mariadb/newbrt/leafentry.c

431 lines
16 KiB
C
Raw Normal View History

#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
#include "brttypes.h"
#include "crc.h"
#include "leafentry.h"
#include "memory.h"
#include "toku_assert.h"
#include "log.h"
#include "wbuf.h"
#include <arpa/inet.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
u_int32_t toku_le_crc(LEAFENTRY v) {
return toku_crc32(toku_null_crc, v, leafentry_memsize(v));
}
int le_committed (u_int32_t klen, void* kval, u_int32_t dlen, void* dval, u_int32_t *resultsize, u_int32_t *disksize, LEAFENTRY *result) {
size_t size = 9+klen+dlen;
unsigned char *lec=toku_malloc(size);
assert(lec);
lec[0] = LE_COMMITTED;
putint(lec+1, klen);
memcpy(lec+1+4, kval, klen);
putint(lec+1+4+klen, dlen);
memcpy(lec+1+4+klen+4, dval, dlen);
*resultsize=size;
*disksize = 1 + 4 + 4 + klen + dlen;
*result=(LEAFENTRY)lec;
return 0;
}
int le_both (TXNID xid, u_int32_t klen, void* kval, u_int32_t clen, void* cval, u_int32_t plen, void* pval,
u_int32_t *resultsize, u_int32_t *disksize, LEAFENTRY *result) {
size_t size = 1+8+4*3+klen+clen+plen;
unsigned char *lec=toku_malloc(size);
assert(lec);
lec[0] = LE_BOTH;
putint64(lec+1, xid);
putint (lec+1+8, klen);
memcpy (lec+1+8+4, kval, klen);
putint (lec+1+8+4+klen, clen);
memcpy (lec+1+8+4+klen+4, cval, clen);
putint (lec+1+8+4+klen+4+clen, plen);
memcpy (lec+1+8+4+klen+4+clen+4, pval, plen);
*resultsize=size;
*disksize = 1 + 8 + 4*3 + klen + clen + plen;
*result=(LEAFENTRY)lec;
return 0;
}
int le_provdel (TXNID xid, u_int32_t klen, void* kval, u_int32_t dlen, void* dval,
u_int32_t *memsize, u_int32_t *disksize, LEAFENTRY *result) {
size_t size = 1 + 8 + 2*4 + klen + dlen;
unsigned char *lec=toku_malloc(size);
assert(lec);
lec[0] = LE_PROVDEL;
putint64(lec+1, xid);
putint (lec+1+8, klen);
memcpy (lec+1+8+4, kval, klen);
putint (lec+1+8+4+klen, dlen);
memcpy (lec+1+8+4+klen+4, dval, dlen);
*memsize=size;
*disksize = 1 + 4 + 4 + 8 + klen + dlen;
*result=(LEAFENTRY)lec;
return 0;
}
int le_provpair (TXNID xid, u_int32_t klen, void* kval, u_int32_t plen, void* pval, u_int32_t *memsize, u_int32_t *disksize, LEAFENTRY *result) {
size_t size = 1 + 8 + 2*4 + klen + plen;
unsigned char *lec=toku_malloc(size);
assert(lec);
lec[0] = LE_PROVPAIR;
putint64(lec+1, xid);
putint (lec+1+8, klen);
memcpy (lec+1+8+4, kval, klen);
putint (lec+1+8+4+klen, plen);
memcpy (lec+1+8+4+klen+4, pval, plen);
*memsize=size;
*disksize = 1 + 4 + 4 + 8 + klen + plen;
*result=(LEAFENTRY)lec;
return 0;
}
static u_int32_t memsize_le_committed (u_int32_t keylen, void *key __attribute__((__unused__)),
u_int32_t vallen, void *val __attribute__((__unused__))) {
return 1+ 2*4 + keylen + vallen;
}
static u_int32_t memsize_le_both (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t clen, void *cval __attribute__((__unused__)),
u_int32_t plen, void *pval __attribute__((__unused__))) {
return 1 + 8 + 4*3 + klen + clen + plen;
}
static u_int32_t memsize_le_provdel (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t clen, void *cval __attribute__((__unused__))) {
return 1 + 8 + 4*2 + klen + clen;
}
static u_int32_t memsize_le_provpair (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t plen, void *pval __attribute__((__unused__))) {
return 1 + 8 + 4*2 + klen + plen;
}
u_int32_t leafentry_memsize (LEAFENTRY le) {
LESWITCHCALL(le, memsize);
}
static u_int32_t disksize_le_committed (u_int32_t keylen, void *key __attribute__((__unused__)),
u_int32_t vallen, void *val __attribute__((__unused__))) {
return 1 + 4 + 4 + keylen + vallen;
}
static u_int32_t disksize_le_both (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t clen, void *cval __attribute__((__unused__)),
u_int32_t plen, void *pval __attribute__((__unused__))) {
return 1 + 8 + 4*3 + klen + clen + plen;
}
static u_int32_t disksize_le_provdel (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t clen, void *cval __attribute__((__unused__))) {
return 1 + 8 + 4 + 4 + klen + clen;
}
static u_int32_t disksize_le_provpair (TXNID txnid __attribute__((__unused__)),
u_int32_t klen, void *kval __attribute__((__unused__)),
u_int32_t plen, void *pval __attribute__((__unused__))) {
return 1 + 8 + 4 + 4 + klen + plen;
}
u_int32_t leafentry_disksize_internal (LEAFENTRY le) {
LESWITCHCALL(le, disksize);
}
u_int32_t leafentry_disksize (LEAFENTRY le) {
u_int32_t m = leafentry_memsize(le);
u_int32_t d = leafentry_disksize_internal(le);
assert(m==d);
return d;
}
u_int32_t toku_logsizeof_LEAFENTRY (LEAFENTRY le) {
return leafentry_disksize(le);
}
int toku_fread_LEAFENTRY(FILE *f, LEAFENTRY *le, u_int32_t *crc, u_int32_t *len) {
assert(0);
u_int8_t state;
int r = toku_fread_u_int8_t (f, &state, crc, len); if (r!=0) return r;
TXNID xid;
BYTESTRING a,b,c;
u_int32_t memsize, disksize;
switch ((enum le_state)state) {
case LE_COMMITTED:
r = toku_fread_BYTESTRING(f, &a, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &b, crc, len); if (r!=0) return r;
r = le_committed(a.len, a.data, b.len, b.data,
&memsize, &disksize, le);
toku_free_BYTESTRING(a);
toku_free_BYTESTRING(b);
return r;
case LE_BOTH:
r = toku_fread_TXNID(f, &xid, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &a, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &b, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &c, crc, len); if (r!=0) return r;
r = le_both(xid, a.len, a.data, b.len, b.data, c.len, c.data,
&memsize, &disksize, le);
toku_free_BYTESTRING(a);
toku_free_BYTESTRING(b);
toku_free_BYTESTRING(c);
return r;
case LE_PROVDEL:
r = toku_fread_TXNID(f, &xid, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &a, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &b, crc, len); if (r!=0) return r;
r = le_provdel(xid, a.len, a.data, b.len, b.data,
&memsize, &disksize, le);
toku_free_BYTESTRING(a);
toku_free_BYTESTRING(b);
return r;
case LE_PROVPAIR:
r = toku_fread_TXNID(f, &xid, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &a, crc, len); if (r!=0) return r;
r = toku_fread_BYTESTRING(f, &b, crc, len); if (r!=0) return r;
r = le_provpair(xid, a.len, a.data, b.len, b.data,
&memsize, &disksize, le);
toku_free_BYTESTRING(a);
toku_free_BYTESTRING(b);
return r;
}
return DB_BADFORMAT;
}
static int print_le_committed (u_int32_t keylen, void *key, u_int32_t vallen, void *val, FILE *outf) {
fprintf(outf, "{C: ");
toku_print_BYTESTRING(outf, keylen, key);
toku_print_BYTESTRING(outf, vallen, val);
fprintf(outf, "}");
return 0;
}
static int print_le_both (TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, u_int32_t plen, void *pval, FILE *outf) {
fprintf(outf, "{B: ");
fprintf(outf, " xid=%" PRId64, xid);
fprintf(outf, " key=");
toku_print_BYTESTRING(outf, klen, kval);
toku_print_BYTESTRING(outf, clen, cval);
fprintf(outf, " provisional=");
toku_print_BYTESTRING(outf, plen, pval);
fprintf(outf, "}");
return 0;
}
static int print_le_provdel (TXNID xid, u_int32_t klen, void *kval, u_int32_t clen, void *cval, FILE *outf) {
fprintf(outf, "{D: ");
fprintf(outf, " xid=%" PRId64, xid);
fprintf(outf, " key=");
toku_print_BYTESTRING(outf, klen, kval);
fprintf(outf, " committed=");
toku_print_BYTESTRING(outf, clen, cval);
fprintf(outf, "}");
return 0;
}
static int print_le_provpair (TXNID xid, u_int32_t klen, void *kval, u_int32_t plen, void *pval, FILE *outf) {
fprintf(outf, "{P: ");
fprintf(outf, " xid=%" PRId64, xid);
fprintf(outf, " key=");
toku_print_BYTESTRING(outf, klen, kval);
fprintf(outf, " provisional=");
toku_print_BYTESTRING(outf, plen, pval);
fprintf(outf, "}");
return 0;
}
int print_leafentry (FILE *outf, LEAFENTRY v) {
if (!v) { printf("NULL"); return 0; }
LESWITCHCALL(v, print, outf);
}
int toku_logprint_LEAFENTRY (FILE *outf, FILE *inf, const char *fieldname, u_int32_t *crc, u_int32_t *len, const char *format __attribute__((__unused__))) {
LEAFENTRY v;
int r = toku_fread_LEAFENTRY(inf, &v, crc, len);
if (r!=0) return r;
fprintf(outf, " %s=", fieldname);
print_leafentry(outf, v);
toku_free(v);
return 0;
}
void wbuf_LEAFENTRY(struct wbuf *w, LEAFENTRY le) {
wbuf_literal_bytes(w, le, leafentry_disksize(le));
}
void rbuf_LEAFENTRY(struct rbuf *r, u_int32_t *resultsize, u_int32_t *disksize, LEAFENTRY *lep) {
LEAFENTRY le = (LEAFENTRY)(&r->buf[r->ndone]);
u_int32_t siz = leafentry_disksize(le);
bytevec bytes;
rbuf_literal_bytes(r, &bytes, siz);
*lep = toku_memdup(le, siz);
assert(*lep);
*resultsize = siz;
*disksize = siz;
return;
}
// LEAFENTRUse toku_free()
void toku_free_LEAFENTRY(LEAFENTRY le) {
toku_free(le);
}
int le_is_provdel(LEAFENTRY le) {
return get_le_state(le)==LE_PROVDEL;
}
void* latest_key_le_committed (u_int32_t UU(keylen), void *key, u_int32_t UU(vallen), void *UU(val)) {
return key;
}
void* latest_key_le_both (TXNID UU(xid), u_int32_t UU(klen), void *kval, u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *UU(pval)) {
return kval;
}
void* latest_key_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return 0; // for provisional delete, there is no *latest* key, so return NULL
}
void* latest_key_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *kval, u_int32_t UU(plen), void *UU(pval)) {
return kval;
}
void* le_latest_key (LEAFENTRY le) {
LESWITCHCALL(le, latest_key);
}
u_int32_t latest_keylen_le_committed (u_int32_t keylen, void *UU(key), u_int32_t UU(vallen), void *UU(val)) {
return keylen;
}
u_int32_t latest_keylen_le_both (TXNID UU(xid), u_int32_t klen, void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *UU(pval)) {
return klen;
}
u_int32_t latest_keylen_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return 0; // for provisional delete, there is no *latest* key, so return 0. What else can we do?
}
u_int32_t latest_keylen_le_provpair (TXNID UU(xid), u_int32_t klen, void *UU(kval), u_int32_t UU(plen), void *UU(pval)) {
return klen;
}
u_int32_t le_latest_keylen (LEAFENTRY le) {
LESWITCHCALL(le, latest_keylen);
}
void* latest_val_le_committed (u_int32_t UU(keylen), void *UU(key), u_int32_t UU(vallen), void *UU(val)) {
return val;
}
void* latest_val_le_both (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *pval) {
return pval;
}
void* latest_val_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return 0; // for provisional delete, there is no *latest* key, so return NULL
}
void* latest_val_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(plen), void *pval) {
return pval;
}
void* le_latest_val (LEAFENTRY le) {
LESWITCHCALL(le, latest_val);
}
u_int32_t latest_vallen_le_committed (u_int32_t UU(keylen), void *UU(key), u_int32_t vallen, void *UU(val)) {
return vallen;
}
u_int32_t latest_vallen_le_both (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t plen, void *UU(pval)) {
return plen;
}
u_int32_t latest_vallen_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return 0; // for provisional delete, there is no *latest* key, so return 0. What else can we do?
}
u_int32_t latest_vallen_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t plen, void *UU(pval)) {
return plen;
}
u_int32_t le_latest_vallen (LEAFENTRY le) {
LESWITCHCALL(le, latest_vallen);
}
void* any_key_le_committed (u_int32_t UU(keylen), void *key, u_int32_t UU(vallen), void *UU(val)) {
return key;
}
void* any_key_le_both (TXNID UU(xid), u_int32_t UU(klen), void *kval, u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *UU(pval)) {
return kval;
}
void* any_key_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *kval, u_int32_t UU(clen), void *UU(cval)) {
return kval;
}
void* any_key_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *kval, u_int32_t UU(plen), void *UU(pval)) {
return kval;
}
void* le_any_key (LEAFENTRY le) {
LESWITCHCALL(le, any_key);
}
u_int32_t any_keylen_le_committed (u_int32_t keylen, void *UU(key), u_int32_t UU(vallen), void *UU(val)) {
return keylen;
}
u_int32_t any_keylen_le_both (TXNID UU(xid), u_int32_t klen, void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *UU(pval)) {
return klen;
}
u_int32_t any_keylen_le_provdel (TXNID UU(xid), u_int32_t klen, void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return klen;
}
u_int32_t any_keylen_le_provpair (TXNID UU(xid), u_int32_t klen, void *UU(kval), u_int32_t UU(plen), void *UU(pval)) {
return klen;
}
u_int32_t le_any_keylen (LEAFENTRY le) {
LESWITCHCALL(le, any_keylen);
}
void* any_val_le_committed (u_int32_t UU(keylen), void *UU(key), u_int32_t UU(vallen), void *UU(val)) {
return val;
}
void* any_val_le_both (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *cval, u_int32_t UU(plen), void *UU(pval)) {
return cval;
}
void* any_val_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *cval) {
return cval;
}
void* any_val_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(plen), void *pval) {
return pval;
}
void* le_any_val (LEAFENTRY le) {
LESWITCHCALL(le, any_val);
}
u_int32_t any_vallen_le_committed (u_int32_t UU(keylen), void *UU(key), u_int32_t vallen, void *UU(val)) {
return vallen;
}
u_int32_t any_vallen_le_both (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t plen, void *UU(pval)) {
return plen;
}
u_int32_t any_vallen_le_provdel (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t clen, void *UU(cval)) {
return clen; // for provisional delete, there is no *any* key, so return 0. What else can we do?
}
u_int32_t any_vallen_le_provpair (TXNID UU(xid), u_int32_t UU(klen), void *UU(kval), u_int32_t plen, void *UU(pval)) {
return plen;
}
u_int32_t le_any_vallen (LEAFENTRY le) {
LESWITCHCALL(le, any_vallen);
}
u_int64_t any_xid_le_committed (u_int32_t UU(keylen), void *UU(key), u_int32_t UU(vallen), void *UU(val)) {
return 0;
}
u_int64_t any_xid_le_both (TXNID xid, u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval), u_int32_t UU(plen), void *UU(pval)) {
return xid;
}
u_int64_t any_xid_le_provdel (TXNID xid, u_int32_t UU(klen), void *UU(kval), u_int32_t UU(clen), void *UU(cval)) {
return xid;
}
u_int64_t any_xid_le_provpair (TXNID xid, u_int32_t UU(klen), void *UU(kval), u_int32_t UU(plen), void *UU(pval)) {
return xid;
}
u_int64_t le_any_xid (LEAFENTRY le) {
LESWITCHCALL(le, any_xid);
}