
ulint nth_lock = 0;
|
|
|
|
ulint nth_bit = 0;
|
|
|
|
ulint i;
|
|
|
|
mem_heap_t* heap = NULL;
|
2020-04-28 02:46:51 +02:00
|
|
|
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
|
|
|
|
rec_offs* offsets = offsets_;
|
2016-08-12 10:17:45 +02:00
|
|
|
rec_offs_init(offsets_);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!lock_mutex_own());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
|
|
|
loop:
|
|
|
|
lock = lock_rec_get_first_on_page_addr(
|
2020-06-18 11:26:28 +02:00
|
|
|
&lock_sys.rec_hash,
|
MDEV-15053 Reduce buf_pool_t::mutex contention
User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE
and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0
and will no longer report the PAGE_STATE value READY_FOR_USE.
We will remove some fields from buf_page_t and move much code to
member functions of buf_pool_t and buf_page_t, so that the access
rules of data members can be enforced consistently.
Evicting or adding pages in buf_pool.LRU will remain covered by
buf_pool.mutex.
Evicting or adding pages in buf_pool.page_hash will remain
covered by both buf_pool.mutex and the buf_pool.page_hash X-latch.
After this fix, buf_pool.page_hash lookups can entirely
avoid acquiring buf_pool.mutex, only relying on
buf_pool.hash_lock_get() S-latch.
Similarly, buf_flush_check_neighbors() can will rely solely on
buf_pool.mutex, no buf_pool.page_hash latch at all.
The buf_pool.mutex is rather contended in I/O heavy benchmarks,
especially when the workload does not fit in the buffer pool.
The first attempt to alleviate the contention was the
buf_pool_t::mutex split in
commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858
which introduced buf_block_t::mutex, which we are now removing.
Later, multiple instances of buf_pool_t were introduced
in commit c18084f71b02ea707c6461353e6cfc15d7553bc6
and recently removed by us in
commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058).
UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool
related debugging in otherwise non-debug builds has not been used
for years. Instead, we have been using UNIV_DEBUG, which is enabled
in CMAKE_BUILD_TYPE=Debug.
buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on
std::atomic and the buf_pool.page_hash latches, and in some cases
depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before.
We must always release buf_block_t::lock before invoking
unfix() or io_unfix(), to prevent a glitch where a block that was
added to the buf_pool.free list would apper X-latched. See
commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch
was finally caught in a debug environment.
We move some buf_pool_t::page_hash specific code from the
ha and hash modules to buf_pool, for improved readability.
buf_pool_t::close(): Assert that all blocks are clean, except
on aborted startup or crash-like shutdown.
buf_pool_t::validate(): No longer attempt to validate
n_flush[] against the number of BUF_IO_WRITE fixed blocks,
because buf_page_t::flush_type no longer exists.
buf_pool_t::watch_set(): Replaces buf_pool_watch_set().
Reduce mutex contention by separating the buf_pool.watch[]
allocation and the insert into buf_pool.page_hash.
buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a
buf_pool.page_hash latch.
Replaces and extends buf_page_hash_lock_s_confirm()
and buf_page_hash_lock_x_confirm().
buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES.
buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads:
Use Atomic_counter.
buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out().
buf_pool_t::LRU_remove(): Remove a block from the LRU list
and return its predecessor. Incorporates buf_LRU_adjust_hp(),
which was removed.
buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(),
for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by
BTR_DELETE_OP (purge), which is never invoked on temporary tables.
buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments.
buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition.
buf_LRU_free_page(): Clarify the function comment.
buf_flush_check_neighbor(), buf_flush_check_neighbors():
Rewrite the construction of the page hash range. We will hold
the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64)
consecutive lookups of buf_pool.page_hash.
buf_flush_page_and_try_neighbors(): Remove.
Merge to its only callers, and remove redundant operations in
buf_flush_LRU_list_batch().
buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite.
Do not acquire buf_pool.mutex, and iterate directly with page_id_t.
ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined
and avoids any loops.
fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove.
buf_flush_page(): Add a fil_space_t* parameter. Minimize the
buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated
atomically with the io_fix, and we will protect most buf_block_t
fields with buf_block_t::lock. The function
buf_flush_write_block_low() is removed and merged here.
buf_page_init_for_read(): Use static linkage. Initialize the newly
allocated block and acquire the exclusive buf_block_t::lock while not
holding any mutex.
IORequest::IORequest(): Remove the body. We only need to invoke
set_punch_hole() in buf_flush_page() and nowhere else.
buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type.
This field is only used during a fil_io() call.
That function already takes IORequest as a parameter, so we had
better introduce for the rarely changing field.
buf_block_t::init(): Replaces buf_page_init().
buf_page_t::init(): Replaces buf_page_init_low().
buf_block_t::initialise(): Initialise many fields, but
keep the buf_page_t::state(). Both buf_pool_t::validate() and
buf_page_optimistic_get() requires that buf_page_t::in_file()
be protected atomically with buf_page_t::in_page_hash
and buf_page_t::in_LRU_list.
buf_page_optimistic_get(): Now that buf_block_t::mutex
no longer exists, we must check buf_page_t::io_fix()
after acquiring the buf_pool.page_hash lock, to detect
whether buf_page_init_for_read() has been initiated.
We will also check the io_fix() before acquiring hash_lock
in order to avoid unnecessary computation.
The field buf_block_t::modify_clock (protected by buf_block_t::lock)
allows buf_page_optimistic_get() to validate the block.
buf_page_t::real_size: Remove. It was only used while flushing
pages of page_compressed tables.
buf_page_encrypt(): Add an output parameter that allows us ot eliminate
buf_page_t::real_size. Replace a condition with debug assertion.
buf_page_should_punch_hole(): Remove.
buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch().
Add the parameter size (to replace buf_page_t::real_size).
buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page().
Add the parameter size (to replace buf_page_t::real_size).
fil_system_t::detach(): Replaces fil_space_detach().
Ensure that fil_validate() will not be violated even if
fil_system.mutex is released and reacquired.
fil_node_t::complete_io(): Renamed from fil_node_complete_io().
fil_node_t::close_to_free(): Replaces fil_node_close_to_free().
Avoid invoking fil_node_t::close() because fil_system.n_open
has already been decremented in fil_space_t::detach().
BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY.
BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE,
and distinguish dirty pages by buf_page_t::oldest_modification().
BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead.
This state was only being used for buf_page_t that are in
buf_pool.watch.
buf_pool_t::watch[]: Remove pointer indirection.
buf_page_t::in_flush_list: Remove. It was set if and only if
buf_page_t::oldest_modification() is nonzero.
buf_page_decrypt_after_read(), buf_corrupt_page_release(),
buf_page_check_corrupt(): Change the const fil_space_t* parameter
to const fil_node_t& so that we can report the correct file name.
buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function.
buf_page_io_complete(): Split to buf_page_read_complete() and
buf_page_write_complete().
buf_dblwr_t::in_use: Remove.
buf_dblwr_t::buf_block_array: Add IORequest::flush_t.
buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of
os_aio_wait_until_no_pending_writes().
buf_flush_write_complete(): Declare static, not global.
Add the parameter IORequest::flush_t.
buf_flush_freed_page(): Simplify the code.
recv_sys_t::flush_lru: Renamed from flush_type and changed to bool.
fil_read(), fil_write(): Replaced with direct use of fil_io().
fil_buffering_disabled(): Remove. Check srv_file_flush_method directly.
fil_mutex_enter_and_prepare_for_io(): Return the resolved
fil_space_t* to avoid a duplicated lookup in the caller.
fil_report_invalid_page_access(): Clean up the parameters.
fil_io(): Return fil_io_t, which comprises fil_node_t and error code.
Always invoke fil_space_t::acquire_for_io() and let either the
sync=true caller or fil_aio_callback() invoke
fil_space_t::release_for_io().
fil_aio_callback(): Rewrite to replace buf_page_io_complete().
fil_check_pending_operations(): Remove a parameter, and remove some
redundant lookups.
fil_node_close_to_free(): Wait for n_pending==0. Because we no longer
do an extra lookup of the tablespace between fil_io() and the
completion of the operation, we must give fil_node_t::complete_io() a
chance to decrement the counter.
fil_close_tablespace(): Remove unused parameter trx, and document
that this is only invoked during the error handling of IMPORT TABLESPACE.
row_import_discard_changes(): Merged with the only caller,
row_import_cleanup(). Do not lock up the data dictionary while
invoking fil_close_tablespace().
logs_empty_and_mark_files_at_shutdown(): Do not invoke
fil_close_all_files(), to avoid a !needs_flush assertion failure
on fil_node_t::close().
innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files().
fil_close_all_files(): Invoke fil_flush_file_spaces()
to ensure proper durability.
thread_pool::unbind(): Fix a crash that would occur on Windows
after srv_thread_pool->disable_aio() and os_file_close().
This fix was submitted by Vladislav Vaintroub.
Thanks to Matthias Leich and Axel Schwenke for extensive testing,
Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
|
|
|
block->page.id().space(), block->page.id().page_no());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!lock) {
|
|
|
|
goto function_exit;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
MDEV-15528 Punch holes when pages are freed
When a InnoDB data file page is freed, its contents becomes garbage,
and any storage allocated in the data file is wasted. During flushing,
InnoDB initializes the page with zeros if scrubbing is enabled. If the
tablespace is compressed then InnoDB should punch a hole else ignore the
flushing of the freed page.
buf_page_t:
- Replaced the variable file_page_was_freed, init_on_flush in buf_page_t
with status enum variable.
- Changed all debug assert of file_page_was_freed to DBUG_ASSERT
of buf_page_t::status
Removed buf_page_set_file_page_was_freed(),
buf_page_reset_file_page_was_freed().
buf_page_free(): Newly added function which takes X-lock on the page
before marking the status as FREED. So that InnoDB flush handler can
avoid concurrent flush of the freed page. Also while flushing the page,
InnoDB make sure that redo log which does freeing of the page also written
to the disk. Currently, this function only marks the page as FREED if
it is in buffer pool
buf_flush_freed_page(): Newly added function which initializes zeros
asynchorously if innodb_immediate_scrub_data_uncompressed is enabled.
Punch a hole to the file synchorously if page_compressed is enabled.
Reset the io_fix to NORMAL. Release the block from flush list and
associated mutex before writing zeros or punch a hole to the file.
buf_flush_page(): Removed the unnecessary usage of temporary
variable "flush"
fil_io(): Introduce new parameter called punch_hole. It allows fil_io()
to punch the hole to the file for the given offset.
buf_page_create(): Let the callers assign buf_page_t::status.
Every caller should eventually invoke mtr_t::init().
fsp_page_create(): Remove the unused mtr_t parameter.
In all other callers of buf_page_create() except fsp_page_create(),
before invoking mtr_t::init(), invoke
mtr_t::sx_latch_at_savepoint() or mtr_t::x_latch_at_savepoint().
mtr_t::init(): Initialize buf_page_t::status also for the temporary
tablespace (when redo logging is disabled), to avoid assertion failures.
2020-03-09 08:55:33 +01:00
|
|
|
DBUG_ASSERT(block->page.status != buf_page_t::FREED);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (i = 0; i < nth_lock; i++) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = lock_rec_get_next_on_page_const(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!lock) {
|
|
|
|
goto function_exit;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_is_ac_nl_ro(lock->trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Only validate the record queues when this thread is not
|
2017-12-04 10:48:12 +01:00
|
|
|
holding a space->latch. */
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!sync_check_find(SYNC_FSP))
|
|
|
|
for (i = nth_bit; i < lock_rec_get_n_bits(lock); i++) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-11-26 09:10:49 +01:00
|
|
|
if (i == PAGE_HEAP_NO_SUPREMUM
|
|
|
|
|| lock_rec_get_nth_bit(lock, i)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rec = page_find_rec_with_heap_no(block->frame, i);
|
|
|
|
ut_a(rec);
|
2018-11-26 09:10:49 +01:00
|
|
|
ut_ad(!lock_rec_get_nth_bit(lock, i)
|
|
|
|
|| page_rec_is_leaf(rec));
|
2016-08-12 10:17:45 +02:00
|
|
|
offsets = rec_get_offsets(rec, lock->index, offsets,
|
2017-09-19 18:20:11 +02:00
|
|
|
true, ULINT_UNDEFINED,
|
|
|
|
&heap);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If this thread is holding the file space
|
|
|
|
latch (fil_space_t::latch), the following
|
|
|
|
check WILL break the latching order and may
|
|
|
|
cause a deadlock of threads. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_queue_validate(
|
|
|
|
TRUE, block, rec, lock->index, offsets);
|
2014-05-06 21:13:16 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
nth_bit = i + 1;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
goto loop;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
nth_bit = 0;
|
|
|
|
nth_lock++;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
goto loop;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
function_exit:
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
if (heap != NULL) {
|
|
|
|
mem_heap_free(heap);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
return(TRUE);
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Validate record locks up to a limit.
|
|
|
|
@return lock at limit or NULL if no more locks in the hash bucket */
|
2016-09-06 08:43:16 +02:00
|
|
|
static MY_ATTRIBUTE((warn_unused_result))
|
2016-08-12 10:17:45 +02:00
|
|
|
const lock_t*
|
|
|
|
lock_rec_validate(
|
|
|
|
/*==============*/
|
2018-02-22 17:46:42 +01:00
|
|
|
ulint start, /*!< in: lock_sys.rec_hash
|
2016-08-12 10:17:45 +02:00
|
|
|
bucket */
|
|
|
|
ib_uint64_t* limit) /*!< in/out: upper limit of
|
|
|
|
(space, page_no) */
|
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (const lock_t* lock = static_cast<const lock_t*>(
|
2020-06-18 11:26:28 +02:00
|
|
|
HASH_GET_FIRST(&lock_sys.rec_hash, start));
|
2016-08-12 10:17:45 +02:00
|
|
|
lock != NULL;
|
|
|
|
lock = static_cast<const lock_t*>(HASH_GET_NEXT(hash, lock))) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ib_uint64_t current;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_is_ac_nl_ro(lock->trx));
|
|
|
|
ut_ad(lock_get_type(lock) == LOCK_REC);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
current = ut_ull_create(
|
|
|
|
lock->un_member.rec_lock.space,
|
|
|
|
lock->un_member.rec_lock.page_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (current > *limit) {
|
|
|
|
*limit = current + 1;
|
|
|
|
return(lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(0);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Validate a record lock's block */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_rec_block_validate(
|
|
|
|
/*====================*/
|
|
|
|
ulint space_id,
|
|
|
|
ulint page_no)
|
|
|
|
{
|
|
|
|
/* The lock and the block that it is referring to may be freed at
|
|
|
|
this point. We pass BUF_GET_POSSIBLY_FREED to skip a debug check.
|
|
|
|
If the lock exists in lock_rec_validate_page() we assert
|
MDEV-15528 Punch holes when pages are freed
When a InnoDB data file page is freed, its contents becomes garbage,
and any storage allocated in the data file is wasted. During flushing,
InnoDB initializes the page with zeros if scrubbing is enabled. If the
tablespace is compressed then InnoDB should punch a hole else ignore the
flushing of the freed page.
buf_page_t:
- Replaced the variable file_page_was_freed, init_on_flush in buf_page_t
with status enum variable.
- Changed all debug assert of file_page_was_freed to DBUG_ASSERT
of buf_page_t::status
Removed buf_page_set_file_page_was_freed(),
buf_page_reset_file_page_was_freed().
buf_page_free(): Newly added function which takes X-lock on the page
before marking the status as FREED. So that InnoDB flush handler can
avoid concurrent flush of the freed page. Also while flushing the page,
InnoDB make sure that redo log which does freeing of the page also written
to the disk. Currently, this function only marks the page as FREED if
it is in buffer pool
buf_flush_freed_page(): Newly added function which initializes zeros
asynchorously if innodb_immediate_scrub_data_uncompressed is enabled.
Punch a hole to the file synchorously if page_compressed is enabled.
Reset the io_fix to NORMAL. Release the block from flush list and
associated mutex before writing zeros or punch a hole to the file.
buf_flush_page(): Removed the unnecessary usage of temporary
variable "flush"
fil_io(): Introduce new parameter called punch_hole. It allows fil_io()
to punch the hole to the file for the given offset.
buf_page_create(): Let the callers assign buf_page_t::status.
Every caller should eventually invoke mtr_t::init().
fsp_page_create(): Remove the unused mtr_t parameter.
In all other callers of buf_page_create() except fsp_page_create(),
before invoking mtr_t::init(), invoke
mtr_t::sx_latch_at_savepoint() or mtr_t::x_latch_at_savepoint().
mtr_t::init(): Initialize buf_page_t::status also for the temporary
tablespace (when redo logging is disabled), to avoid assertion failures.
2020-03-09 08:55:33 +01:00
|
|
|
block->page.status != FREED. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
buf_block_t* block;
|
|
|
|
mtr_t mtr;
|
2015-02-23 10:24:19 +01:00
|
|
|
|
2018-02-04 12:11:49 +01:00
|
|
|
/* Transactional locks should never refer to dropped
|
|
|
|
tablespaces, because all DDL operations that would drop or
|
|
|
|
discard or rebuild a tablespace do hold an exclusive table
|
|
|
|
lock, which would conflict with any locks referring to the
|
|
|
|
tablespace from other transactions. */
|
2016-08-12 10:17:45 +02:00
|
|
|
if (fil_space_t* space = fil_space_acquire(space_id)) {
|
|
|
|
dberr_t err = DB_SUCCESS;
|
|
|
|
mtr_start(&mtr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
block = buf_page_get_gen(
|
|
|
|
page_id_t(space_id, page_no),
|
2019-02-06 18:50:11 +01:00
|
|
|
space->zip_size(),
|
2016-08-12 10:17:45 +02:00
|
|
|
RW_X_LATCH, NULL,
|
|
|
|
BUF_GET_POSSIBLY_FREED,
|
|
|
|
__FILE__, __LINE__, &mtr, &err);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
ib::error() << "Lock rec block validate failed for tablespace "
|
2017-04-21 04:51:27 +02:00
|
|
|
<< space->name
|
2016-09-06 08:43:16 +02:00
|
|
|
<< " space_id " << space_id
|
|
|
|
<< " page_no " << page_no << " err " << err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (block) {
|
|
|
|
buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK);
|
|
|
|
|
|
|
|
ut_ad(lock_rec_validate_page(block));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
mtr_commit(&mtr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-04-23 12:15:54 +02:00
|
|
|
space->release();
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-24 18:23:10 +01:00
|
|
|
|
2018-05-01 00:10:37 +02:00
|
|
|
static my_bool lock_validate_table_locks(rw_trx_hash_element_t *element, void*)
|
2017-12-24 18:23:10 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
mutex_enter(&element->mutex);
|
|
|
|
if (element->trx)
|
|
|
|
{
|
|
|
|
check_trx_state(element->trx);
|
|
|
|
for (const lock_t *lock= UT_LIST_GET_FIRST(element->trx->lock.trx_locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock= UT_LIST_GET_NEXT(trx_locks, lock))
|
|
|
|
{
|
|
|
|
if (lock_get_type_low(lock) & LOCK_TABLE)
|
|
|
|
lock_table_queue_validate(lock->un_member.tab_lock.table);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&element->mutex);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Validates the lock system.
|
|
|
|
@return TRUE if ok */
|
|
|
|
static
|
|
|
|
bool
|
|
|
|
lock_validate()
|
|
|
|
/*===========*/
|
|
|
|
{
|
|
|
|
typedef std::pair<ulint, ulint> page_addr_t;
|
|
|
|
typedef std::set<
|
|
|
|
page_addr_t,
|
|
|
|
std::less<page_addr_t>,
|
|
|
|
ut_allocator<page_addr_t> > page_addr_set;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
page_addr_set pages;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-24 18:23:10 +01:00
|
|
|
/* Validate table locks */
|
2020-05-29 16:51:41 +02:00
|
|
|
trx_sys.rw_trx_hash.iterate(lock_validate_table_locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Iterate over all the record locks and validate the locks. We
|
2020-05-15 23:13:02 +02:00
|
|
|
don't want to hog the lock_sys_t::mutex. Release it during the
|
|
|
|
validation check. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
for (ulint i = 0; i < lock_sys.rec_hash.n_cells; i++) {
|
2016-08-12 10:17:45 +02:00
|
|
|
ib_uint64_t limit = 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-10-14 13:28:11 +02:00
|
|
|
while (const lock_t* lock = lock_rec_validate(i, &limit)) {
|
|
|
|
if (lock_rec_find_set_bit(lock) == ULINT_UNDEFINED) {
|
|
|
|
/* The lock bitmap is empty; ignore it. */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
const lock_rec_t& l = lock->un_member.rec_lock;
|
|
|
|
pages.insert(std::make_pair(l.space, l.page_no));
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (page_addr_set::const_iterator it = pages.begin();
|
|
|
|
it != pages.end();
|
|
|
|
++it) {
|
|
|
|
lock_rec_block_validate((*it).first, (*it).second);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(true);
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/*============ RECORD LOCK CHECKS FOR ROW OPERATIONS ====================*/
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if locks of other transactions prevent an immediate insert of
|
|
|
|
a record. If they do, first tests if the query thread should anyway
|
|
|
|
be suspended for some reason; if not, then puts the transaction and
|
|
|
|
the query thread to the lock wait state and inserts a waiting request
|
|
|
|
for a gap x-lock to the lock queue.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_rec_insert_check_and_lock(
|
|
|
|
/*===========================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is
|
|
|
|
set, does nothing */
|
|
|
|
const rec_t* rec, /*!< in: record after which to insert */
|
|
|
|
buf_block_t* block, /*!< in/out: buffer block of rec */
|
|
|
|
dict_index_t* index, /*!< in: index */
|
|
|
|
que_thr_t* thr, /*!< in: query thread */
|
|
|
|
mtr_t* mtr, /*!< in/out: mini-transaction */
|
2018-02-13 21:29:51 +01:00
|
|
|
bool* inherit)/*!< out: set to true if the new
|
2016-08-12 10:17:45 +02:00
|
|
|
inserted record maybe should inherit
|
|
|
|
LOCK_GAP type locks from the successor
|
|
|
|
record */
|
|
|
|
{
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
ut_ad(!dict_index_is_online_ddl(index)
|
2018-11-26 09:10:49 +01:00
|
|
|
|| index->is_primary()
|
2016-08-12 10:17:45 +02:00
|
|
|
|| (flags & BTR_CREATE_FLAG));
|
2018-03-22 18:40:38 +01:00
|
|
|
ut_ad(mtr->is_named_space(index->table->space));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (flags & BTR_NO_LOCKING_FLAG) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-05-12 08:38:46 +02:00
|
|
|
ut_ad(!index->table->is_temporary());
|
2018-11-26 09:10:49 +01:00
|
|
|
ut_ad(page_is_leaf(block->frame));
|
2015-01-19 00:11:05 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t err;
|
|
|
|
lock_t* lock;
|
2018-02-13 21:29:51 +01:00
|
|
|
bool inherit_in = *inherit;
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx = thr_get_trx(thr);
|
|
|
|
const rec_t* next_rec = page_rec_get_next_const(rec);
|
|
|
|
ulint heap_no = page_rec_get_heap_no(next_rec);
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(next_rec, *index));
|
2015-01-19 00:11:05 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
|
|
|
/* Because this code is invoked for a running transaction by
|
|
|
|
the thread that is serving the transaction, it is not necessary
|
|
|
|
to hold trx->mutex here. */
|
2015-01-19 00:11:05 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* When inserting a record into an index, the table must be at
|
|
|
|
least IX-locked. When we are building an index, we would pass
|
|
|
|
BTR_NO_LOCKING_FLAG and skip the locking altogether. */
|
|
|
|
ut_ad(lock_table_has(trx, index->table, LOCK_IX));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-06-18 11:26:28 +02:00
|
|
|
lock = lock_rec_get_first(&lock_sys.rec_hash, block, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock == NULL) {
|
|
|
|
/* We optimize CPU time usage in the simplest case */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (inherit_in && !dict_index_is_clust(index)) {
|
|
|
|
/* Update the page max trx id field */
|
|
|
|
page_update_max_trx_id(block,
|
|
|
|
buf_block_get_page_zip(block),
|
|
|
|
trx->id, mtr);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2018-02-13 21:29:51 +01:00
|
|
|
*inherit = false;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Spatial index does not use GAP lock protection. It uses
|
|
|
|
"predicate lock" to protect the "range" */
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
|
|
return(DB_SUCCESS);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-02-13 21:29:51 +01:00
|
|
|
*inherit = true;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If another transaction has an explicit lock request which locks
|
|
|
|
the gap, waiting or granted, on the successor, the insert has to wait.
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
An exception is the case where the lock by the another transaction
|
|
|
|
is a gap type lock which it placed to wait for its turn to insert. We
|
|
|
|
do not consider that kind of a lock conflicting with our insert. This
|
|
|
|
eliminates an unnecessary deadlock which resulted when 2 transactions
|
|
|
|
had to wait for their insert. Both had waiting gap type lock requests
|
|
|
|
on the successor, which produced an unnecessary deadlock. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-03-10 19:05:17 +01:00
|
|
|
const unsigned type_mode = LOCK_X | LOCK_GAP | LOCK_INSERT_INTENTION;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
lock_t* c_lock =
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
lock_rec_other_has_conflicting(type_mode, block, heap_no, trx)) {
|
|
|
|
/* Note that we may get DB_SUCCESS also here! */
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_enter(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
err = lock_rec_enqueue_waiting(
|
|
|
|
#ifdef WITH_WSREP
|
|
|
|
c_lock,
|
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
type_mode, block, heap_no, index, thr, NULL);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
} else {
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
|
|
|
|
switch (err) {
|
|
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
/* fall through */
|
|
|
|
case DB_SUCCESS:
|
|
|
|
if (!inherit_in || dict_index_is_clust(index)) {
|
|
|
|
break;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Update the page max trx id field */
|
|
|
|
page_update_max_trx_id(
|
|
|
|
block, buf_block_get_page_zip(block), trx->id, mtr);
|
|
|
|
default:
|
|
|
|
/* We only care about the two return values. */
|
|
|
|
break;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
{
|
|
|
|
mem_heap_t* heap = NULL;
|
2020-04-28 02:46:51 +02:00
|
|
|
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
|
|
|
|
const rec_offs* offsets;
|
2016-08-12 10:17:45 +02:00
|
|
|
rec_offs_init(offsets_);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-09-19 18:20:11 +02:00
|
|
|
offsets = rec_get_offsets(next_rec, index, offsets_, true,
|
2016-08-12 10:17:45 +02:00
|
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
|
|
|
|
ut_ad(lock_rec_queue_validate(
|
|
|
|
FALSE, block, next_rec, index, offsets));
|
|
|
|
|
|
|
|
if (heap != NULL) {
|
|
|
|
mem_heap_free(heap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
|
|
|
return(err);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Creates an explicit record lock for a running transaction that currently only
|
|
|
|
has an implicit lock on the record. The transaction instance must have a
|
|
|
|
reference count > 0 so that it can't be committed and freed before this
|
|
|
|
function has completed. */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2016-08-12 10:17:45 +02:00
|
|
|
void
|
|
|
|
lock_rec_convert_impl_to_expl_for_trx(
|
|
|
|
/*==================================*/
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: user record on page */
|
|
|
|
dict_index_t* index, /*!< in: index of record */
|
|
|
|
trx_t* trx, /*!< in/out: active transaction */
|
|
|
|
ulint heap_no)/*!< in: rec heap number to lock */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2017-12-20 11:59:36 +01:00
|
|
|
ut_ad(trx->is_referenced());
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
DEBUG_SYNC_C("before_lock_rec_convert_impl_to_expl_for_trx");
|
|
|
|
lock_mutex_enter();
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
trx_mutex_enter(trx);
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_state_eq(trx, TRX_STATE_NOT_STARTED));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (!trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY)
|
|
|
|
&& !lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no, trx)) {
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
lock_rec_add_to_queue(LOCK_REC | LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no, index, trx, true);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
trx_mutex_exit(trx);
|
2017-12-20 11:59:36 +01:00
|
|
|
trx->release_reference();
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
DEBUG_SYNC_C("after_lock_rec_convert_impl_to_expl_for_trx");
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2017-12-24 18:23:10 +01:00
|
|
|
|
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
struct lock_rec_other_trx_holds_expl_arg
|
|
|
|
{
|
|
|
|
const ulint heap_no;
|
|
|
|
const buf_block_t * const block;
|
|
|
|
const trx_t *impl_trx;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static my_bool lock_rec_other_trx_holds_expl_callback(
|
|
|
|
rw_trx_hash_element_t *element,
|
|
|
|
lock_rec_other_trx_holds_expl_arg *arg)
|
|
|
|
{
|
|
|
|
mutex_enter(&element->mutex);
|
|
|
|
if (element->trx)
|
|
|
|
{
|
2019-09-04 16:52:04 +02:00
|
|
|
trx_mutex_enter(element->trx);
|
|
|
|
ut_ad(element->trx->state != TRX_STATE_NOT_STARTED);
|
|
|
|
lock_t *expl_lock= element->trx->state == TRX_STATE_COMMITTED_IN_MEMORY
|
|
|
|
? NULL : lock_rec_has_expl(LOCK_S | LOCK_REC_NOT_GAP, arg->block,
|
|
|
|
arg->heap_no, element->trx);
|
2017-12-24 18:23:10 +01:00
|
|
|
/*
|
|
|
|
An explicit lock is held by trx other than the trx holding the implicit
|
|
|
|
lock.
|
|
|
|
*/
|
|
|
|
ut_ad(!expl_lock || expl_lock->trx == arg->impl_trx);
|
2019-09-04 16:52:04 +02:00
|
|
|
trx_mutex_exit(element->trx);
|
2017-12-24 18:23:10 +01:00
|
|
|
}
|
|
|
|
mutex_exit(&element->mutex);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Checks if some transaction, other than given trx_id, has an explicit
|
|
|
|
lock on the given rec.
|
|
|
|
|
|
|
|
FIXME: if the current transaction holds implicit lock from INSERT, a
|
|
|
|
subsequent locking read should not convert it to explicit. See also
|
|
|
|
MDEV-11215.
|
|
|
|
|
|
|
|
@param caller_trx trx of current thread
|
|
|
|
@param[in] trx trx holding implicit lock on rec
|
|
|
|
@param[in] rec user record
|
|
|
|
@param[in] block buffer block containing the record
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void lock_rec_other_trx_holds_expl(trx_t *caller_trx, trx_t *trx,
|
|
|
|
const rec_t *rec,
|
|
|
|
const buf_block_t *block)
|
|
|
|
{
|
|
|
|
if (trx)
|
|
|
|
{
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(rec));
|
2017-12-24 18:23:10 +01:00
|
|
|
lock_mutex_enter();
|
2019-03-27 14:00:12 +01:00
|
|
|
ut_ad(trx->is_referenced());
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
const trx_state_t state = trx->state;
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
ut_ad(state != TRX_STATE_NOT_STARTED);
|
|
|
|
if (state == TRX_STATE_COMMITTED_IN_MEMORY)
|
|
|
|
{
|
|
|
|
/* The transaction was committed before our lock_mutex_enter(). */
|
|
|
|
lock_mutex_exit();
|
|
|
|
return;
|
|
|
|
}
|
2017-12-24 18:23:10 +01:00
|
|
|
lock_rec_other_trx_holds_expl_arg arg= { page_rec_get_heap_no(rec), block,
|
|
|
|
trx };
|
2017-12-22 15:15:41 +01:00
|
|
|
trx_sys.rw_trx_hash.iterate(caller_trx,
|
2020-05-29 16:51:41 +02:00
|
|
|
lock_rec_other_trx_holds_expl_callback, &arg);
|
2017-12-24 18:23:10 +01:00
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
|
|
|
|
|
2018-07-03 14:10:06 +02:00
|
|
|
/** If an implicit x-lock exists on a record, convert it to an explicit one.
|
|
|
|
|
|
|
|
Often, this is called by a transaction that is about to enter a lock wait
|
|
|
|
due to the lock conflict. Two explicit locks would be created: first the
|
|
|
|
exclusive lock on behalf of the lock-holder transaction in this function,
|
|
|
|
and then a wait request on behalf of caller_trx, in the calling function.
|
|
|
|
|
|
|
|
This may also be called by the same transaction that is already holding
|
|
|
|
an implicit exclusive lock on the record. In this case, no explicit lock
|
|
|
|
should be created.
|
|
|
|
|
|
|
|
@param[in,out] caller_trx current transaction
|
|
|
|
@param[in] block index tree leaf page
|
|
|
|
@param[in] rec record on the leaf page
|
|
|
|
@param[in] index the index of the record
|
|
|
|
@param[in] offsets rec_get_offsets(rec,index)
|
|
|
|
@return whether caller_trx already holds an exclusive lock on rec */
|
2014-02-26 19:11:54 +01:00
|
|
|
static
|
2018-07-03 14:10:06 +02:00
|
|
|
bool
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_convert_impl_to_expl(
|
2018-07-03 14:10:06 +02:00
|
|
|
trx_t* caller_trx,
|
|
|
|
const buf_block_t* block,
|
|
|
|
const rec_t* rec,
|
|
|
|
dict_index_t* index,
|
2020-05-04 16:47:11 +02:00
|
|
|
const rec_offs* offsets)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!lock_mutex_own());
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (dict_index_is_clust(index)) {
|
|
|
|
trx_id_t trx_id;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_id = lock_clust_rec_some_has_impl(rec, index, offsets);
|
|
|
|
|
2018-07-03 14:10:06 +02:00
|
|
|
if (trx_id == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(trx_id == caller_trx->id)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-01-25 15:29:59 +01:00
|
|
|
trx = trx_sys.find(caller_trx, trx_id);
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
|
|
|
ut_ad(!dict_index_is_online_ddl(index));
|
|
|
|
|
2017-12-13 12:40:41 +01:00
|
|
|
trx = lock_sec_rec_some_has_impl(caller_trx, rec, index,
|
|
|
|
offsets);
|
2018-07-03 14:10:06 +02:00
|
|
|
if (trx == caller_trx) {
|
|
|
|
trx->release_reference();
|
|
|
|
return true;
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2017-12-24 18:23:10 +01:00
|
|
|
ut_d(lock_rec_other_trx_holds_expl(caller_trx, trx, rec,
|
|
|
|
block));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (trx != 0) {
|
|
|
|
ulint heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-20 11:59:36 +01:00
|
|
|
ut_ad(trx->is_referenced());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If the transaction is still active and has no
|
|
|
|
explicit x-lock set on the record, set one for it.
|
|
|
|
trx cannot be committed until the ref count is zero. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_rec_convert_impl_to_expl_for_trx(
|
2018-05-01 00:10:37 +02:00
|
|
|
block, rec, index, trx, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2018-07-03 14:10:06 +02:00
|
|
|
|
|
|
|
return false;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Checks if locks of other transactions prevent an immediate modify (update,
|
|
|
|
delete mark, or delete unmark) of a clustered index record. If they do,
|
|
|
|
first tests if the query thread should anyway be suspended for some
|
|
|
|
reason; if not, then puts the transaction and the query thread to the
|
|
|
|
lock wait state and inserts a waiting request for a record x-lock to the
|
|
|
|
lock queue.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_clust_rec_modify_check_and_lock(
|
|
|
|
/*=================================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
|
|
|
|
bit is set, does nothing */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: record which should be
|
|
|
|
modified */
|
|
|
|
dict_index_t* index, /*!< in: clustered index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */
|
2016-08-12 10:17:45 +02:00
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
|
|
{
|
|
|
|
dberr_t err;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(dict_index_is_clust(index));
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (flags & BTR_NO_LOCKING_FLAG) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2018-05-12 08:38:46 +02:00
|
|
|
ut_ad(!index->table->is_temporary());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = rec_offs_comp(offsets)
|
|
|
|
? rec_get_heap_no_new(rec)
|
|
|
|
: rec_get_heap_no_old(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If a transaction has no explicit x-lock set on the record, set one
|
|
|
|
for it */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-07-03 14:10:06 +02:00
|
|
|
if (lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec, index,
|
|
|
|
offsets)) {
|
|
|
|
/* We already hold an implicit exclusive lock. */
|
|
|
|
return DB_SUCCESS;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no, index, thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
|
|
|
|
|
|
|
|
if (err == DB_SUCCESS_LOCKED_REC) {
|
|
|
|
err = DB_SUCCESS;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(err);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Checks if locks of other transactions prevent an immediate modify (delete
|
|
|
|
mark or delete unmark) of a secondary index record.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_sec_rec_modify_check_and_lock(
|
|
|
|
/*===============================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
|
|
|
|
bit is set, does nothing */
|
|
|
|
buf_block_t* block, /*!< in/out: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: record which should be
|
|
|
|
modified; NOTE: as this is a secondary
|
|
|
|
index, we always have to modify the
|
|
|
|
clustered index record first: see the
|
|
|
|
comment below */
|
|
|
|
dict_index_t* index, /*!< in: secondary index */
|
|
|
|
que_thr_t* thr, /*!< in: query thread
|
|
|
|
(can be NULL if BTR_NO_LOCKING_FLAG) */
|
|
|
|
mtr_t* mtr) /*!< in/out: mini-transaction */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t err;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
ut_ad(!dict_index_is_online_ddl(index) || (flags & BTR_CREATE_FLAG));
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
2018-03-22 18:40:38 +01:00
|
|
|
ut_ad(mtr->is_named_space(index->table->space));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (flags & BTR_NO_LOCKING_FLAG) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2018-05-12 08:38:46 +02:00
|
|
|
ut_ad(!index->table->is_temporary());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Another transaction cannot have an implicit lock on the record,
|
|
|
|
because when we come here, we already have modified the clustered
|
|
|
|
index record, and this would not have been possible if another active
|
|
|
|
transaction had modified this secondary index record. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP,
|
|
|
|
block, heap_no, index, thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
{
|
|
|
|
mem_heap_t* heap = NULL;
|
2020-04-28 02:46:51 +02:00
|
|
|
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
|
|
|
|
const rec_offs* offsets;
|
2016-08-12 10:17:45 +02:00
|
|
|
rec_offs_init(offsets_);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-09-19 18:20:11 +02:00
|
|
|
offsets = rec_get_offsets(rec, index, offsets_, true,
|
2016-08-12 10:17:45 +02:00
|
|
|
ULINT_UNDEFINED, &heap);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_rec_queue_validate(
|
|
|
|
FALSE, block, rec, index, offsets));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (heap != NULL) {
|
|
|
|
mem_heap_free(heap);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) {
|
|
|
|
/* Update the page max trx id field */
|
|
|
|
/* It might not be necessary to do this if
|
|
|
|
err == DB_SUCCESS (no new lock created),
|
|
|
|
but it should not cost too much performance. */
|
|
|
|
page_update_max_trx_id(block,
|
|
|
|
buf_block_get_page_zip(block),
|
|
|
|
thr_get_trx(thr)->id, mtr);
|
|
|
|
err = DB_SUCCESS;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
return(err);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Like lock_clust_rec_read_check_and_lock(), but reads a
|
|
|
|
secondary index record.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_sec_rec_read_check_and_lock(
|
|
|
|
/*=============================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
|
|
|
|
bit is set, does nothing */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: user record or page
|
|
|
|
supremum record which should
|
|
|
|
be read or passed over by a
|
|
|
|
read cursor */
|
|
|
|
dict_index_t* index, /*!< in: secondary index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mode mode, /*!< in: mode of the lock which
|
|
|
|
the read cursor should set on
|
|
|
|
records: LOCK_S or LOCK_X; the
|
|
|
|
latter is possible in
|
|
|
|
SELECT FOR UPDATE */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
|
2016-08-12 10:17:45 +02:00
|
|
|
LOCK_REC_NOT_GAP */
|
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t err;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
ut_ad(!dict_index_is_online_ddl(index));
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(mode == LOCK_X || mode == LOCK_S);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if ((flags & BTR_NO_LOCKING_FLAG)
|
|
|
|
|| srv_read_only_mode
|
2018-05-12 08:38:46 +02:00
|
|
|
|| index->table->is_temporary()) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Some transaction may have an implicit x-lock on the record only
|
|
|
|
if the max trx id for the page >= min trx id for the trx list or a
|
|
|
|
database recovery is running. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
MDEV-14935 Remove bogus conditions related to not redo-logging PAGE_MAX_TRX_ID changes
InnoDB originally skipped the redo logging of PAGE_MAX_TRX_ID changes
until I enabled it in commit e76b873f24cd7cfc4b2d69b33103a6dd9601cbb8
that was part of MySQL 5.5.5 already.
Later, when a more complete history of the InnoDB Plugin for MySQL 5.1
(aka branches/zip in the InnoDB subversion repository) and of the
planned-to-be closed-source branches/innodb+ that became the basis of
InnoDB in MySQL 5.5 was pushed to the MySQL source repository, the
change was part of commit 509e761f06d6d7902bd5fdd0955447ed772af768:
------------------------------------------------------------------------
r5038 | marko | 2009-05-19 22:59:07 +0300 (Tue, 19 May 2009) | 30 lines
branches/zip: Write PAGE_MAX_TRX_ID to the redo log. Otherwise,
transactions that are started before the rollback of incomplete
transactions has finished may have an inconsistent view of the
secondary indexes.
dict_index_is_sec_or_ibuf(): Auxiliary function for controlling
updates and checks of PAGE_MAX_TRX_ID: check whether an index is a
secondary index or the insert buffer tree.
page_set_max_trx_id(), page_update_max_trx_id(),
lock_rec_insert_check_and_lock(),
lock_sec_rec_modify_check_and_lock(), btr_cur_ins_lock_and_undo(),
btr_cur_upd_lock_and_undo(): Add the parameter mtr.
page_set_max_trx_id(): Allow mtr to be NULL. When mtr==NULL, do not
attempt to write to the redo log. This only occurs when creating a
page or reorganizing a compressed page. In these cases, the
PAGE_MAX_TRX_ID will be set correctly during the application of redo
log records, even though there is no explicit log record about it.
btr_discard_only_page_on_level(): Preserve PAGE_MAX_TRX_ID. This
function should be unreachable, though.
btr_cur_pessimistic_update(): Update PAGE_MAX_TRX_ID.
Add some assertions for checking that PAGE_MAX_TRX_ID is set on all
secondary index leaf pages.
rb://115 tested by Michael, fixes Issue #211
------------------------------------------------------------------------
After this fix, some bogus references to recv_recovery_is_on()
remained. Also, some references could be replaced with
references to index->is_dummy to prepare us for MDEV-14481
(background redo log apply).
2018-01-12 15:44:27 +01:00
|
|
|
if (!page_rec_is_supremum(rec)
|
2018-07-03 14:10:06 +02:00
|
|
|
&& page_get_max_trx_id(block->frame) >= trx_sys.get_min_trx_id()
|
|
|
|
&& lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec,
|
|
|
|
index, offsets)) {
|
|
|
|
/* We already hold an implicit exclusive lock. */
|
|
|
|
return DB_SUCCESS;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-03-10 19:05:17 +01:00
|
|
|
err = lock_rec_lock(FALSE, gap_mode | mode,
|
2016-08-12 10:17:45 +02:00
|
|
|
block, heap_no, index, thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(err);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Checks if locks of other transactions prevent an immediate read, or passing
|
|
|
|
over by a read cursor, of a clustered index record. If they do, first tests
|
|
|
|
if the query thread should anyway be suspended for some reason; if not, then
|
|
|
|
puts the transaction and the query thread to the lock wait state and inserts a
|
|
|
|
waiting request for a record lock to the lock queue. Sets the requested mode
|
|
|
|
lock on the record.
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t
|
|
|
|
lock_clust_rec_read_check_and_lock(
|
|
|
|
/*===============================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
|
|
|
|
bit is set, does nothing */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: user record or page
|
|
|
|
supremum record which should
|
|
|
|
be read or passed over by a
|
|
|
|
read cursor */
|
|
|
|
dict_index_t* index, /*!< in: clustered index */
|
2020-04-28 02:46:51 +02:00
|
|
|
const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mode mode, /*!< in: mode of the lock which
|
|
|
|
the read cursor should set on
|
|
|
|
records: LOCK_S or LOCK_X; the
|
|
|
|
latter is possible in
|
|
|
|
SELECT FOR UPDATE */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
|
2016-08-12 10:17:45 +02:00
|
|
|
LOCK_REC_NOT_GAP */
|
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
dberr_t err;
|
|
|
|
ulint heap_no;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(dict_index_is_clust(index));
|
|
|
|
ut_ad(block->frame == page_align(rec));
|
|
|
|
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
|
|
|
|
ut_ad(gap_mode == LOCK_ORDINARY || gap_mode == LOCK_GAP
|
|
|
|
|| gap_mode == LOCK_REC_NOT_GAP);
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
MDEV-15662 Instant DROP COLUMN or changing the order of columns
Allow ADD COLUMN anywhere in a table, not only adding as the
last column.
Allow instant DROP COLUMN and instant changing the order of columns.
The added columns will always be added last in clustered index records.
In new records, instantly dropped columns will be stored as NULL or
empty when possible.
Information about dropped and reordered columns will be written in
a metadata BLOB (mblob), which is stored before the first 'user' field
in the hidden metadata record at the start of the clustered index.
The presence of mblob is indicated by setting the delete-mark flag in
the metadata record.
The metadata BLOB stores the number of clustered index fields,
followed by an array of column information for each field.
For dropped columns, we store the NOT NULL flag, the fixed length,
and for variable-length columns, whether the maximum length exceeded
255 bytes. For non-dropped columns, we store the column position.
Unlike with MDEV-11369, when a table becomes empty, it cannot
be converted back to the canonical format. The reason for this is
that other threads may hold cached objects such as
row_prebuilt_t::ins_node that could refer to dropped or reordered
index fields.
For instant DROP COLUMN and ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC,
we must store the n_core_null_bytes in the root page, so that the
chain of node pointer records can be followed in order to reach the
leftmost leaf page where the metadata record is located.
If the mblob is present, we will zero-initialize the strings
"infimum" and "supremum" in the root page, and use the last byte of
"supremum" for storing the number of null bytes (which are allocated
but useless on node pointer pages). This is necessary for
btr_cur_instant_init_metadata() to be able to navigate to the mblob.
If the PRIMARY KEY contains any variable-length column and some
nullable columns were instantly dropped, the dict_index_t::n_nullable
in the data dictionary could be smaller than it actually is in the
non-leaf pages. Because of this, the non-leaf pages could use more
bytes for the null flags than the data dictionary expects, and we
could be reading the lengths of the variable-length columns from the
wrong offset, and thus reading the child page number from wrong place.
This is the result of two design mistakes that involve unnecessary
storage of data: First, it is nonsense to store any data fields for
the leftmost node pointer records, because the comparisons would be
resolved by the MIN_REC_FLAG alone. Second, there cannot be any null
fields in the clustered index node pointer fields, but we nevertheless
reserve space for all the null flags.
Limitations (future work):
MDEV-17459 Allow instant ALTER TABLE even if FULLTEXT INDEX exists
MDEV-17468 Avoid table rebuild on operations on generated columns
MDEV-17494 Refuse ALGORITHM=INSTANT when the row size is too large
btr_page_reorganize_low(): Preserve any metadata in the root page.
Call lock_move_reorganize_page() only after restoring the "infimum"
and "supremum" records, to avoid a memcmp() assertion failure.
dict_col_t::DROPPED: Magic value for dict_col_t::ind.
dict_col_t::clear_instant(): Renamed from dict_col_t::remove_instant().
Do not assert that the column was instantly added, because we
sometimes call this unconditionally for all columns.
Convert an instantly added column to a "core column". The old name
remove_instant() could be mistaken to refer to "instant DROP COLUMN".
dict_col_t::is_added(): Rename from dict_col_t::is_instant().
dtype_t::metadata_blob_init(): Initialize the mblob data type.
dtuple_t::is_metadata(), dtuple_t::is_alter_metadata(),
upd_t::is_metadata(), upd_t::is_alter_metadata(): Check if info_bits
refer to a metadata record.
dict_table_t::instant: Metadata about dropped or reordered columns.
dict_table_t::prepare_instant(): Prepare
ha_innobase_inplace_ctx::instant_table for instant ALTER TABLE.
innobase_instant_try() will pass this to dict_table_t::instant_column().
On rollback, dict_table_t::rollback_instant() will be called.
dict_table_t::instant_column(): Renamed from instant_add_column().
Add the parameter col_map so that columns can be reordered.
Copy and adjust v_cols[] as well.
dict_table_t::find(): Find an old column based on a new column number.
dict_table_t::serialise_columns(), dict_table_t::deserialise_columns():
Convert the mblob.
dict_index_t::instant_metadata(): Create the metadata record
for instant ALTER TABLE. Invoke dict_table_t::serialise_columns().
dict_index_t::reconstruct_fields(): Invoked by
dict_table_t::deserialise_columns().
dict_index_t::clear_instant_alter(): Move the fields for the
dropped columns to the end, and sort the surviving index fields
in ascending order of column position.
ha_innobase::check_if_supported_inplace_alter(): Do not allow
adding a FTS_DOC_ID column if a hidden FTS_DOC_ID column exists
due to FULLTEXT INDEX. (This always required ALGORITHM=COPY.)
instant_alter_column_possible(): Add a parameter for InnoDB table,
to check for additional conditions, such as the maximum number of
index fields.
ha_innobase_inplace_ctx::first_alter_pos: The first column whose position
is affected by instant ADD, DROP, or changing the order of columns.
innobase_build_col_map(): Skip added virtual columns.
prepare_inplace_add_virtual(): Correctly compute num_to_add_vcol.
Remove some unnecessary code. Note that the call to
innodb_base_col_setup() should be executed later.
commit_try_norebuild(): If ctx->is_instant(), let the virtual
columns be added or dropped by innobase_instant_try().
innobase_instant_try(): Fill in a zero default value for the
hidden column FTS_DOC_ID (to reduce the work needed in MDEV-17459).
If any columns were dropped or reordered (or added not last),
delete any SYS_COLUMNS records for the following columns, and
insert SYS_COLUMNS records for all subsequent stored columns as well
as for all virtual columns. If any virtual column is dropped, rewrite
all virtual column metadata. Use a shortcut only for adding
virtual columns. This is because innobase_drop_virtual_try()
assumes that the dropped virtual columns still exist in ctx->old_table.
innodb_update_cols(): Renamed from innodb_update_n_cols().
innobase_add_one_virtual(), innobase_insert_sys_virtual(): Change
the return type to bool, and invoke my_error() when detecting an error.
innodb_insert_sys_columns(): Insert a record into SYS_COLUMNS.
Refactored from innobase_add_one_virtual() and innobase_instant_add_col().
innobase_instant_add_col(): Replace the parameter dfield with type.
innobase_instant_drop_cols(): Drop matching columns from SYS_COLUMNS
and all columns from SYS_VIRTUAL.
innobase_add_virtual_try(), innobase_drop_virtual_try(): Let
the caller invoke innodb_update_cols().
innobase_rename_column_try(): Skip dropped columns.
commit_cache_norebuild(): Update table->fts->doc_col.
dict_mem_table_col_rename_low(): Skip dropped columns.
trx_undo_rec_get_partial_row(): Skip dropped columns.
trx_undo_update_rec_get_update(): Handle the metadata BLOB correctly.
trx_undo_page_report_modify(): Avoid out-of-bounds access to record fields.
Log metadata records consistently.
Apparently, the first fields of a clustered index may be updated
in an update_undo vector when the index is ID_IND of SYS_FOREIGN,
as part of renaming the table during ALTER TABLE. Normally, updates of
the PRIMARY KEY should be logged as delete-mark and an insert.
row_undo_mod_parse_undo_rec(), row_purge_parse_undo_rec():
Use trx_undo_metadata.
row_undo_mod_clust_low(): On metadata rollback, roll back the root page too.
row_undo_mod_clust(): Relax an assertion. The delete-mark flag was
repurposed for ALTER TABLE metadata records.
row_rec_to_index_entry_impl(): Add the template parameter mblob
and the optional parameter info_bits for specifying the desired new
info bits. For the metadata tuple, allow conversion between the original
format (ADD COLUMN only) and the generic format (with hidden BLOB).
Add the optional parameter "pad" to determine whether the tuple should
be padded to the index fields (on ALTER TABLE it should), or whether
it should remain at its original size (on rollback).
row_build_index_entry_low(): Clean up the code, removing
redundant variables and conditions. For instantly dropped columns,
generate a dummy value that is NULL, the empty string, or a
fixed length of NUL bytes, depending on the type of the dropped column.
row_upd_clust_rec_by_insert_inherit_func(): On the update of PRIMARY KEY
of a record that contained a dropped column whose value was stored
externally, we will be inserting a dummy NULL or empty string value
to the field of the dropped column. The externally stored column would
eventually be dropped when purge removes the delete-marked record for
the old PRIMARY KEY value.
btr_index_rec_validate(): Recognize the metadata record.
btr_discard_only_page_on_level(): Preserve the generic instant
ALTER TABLE metadata.
btr_set_instant(): Replaces page_set_instant(). This sets a clustered
index root page to the appropriate format, or upgrades from
the MDEV-11369 instant ADD COLUMN to generic ALTER TABLE format.
btr_cur_instant_init_low(): Read and validate the metadata BLOB page
before reconstructing the dictionary information based on it.
btr_cur_instant_init_metadata(): Do not read any lengths from the
metadata record header before reading the BLOB. At this point, we
would not actually know how many nullable fields the metadata record
contains.
btr_cur_instant_root_init(): Initialize n_core_null_bytes in one
of two possible ways.
btr_cur_trim(): Handle the mblob record.
row_metadata_to_tuple(): Convert a metadata record to a data tuple,
based on the new info_bits of the metadata record.
btr_cur_pessimistic_update(): Invoke row_metadata_to_tuple() if needed.
Invoke dtuple_convert_big_rec() for metadata records if the record is
too large, or if the mblob is not yet marked as externally stored.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
When the last user record is deleted, do not delete the
generic instant ALTER TABLE metadata record. Only delete
MDEV-11369 instant ADD COLUMN metadata records.
btr_cur_optimistic_insert(): Avoid unnecessary computation of rec_size.
btr_pcur_store_position(): Allow a logically empty page to contain
a metadata record for generic ALTER TABLE.
REC_INFO_DEFAULT_ROW_ADD: Renamed from REC_INFO_DEFAULT_ROW.
This is for the old instant ADD COLUMN (MDEV-11369) only.
REC_INFO_DEFAULT_ROW_ALTER: The more generic metadata record,
with additional information for dropped or reordered columns.
rec_info_bits_valid(): Remove. The only case when this would fail
is when the record is the generic ALTER TABLE metadata record.
rec_is_alter_metadata(): Check if a record is the metadata record
for instant ALTER TABLE (other than ADD COLUMN). NOTE: This function
must not be invoked on node pointer records, because the delete-mark
flag in those records may be set (it is garbage), and then a debug
assertion could fail because index->is_instant() does not necessarily
hold.
rec_is_add_metadata(): Check if a record is MDEV-11369 ADD COLUMN metadata
record (not more generic instant ALTER TABLE).
rec_get_converted_size_comp_prefix_low(): Assume that the metadata
field will be stored externally. In dtuple_convert_big_rec() during
the rec_get_converted_size() call, it would not be there yet.
rec_get_converted_size_comp(): Replace status,fields,n_fields with tuple.
rec_init_offsets_comp_ordinary(), rec_get_converted_size_comp_prefix_low(),
rec_convert_dtuple_to_rec_comp(): Add template<bool mblob = false>.
With mblob=true, process a record with a metadata BLOB.
rec_copy_prefix_to_buf(): Assert that no fields beyond the key and
system columns are being copied. Exclude the metadata BLOB field.
rec_convert_dtuple_to_metadata_comp(): Convert an alter metadata tuple
into a record.
row_upd_index_replace_metadata(): Apply an update vector to an
alter_metadata tuple.
row_log_allocate(): Replace dict_index_t::is_instant()
with a more appropriate condition that ignores dict_table_t::instant.
Only a table on which the MDEV-11369 ADD COLUMN was performed
can "lose its instantness" when it becomes empty. After
instant DROP COLUMN or reordering columns, we cannot simply
convert the table to the canonical format, because the data
dictionary cache and all possibly existing references to it
from other client connection threads would have to be adjusted.
row_quiesce_write_index_fields(): Do not crash when the table contains
an instantly dropped column.
Thanks to Thirunarayanan Balathandayuthapani for discussing the design
and implementing an initial prototype of this.
Thanks to Matthias Leich for testing.
2018-10-19 15:49:54 +02:00
|
|
|
ut_ad(!rec_is_metadata(rec, *index));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if ((flags & BTR_NO_LOCKING_FLAG)
|
|
|
|
|| srv_read_only_mode
|
2018-05-12 08:38:46 +02:00
|
|
|
|| index->table->is_temporary()) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(DB_SUCCESS);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
heap_no = page_rec_get_heap_no(rec);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-07-03 14:10:06 +02:00
|
|
|
if (heap_no != PAGE_HEAP_NO_SUPREMUM
|
|
|
|
&& lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec,
|
|
|
|
index, offsets)) {
|
|
|
|
/* We already hold an implicit exclusive lock. */
|
|
|
|
return DB_SUCCESS;
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2020-03-10 19:05:17 +01:00
|
|
|
err = lock_rec_lock(FALSE, gap_mode | mode,
|
2018-04-28 14:49:09 +02:00
|
|
|
block, heap_no, index, thr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
DEBUG_SYNC_C("after_lock_clust_rec_read_check_and_lock");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(err);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Checks if locks of other transactions prevent an immediate read, or passing
|
|
|
|
over by a read cursor, of a clustered index record. If they do, first tests
|
|
|
|
if the query thread should anyway be suspended for some reason; if not, then
|
|
|
|
puts the transaction and the query thread to the lock wait state and inserts a
|
|
|
|
waiting request for a record lock to the lock queue. Sets the requested mode
|
|
|
|
lock on the record. This is an alternative version of
|
|
|
|
lock_clust_rec_read_check_and_lock() that does not require the parameter
|
|
|
|
"offsets".
|
2018-03-13 10:07:34 +01:00
|
|
|
@return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */
|
2014-02-26 19:11:54 +01:00
|
|
|
dberr_t
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_clust_rec_read_check_and_lock_alt(
|
|
|
|
/*===================================*/
|
|
|
|
ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG
|
|
|
|
bit is set, does nothing */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of rec */
|
|
|
|
const rec_t* rec, /*!< in: user record or page
|
|
|
|
supremum record which should
|
|
|
|
be read or passed over by a
|
|
|
|
read cursor */
|
|
|
|
dict_index_t* index, /*!< in: clustered index */
|
|
|
|
lock_mode mode, /*!< in: mode of the lock which
|
|
|
|
the read cursor should set on
|
|
|
|
records: LOCK_S or LOCK_X; the
|
|
|
|
latter is possible in
|
|
|
|
SELECT FOR UPDATE */
|
2020-03-10 19:05:17 +01:00
|
|
|
unsigned gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or
|
2016-08-12 10:17:45 +02:00
|
|
|
LOCK_REC_NOT_GAP */
|
|
|
|
que_thr_t* thr) /*!< in: query thread */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
mem_heap_t* tmp_heap = NULL;
|
2020-04-28 02:46:51 +02:00
|
|
|
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
|
|
|
|
rec_offs* offsets = offsets_;
|
2014-02-26 19:11:54 +01:00
|
|
|
dberr_t err;
|
2016-08-12 10:17:45 +02:00
|
|
|
rec_offs_init(offsets_);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-09-19 18:20:11 +02:00
|
|
|
ut_ad(page_rec_is_leaf(rec));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
2016-08-12 10:17:45 +02:00
|
|
|
ULINT_UNDEFINED, &tmp_heap);
|
|
|
|
err = lock_clust_rec_read_check_and_lock(flags, block, rec, index,
|
|
|
|
offsets, mode, gap_mode, thr);
|
|
|
|
if (tmp_heap) {
|
|
|
|
mem_heap_free(tmp_heap);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (err == DB_SUCCESS_LOCKED_REC) {
|
|
|
|
err = DB_SUCCESS;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(err);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Release the last lock from the transaction's autoinc locks. */
|
|
|
|
UNIV_INLINE
|
|
|
|
void
|
|
|
|
lock_release_autoinc_last_lock(
|
|
|
|
/*===========================*/
|
|
|
|
ib_vector_t* autoinc_locks) /*!< in/out: vector of AUTOINC locks */
|
|
|
|
{
|
|
|
|
ulint last;
|
|
|
|
lock_t* lock;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_a(!ib_vector_is_empty(autoinc_locks));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The lock to be release must be the last lock acquired. */
|
|
|
|
last = ib_vector_size(autoinc_locks) - 1;
|
|
|
|
lock = *static_cast<lock_t**>(ib_vector_get(autoinc_locks, last));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Should have only AUTOINC locks in the vector. */
|
|
|
|
ut_a(lock_get_mode(lock) == LOCK_AUTO_INC);
|
|
|
|
ut_a(lock_get_type(lock) == LOCK_TABLE);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(lock->un_member.tab_lock.table != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* This will remove the lock from the trx autoinc_locks too. */
|
|
|
|
lock_table_dequeue(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Remove from the table vector too. */
|
|
|
|
lock_trx_table_locks_remove(lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Check if a transaction holds any autoinc locks.
|
|
|
|
@return TRUE if the transaction holds any AUTOINC locks. */
|
|
|
|
static
|
|
|
|
ibool
|
|
|
|
lock_trx_holds_autoinc_locks(
|
|
|
|
/*=========================*/
|
|
|
|
const trx_t* trx) /*!< in: transaction */
|
|
|
|
{
|
|
|
|
ut_a(trx->autoinc_locks != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(!ib_vector_is_empty(trx->autoinc_locks));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Release all the transaction's autoinc locks. */
|
|
|
|
static
|
|
|
|
void
|
|
|
|
lock_release_autoinc_locks(
|
|
|
|
/*=======================*/
|
|
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
/* If this is invoked for a running transaction by the thread
|
|
|
|
that is serving the transaction, then it is not necessary to
|
|
|
|
hold trx->mutex here. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(trx->autoinc_locks != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* We release the locks in the reverse order. This is to
|
|
|
|
avoid searching the vector for the element to delete at
|
|
|
|
the lower level. See (lock_table_remove_low()) for details. */
|
|
|
|
while (!ib_vector_is_empty(trx->autoinc_locks)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* lock_table_remove_low() will also remove the lock from
|
|
|
|
the transaction's autoinc_locks vector. */
|
|
|
|
lock_release_autoinc_last_lock(trx->autoinc_locks);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Should release all locks. */
|
|
|
|
ut_a(ib_vector_is_empty(trx->autoinc_locks));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Gets the type of a lock. Non-inline version for using outside of the
|
|
|
|
lock module.
|
|
|
|
@return LOCK_TABLE or LOCK_REC */
|
|
|
|
ulint
|
|
|
|
lock_get_type(
|
|
|
|
/*==========*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
|
|
|
return(lock_get_type_low(lock));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Gets the id of the transaction owning a lock.
|
|
|
|
@return transaction id */
|
|
|
|
trx_id_t
|
|
|
|
lock_get_trx_id(
|
|
|
|
/*============*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
|
|
|
return(trx_get_id_for_print(lock->trx));
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Gets the table on which the lock is.
|
|
|
|
@return table */
|
|
|
|
UNIV_INLINE
|
|
|
|
dict_table_t*
|
|
|
|
lock_get_table(
|
|
|
|
/*===========*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
|
|
|
switch (lock_get_type_low(lock)) {
|
|
|
|
case LOCK_REC:
|
|
|
|
ut_ad(dict_index_is_clust(lock->index)
|
|
|
|
|| !dict_index_is_online_ddl(lock->index));
|
|
|
|
return(lock->index->table);
|
|
|
|
case LOCK_TABLE:
|
|
|
|
return(lock->un_member.tab_lock.table);
|
|
|
|
default:
|
|
|
|
ut_error;
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Gets the id of the table on which the lock is.
|
|
|
|
@return id of the table */
|
|
|
|
table_id_t
|
|
|
|
lock_get_table_id(
|
|
|
|
/*==============*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
2018-11-22 14:36:50 +01:00
|
|
|
dict_table_t* table = lock_get_table(lock);
|
|
|
|
ut_ad(!table->is_temporary());
|
2016-08-12 10:17:45 +02:00
|
|
|
return(table->id);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Determine which table a lock is associated with.
|
|
|
|
@param[in] lock the lock
|
|
|
|
@return name of the table */
|
|
|
|
const table_name_t&
|
|
|
|
lock_get_table_name(
|
|
|
|
const lock_t* lock)
|
|
|
|
{
|
|
|
|
return(lock_get_table(lock)->name);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************//**
|
|
|
|
For a record lock, gets the index on which the lock is.
|
|
|
|
@return index */
|
|
|
|
const dict_index_t*
|
|
|
|
lock_rec_get_index(
|
|
|
|
/*===============*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
|
|
|
ut_a(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
ut_ad(dict_index_is_clust(lock->index)
|
|
|
|
|| !dict_index_is_online_ddl(lock->index));
|
|
|
|
|
|
|
|
return(lock->index);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************//**
|
|
|
|
For a record lock, gets the name of the index on which the lock is.
|
|
|
|
The string should not be free()'d or modified.
|
|
|
|
@return name of the index */
|
|
|
|
const char*
|
|
|
|
lock_rec_get_index_name(
|
|
|
|
/*====================*/
|
|
|
|
const lock_t* lock) /*!< in: lock */
|
|
|
|
{
|
|
|
|
ut_a(lock_get_type_low(lock) == LOCK_REC);
|
|
|
|
ut_ad(dict_index_is_clust(lock->index)
|
|
|
|
|| !dict_index_is_online_ddl(lock->index));
|
|
|
|
|
|
|
|
return(lock->index->name);
|
|
|
|
}
|
|
|
|
|
2014-02-26 19:11:54 +01:00
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Cancels a waiting lock request and releases possible other transactions
|
|
|
|
waiting behind it. */
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_cancel_waiting_and_release(
|
|
|
|
/*============================*/
|
|
|
|
lock_t* lock) /*!< in/out: waiting lock request */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
que_thr_t* thr;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(trx_mutex_own(lock->trx));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock->trx->lock.cancel = true;
|
|
|
|
|
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
|
|
|
|
|
|
|
lock_rec_dequeue_from_page(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
} else {
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
|
|
|
|
if (lock->trx->autoinc_locks != NULL) {
|
|
|
|
/* Release the transaction's AUTOINC locks. */
|
|
|
|
lock_release_autoinc_locks(lock->trx);
|
|
|
|
}
|
2014-05-06 21:13:16 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_table_dequeue(lock);
|
2019-09-17 16:24:15 +02:00
|
|
|
/* Remove the lock from table lock vector too. */
|
|
|
|
lock_trx_table_locks_remove(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Reset the wait flag and the back pointer to lock in trx. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_reset_lock_and_trx_wait(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* The following function releases the trx from lock wait. */
|
|
|
|
|
|
|
|
thr = que_thr_end_lock_wait(lock->trx);
|
|
|
|
|
|
|
|
if (thr != NULL) {
|
|
|
|
lock_wait_release_thread_if_suspended(thr);
|
|
|
|
}
|
|
|
|
|
|
|
|
lock->trx->lock.cancel = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
|
|
|
Unlocks AUTO_INC type locks that were possibly reserved by a trx. This
|
|
|
|
function should be called at the the end of an SQL statement, by the
|
|
|
|
connection thread that owns the transaction (trx->mysql_thd). */
|
|
|
|
void
|
|
|
|
lock_unlock_table_autoinc(
|
|
|
|
/*======================*/
|
|
|
|
trx_t* trx) /*!< in/out: transaction */
|
|
|
|
{
|
|
|
|
ut_ad(!lock_mutex_own());
|
|
|
|
ut_ad(!trx_mutex_own(trx));
|
|
|
|
ut_ad(!trx->lock.wait_lock);
|
|
|
|
|
|
|
|
/* This can be invoked on NOT_STARTED, ACTIVE, PREPARED,
|
|
|
|
but not COMMITTED transactions. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED)
|
|
|
|
|| !trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* This function is invoked for a running transaction by the
|
|
|
|
thread that is serving the transaction. Therefore it is not
|
|
|
|
necessary to hold trx->mutex here. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_trx_holds_autoinc_locks(trx)) {
|
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_release_autoinc_locks(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock_mutex_exit();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-03-16 13:35:42 +01:00
|
|
|
static inline dberr_t lock_trx_handle_wait_low(trx_t* trx)
|
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(trx_mutex_own(trx));
|
|
|
|
|
|
|
|
if (trx->lock.was_chosen_as_deadlock_victim) {
|
|
|
|
return DB_DEADLOCK;
|
|
|
|
}
|
|
|
|
if (!trx->lock.wait_lock) {
|
|
|
|
/* The lock was probably granted before we got here. */
|
|
|
|
return DB_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_cancel_waiting_and_release(trx->lock.wait_lock);
|
|
|
|
return DB_LOCK_WAIT;
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*********************************************************************//**
|
|
|
|
Check whether the transaction has already been rolled back because it
|
|
|
|
was selected as a deadlock victim, or if it has to wait then cancel
|
|
|
|
the wait lock.
|
|
|
|
@return DB_DEADLOCK, DB_LOCK_WAIT or DB_SUCCESS */
|
|
|
|
dberr_t
|
|
|
|
lock_trx_handle_wait(
|
|
|
|
/*=================*/
|
2018-03-16 13:35:42 +01:00
|
|
|
trx_t* trx) /*!< in/out: trx lock state */
|
2016-08-12 10:17:45 +02:00
|
|
|
{
|
2019-01-23 12:30:00 +01:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
/* We already own mutexes */
|
|
|
|
if (trx->lock.was_chosen_as_wsrep_victim) {
|
|
|
|
return lock_trx_handle_wait_low(trx);
|
|
|
|
}
|
|
|
|
#endif /* WITH_WSREP */
|
2018-03-16 13:35:42 +01:00
|
|
|
lock_mutex_enter();
|
|
|
|
trx_mutex_enter(trx);
|
|
|
|
dberr_t err = lock_trx_handle_wait_low(trx);
|
|
|
|
lock_mutex_exit();
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
return err;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************//**
|
2016-08-12 10:17:45 +02:00
|
|
|
Get the number of locks on a table.
|
|
|
|
@return number of locks */
|
|
|
|
ulint
|
|
|
|
lock_table_get_n_locks(
|
|
|
|
/*===================*/
|
|
|
|
const dict_table_t* table) /*!< in: table */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ulint n_table_locks;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
n_table_locks = UT_LIST_GET_LEN(table->locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(n_table_locks);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
2017-12-24 18:23:10 +01:00
|
|
|
/**
|
|
|
|
Do an exhaustive check for any locks (table or rec) against the table.
|
|
|
|
|
|
|
|
@param[in] table check if there are any locks held on records in this table
|
|
|
|
or on the table itself
|
|
|
|
*/
|
|
|
|
|
|
|
|
static my_bool lock_table_locks_lookup(rw_trx_hash_element_t *element,
|
|
|
|
const dict_table_t *table)
|
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
mutex_enter(&element->mutex);
|
|
|
|
if (element->trx)
|
|
|
|
{
|
2019-09-04 16:52:04 +02:00
|
|
|
trx_mutex_enter(element->trx);
|
2017-12-24 18:23:10 +01:00
|
|
|
check_trx_state(element->trx);
|
2019-09-04 16:52:04 +02:00
|
|
|
if (element->trx->state != TRX_STATE_COMMITTED_IN_MEMORY)
|
2017-12-24 18:23:10 +01:00
|
|
|
{
|
2019-09-04 16:52:04 +02:00
|
|
|
for (const lock_t *lock= UT_LIST_GET_FIRST(element->trx->lock.trx_locks);
|
|
|
|
lock != NULL;
|
|
|
|
lock= UT_LIST_GET_NEXT(trx_locks, lock))
|
2017-12-24 18:23:10 +01:00
|
|
|
{
|
2019-09-04 16:52:04 +02:00
|
|
|
ut_ad(lock->trx == element->trx);
|
|
|
|
if (lock_get_type_low(lock) == LOCK_REC)
|
|
|
|
{
|
2020-05-19 16:05:05 +02:00
|
|
|
ut_ad(lock->index->online_status != ONLINE_INDEX_CREATION ||
|
2019-09-04 16:52:04 +02:00
|
|
|
lock->index->is_primary());
|
|
|
|
ut_ad(lock->index->table != table);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
ut_ad(lock->un_member.tab_lock.table != table);
|
2017-12-24 18:23:10 +01:00
|
|
|
}
|
|
|
|
}
|
2019-09-04 16:52:04 +02:00
|
|
|
trx_mutex_exit(element->trx);
|
2017-12-24 18:23:10 +01:00
|
|
|
}
|
|
|
|
mutex_exit(&element->mutex);
|
|
|
|
return 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Check if there are any locks (table or rec) against table.
|
|
|
|
@return true if table has either table or record locks. */
|
|
|
|
bool
|
|
|
|
lock_table_has_locks(
|
|
|
|
/*=================*/
|
|
|
|
const dict_table_t* table) /*!< in: check if there are any locks
|
|
|
|
held on records in this table or on the
|
|
|
|
table itself */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ibool has_locks;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-24 18:23:10 +01:00
|
|
|
ut_ad(table != NULL);
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
has_locks = UT_LIST_GET_LEN(table->locks) > 0 || table->n_rec_locks > 0;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
if (!has_locks) {
|
2020-05-29 16:51:41 +02:00
|
|
|
trx_sys.rw_trx_hash.iterate(lock_table_locks_lookup, table);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(has_locks);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Initialise the table lock list. */
|
|
|
|
void
|
|
|
|
lock_table_lock_list_init(
|
|
|
|
/*======================*/
|
|
|
|
table_lock_list_t* lock_list) /*!< List to initialise */
|
|
|
|
{
|
|
|
|
UT_LIST_INIT(*lock_list, &lock_table_t::locks);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/*******************************************************************//**
|
|
|
|
Initialise the trx lock list. */
|
|
|
|
void
|
|
|
|
lock_trx_lock_list_init(
|
|
|
|
/*====================*/
|
|
|
|
trx_lock_list_t* lock_list) /*!< List to initialise */
|
|
|
|
{
|
|
|
|
UT_LIST_INIT(*lock_list, &lock_t::trx_locks);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
#ifdef UNIV_DEBUG
|
|
|
|
/*******************************************************************//**
|
|
|
|
Check if the transaction holds any locks on the sys tables
|
|
|
|
or its records.
|
|
|
|
@return the strongest lock found on any sys table or 0 for none */
|
|
|
|
const lock_t*
|
|
|
|
lock_trx_has_sys_table_locks(
|
|
|
|
/*=========================*/
|
|
|
|
const trx_t* trx) /*!< in: transaction to check */
|
|
|
|
{
|
|
|
|
const lock_t* strongest_lock = 0;
|
|
|
|
lock_mode strongest = LOCK_NONE;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-08-13 11:34:12 +02:00
|
|
|
const lock_list::const_iterator end = trx->lock.table_locks.end();
|
|
|
|
lock_list::const_iterator it = trx->lock.table_locks.begin();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Find a valid mode. Note: ib_vector_size() can be 0. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (/* No op */; it != end; ++it) {
|
|
|
|
const lock_t* lock = *it;
|
|
|
|
|
|
|
|
if (lock != NULL
|
|
|
|
&& dict_is_sys_table(lock->un_member.tab_lock.table->id)) {
|
|
|
|
|
|
|
|
strongest = lock_get_mode(lock);
|
|
|
|
ut_ad(strongest != LOCK_NONE);
|
|
|
|
strongest_lock = lock;
|
|
|
|
break;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (strongest == LOCK_NONE) {
|
|
|
|
lock_mutex_exit();
|
|
|
|
return(NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (/* No op */; it != end; ++it) {
|
|
|
|
const lock_t* lock = *it;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock == NULL) {
|
|
|
|
continue;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx == lock->trx);
|
|
|
|
ut_ad(lock_get_type_low(lock) & LOCK_TABLE);
|
|
|
|
ut_ad(lock->un_member.tab_lock.table != NULL);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mode mode = lock_get_mode(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (dict_is_sys_table(lock->un_member.tab_lock.table->id)
|
|
|
|
&& lock_mode_stronger_or_eq(mode, strongest)) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
strongest = mode;
|
|
|
|
strongest_lock = lock;
|
|
|
|
}
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(strongest_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2018-07-03 14:10:06 +02:00
|
|
|
/** Check if the transaction holds an explicit exclusive lock on a record.
|
|
|
|
@param[in] trx transaction
|
|
|
|
@param[in] table table
|
|
|
|
@param[in] block leaf page
|
|
|
|
@param[in] heap_no heap number identifying the record
|
|
|
|
@return whether an explicit X-lock is held */
|
2016-08-12 10:17:45 +02:00
|
|
|
bool
|
2018-07-03 14:10:06 +02:00
|
|
|
lock_trx_has_expl_x_lock(
|
2016-08-12 10:17:45 +02:00
|
|
|
const trx_t* trx, /*!< in: transaction to check */
|
|
|
|
const dict_table_t* table, /*!< in: table to check */
|
|
|
|
const buf_block_t* block, /*!< in: buffer block of the record */
|
|
|
|
ulint heap_no)/*!< in: record heap number */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(heap_no > PAGE_HEAP_NO_SUPREMUM);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_enter();
|
2018-07-03 14:10:06 +02:00
|
|
|
ut_ad(lock_table_has(trx, table, LOCK_IX));
|
2020-02-24 20:17:16 +01:00
|
|
|
ut_ad(lock_table_has(trx, table, LOCK_X)
|
|
|
|
|| lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, block, heap_no,
|
|
|
|
trx));
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_mutex_exit();
|
|
|
|
return(true);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
#endif /* UNIV_DEBUG */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** rewind(3) the file used for storing the latest detected deadlock and
|
|
|
|
print a heading message to stderr if printing of all deadlocks to stderr
|
|
|
|
is enabled. */
|
2014-02-26 19:11:54 +01:00
|
|
|
void
|
2016-08-12 10:17:45 +02:00
|
|
|
DeadlockChecker::start_print()
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
rewind(lock_latest_err_file);
|
|
|
|
ut_print_timestamp(lock_latest_err_file);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (srv_print_all_deadlocks) {
|
|
|
|
ib::info() << "Transactions deadlock detected, dumping"
|
MDEV-15326: InnoDB: Failing assertion: !other_lock
MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition
between InnoDB transaction commit and the conversion of implicit
locks into explicit ones.
The assertion failure can be triggered with a test that runs
3 concurrent single-statement transactions in a loop on a simple
table:
CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB;
thread1: INSERT INTO t SET a=1;
thread2: DELETE FROM t;
thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t;
The failure scenarios are like the following:
(1) The INSERT statement is being committed, waiting for lock_sys->mutex.
(2) At the time of the failure, both the DELETE and SELECT transactions
are active but have not logged any changes yet.
(3) The transaction where the !other_lock assertion fails started
lock_rec_convert_impl_to_expl().
(4) After this point, the commit of the INSERT removed the transaction from
trx_sys->rw_trx_set, in trx_erase_lists().
(5) The other transaction consulted trx_sys->rw_trx_set and determined
that there is no implicit lock. Hence, it grabbed the lock.
(6) The !other_lock assertion fails in lock_rec_add_to_queue()
for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'.
This assertion failure looks genuine, because the INSERT transaction
is still active (trx->state=TRX_STATE_ACTIVE).
The problematic step (4) was introduced in
mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad
which fixed something related to MVCC (covered by the test
innodb.innodb-read-view). Basically, it reintroduced an error
that had been mentioned in an earlier commit
mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5:
"The active transaction was removed from trx_sys->rw_trx_set prematurely."
Our fix goes along the following lines:
(a) Implicit locks will released by assigning
trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step.
This transition will no longer be protected by lock_sys_t::mutex,
only by trx->mutex. This idea is by Sergey Vojtovich.
(b) We detach the transaction from trx_sys before starting to release
explicit locks.
(c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must
recheck trx->state after acquiring trx->mutex.
(d) Before releasing any explicit locks, we will ensure that any activity
by other threads to convert implicit locks into explicit will have ceased,
by checking !trx_is_referenced(trx). There was a glitch
in this check when it was part of lock_trx_release_locks(); at the end
we would release trx->mutex and acquire lock_sys->mutex and trx->mutex,
and fail to recheck (trx_is_referenced() is protected by trx_t::mutex).
(e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000)
just like we did before.
trx_t::state: Document that the transition to COMMITTED is only
protected by trx_t::mutex, no longer by lock_sys_t::mutex.
trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction
state should be rechecked after acquiring trx_t::mutex.
trx_t::commit_state(): New function to change a transaction to committed
state, to release implicit locks.
trx_t::release_locks(): New function to release the explicit locks
after commit_state().
lock_trx_release_locks(): Move much of the logic to the caller
(which must invoke trx_t::commit_state() and trx_t::release_locks()
as needed), and assert that the transaction will have locks.
trx_get_trx_by_xid(): Make the parameter a pointer to const.
lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring
trx->mutex, and avoid a redundant lookup of the transaction.
lock_rec_queue_validate(): Recheck impl_trx->state while holding
impl_trx->mutex.
row_vers_impl_x_locked(), row_vers_impl_x_locked_low():
Document that the transaction state must be rechecked after
trx_mutex_enter().
trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 11:31:37 +02:00
|
|
|
" detailed information.";
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Print a message to the deadlock file and possibly to stderr.
|
|
|
|
@param msg message to print */
|
|
|
|
void
|
|
|
|
DeadlockChecker::print(const char* msg)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
fputs(msg, lock_latest_err_file);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (srv_print_all_deadlocks) {
|
|
|
|
ib::info() << msg;
|
|
|
|
}
|
2015-12-14 09:10:09 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Print transaction data to the deadlock file and possibly to stderr.
|
|
|
|
@param trx transaction
|
|
|
|
@param max_query_len max query length to print */
|
|
|
|
void
|
|
|
|
DeadlockChecker::print(const trx_t* trx, ulint max_query_len)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
ulint n_rec_locks = lock_number_of_rows_locked(&trx->lock);
|
|
|
|
ulint n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
|
|
|
|
ulint heap_size = mem_heap_get_size(trx->lock.lock_heap);
|
|
|
|
|
|
|
|
trx_print_low(lock_latest_err_file, trx, max_query_len,
|
|
|
|
n_rec_locks, n_trx_locks, heap_size);
|
|
|
|
|
|
|
|
if (srv_print_all_deadlocks) {
|
|
|
|
trx_print_low(stderr, trx, max_query_len,
|
|
|
|
n_rec_locks, n_trx_locks, heap_size);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Print lock data to the deadlock file and possibly to stderr.
|
|
|
|
@param lock record or table type lock */
|
|
|
|
void
|
|
|
|
DeadlockChecker::print(const lock_t* lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
2019-07-25 11:08:50 +02:00
|
|
|
mtr_t mtr;
|
|
|
|
lock_rec_print(lock_latest_err_file, lock, mtr);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (srv_print_all_deadlocks) {
|
2019-07-25 11:08:50 +02:00
|
|
|
lock_rec_print(stderr, lock, mtr);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
} else {
|
|
|
|
lock_table_print(lock_latest_err_file, lock);
|
|
|
|
|
|
|
|
if (srv_print_all_deadlocks) {
|
|
|
|
lock_table_print(stderr, lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Get the next lock in the queue that is owned by a transaction whose
|
|
|
|
sub-tree has not already been searched.
|
|
|
|
Note: "next" here means PREV for table locks.
|
|
|
|
|
|
|
|
@param lock Lock in queue
|
|
|
|
@param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED
|
|
|
|
|
|
|
|
@return next lock or NULL if at end of queue */
|
|
|
|
const lock_t*
|
|
|
|
DeadlockChecker::get_next_lock(const lock_t* lock, ulint heap_no) const
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
|
|
|
ut_ad(heap_no != ULINT_UNDEFINED);
|
|
|
|
lock = lock_rec_get_next_const(heap_no, lock);
|
|
|
|
} else {
|
|
|
|
ut_ad(heap_no == ULINT_UNDEFINED);
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_TABLE);
|
|
|
|
|
2016-09-06 08:43:16 +02:00
|
|
|
lock = UT_LIST_GET_NEXT(
|
2016-08-12 10:17:45 +02:00
|
|
|
un_member.tab_lock.locks, lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
} while (lock != NULL && is_visited(lock));
|
|
|
|
|
|
|
|
ut_ad(lock == NULL
|
|
|
|
|| lock_get_type_low(lock) == lock_get_type_low(m_wait_lock));
|
|
|
|
|
|
|
|
return(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Get the first lock to search. The search starts from the current
|
|
|
|
wait_lock. What we are really interested in is an edge from the
|
|
|
|
current wait_lock's owning transaction to another transaction that has
|
|
|
|
a lock ahead in the queue. We skip locks where the owning transaction's
|
|
|
|
sub-tree has already been searched.
|
|
|
|
|
|
|
|
Note: The record locks are traversed from the oldest lock to the
|
|
|
|
latest. For table locks we go from latest to oldest.
|
|
|
|
|
|
|
|
For record locks, we first position the "iterator" on the first lock on
|
|
|
|
the page and then reposition on the actual heap_no. This is required
|
|
|
|
due to the way the record lock has is implemented.
|
|
|
|
|
|
|
|
@param[out] heap_no if rec lock, else ULINT_UNDEFINED.
|
|
|
|
@return first lock or NULL */
|
|
|
|
const lock_t*
|
|
|
|
DeadlockChecker::get_first_lock(ulint* heap_no) const
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
const lock_t* lock = m_wait_lock;
|
|
|
|
|
|
|
|
if (lock_get_type_low(lock) == LOCK_REC) {
|
2020-06-18 11:26:28 +02:00
|
|
|
hash_table_t* lock_hash = lock->type_mode & LOCK_PREDICATE
|
|
|
|
? &lock_sys.prdt_hash
|
|
|
|
: &lock_sys.rec_hash;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* We are only interested in records that match the heap_no. */
|
|
|
|
*heap_no = lock_rec_find_set_bit(lock);
|
|
|
|
|
|
|
|
ut_ad(*heap_no <= 0xffff);
|
|
|
|
ut_ad(*heap_no != ULINT_UNDEFINED);
|
|
|
|
|
|
|
|
/* Find the locks on the page. */
|
|
|
|
lock = lock_rec_get_first_on_page_addr(
|
|
|
|
lock_hash,
|
|
|
|
lock->un_member.rec_lock.space,
|
|
|
|
lock->un_member.rec_lock.page_no);
|
|
|
|
|
|
|
|
/* Position on the first lock on the physical record.*/
|
|
|
|
if (!lock_rec_get_nth_bit(lock, *heap_no)) {
|
|
|
|
lock = lock_rec_get_next_const(*heap_no, lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_a(!lock_get_wait(lock));
|
|
|
|
} else {
|
|
|
|
/* Table locks don't care about the heap_no. */
|
|
|
|
*heap_no = ULINT_UNDEFINED;
|
|
|
|
ut_ad(lock_get_type_low(lock) == LOCK_TABLE);
|
2016-09-06 08:43:16 +02:00
|
|
|
dict_table_t* table = lock->un_member.tab_lock.table;
|
|
|
|
lock = UT_LIST_GET_FIRST(table->locks);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* Must find at least two locks, otherwise there cannot be a
|
|
|
|
waiting lock, secondly the first lock cannot be the wait_lock. */
|
|
|
|
ut_a(lock != NULL);
|
2016-10-18 03:56:05 +02:00
|
|
|
ut_a(lock != m_wait_lock ||
|
|
|
|
(innodb_lock_schedule_algorithm
|
2016-10-19 07:37:52 +02:00
|
|
|
== INNODB_LOCK_SCHEDULE_ALGORITHM_VATS
|
2016-10-22 16:19:41 +02:00
|
|
|
&& !thd_is_replication_slave_thread(lock->trx->mysql_thd)));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* Check that the lock type doesn't change. */
|
|
|
|
ut_ad(lock_get_type_low(lock) == lock_get_type_low(m_wait_lock));
|
|
|
|
|
|
|
|
return(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Notify that a deadlock has been detected and print the conflicting
|
|
|
|
transaction info.
|
|
|
|
@param lock lock causing deadlock */
|
|
|
|
void
|
|
|
|
DeadlockChecker::notify(const lock_t* lock) const
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
|
|
|
start_print();
|
|
|
|
|
|
|
|
print("\n*** (1) TRANSACTION:\n");
|
|
|
|
|
|
|
|
print(m_wait_lock->trx, 3000);
|
|
|
|
|
|
|
|
print("*** (1) WAITING FOR THIS LOCK TO BE GRANTED:\n");
|
|
|
|
|
|
|
|
print(m_wait_lock);
|
|
|
|
|
|
|
|
print("*** (2) TRANSACTION:\n");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print(lock->trx, 3000);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print("*** (2) HOLDS THE LOCK(S):\n");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* It is possible that the joining transaction was granted its
|
|
|
|
lock when we rolled back some other waiting transaction. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (m_start->lock.wait_lock != 0) {
|
|
|
|
print("*** (2) WAITING FOR THIS LOCK TO BE GRANTED:\n");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print(m_start->lock.wait_lock);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
DBUG_PRINT("ib_lock", ("deadlock detected"));
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Select the victim transaction that should be rolledback.
|
|
|
|
@return victim transaction */
|
|
|
|
const trx_t*
|
|
|
|
DeadlockChecker::select_victim() const
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
ut_ad(m_start->lock.wait_lock != 0);
|
|
|
|
ut_ad(m_wait_lock->trx != m_start);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (trx_weight_ge(m_wait_lock->trx, m_start)) {
|
|
|
|
/* The joining transaction is 'smaller',
|
|
|
|
choose it as the victim and roll it back. */
|
|
|
|
#ifdef WITH_WSREP
|
2020-08-03 14:15:40 +02:00
|
|
|
if (wsrep_thd_is_BF(m_start->mysql_thd, FALSE)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
return(m_wait_lock->trx);
|
|
|
|
}
|
2018-03-13 13:19:03 +01:00
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
return(m_start);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef WITH_WSREP
|
2020-08-03 14:15:40 +02:00
|
|
|
if (wsrep_thd_is_BF(m_wait_lock->trx->mysql_thd, FALSE)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
return(m_start);
|
|
|
|
}
|
2018-03-13 13:19:03 +01:00
|
|
|
#endif /* WITH_WSREP */
|
|
|
|
|
|
|
|
return(m_wait_lock->trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Looks iteratively for a deadlock. Note: the joining transaction may
|
|
|
|
have been granted its lock by the deadlock checks.
|
|
|
|
@return 0 if no deadlock else the victim transaction instance.*/
|
|
|
|
const trx_t*
|
|
|
|
DeadlockChecker::search()
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(!trx_mutex_own(m_start));
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(m_start != NULL);
|
|
|
|
ut_ad(m_wait_lock != NULL);
|
|
|
|
check_trx_state(m_wait_lock->trx);
|
|
|
|
ut_ad(m_mark_start <= s_lock_mark_counter);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Look at the locks ahead of wait_lock in the lock queue. */
|
|
|
|
ulint heap_no;
|
|
|
|
const lock_t* lock = get_first_lock(&heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
for (;;) {
|
|
|
|
/* We should never visit the same sub-tree more than once. */
|
|
|
|
ut_ad(lock == NULL || !is_visited(lock));
|
|
|
|
|
|
|
|
while (m_n_elems > 0 && lock == NULL) {
|
|
|
|
|
|
|
|
/* Restore previous search state. */
|
|
|
|
|
|
|
|
pop(lock, heap_no);
|
|
|
|
|
|
|
|
lock = get_next_lock(lock, heap_no);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
if (lock == NULL) {
|
|
|
|
break;
|
2018-03-13 13:06:30 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (lock == m_wait_lock) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* We can mark this subtree as searched */
|
|
|
|
ut_ad(lock->trx->lock.deadlock_mark <= m_mark_start);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock->trx->lock.deadlock_mark = ++s_lock_mark_counter;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* We are not prepared for an overflow. This 64-bit
|
|
|
|
counter should never wrap around. At 10^9 increments
|
|
|
|
per second, it would take 10^3 years of uptime. */
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(s_lock_mark_counter > 0);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Backtrack */
|
|
|
|
lock = NULL;
|
2018-03-13 13:06:30 +01:00
|
|
|
continue;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (!lock_has_to_wait(m_wait_lock, lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
/* No conflict, next lock */
|
|
|
|
lock = get_next_lock(lock, heap_no);
|
2018-03-13 13:06:30 +01:00
|
|
|
continue;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (lock->trx == m_start) {
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Found a cycle. */
|
|
|
|
notify(lock);
|
2018-03-13 13:06:30 +01:00
|
|
|
return select_victim();
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (is_too_deep()) {
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Search too deep to continue. */
|
|
|
|
m_too_deep = true;
|
2018-03-13 13:06:30 +01:00
|
|
|
return m_start;
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
/* We do not need to report autoinc locks to the upper
|
|
|
|
layer. These locks are released before commit, so they
|
|
|
|
can not cause deadlocks with binlog-fixed commit
|
|
|
|
order. */
|
|
|
|
if (m_report_waiters
|
|
|
|
&& (lock_get_type_low(lock) != LOCK_TABLE
|
|
|
|
|| lock_get_mode(lock) != LOCK_AUTO_INC)) {
|
|
|
|
thd_rpl_deadlock_check(m_start->mysql_thd,
|
|
|
|
lock->trx->mysql_thd);
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
|
|
|
|
/* Another trx ahead has requested a lock in an
|
|
|
|
incompatible mode, and is itself waiting for a lock. */
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
++m_cost;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (!push(lock, heap_no)) {
|
|
|
|
m_too_deep = true;
|
|
|
|
return m_start;
|
|
|
|
}
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
m_wait_lock = lock->trx->lock.wait_lock;
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
lock = get_first_lock(&heap_no);
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2018-03-13 13:06:30 +01:00
|
|
|
if (is_visited(lock)) {
|
2016-08-12 10:17:45 +02:00
|
|
|
lock = get_next_lock(lock, heap_no);
|
|
|
|
}
|
2018-03-13 13:06:30 +01:00
|
|
|
} else {
|
|
|
|
lock = get_next_lock(lock, heap_no);
|
2016-08-12 10:17:45 +02:00
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_a(lock == NULL && m_n_elems == 0);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* No deadlock found. */
|
|
|
|
return(0);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Print info about transaction that was rolled back.
|
|
|
|
@param trx transaction rolled back
|
|
|
|
@param lock lock trx wants */
|
|
|
|
void
|
2019-07-25 11:08:50 +02:00
|
|
|
DeadlockChecker::rollback_print(const trx_t* trx, const lock_t* lock)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If the lock search exceeds the max step
|
|
|
|
or the max depth, the current trx will be
|
|
|
|
the victim. Print its information. */
|
|
|
|
start_print();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print("TOO DEEP OR LONG SEARCH IN THE LOCK TABLE"
|
|
|
|
" WAITS-FOR GRAPH, WE WILL ROLL BACK"
|
|
|
|
" FOLLOWING TRANSACTION \n\n"
|
|
|
|
"*** TRANSACTION:\n");
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print(trx, 3000);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print("*** WAITING FOR THIS LOCK TO BE GRANTED:\n");
|
|
|
|
|
|
|
|
print(lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/** Rollback transaction selected as the victim. */
|
|
|
|
void
|
|
|
|
DeadlockChecker::trx_rollback()
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
|
|
|
ut_ad(lock_mutex_own());
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_t* trx = m_wait_lock->trx;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print("*** WE ROLL BACK TRANSACTION (1)\n");
|
2019-01-23 12:30:00 +01:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-29 10:50:03 +02:00
|
|
|
if (trx->is_wsrep() && wsrep_thd_is_SR(trx->mysql_thd)) {
|
2019-01-25 06:56:57 +01:00
|
|
|
wsrep_handle_SR_rollback(m_start->mysql_thd, trx->mysql_thd);
|
|
|
|
}
|
2019-01-23 12:30:00 +01:00
|
|
|
#endif
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_enter(trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx->lock.was_chosen_as_deadlock_victim = true;
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_cancel_waiting_and_release(trx->lock.wait_lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
trx_mutex_exit(trx);
|
|
|
|
}
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
/** Check if a joining lock request results in a deadlock.
|
|
|
|
If a deadlock is found, we will resolve the deadlock by
|
|
|
|
choosing a victim transaction and rolling it back.
|
|
|
|
We will attempt to resolve all deadlocks.
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
@param[in] lock the lock request
|
|
|
|
@param[in,out] trx transaction requesting the lock
|
2016-08-12 10:17:45 +02:00
|
|
|
|
2019-07-25 11:08:50 +02:00
|
|
|
@return trx if it was chosen as victim
|
|
|
|
@retval NULL if another victim was chosen,
|
|
|
|
or there is no deadlock (any more) */
|
2016-08-12 10:17:45 +02:00
|
|
|
const trx_t*
|
2016-07-28 07:08:52 +02:00
|
|
|
DeadlockChecker::check_and_resolve(const lock_t* lock, trx_t* trx)
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(lock_mutex_own());
|
2016-07-28 07:08:52 +02:00
|
|
|
ut_ad(trx_mutex_own(trx));
|
2016-08-12 10:17:45 +02:00
|
|
|
check_trx_state(trx);
|
|
|
|
ut_ad(!srv_read_only_mode);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2018-03-11 22:34:23 +01:00
|
|
|
if (!innobase_deadlock_detect) {
|
2016-07-28 07:08:52 +02:00
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Release the mutex to obey the latching order.
|
|
|
|
This is safe, because DeadlockChecker::check_and_resolve()
|
|
|
|
is invoked when a lock wait is enqueued for the currently
|
|
|
|
running transaction. Because m_trx is a running transaction
|
|
|
|
(it is not currently suspended because of a lock wait),
|
|
|
|
its state can only be changed by this thread, which is
|
|
|
|
currently associated with the transaction. */
|
|
|
|
|
|
|
|
trx_mutex_exit(trx);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
const trx_t* victim_trx;
|
2018-03-13 13:06:30 +01:00
|
|
|
const bool report_waiters = trx->mysql_thd
|
|
|
|
&& thd_need_wait_reports(trx->mysql_thd);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Try and resolve as many deadlocks as possible. */
|
|
|
|
do {
|
2018-03-13 13:06:30 +01:00
|
|
|
DeadlockChecker checker(trx, lock, s_lock_mark_counter,
|
|
|
|
report_waiters);
|
2016-09-06 08:43:16 +02:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
victim_trx = checker.search();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* Search too deep, we rollback the joining transaction only
|
|
|
|
if it is possible to rollback. Otherwise we rollback the
|
|
|
|
transaction that is holding the lock that the joining
|
|
|
|
transaction wants. */
|
|
|
|
if (checker.is_too_deep()) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(trx == checker.m_start);
|
2016-09-06 08:43:16 +02:00
|
|
|
ut_ad(trx == victim_trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2017-12-07 11:26:29 +01:00
|
|
|
rollback_print(victim_trx, lock);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
MONITOR_INC(MONITOR_DEADLOCK);
|
2019-07-03 16:31:20 +02:00
|
|
|
srv_stats.lock_deadlock_count.inc();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
break;
|
|
|
|
|
2016-07-28 07:08:52 +02:00
|
|
|
} else if (victim_trx != NULL && victim_trx != trx) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
ut_ad(victim_trx == checker.m_wait_lock->trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
checker.trx_rollback();
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_deadlock_found = true;
|
|
|
|
|
|
|
|
MONITOR_INC(MONITOR_DEADLOCK);
|
2019-07-03 16:31:20 +02:00
|
|
|
srv_stats.lock_deadlock_count.inc();
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
} while (victim_trx != NULL && victim_trx != trx);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
/* If the joining transaction was selected as the victim. */
|
|
|
|
if (victim_trx != NULL) {
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
print("*** WE ROLL BACK TRANSACTION (2)\n");
|
2019-02-19 13:08:29 +01:00
|
|
|
#ifdef WITH_WSREP
|
2020-04-29 10:50:03 +02:00
|
|
|
if (trx->is_wsrep() && wsrep_thd_is_SR(trx->mysql_thd)) {
|
2019-02-19 13:08:29 +01:00
|
|
|
wsrep_handle_SR_rollback(trx->mysql_thd,
|
|
|
|
victim_trx->mysql_thd);
|
|
|
|
}
|
|
|
|
#endif
|
2014-02-26 19:11:54 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
lock_deadlock_found = true;
|
2014-02-26 19:11:54 +01:00
|
|
|
}
|
|
|
|
|
2016-07-28 07:08:52 +02:00
|
|
|
trx_mutex_enter(trx);
|
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
return(victim_trx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************************//**
|
|
|
|
Updates the lock table when a page is split and merged to
|
|
|
|
two pages. */
|
2014-02-26 19:11:54 +01:00
|
|
|
UNIV_INTERN
|
2016-08-12 10:17:45 +02:00
|
|
|
void
|
|
|
|
lock_update_split_and_merge(
|
|
|
|
const buf_block_t* left_block, /*!< in: left page to which merged */
|
|
|
|
const rec_t* orig_pred, /*!< in: original predecessor of
|
|
|
|
supremum on the left page before merge*/
|
|
|
|
const buf_block_t* right_block) /*!< in: right page from which merged */
|
2014-02-26 19:11:54 +01:00
|
|
|
{
|
2016-08-12 10:17:45 +02:00
|
|
|
const rec_t* left_next_rec;
|
|
|
|
|
MDEV-11369 Instant ADD COLUMN for InnoDB
For InnoDB tables, adding, dropping and reordering columns has
required a rebuild of the table and all its indexes. Since MySQL 5.6
(and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing
concurrent modification of the tables.
This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT
and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously,
with only minor changes performed to the table structure. The counter
innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS
is incremented whenever a table rebuild operation is converted into
an instant ADD COLUMN operation.
ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN.
Some usability limitations will be addressed in subsequent work:
MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY
and ALGORITHM=INSTANT
MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE
The format of the clustered index (PRIMARY KEY) is changed as follows:
(1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT,
and a new field PAGE_INSTANT will contain the original number of fields
in the clustered index ('core' fields).
If instant ADD COLUMN has not been used or the table becomes empty,
or the very first instant ADD COLUMN operation is rolled back,
the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset
to 0 and FIL_PAGE_INDEX.
(2) A special 'default row' record is inserted into the leftmost leaf,
between the page infimum and the first user record. This record is
distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the
same format as records that contain values for the instantly added
columns. This 'default row' always has the same number of fields as
the clustered index according to the table definition. The values of
'core' fields are to be ignored. For other fields, the 'default row'
will contain the default values as they were during the ALTER TABLE
statement. (If the column default values are changed later, those
values will only be stored in the .frm file. The 'default row' will
contain the original evaluated values, which must be the same for
every row.) The 'default row' must be completely hidden from
higher-level access routines. Assertions have been added to ensure
that no 'default row' is ever present in the adaptive hash index
or in locked records. The 'default row' is never delete-marked.
(3) In clustered index leaf page records, the number of fields must
reside between the number of 'core' fields (dict_index_t::n_core_fields
introduced in this work) and dict_index_t::n_fields. If the number
of fields is less than dict_index_t::n_fields, the missing fields
are replaced with the column value of the 'default row'.
Note: The number of fields in the record may shrink if some of the
last instantly added columns are updated to the value that is
in the 'default row'. The function btr_cur_trim() implements this
'compression' on update and rollback; dtuple::trim() implements it
on insert.
(4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new
status value REC_STATUS_COLUMNS_ADDED will indicate the presence of
a new record header that will encode n_fields-n_core_fields-1 in
1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header
always explicitly encodes the number of fields.)
We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for
covering the insert of the 'default row' record when instant ADD COLUMN
is used for the first time. Subsequent instant ADD COLUMN can use
TRX_UNDO_UPD_EXIST_REC.
This is joint work with Vin Chen (陈福荣) from Tencent. The design
that was discussed in April 2017 would not have allowed import or
export of data files, because instead of the 'default row' it would
have introduced a data dictionary table. The test
rpl.rpl_alter_instant is exactly as contributed in pull request #408.
The test innodb.instant_alter is based on a contributed test.
The redo log record format changes for ROW_FORMAT=DYNAMIC and
ROW_FORMAT=COMPACT are as contributed. (With this change present,
crash recovery from MariaDB 10.3.1 will fail in spectacular ways!)
Also the semantics of higher-level redo log records that modify the
PAGE_INSTANT field is changed. The redo log format version identifier
was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1.
Everything else has been rewritten by me. Thanks to Elena Stepanova,
the code has been tested extensively.
When rolling back an instant ADD COLUMN operation, we must empty the
PAGE_FREE list after deleting or shortening the 'default row' record,
by calling either btr_page_empty() or btr_page_reorganize(). We must
know the size of each entry in the PAGE_FREE list. If rollback left a
freed copy of the 'default row' in the PAGE_FREE list, we would be
unable to determine its size (if it is in ROW_FORMAT=COMPACT or
ROW_FORMAT=DYNAMIC) because it would contain more fields than the
rolled-back definition of the clustered index.
UNIV_SQL_DEFAULT: A new special constant that designates an instantly
added column that is not present in the clustered index record.
len_is_stored(): Check if a length is an actual length. There are
two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL.
dict_col_t::def_val: The 'default row' value of the column. If the
column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT.
dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(),
instant_value().
dict_col_t::remove_instant(): Remove the 'instant ADD' status of
a column.
dict_col_t::name(const dict_table_t& table): Replaces
dict_table_get_col_name().
dict_index_t::n_core_fields: The original number of fields.
For secondary indexes and if instant ADD COLUMN has not been used,
this will be equal to dict_index_t::n_fields.
dict_index_t::n_core_null_bytes: Number of bytes needed to
represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable).
dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that
n_core_null_bytes was not initialized yet from the clustered index
root page.
dict_index_t: Add the accessors is_instant(), is_clust(),
get_n_nullable(), instant_field_value().
dict_index_t::instant_add_field(): Adjust clustered index metadata
for instant ADD COLUMN.
dict_index_t::remove_instant(): Remove the 'instant ADD' status
of a clustered index when the table becomes empty, or the very first
instant ADD COLUMN operation is rolled back.
dict_table_t: Add the accessors is_instant(), is_temporary(),
supports_instant().
dict_table_t::instant_add_column(): Adjust metadata for
instant ADD COLUMN.
dict_table_t::rollback_instant(): Adjust metadata on the rollback
of instant ADD COLUMN.
prepare_inplace_alter_table_dict(): First create the ctx->new_table,
and only then decide if the table really needs to be rebuilt.
We must split the creation of table or index metadata from the
creation of the dictionary table records and the creation of
the data. In this way, we can transform a table-rebuilding operation
into an instant ADD COLUMN operation. Dictionary objects will only
be added to cache when table rebuilding or index creation is needed.
The ctx->instant_table will never be added to cache.
dict_table_t::add_to_cache(): Modified and renamed from
dict_table_add_to_cache(). Do not modify the table metadata.
Let the callers invoke dict_table_add_system_columns() and if needed,
set can_be_evicted.
dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the
system columns (which will now exist in the dict_table_t object
already at this point).
dict_create_table_step(): Expect the callers to invoke
dict_table_add_system_columns().
pars_create_table(): Before creating the table creation execution
graph, invoke dict_table_add_system_columns().
row_create_table_for_mysql(): Expect all callers to invoke
dict_table_add_system_columns().
create_index_dict(): Replaces row_merge_create_index_graph().
innodb_update_n_cols(): Renamed from innobase_update_n_virtual().
Call my_error() if an error occurs.
btr_cur_instant_init(), btr_cur_instant_init_low(),
btr_cur_instant_root_init():
Load additional metadata from the clustered index and set
dict_index_t::n_core_null_bytes. This is invoked
when table metadata is first loaded into the data dictionary.
dict_boot(): Initialize n_core_null_bytes for the four hard-coded
dictionary tables.
dict_create_index_step(): Initialize n_core_null_bytes. This is
executed as part of CREATE TABLE.
dict_index_build_internal_clust(): Initialize n_core_null_bytes to
NO_CORE_NULL_BYTES if table->supports_instant().
row_create_index_for_mysql(): Initialize n_core_null_bytes for
CREATE TEMPORARY TABLE.
commit_cache_norebuild(): Call the code to rename or enlarge columns
in the cache only if instant ADD COLUMN is not being used.
(Instant ADD COLUMN would copy all column metadata from
instant_table to old_table, including the names and lengths.)
PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields.
This is repurposing the 16-bit field PAGE_DIRECTION, of which only the
least significant 3 bits were used. The original byte containing
PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B.
page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT.
page_ptr_get_direction(), page_get_direction(),
page_ptr_set_direction(): Accessors for PAGE_DIRECTION.
page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION.
page_direction_increment(): Increment PAGE_N_DIRECTION
and set PAGE_DIRECTION.
rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes,
and assume that heap_no is always set.
Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records,
even if the record contains fewer fields.
rec_offs_make_valid(): Add the parameter 'leaf'.
rec_copy_prefix_to_dtuple(): Assert that the tuple is only built
on the core fields. Instant ADD COLUMN only applies to the
clustered index, and we should never build a search key that has
more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR.
All these columns are always present.
dict_index_build_data_tuple(): Remove assertions that would be
duplicated in rec_copy_prefix_to_dtuple().
rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose
number of fields is between n_core_fields and n_fields.
cmp_rec_rec_with_match(): Implement the comparison between two
MIN_REC_FLAG records.
trx_t::in_rollback: Make the field available in non-debug builds.
trx_start_for_ddl_low(): Remove dangerous error-tolerance.
A dictionary transaction must be flagged as such before it has generated
any undo log records. This is because trx_undo_assign_undo() will mark
the transaction as a dictionary transaction in the undo log header
right before the very first undo log record is being written.
btr_index_rec_validate(): Account for instant ADD COLUMN
row_undo_ins_remove_clust_rec(): On the rollback of an insert into
SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the
last column from the table and the clustered index.
row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(),
trx_undo_update_rec_get_update(): Handle the 'default row'
as a special case.
dtuple_t::trim(index): Omit a redundant suffix of an index tuple right
before insert or update. After instant ADD COLUMN, if the last fields
of a clustered index tuple match the 'default row', there is no
need to store them. While trimming the entry, we must hold a page latch,
so that the table cannot be emptied and the 'default row' be deleted.
btr_cur_optimistic_update(), btr_cur_pessimistic_update(),
row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low():
Invoke dtuple_t::trim() if needed.
row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling
row_ins_clust_index_entry_low().
rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number
of fields to be between n_core_fields and n_fields. Do not support
infimum,supremum. They are never supposed to be stored in dtuple_t,
because page creation nowadays uses a lower-level method for initializing
them.
rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the
number of fields.
btr_cur_trim(): In an update, trim the index entry as needed. For the
'default row', handle rollback specially. For user records, omit
fields that match the 'default row'.
btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete():
Skip locking and adaptive hash index for the 'default row'.
row_log_table_apply_convert_mrec(): Replace 'default row' values if needed.
In the temporary file that is applied by row_log_table_apply(),
we must identify whether the records contain the extra header for
instantly added columns. For now, we will allocate an additional byte
for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table
has been subject to instant ADD COLUMN. The ROW_T_DELETE records are
fine, as they will be converted and will only contain 'core' columns
(PRIMARY KEY and some system columns) that are converted from dtuple_t.
rec_get_converted_size_temp(), rec_init_offsets_temp(),
rec_convert_dtuple_to_temp(): Add the parameter 'status'.
REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED:
An info_bits constant for distinguishing the 'default row' record.
rec_comp_status_t: An enum of the status bit values.
rec_leaf_format: An enum that replaces the bool parameter of
rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
|
|
|
ut_ad(page_is_leaf(left_block->frame));
|
|
|
|
ut_ad(page_is_leaf(right_block->frame));
|
|
|
|
ut_ad(page_align(orig_pred) == left_block->frame);
|
2014-02-26 19:11:54 +01:00
|
|
|
|
|
|
|
lock_mutex_enter();
|
2015-12-21 15:36:26 +01:00
|
|
|
|
2016-08-12 10:17:45 +02:00
|
|
|
left_next_rec = page_rec_get_next_const(orig_pred);
|
2018-09-19 06:21:24 +02:00
|
|
|
ut_ad(!page_rec_is_metadata(left_next_rec));
|
2016-08-12 10:17:45 +02:00
|
|
|
|
|
|
|
/* Inherit the locks on the supremum of the left page to the
|
|
|
|
first record which was moved from the right page */
|
|
|
|
lock_rec_inherit_to_gap(
|
|
|
|
left_block, left_block,
|
|
|
|
page_rec_get_heap_no(left_next_rec),
|
|
|
|
PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
|
|
|
/* Reset the locks on the supremum of the left page,
|
|
|
|
releasing waiting transactions */
|
|
|
|
lock_rec_reset_and_release_wait(left_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM);
|
|
|
|
|
|
|
|
/* Inherit the locks to the supremum of the left page from the
|
|
|
|
successor of the infimum on the right page */
|
|
|
|
lock_rec_inherit_to_gap(left_block, right_block,
|
|
|
|
PAGE_HEAP_NO_SUPREMUM,
|
|
|
|
lock_get_min_heap_no(right_block));
|
|
|
|
|
|
|
|
lock_mutex_exit();
|
2015-12-21 15:36:26 +01:00
|
|
|
}
|