mariadb/storage/innobase/trx/trx0trx.cc

3037 lines
78 KiB
C++
Raw Normal View History

/*****************************************************************************
2016-06-21 14:21:03 +02:00
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2015, 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
2019-05-11 19:25:02 +03:00
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file trx/trx0trx.cc
The transaction
Created 3/26/1996 Heikki Tuuri
*******************************************************/
#include "trx0trx.h"
#ifdef WITH_WSREP
#include <mysql/service_wsrep.h>
#endif
#include <mysql/service_thd_error_context.h>
#include "btr0sea.h"
#include "lock0lock.h"
#include "log0log.h"
#include "os0proc.h"
#include "que0que.h"
#include "read0read.h"
#include "srv0mon.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "trx0roll.h"
#include "trx0rseg.h"
#include "trx0undo.h"
#include "trx0xa.h"
#include "ut0pool.h"
#include "ut0vec.h"
#include <set>
#include <new>
extern "C"
int thd_deadlock_victim_preference(const MYSQL_THD thd1, const MYSQL_THD thd2);
static const ulint MAX_DETAILED_ERROR_LEN = 256;
/** Set of table_id */
typedef std::set<
table_id_t,
std::less<table_id_t>,
ut_allocator<table_id_t> > table_id_set;
/*************************************************************//**
Set detailed error message for the transaction. */
void
trx_set_detailed_error(
/*===================*/
trx_t* trx, /*!< in: transaction struct */
const char* msg) /*!< in: detailed error message */
{
ut_strlcpy(trx->detailed_error, msg, MAX_DETAILED_ERROR_LEN);
}
/*************************************************************//**
Set detailed error message for the transaction from a file. Note that the
file is rewinded before reading from it. */
void
trx_set_detailed_error_from_file(
/*=============================*/
trx_t* trx, /*!< in: transaction struct */
FILE* file) /*!< in: file to read message from */
{
os_file_read_string(file, trx->detailed_error, MAX_DETAILED_ERROR_LEN);
}
/********************************************************************//**
Initialize transaction object.
@param trx trx to initialize */
static
void
trx_init(
/*=====*/
trx_t* trx)
{
trx->no = TRX_ID_MAX;
trx->state = TRX_STATE_NOT_STARTED;
trx->is_recovered = false;
trx->op_info = "";
2013-03-26 00:03:13 +02:00
trx->active_commit_ordered = 0;
trx->isolation_level = TRX_ISO_REPEATABLE_READ;
trx->check_foreigns = true;
trx->check_unique_secondary = true;
trx->lock.n_rec_locks = 0;
trx->dict_operation = TRX_DICT_OP_NONE;
trx->table_id = 0;
trx->error_state = DB_SUCCESS;
trx->error_key_num = ULINT_UNDEFINED;
trx->undo_no = 0;
trx->rsegs.m_redo.rseg = NULL;
trx->rsegs.m_noredo.rseg = NULL;
trx->read_only = false;
trx->auto_commit = false;
trx->will_lock = 0;
trx->ddl = false;
trx->internal = false;
ut_d(trx->start_file = 0);
ut_d(trx->start_line = 0);
trx->magic_n = TRX_MAGIC_N;
trx->lock.que_state = TRX_QUE_RUNNING;
trx->last_sql_stat_start.least_undo_no = 0;
ut_ad(!MVCC::is_view_active(trx->read_view));
trx->lock.rec_cached = 0;
trx->lock.table_cached = 0;
ut_ad(trx->get_flush_observer() == NULL);
}
/** For managing the life-cycle of the trx_t instance that we get
from the pool. */
struct TrxFactory {
/** Initializes a transaction object. It must be explicitly started
with trx_start_if_not_started() before using it. The default isolation
level is TRX_ISO_REPEATABLE_READ.
@param trx Transaction instance to initialise */
static void init(trx_t* trx)
{
/* Explicitly call the constructor of the already
allocated object. trx_t objects are allocated by
ut_zalloc_nokey() in Pool::Pool() which would not call
the constructors of the trx_t members. */
new(&trx->mod_tables) trx_mod_tables_t();
new(&trx->lock.table_locks) lock_list();
trx_init(trx);
trx->dict_operation_lock_mode = 0;
trx->xid = UT_NEW_NOKEY(xid_t());
trx->detailed_error = reinterpret_cast<char*>(
ut_zalloc_nokey(MAX_DETAILED_ERROR_LEN));
trx->lock.lock_heap = mem_heap_create_typed(
1024, MEM_HEAP_FOR_LOCK_HEAP);
lock_trx_lock_list_init(&trx->lock.trx_locks);
UT_LIST_INIT(
trx->trx_savepoints,
&trx_named_savept_t::trx_savepoints);
mutex_create(LATCH_ID_TRX, &trx->mutex);
mutex_create(LATCH_ID_TRX_UNDO, &trx->undo_mutex);
}
/** Release resources held by the transaction object.
@param trx the transaction for which to release resources */
static void destroy(trx_t* trx)
{
ut_a(trx->magic_n == TRX_MAGIC_N);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
ut_a(trx->lock.wait_lock == NULL);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->dict_operation_lock_mode == 0);
if (trx->lock.lock_heap != NULL) {
mem_heap_free(trx->lock.lock_heap);
trx->lock.lock_heap = NULL;
}
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
UT_DELETE(trx->xid);
ut_free(trx->detailed_error);
mutex_free(&trx->mutex);
mutex_free(&trx->undo_mutex);
trx->mod_tables.~trx_mod_tables_t();
ut_ad(trx->read_view == NULL);
trx->lock.table_locks.~lock_list();
}
/** Enforce any invariants here, this is called before the transaction
is added to the pool.
@return true if all OK */
static bool debug(const trx_t* trx)
{
ut_a(trx->error_state == DB_SUCCESS);
ut_a(trx->magic_n == TRX_MAGIC_N);
ut_ad(!trx->read_only);
ut_ad(trx->state == TRX_STATE_NOT_STARTED);
ut_ad(trx->dict_operation == TRX_DICT_OP_NONE);
ut_ad(trx->mysql_thd == 0);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->lock.wait_lock == NULL);
ut_a(trx->dict_operation_lock_mode == 0);
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
ut_ad(trx->autoinc_locks == NULL);
ut_ad(trx->lock.table_locks.empty());
return(true);
}
};
/** The lock strategy for TrxPool */
struct TrxPoolLock {
TrxPoolLock() { }
/** Create the mutex */
void create()
{
mutex_create(LATCH_ID_TRX_POOL, &m_mutex);
}
/** Acquire the mutex */
void enter() { mutex_enter(&m_mutex); }
/** Release the mutex */
void exit() { mutex_exit(&m_mutex); }
/** Free the mutex */
void destroy() { mutex_free(&m_mutex); }
/** Mutex to use */
ib_mutex_t m_mutex;
};
/** The lock strategy for the TrxPoolManager */
struct TrxPoolManagerLock {
TrxPoolManagerLock() { }
/** Create the mutex */
void create()
{
mutex_create(LATCH_ID_TRX_POOL_MANAGER, &m_mutex);
}
/** Acquire the mutex */
void enter() { mutex_enter(&m_mutex); }
/** Release the mutex */
void exit() { mutex_exit(&m_mutex); }
/** Free the mutex */
void destroy() { mutex_free(&m_mutex); }
/** Mutex to use */
ib_mutex_t m_mutex;
};
/** Use explicit mutexes for the trx_t pool and its manager. */
typedef Pool<trx_t, TrxFactory, TrxPoolLock> trx_pool_t;
typedef PoolManager<trx_pool_t, TrxPoolManagerLock > trx_pools_t;
/** The trx_t pool manager */
static trx_pools_t* trx_pools;
/** Size of on trx_t pool in bytes. */
static const ulint MAX_TRX_BLOCK_SIZE = 1024 * 1024 * 4;
/** Create the trx_t pool */
void
trx_pool_init()
{
trx_pools = UT_NEW_NOKEY(trx_pools_t(MAX_TRX_BLOCK_SIZE));
ut_a(trx_pools != 0);
}
/** Destroy the trx_t pool */
void
trx_pool_close()
{
UT_DELETE(trx_pools);
trx_pools = 0;
}
/** @return a trx_t instance from trx_pools. */
static
trx_t*
trx_create_low()
{
trx_t* trx = trx_pools->get();
assert_trx_is_free(trx);
mem_heap_t* heap;
ib_alloc_t* alloc;
/* We just got trx from pool, it should be non locking */
ut_ad(trx->will_lock == 0);
ut_ad(trx->state == TRX_STATE_NOT_STARTED);
DBUG_LOG("trx", "Create: " << trx);
heap = mem_heap_create(sizeof(ib_vector_t) + sizeof(void*) * 8);
alloc = ib_heap_allocator_create(heap);
/* Remember to free the vector explicitly in trx_free(). */
trx->autoinc_locks = ib_vector_create(alloc, sizeof(void**), 4);
/* Should have been either just initialized or .clear()ed by
trx_free(). */
ut_ad(trx->mod_tables.empty());
ut_ad(trx->lock.table_locks.empty());
ut_ad(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
ut_ad(trx->lock.n_rec_locks == 0);
ut_ad(trx->lock.table_cached == 0);
ut_ad(trx->lock.rec_cached == 0);
#ifdef WITH_WSREP
trx->wsrep_event = NULL;
#endif /* WITH_WSREP */
return(trx);
}
/**
Release a trx_t instance back to the pool.
@param trx the instance to release. */
static
void
trx_free(trx_t*& trx)
{
assert_trx_is_free(trx);
trx->mysql_thd = 0;
trx->mysql_log_file_name = 0;
// FIXME: We need to avoid this heap free/alloc for each commit.
if (trx->autoinc_locks != NULL) {
ut_ad(ib_vector_is_empty(trx->autoinc_locks));
/* We allocated a dedicated heap for the vector. */
ib_vector_free(trx->autoinc_locks);
trx->autoinc_locks = NULL;
}
trx->mod_tables.clear();
ut_ad(trx->read_view == NULL);
/* trx locking state should have been reset before returning trx
to pool */
ut_ad(trx->will_lock == 0);
trx_pools->mem_free(trx);
/* Unpoison the memory for innodb_monitor_set_option;
it is operating also on the freed transaction objects. */
MEM_UNDEFINED(&trx->mutex, sizeof trx->mutex);
MEM_UNDEFINED(&trx->undo_mutex, sizeof trx->undo_mutex);
/* Declare the contents as initialized for Valgrind;
we checked that it was initialized in trx_pools->mem_free(trx). */
UNIV_MEM_VALID(&trx->mutex, sizeof trx->mutex);
UNIV_MEM_VALID(&trx->undo_mutex, sizeof trx->undo_mutex);
trx = NULL;
}
/********************************************************************//**
Creates a transaction object for background operations by the master thread.
@return own: transaction object */
trx_t*
trx_allocate_for_background(void)
/*=============================*/
{
trx_t* trx;
trx = trx_create_low();
return(trx);
}
/********************************************************************//**
Creates a transaction object for MySQL.
@return own: transaction object */
trx_t*
trx_allocate_for_mysql(void)
/*========================*/
{
trx_t* trx;
trx = trx_allocate_for_background();
trx_sys_mutex_enter();
ut_d(trx->in_mysql_trx_list = TRUE);
UT_LIST_ADD_FIRST(trx_sys->mysql_trx_list, trx);
trx_sys_mutex_exit();
return(trx);
}
/** Check state of transaction before freeing it.
@param trx trx object to validate */
static
void
trx_validate_state_before_free(trx_t* trx)
{
ut_ad(!trx->declared_to_be_inside_innodb);
ut_ad(!trx->n_mysql_tables_in_use);
ut_ad(!trx->mysql_n_tables_locked);
ut_ad(!trx->internal);
2013-03-26 00:03:13 +02:00
if (trx->declared_to_be_inside_innodb) {
ib::error() << "Freeing a trx (" << trx << ", "
<< trx_get_id_for_print(trx) << ") which is declared"
" to be processing inside InnoDB";
2013-03-26 00:03:13 +02:00
trx_print(stderr, trx, 600);
putc('\n', stderr);
/* This is an error but not a fatal error. We must keep
the counters like srv_conc.n_active accurate. */
srv_conc_force_exit_innodb(trx);
}
2013-03-26 00:03:13 +02:00
if (trx->n_mysql_tables_in_use != 0
|| trx->mysql_n_tables_locked != 0) {
ib::error() << "MySQL is freeing a thd though"
" trx->n_mysql_tables_in_use is "
<< trx->n_mysql_tables_in_use
<< " and trx->mysql_n_tables_locked is "
<< trx->mysql_n_tables_locked << ".";
2013-03-26 00:03:13 +02:00
trx_print(stderr, trx, 600);
ut_print_buf(stderr, trx, sizeof(trx_t));
putc('\n', stderr);
}
trx->dict_operation = TRX_DICT_OP_NONE;
assert_trx_is_inactive(trx);
}
/** Free and initialize a transaction object instantinated during recovery.
@param trx trx object to free and initialize during recovery */
void
trx_free_resurrected(trx_t* trx)
{
trx_validate_state_before_free(trx);
trx_init(trx);
trx_free(trx);
}
/** Free a transaction that was allocated by background or user threads.
@param trx trx object to free */
void
trx_free_for_background(trx_t* trx)
{
trx_validate_state_before_free(trx);
trx_free(trx);
}
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
/** Transition to committed state, to release implicit locks. */
inline void trx_t::commit_state()
{
/* This makes the transaction committed in memory and makes its
changes to data visible to other transactions. NOTE that there is a
small discrepancy from the strict formal visibility rules here: a
user of the database can see modifications made by another
transaction T even before the necessary redo log segment has been
flushed to the disk. If the database happens to crash before the
flush, the user has seen modifications from T which will never be a
committed transaction. However, any transaction T2 which sees the
modifications of the committing transaction T, and which also itself
makes modifications to the database, will get an lsn larger than the
committing transaction T. In the case where the log flush fails, and
T never gets committed, also T2 will never get committed. */
ut_ad(trx_mutex_own(this));
ut_ad(state != TRX_STATE_NOT_STARTED);
ut_ad(state != TRX_STATE_COMMITTED_IN_MEMORY
|| (is_recovered && !UT_LIST_GET_LEN(lock.trx_locks)));
state= TRX_STATE_COMMITTED_IN_MEMORY;
/* If the background thread trx_rollback_or_clean_recovered()
is still active then there is a chance that the rollback
thread may see this trx as COMMITTED_IN_MEMORY and goes ahead
to clean it up calling trx_cleanup_at_db_startup(). This can
happen in the case we are committing a trx here that is left
in PREPARED state during the crash. Note that commit of the
rollback of a PREPARED trx happens in the recovery thread
while the rollback of other transactions happen in the
background thread. To avoid this race we unconditionally unset
the is_recovered flag. */
is_recovered= false;
ut_ad(id || !is_referenced());
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
}
/** Release any explicit locks of a committing transaction. */
inline void trx_t::release_locks()
{
DBUG_ASSERT(state == TRX_STATE_COMMITTED_IN_MEMORY);
if (UT_LIST_GET_LEN(lock.trx_locks))
lock_trx_release_locks(this);
else
lock.table_locks.clear();
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
}
/********************************************************************//**
At shutdown, frees a transaction object that is in the PREPARED state. */
void
trx_free_prepared(
/*==============*/
trx_t* trx) /*!< in, own: trx object */
{
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx_mutex_enter(trx);
ut_ad(trx->state == TRX_STATE_PREPARED
|| trx->state == TRX_STATE_PREPARED_RECOVERED
|| !srv_was_started
|| srv_read_only_mode
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO);
ut_a(trx_state_eq(trx, TRX_STATE_PREPARED)
2019-04-24 12:03:11 +03:00
|| trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED)
|| (trx->is_recovered
&& (trx_state_eq(trx, TRX_STATE_ACTIVE)
|| trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY))
&& (!srv_was_started
|| srv_operation == SRV_OPERATION_RESTORE
|| srv_operation == SRV_OPERATION_RESTORE_EXPORT
|| srv_read_only_mode
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO)));
ut_a(trx->magic_n == TRX_MAGIC_N);
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx->commit_state();
trx_mutex_exit(trx);
trx->release_locks();
trx_undo_free_prepared(trx);
assert_trx_in_rw_list(trx);
ut_a(!trx->read_only);
ut_ad(trx->in_rw_trx_list);
UT_LIST_REMOVE(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = false);
DBUG_LOG("trx", "Free prepared: " << trx);
trx->state = TRX_STATE_NOT_STARTED;
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
ut_ad(!UT_LIST_GET_LEN(trx->lock.trx_locks));
trx->id = 0;
trx_free(trx);
}
/** Disconnect a transaction from MySQL and optionally mark it as if
it's been recovered. For the marking the transaction must be in prepared state.
The recovery-marked transaction is going to survive "alone" so its association
with the mysql handle is destroyed now rather than when it will be
finally freed.
@param[in,out] trx transaction
@param[in] prepared boolean value to specify whether trx is
for recovery or not. */
inline
void
trx_disconnect_from_mysql(
trx_t* trx,
bool prepared)
{
trx_sys_mutex_enter();
ut_ad(trx->in_mysql_trx_list);
ut_d(trx->in_mysql_trx_list = FALSE);
UT_LIST_REMOVE(trx_sys->mysql_trx_list, trx);
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, true);
}
ut_ad(trx_sys_validate_trx_list());
if (prepared) {
ut_ad(trx_state_eq(trx, TRX_STATE_PREPARED));
trx->is_recovered = true;
trx->mysql_thd = NULL;
/* todo/fixme: suggest to do it at innodb prepare */
trx->will_lock = 0;
}
trx_sys_mutex_exit();
}
/** Disconnect a transaction from MySQL.
@param[in,out] trx transaction */
inline
void
trx_disconnect_plain(trx_t* trx)
{
trx_disconnect_from_mysql(trx, false);
}
/** Disconnect a prepared transaction from MySQL.
@param[in,out] trx transaction */
void
trx_disconnect_prepared(trx_t* trx)
{
trx_disconnect_from_mysql(trx, true);
}
2014-02-26 19:23:04 +01:00
/** Free a transaction object for MySQL.
@param[in,out] trx transaction */
void
trx_free_for_mysql(trx_t* trx)
{
trx_disconnect_plain(trx);
trx_free_for_background(trx);
}
/****************************************************************//**
Resurrect the table locks for a resurrected transaction. */
static
void
trx_resurrect_table_locks(
/*======================*/
trx_t* trx, /*!< in/out: transaction */
const trx_undo_ptr_t* undo_ptr,
/*!< in: pointer to undo segment. */
const trx_undo_t* undo) /*!< in: undo log */
{
mtr_t mtr;
page_t* undo_page;
trx_undo_rec_t* undo_rec;
table_id_set tables;
ut_ad(undo == undo_ptr->insert_undo || undo == undo_ptr->update_undo);
if (trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY) || undo->empty) {
return;
}
mtr_start(&mtr);
/* trx_rseg_mem_create() may have acquired an X-latch on this
page, so we cannot acquire an S-latch. */
undo_page = trx_undo_page_get(
page_id_t(undo->space, undo->top_page_no), &mtr);
undo_rec = undo_page + undo->top_offset;
do {
ulint type;
undo_no_t undo_no;
table_id_t table_id;
ulint cmpl_info;
bool updated_extern;
page_t* undo_rec_page = page_align(undo_rec);
if (undo_rec_page != undo_page) {
mtr.release_page(undo_page, MTR_MEMO_PAGE_X_FIX);
undo_page = undo_rec_page;
}
trx_undo_rec_get_pars(
undo_rec, &type, &cmpl_info,
&updated_extern, &undo_no, &table_id);
tables.insert(table_id);
undo_rec = trx_undo_get_prev_rec(
undo_rec, undo->hdr_page_no,
undo->hdr_offset, false, &mtr);
} while (undo_rec);
mtr_commit(&mtr);
for (table_id_set::const_iterator i = tables.begin();
i != tables.end(); i++) {
if (dict_table_t* table = dict_table_open_on_id(
*i, FALSE, DICT_TABLE_OP_LOAD_TABLESPACE)) {
if (!table->is_readable()) {
mutex_enter(&dict_sys->mutex);
dict_table_close(table, TRUE, FALSE);
dict_table_remove_from_cache(table);
mutex_exit(&dict_sys->mutex);
continue;
}
if (trx->state == TRX_STATE_PREPARED) {
trx->mod_tables.insert(table);
}
lock_table_ix_resurrect(table, trx);
DBUG_PRINT("ib_trx",
("resurrect" TRX_ID_FMT
" table '%s' IX lock from %s undo",
trx_get_id_for_print(trx),
table->name.m_name,
undo == undo_ptr->insert_undo
? "insert" : "update"));
dict_table_close(table, FALSE, FALSE);
}
}
}
/****************************************************************//**
Resurrect the transactions that were doing inserts the time of the
crash, they need to be undone.
@return trx_t instance */
static
trx_t*
trx_resurrect_insert(
/*=================*/
trx_undo_t* undo, /*!< in: entry to UNDO */
trx_rseg_t* rseg) /*!< in: rollback segment */
{
trx_t* trx;
trx = trx_allocate_for_background();
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
trx->rsegs.m_redo.rseg = rseg;
*trx->xid = undo->xid;
trx->id = undo->trx_id;
trx->rsegs.m_redo.insert_undo = undo;
trx->is_recovered = true;
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state != TRX_UNDO_ACTIVE) {
/* Prepared transactions are left in the prepared state
waiting for a commit or abort decision from MySQL */
if (undo->state == TRX_UNDO_PREPARED) {
ib::info() << "Transaction "
<< trx_get_id_for_print(trx)
<< " was in the XA prepared state.";
trx->state = TRX_STATE_PREPARED;
} else {
trx->state = TRX_STATE_COMMITTED_IN_MEMORY;
}
/* We give a dummy value for the trx no; this should have no
relevance since purge is not interested in committed
transaction numbers, unless they are in the history
list, in which case it looks the number from the disk based
undo log structure */
trx->no = trx->id;
} else {
trx->state = TRX_STATE_ACTIVE;
/* A running transaction always has the number
field inited to TRX_ID_MAX */
trx->no = TRX_ID_MAX;
}
2014-05-05 18:20:28 +02:00
/* trx_start_low() is not called with resurrect, so need to initialize
start time here.*/
2019-04-24 12:03:11 +03:00
if (trx->state != TRX_STATE_COMMITTED_IN_MEMORY) {
trx->start_time = time(NULL);
trx->start_time_micro = microsecond_interval_timer();
2014-05-05 18:20:28 +02:00
}
if (undo->dict_operation) {
trx_set_dict_operation(trx, TRX_DICT_OP_TABLE);
trx->table_id = undo->table_id;
}
if (!undo->empty) {
trx->undo_no = undo->top_undo_no + 1;
trx->undo_rseg_space = undo->rseg->space;
}
return(trx);
}
/****************************************************************//**
Prepared transactions are left in the prepared state waiting for a
commit or abort decision from MySQL */
static
void
trx_resurrect_update_in_prepared_state(
/*===================================*/
trx_t* trx, /*!< in,out: transaction */
const trx_undo_t* undo) /*!< in: update UNDO record */
{
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state == TRX_UNDO_PREPARED) {
ib::info() << "Transaction " << trx_get_id_for_print(trx)
<< " was in the XA prepared state.";
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED)
|| trx_state_eq(trx, TRX_STATE_PREPARED));
trx->state = TRX_STATE_PREPARED;
} else {
trx->state = TRX_STATE_COMMITTED_IN_MEMORY;
}
}
/****************************************************************//**
Resurrect the transactions that were doing updates the time of the
crash, they need to be undone. */
static
void
trx_resurrect_update(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
trx_undo_t* undo, /*!< in/out: update UNDO record */
trx_rseg_t* rseg) /*!< in/out: rollback segment */
{
trx->rsegs.m_redo.rseg = rseg;
*trx->xid = undo->xid;
trx->id = undo->trx_id;
trx->rsegs.m_redo.update_undo = undo;
trx->is_recovered = true;
/* This is single-threaded startup code, we do not need the
protection of trx->mutex or trx_sys->mutex here. */
if (undo->state != TRX_UNDO_ACTIVE) {
trx_resurrect_update_in_prepared_state(trx, undo);
/* We give a dummy value for the trx number */
trx->no = trx->id;
} else {
trx->state = TRX_STATE_ACTIVE;
/* A running transaction always has the number field inited to
TRX_ID_MAX */
trx->no = TRX_ID_MAX;
}
2014-05-05 18:20:28 +02:00
/* trx_start_low() is not called with resurrect, so need to initialize
start time here.*/
if (trx->state == TRX_STATE_ACTIVE
|| trx->state == TRX_STATE_PREPARED) {
trx->start_time = time(NULL);
trx->start_time_micro = microsecond_interval_timer();
2014-05-05 18:20:28 +02:00
}
if (undo->dict_operation) {
trx_set_dict_operation(trx, TRX_DICT_OP_TABLE);
MDEV-17158 TRUNCATE is not atomic after MDEV-13564 It turned out that ha_innobase::truncate() would prematurely commit the transaction already before the completion of the ha_innobase::create(). All of this must be atomic. innodb.truncate_crash: Use the correct DEBUG_SYNC point, and tolerate non-truncation of the table, because the redo log for the TRUNCATE transaction commit might be flushed due to some InnoDB background activity. dict_build_tablespace_for_table(): Merge to the function dict_build_table_def_step(). dict_build_table_def_step(): If a table is being created during an already started data dictionary transaction (such as TRUNCATE), persistently write the table_id to the undo log header before creating any file. In this way, the recovery of TRUNCATE will be able to delete the new file before rolling back the rename of the original table. dict_table_rename_in_cache(): Add the parameter replace_new_file, used as part of rolling back a TRUNCATE operation. fil_rename_tablespace_check(): Add the parameter replace_new. If the parameter is set and a file identified by new_path exists, remove a possible tablespace and also the file. create_table_info_t::create_table_def(): Remove some debug assertions that no longer hold. During TRUNCATE, the transaction will already have been started (and performed a rename operation) before the table is created. Also, remove a call to dict_build_tablespace_for_table(). create_table_info_t::create_table(): Add the parameter create_fk=true. During TRUNCATE TABLE, do not add FOREIGN KEY constraints to the InnoDB data dictionary, because they will also not be removed. row_table_add_foreign_constraints(): If trx=NULL, do not modify the InnoDB data dictionary, but only load the FOREIGN KEY constraints from the data dictionary. ha_innobase::create(): Lock the InnoDB data dictionary cache only if no transaction was passed by the caller. Unlock it in any case. innobase_rename_table(): Add the parameter commit = true. If !commit, do not lock or unlock the data dictionary cache. ha_innobase::truncate(): Lock the data dictionary before invoking rename or create, and let ha_innobase::create() unlock it and also commit or roll back the transaction. trx_undo_mark_as_dict(): Renamed from trx_undo_mark_as_dict_operation() and declared global instead of static. row_undo_ins_parse_undo_rec(): If table_id is set, this must be rolling back the rename operation in TRUNCATE TABLE, and therefore replace_new_file=true.
2018-09-10 14:59:58 +03:00
if (!trx->table_id) {
trx->table_id = undo->table_id;
}
}
if (!undo->empty && undo->top_undo_no >= trx->undo_no) {
trx->undo_no = undo->top_undo_no + 1;
trx->undo_rseg_space = undo->rseg->space;
}
}
/** Initialize (resurrect) transactions at startup. */
void
trx_lists_init_at_db_start()
{
ut_a(srv_is_being_started);
ut_ad(!srv_was_started);
ut_ad(!purge_sys);
purge_sys = UT_NEW_NOKEY(purge_sys_t());
if (srv_force_recovery >= SRV_FORCE_NO_UNDO_LOG_SCAN) {
return;
}
trx_rseg_array_init();
/* Look from the rollback segments if there exist undo logs for
transactions. */
for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) {
trx_undo_t* undo;
trx_rseg_t* rseg = trx_sys->rseg_array[i];
/* Some rollback segment may be unavailable,
especially if the server was previously run with a
non-default value of innodb_undo_logs. */
if (rseg == NULL) {
continue;
}
/* Resurrect transactions that were doing inserts. */
for (undo = UT_LIST_GET_FIRST(rseg->insert_undo_list);
undo != NULL;
undo = UT_LIST_GET_NEXT(undo_list, undo)) {
/* trx_purge() will not run before we return,
so we can safely increment this without
holding rseg->mutex. */
++rseg->trx_ref_count;
trx_t* trx;
trx = trx_resurrect_insert(undo, rseg);
trx_sys_rw_trx_add(trx);
trx_resurrect_table_locks(
trx, &trx->rsegs.m_redo, undo);
}
/* Ressurrect transactions that were doing updates. */
for (undo = UT_LIST_GET_FIRST(rseg->update_undo_list);
undo != NULL;
undo = UT_LIST_GET_NEXT(undo_list, undo)) {
/* Check the trx_sys->rw_trx_set first. */
trx_sys_mutex_enter();
trx_t* trx = trx_get_rw_trx_by_id(undo->trx_id);
trx_sys_mutex_exit();
if (trx == NULL) {
trx = trx_allocate_for_background();
++rseg->trx_ref_count;
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
}
trx_resurrect_update(trx, undo, rseg);
trx_sys_rw_trx_add(trx);
trx_resurrect_table_locks(
trx, &trx->rsegs.m_redo, undo);
}
}
TrxIdSet::iterator end = trx_sys->rw_trx_set.end();
for (TrxIdSet::iterator it = trx_sys->rw_trx_set.begin();
it != end;
++it) {
ut_ad(it->m_trx->in_rw_trx_list);
#ifdef UNIV_DEBUG
if (it->m_trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = it->m_trx->id;
}
#endif /* UNIV_DEBUG */
if (it->m_trx->state == TRX_STATE_ACTIVE
|| it->m_trx->state == TRX_STATE_PREPARED) {
trx_sys->rw_trx_ids.push_back(it->m_id);
}
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, it->m_trx);
}
}
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
/** Assign a persistent rollback segment in a round-robin fashion,
evenly distributed between 0 and innodb_undo_logs-1
@return persistent rollback segment
@retval NULL if innodb_read_only */
static trx_rseg_t* trx_assign_rseg_low()
{
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
if (srv_read_only_mode) {
ut_ad(srv_undo_logs == ULONG_UNDEFINED);
return(NULL);
}
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
/* The first slot is always assigned to the system tablespace. */
ut_ad(trx_sys->rseg_array[0]->space == TRX_SYS_SPACE);
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
/* Choose a rollback segment evenly distributed between 0 and
innodb_undo_logs-1 in a round-robin fashion, skipping those
undo tablespaces that are scheduled for truncation.
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
Because rseg_slot is not protected by atomics or any mutex, race
conditions are possible, meaning that multiple transactions
that start modifications concurrently will write their undo
log to the same rollback segment. */
static ulong rseg_slot;
ulint slot = rseg_slot++ % srv_undo_logs;
trx_rseg_t* rseg;
#ifdef UNIV_DEBUG
ulint start_scan_slot = slot;
bool look_for_rollover = false;
#endif /* UNIV_DEBUG */
bool allocated = false;
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
do {
for (;;) {
rseg = trx_sys->rseg_array[slot];
#ifdef UNIV_DEBUG
/* Ensure that we are not revisiting the same
slot that we have already inspected. */
if (look_for_rollover) {
ut_ad(start_scan_slot != slot);
}
look_for_rollover = true;
#endif /* UNIV_DEBUG */
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
slot = (slot + 1) % srv_undo_logs;
if (rseg == NULL) {
continue;
}
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
ut_ad(rseg->is_persistent());
if (rseg->space != TRX_SYS_SPACE) {
if (rseg->skip_allocation
|| !srv_undo_tablespaces) {
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
continue;
}
} else if (trx_rseg_t* next
= trx_sys->rseg_array[slot]) {
if (next->space != TRX_SYS_SPACE
&& srv_undo_tablespaces > 0) {
/** If dedicated
innodb_undo_tablespaces have
been configured, try to use them
instead of the system tablespace. */
continue;
}
}
break;
}
/* By now we have only selected the rseg but not marked it
allocated. By marking it allocated we are ensuring that it will
never be selected for UNDO truncate purge. */
mutex_enter(&rseg->mutex);
if (!rseg->skip_allocation) {
rseg->trx_ref_count++;
allocated = true;
}
mutex_exit(&rseg->mutex);
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
} while (!allocated);
ut_ad(rseg->trx_ref_count > 0);
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
ut_ad(rseg->is_persistent());
return(rseg);
}
/** Set the innodb_log_optimize_ddl page flush observer
@param[in] space_id tablespace id
@param[in,out] stage performance_schema accounting */
void trx_t::set_flush_observer(ulint space_id, ut_stage_alter_t* stage)
{
flush_observer = UT_NEW_NOKEY(FlushObserver(space_id, this, stage));
}
/** Remove the flush observer */
void trx_t::remove_flush_observer()
{
UT_DELETE(flush_observer);
flush_observer = NULL;
}
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
/** Assign a rollback segment for modifying temporary tables.
@return the assigned rollback segment */
trx_rseg_t*
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
trx_t::assign_temp_rseg()
{
ut_ad(!rsegs.m_noredo.rseg);
ut_ad(!trx_is_autocommit_non_locking(this));
compile_time_assert(ut_is_2pow(TRX_SYS_N_RSEGS));
/* Choose a temporary rollback segment between 0 and 127
in a round-robin fashion. Because rseg_slot is not protected by
atomics or any mutex, race conditions are possible, meaning that
multiple transactions that start modifications concurrently
will write their undo log to the same rollback segment. */
static ulong rseg_slot;
trx_rseg_t* rseg = trx_sys->temp_rsegs[
rseg_slot++ & (TRX_SYS_N_RSEGS - 1)];
ut_ad(!rseg->is_persistent());
rsegs.m_noredo.rseg = rseg;
if (id == 0) {
mutex_enter(&trx_sys->mutex);
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(id);
trx_sys->rw_trx_set.insert(TrxTrack(id, this));
mutex_exit(&trx_sys->mutex);
}
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
ut_ad(!rseg->is_persistent());
return(rseg);
2013-03-26 00:03:13 +02:00
}
/****************************************************************//**
Starts a transaction. */
static
void
trx_start_low(
/*==========*/
trx_t* trx, /*!< in: transaction */
bool read_write) /*!< in: true if read-write transaction */
{
ut_ad(!trx->in_rollback);
ut_ad(!trx->is_recovered);
ut_ad(trx->start_line != 0);
ut_ad(trx->start_file != 0);
ut_ad(trx->roll_limit == 0);
ut_ad(trx->error_state == DB_SUCCESS);
ut_ad(trx->rsegs.m_redo.rseg == NULL);
ut_ad(trx->rsegs.m_noredo.rseg == NULL);
ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED));
ut_ad(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
/* Check whether it is an AUTOCOMMIT SELECT */
trx->auto_commit = thd_trx_is_auto_commit(trx->mysql_thd);
trx->read_only = srv_read_only_mode
|| (!trx->ddl && !trx->internal
&& thd_trx_is_read_only(trx->mysql_thd));
if (!trx->auto_commit) {
++trx->will_lock;
} else if (trx->will_lock == 0) {
trx->read_only = true;
}
#ifdef WITH_WSREP
2018-08-03 13:02:56 +03:00
trx->xid->null();
#endif /* WITH_WSREP */
/* The initial value for trx->no: TRX_ID_MAX is used in
read_view_open_now: */
trx->no = TRX_ID_MAX;
ut_a(ib_vector_is_empty(trx->autoinc_locks));
ut_a(trx->lock.table_locks.empty());
/* If this transaction came from trx_allocate_for_mysql(),
trx->in_mysql_trx_list would hold. In that case, the trx->state
change must be protected by the trx_sys->mutex, so that
lock_print_info_all_transactions() will have a consistent view. */
ut_ad(!trx->in_rw_trx_list);
/* We tend to over assert and that complicates the code somewhat.
e.g., the transaction state can be set earlier but we are forced to
set it under the protection of the trx_sys_t::mutex because some
trx list assertions are triggered unnecessarily. */
/* By default all transactions are in the read-only list unless they
are non-locking auto-commit read only transactions or background
(internal) transactions. Note: Transactions marked explicitly as
read only can write to temporary tables, we put those on the RO
list too. */
if (!trx->read_only
&& (trx->mysql_thd == 0 || read_write || trx->ddl)) {
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
/* Temporary rseg is assigned only if the transaction
updates a temporary table */
trx_sys_mutex_enter();
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys_rw_trx_add(trx);
ut_ad(trx->rsegs.m_redo.rseg != 0
|| srv_read_only_mode
|| srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO);
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = true);
2014-02-26 19:23:04 +01:00
#ifdef UNIV_DEBUG
if (trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = trx->id;
}
#endif /* UNIV_DEBUG */
trx->state = TRX_STATE_ACTIVE;
ut_ad(trx_sys_validate_trx_list());
2016-10-23 13:36:26 -04:00
trx_sys_mutex_exit();
} else {
if (!trx_is_autocommit_non_locking(trx)) {
/* If this is a read-only transaction that is writing
to a temporary table then it needs a transaction id
to write to the temporary table. */
if (read_write) {
trx_sys_mutex_enter();
ut_ad(!srv_read_only_mode);
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys->rw_trx_set.insert(
TrxTrack(trx->id, trx));
trx_sys_mutex_exit();
}
trx->state = TRX_STATE_ACTIVE;
} else {
ut_ad(!read_write);
trx->state = TRX_STATE_ACTIVE;
}
}
2019-07-25 12:08:50 +03:00
trx->start_time = time(NULL);
trx->start_time_micro = trx->mysql_thd
? thd_query_start_micro(trx->mysql_thd)
: microsecond_interval_timer();
ut_a(trx->error_state == DB_SUCCESS);
2013-03-26 00:03:13 +02:00
2016-10-23 13:36:26 -04:00
MONITOR_INC(MONITOR_TRX_ACTIVE);
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/** Set the serialisation number for a persistent committed transaction.
@param[in,out] trx committed transaction with persistent changes
@param[in,out] rseg rollback segment for update_undo, or NULL */
static
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
void
trx_serialise(trx_t* trx, trx_rseg_t* rseg)
{
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!rseg || rseg == trx->rsegs.m_redo.rseg);
trx_sys_mutex_enter();
trx->no = trx_sys_get_new_trx_id();
/* Track the minimum serialisation number. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
UT_LIST_ADD_LAST(trx_sys->serialisation_list, trx);
/* If the rollack segment is not empty then the
new trx_t::no can't be less than any trx_t::no
already in the rollback segment. User threads only
produce events when a rollback segment is empty. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (rseg && rseg->last_page_no == FIL_NULL) {
TrxUndoRsegs elem(trx->no);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
elem.push_back(rseg);
mutex_enter(&purge_sys->pq_mutex);
/* This is to reduce the pressure on the trx_sys_t::mutex
though in reality it should make very little (read no)
difference because this code path is only taken when the
rbs is empty. */
trx_sys_mutex_exit();
purge_sys->purge_queue.push(elem);
mutex_exit(&purge_sys->pq_mutex);
} else {
trx_sys_mutex_exit();
}
}
/****************************************************************//**
Assign the transaction its history serialisation number and write the
update UNDO log record to the assigned rollback segment.
@return true if a serialisation log was written */
static
bool
trx_write_serialisation_history(
/*============================*/
trx_t* trx, /*!< in/out: transaction */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
/* Change the undo log segment states from TRX_UNDO_ACTIVE to some
other state: these modifications to the file data structure define
the transaction as committed in the file based domain, at the
serialization point of the log sequence number lsn obtained below. */
/* We have to hold the rseg mutex because update log headers have
to be put to the history list in the (serialisation) order of the
UNDO trx number. This is required for the purge in-memory data
structures too. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
/* Undo log for temporary tables is discarded at transaction
commit. There is no purge for temporary tables, and also no
MVCC, because they are private to a session. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mtr_t temp_mtr;
temp_mtr.start();
temp_mtr.set_log_mode(MTR_LOG_NO_REDO);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mutex_enter(&trx->rsegs.m_noredo.rseg->mutex);
trx_undo_set_state_at_finish(undo, &temp_mtr);
mutex_exit(&trx->rsegs.m_noredo.rseg->mutex);
temp_mtr.commit();
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (!trx->rsegs.m_redo.rseg) {
ut_ad(!trx->rsegs.m_redo.insert_undo);
ut_ad(!trx->rsegs.m_redo.update_undo);
return false;
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
trx_undo_t* insert = trx->rsegs.m_redo.insert_undo;
trx_undo_t* update = trx->rsegs.m_redo.update_undo;
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (!insert && !update) {
return false;
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!trx->read_only);
trx_rseg_t* update_rseg = update ? trx->rsegs.m_redo.rseg : NULL;
mutex_enter(&trx->rsegs.m_redo.rseg->mutex);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/* Assign the transaction serialisation number and add any
update_undo log to the purge queue. */
trx_serialise(trx, update_rseg);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/* It is not necessary to acquire trx->undo_mutex here because
only a single OS thread is allowed to commit this transaction. */
if (insert) {
trx_undo_set_state_at_finish(insert, mtr);
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (update) {
/* The undo logs and possible delete-marked records
for updates and deletes will be purged later. */
page_t* undo_hdr_page = trx_undo_set_state_at_finish(
update, mtr);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
trx_undo_update_cleanup(trx, undo_hdr_page, mtr);
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mutex_exit(&trx->rsegs.m_redo.rseg->mutex);
MONITOR_INC(MONITOR_TRX_COMMIT_UNDO);
trx_sysf_t* sys_header = trx_sysf_get(mtr);
#ifdef WITH_WSREP
/* Update latest MySQL wsrep XID in trx sys header. */
if (wsrep_is_wsrep_xid(trx->xid)) {
trx_sys_update_wsrep_checkpoint(trx->xid, sys_header, mtr);
}
#endif /* WITH_WSREP */
/* Update the latest MySQL binlog name and offset info
in trx sys header if MySQL binlogging is on or the database
server is a MySQL replication slave */
if (trx->mysql_log_file_name != NULL
&& trx->mysql_log_file_name[0] != '\0') {
trx_sys_update_mysql_binlog_offset(
trx->mysql_log_file_name,
trx->mysql_log_offset,
sys_header,
mtr);
trx->mysql_log_file_name = NULL;
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
return(true);
}
/********************************************************************
Finalize a transaction containing updates for a FTS table. */
static
void
trx_finalize_for_fts_table(
/*=======================*/
fts_trx_table_t* ftt) /* in: FTS trx table */
{
fts_t* fts = ftt->table->fts;
fts_doc_ids_t* doc_ids = ftt->added_doc_ids;
ut_a(fts->add_wq);
2019-09-18 16:24:48 +03:00
mem_heap_t* heap = static_cast<mem_heap_t*>(doc_ids->self_heap->arg);
ib_wqueue_add(fts->add_wq, doc_ids, heap);
/* fts_trx_table_t no longer owns the list. */
ftt->added_doc_ids = NULL;
}
/******************************************************************//**
Finalize a transaction containing updates to FTS tables. */
static
void
trx_finalize_for_fts(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
bool is_commit) /*!< in: true if the transaction was
committed, false if it was rolled back. */
{
if (is_commit) {
const ib_rbt_node_t* node;
ib_rbt_t* tables;
fts_savepoint_t* savepoint;
savepoint = static_cast<fts_savepoint_t*>(
ib_vector_last(trx->fts_trx->savepoints));
tables = savepoint->tables;
for (node = rbt_first(tables);
node;
node = rbt_next(tables, node)) {
fts_trx_table_t** ftt;
ftt = rbt_value(fts_trx_table_t*, node);
if ((*ftt)->added_doc_ids) {
trx_finalize_for_fts_table(*ftt);
}
}
}
fts_trx_free(trx->fts_trx);
trx->fts_trx = NULL;
}
2013-03-26 00:03:13 +02:00
/**********************************************************************//**
If required, flushes the log to disk based on the value of
innodb_flush_log_at_trx_commit. */
static
void
trx_flush_log_if_needed_low(
/*========================*/
lsn_t lsn) /*!< in: lsn up to which logs are to be
flushed. */
{
bool flush = srv_file_flush_method != SRV_NOSYNC;
2013-03-26 00:03:13 +02:00
switch (srv_flush_log_at_trx_commit) {
case 3:
2013-03-26 00:03:13 +02:00
case 2:
/* Write the log but do not flush it to disk */
flush = false;
/* fall through */
case 1:
/* Write the log and optionally flush it to disk */
log_write_up_to(lsn, flush);
return;
case 0:
/* Do nothing */
return;
2013-03-26 00:03:13 +02:00
}
ut_error;
2013-03-26 00:03:13 +02:00
}
/**********************************************************************//**
If required, flushes the log to disk based on the value of
innodb_flush_log_at_trx_commit. */
static
2013-03-26 00:03:13 +02:00
void
trx_flush_log_if_needed(
/*====================*/
lsn_t lsn, /*!< in: lsn up to which logs are to be
flushed. */
trx_t* trx) /*!< in/out: transaction */
{
trx->op_info = "flushing log";
trx_flush_log_if_needed_low(lsn);
trx->op_info = "";
}
/**********************************************************************//**
For each table that has been modified by the given transaction: update
its dict_table_t::update_time with the current timestamp. Clear the list
of the modified tables at the end. */
static
void
trx_update_mod_tables_timestamp(
/*============================*/
trx_t* trx) /*!< in: transaction */
{
ut_ad(trx->id != 0);
/* consider using trx->start_time if calling time() is too
expensive here */
2019-07-25 12:08:50 +03:00
const time_t now = time(NULL);
trx_mod_tables_t::const_iterator end = trx->mod_tables.end();
for (trx_mod_tables_t::const_iterator it = trx->mod_tables.begin();
it != end;
++it) {
/* This could be executed by multiple threads concurrently
on the same table object. This is fine because time_t is
word size or less. And _purely_ _theoretically_, even if
time_t write is not atomic, likely the value of 'now' is
the same in all threads and even if it is not, getting a
"garbage" in table->update_time is justified because
protecting it with a latch here would be too performance
intrusive. */
(*it)->update_time = now;
}
trx->mod_tables.clear();
}
/**
Erase the transaction from running transaction lists and serialization
list. Active RW transaction list of a MVCC snapshot(ReadView::prepare)
won't include this transaction after this call. All implicit locks are
also released by this call as trx is removed from rw_trx_list.
@param[in] trx Transaction to erase, must have an ID > 0
@param[in] serialised true if serialisation log was written */
static
void
trx_erase_lists(
trx_t* trx,
bool serialised)
{
ut_ad(trx->id > 0);
trx_sys_mutex_enter();
if (serialised) {
UT_LIST_REMOVE(trx_sys->serialisation_list, trx);
}
trx_ids_t::iterator it = std::lower_bound(
trx_sys->rw_trx_ids.begin(),
trx_sys->rw_trx_ids.end(),
trx->id);
ut_ad(*it == trx->id);
trx_sys->rw_trx_ids.erase(it);
if (trx->read_only || trx->rsegs.m_redo.rseg == NULL) {
ut_ad(!trx->in_rw_trx_list);
} else {
UT_LIST_REMOVE(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = false);
ut_ad(trx_sys_validate_trx_list());
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, true);
}
}
trx_sys->rw_trx_set.erase(TrxTrack(trx->id));
trx_sys_mutex_exit();
}
/****************************************************************//**
Commits a transaction in memory. */
static
void
trx_commit_in_memory(
/*=================*/
trx_t* trx, /*!< in/out: transaction */
const mtr_t* mtr, /*!< in: mini-transaction of
trx_write_serialisation_history(), or NULL if
the transaction did not modify anything */
bool serialised)
/*!< in: true if serialisation log was
written */
{
trx->must_flush_log_later = false;
if (trx_is_autocommit_non_locking(trx)) {
ut_ad(trx->id == 0);
ut_ad(trx->read_only);
ut_a(!trx->is_recovered);
ut_ad(trx->rsegs.m_redo.rseg == NULL);
ut_ad(!trx->in_rw_trx_list);
/* Note: We are asserting without holding the lock mutex. But
that is OK because this transaction is not waiting and cannot
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
be rolled back and no new locks can (or should) be added
because it is flagged as a non-locking read-only transaction. */
ut_a(UT_LIST_GET_LEN(trx->lock.trx_locks) == 0);
/* This state change is not protected by any mutex, therefore
there is an inherent race here around state transition during
printouts. We ignore this race for the sake of efficiency.
However, the trx_sys_t::mutex will protect the trx_t instance
and it cannot be removed from the mysql_trx_list and freed
without first acquiring the trx_sys_t::mutex. */
ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE));
if (trx->read_view != NULL) {
trx_sys->mvcc->view_close(trx->read_view, false);
}
2013-03-26 00:03:13 +02:00
MONITOR_INC(MONITOR_TRX_NL_RO_COMMIT);
DBUG_LOG("trx", "Autocommit in memory: " << trx);
trx->state = TRX_STATE_NOT_STARTED;
} else {
#ifdef UNIV_DEBUG
if (!UT_LIST_GET_LEN(trx->lock.trx_locks)) {
for (lock_list::iterator it
= trx->lock.table_locks.begin();
it != trx->lock.table_locks.end();
it++) {
ut_ad(!*it);
}
}
#endif /* UNIV_DEBUG */
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx_mutex_enter(trx);
trx->commit_state();
trx_mutex_exit(trx);
if (trx->id) {
trx_erase_lists(trx, serialised);
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
/* Wait for any implicit-to-explicit lock
conversions to cease, so that there will be no
race condition in lock_release(). */
while (UNIV_UNLIKELY(trx->is_referenced())) {
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
ut_delay(srv_spin_wait_delay);
}
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx->release_locks();
trx->id = 0;
} else {
ut_ad(trx->read_only || !trx->rsegs.m_redo.rseg);
ut_ad(!trx->in_rw_trx_list);
trx->release_locks();
}
DEBUG_SYNC_C("after_trx_committed_in_memory");
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
if (trx->read_only || !trx->rsegs.m_redo.rseg) {
MONITOR_INC(MONITOR_TRX_RO_COMMIT);
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
if (trx->read_view) {
trx_sys->mvcc->view_close(
trx->read_view, false);
}
} else {
MONITOR_INC(MONITOR_TRX_RW_COMMIT);
}
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!trx->rsegs.m_redo.update_undo);
if (trx_rseg_t* rseg = trx->rsegs.m_redo.rseg) {
mutex_enter(&rseg->mutex);
ut_ad(rseg->trx_ref_count > 0);
--rseg->trx_ref_count;
mutex_exit(&rseg->mutex);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (trx_undo_t*& insert = trx->rsegs.m_redo.insert_undo) {
ut_ad(insert->rseg == rseg);
trx_undo_commit_cleanup(insert, false);
insert = NULL;
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!trx->rsegs.m_redo.insert_undo);
if (mtr != NULL) {
if (trx_undo_t*& undo = trx->rsegs.m_noredo.undo) {
ut_ad(undo->rseg == trx->rsegs.m_noredo.rseg);
trx_undo_commit_cleanup(undo, true);
undo = NULL;
}
/* NOTE that we could possibly make a group commit more
efficient here: call os_thread_yield here to allow also other
trxs to come to commit! */
/*-------------------------------------*/
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the transaction durable if
the OS does not crash. We may also flush the log files to
disk, making the transaction durable also at an OS crash or a
power outage.
The idea in InnoDB's group commit is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which commits the whole
group. Note that this group commit will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
If we are calling trx_commit() under prepare_commit_mutex, we
will delay possible log write and flush to a separate function
trx_commit_complete_for_mysql(), which is only called when the
thread has released the mutex. This is to make the
group commit algorithm to work. Otherwise, the prepare_commit
mutex would serialize all commits and prevent a group of
transactions from gathering. */
lsn_t lsn = mtr->commit_lsn();
if (lsn == 0) {
/* Nothing to be done. */
} else if (trx->flush_log_later) {
/* Do nothing yet */
trx->must_flush_log_later = true;
} else if (srv_flush_log_at_trx_commit == 0) {
/* Do nothing */
} else {
2013-03-26 00:03:13 +02:00
trx_flush_log_if_needed(lsn, trx);
}
trx->commit_lsn = lsn;
2014-11-18 17:41:12 +01:00
/* Tell server some activity has happened, since the trx
does changes something. Background utility threads like
master thread, purge thread or page_cleaner thread might
have some work to do. */
srv_active_wake_master_thread();
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!trx->rsegs.m_noredo.undo);
/* Free all savepoints, starting from the first. */
trx_named_savept_t* savep = UT_LIST_GET_FIRST(trx->trx_savepoints);
2013-03-26 00:03:13 +02:00
trx_roll_savepoints_free(trx, savep);
if (trx->fts_trx != NULL) {
trx_finalize_for_fts(trx, trx->undo_no != 0);
}
trx_mutex_enter(trx);
trx->dict_operation = TRX_DICT_OP_NONE;
#ifdef WITH_WSREP
if (trx->mysql_thd && wsrep_on(trx->mysql_thd)) {
trx->lock.was_chosen_as_deadlock_victim = FALSE;
}
#endif
DBUG_LOG("trx", "Commit in memory: " << trx);
trx->state = TRX_STATE_NOT_STARTED;
/* trx->in_mysql_trx_list would hold between
trx_allocate_for_mysql() and trx_free_for_mysql(). It does not
hold for recovered transactions or system transactions. */
assert_trx_is_free(trx);
trx_init(trx);
trx_mutex_exit(trx);
ut_a(trx->error_state == DB_SUCCESS);
srv_wake_purge_thread_if_not_active();
}
/****************************************************************//**
Commits a transaction and a mini-transaction. */
void
trx_commit_low(
/*===========*/
trx_t* trx, /*!< in/out: transaction */
mtr_t* mtr) /*!< in/out: mini-transaction (will be committed),
or NULL if trx made no modifications */
{
assert_trx_nonlocking_or_in_list(trx);
ut_ad(!trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY));
ut_ad(!mtr || mtr->is_active());
ut_ad(!mtr == !trx->has_logged());
/* undo_no is non-zero if we're doing the final commit. */
if (trx->fts_trx != NULL && trx->undo_no != 0) {
dberr_t error;
ut_a(!trx_is_autocommit_non_locking(trx));
error = fts_commit(trx);
/* FTS-FIXME: Temporarily tolerate DB_DUPLICATE_KEY
instead of dying. This is a possible scenario if there
is a crash between insert to DELETED table committing
and transaction committing. The fix would be able to
return error from this function */
if (error != DB_SUCCESS && error != DB_DUPLICATE_KEY) {
/* FTS-FIXME: once we can return values from this
function, we should do so and signal an error
instead of just dying. */
ut_error;
}
}
bool serialised;
if (mtr != NULL) {
serialised = trx_write_serialisation_history(trx, mtr);
/* The following call commits the mini-transaction, making the
whole transaction committed in the file-based world, at this
log sequence number. The transaction becomes 'durable' when
we write the log to disk, but in the logical sense the commit
in the file-based data structures (undo logs etc.) happens
here.
NOTE that transaction numbers, which are assigned only to
transactions with an update undo log, do not necessarily come
in exactly the same order as commit lsn's, if the transactions
have different rollback segments. To get exactly the same
order we should hold the kernel mutex up to this point,
adding to the contention of the kernel mutex. However, if
a transaction T2 is able to see modifications made by
a transaction T1, T2 will always get a bigger transaction
number and a bigger commit lsn than T1. */
/*--------------*/
mtr_commit(mtr);
DBUG_EXECUTE_IF("ib_crash_during_trx_commit_in_mem",
if (trx->has_logged()) {
log_write_up_to(mtr->commit_lsn(),
true);
DBUG_SUICIDE();
});
/*--------------*/
} else {
serialised = false;
}
#ifndef DBUG_OFF
/* In case of this function is called from a stack executing
THD::release_resources -> ...
innobase_connection_close() ->
trx_rollback_for_mysql... -> .
mysql's thd does not seem to have
thd->debug_sync_control defined any longer. However the stack
is possible only with a prepared trx not updating any data.
*/
if (trx->mysql_thd != NULL && trx->has_logged_persistent()) {
DEBUG_SYNC_C("before_trx_state_committed_in_memory");
}
#endif
trx_commit_in_memory(trx, mtr, serialised);
}
/****************************************************************//**
Commits a transaction. */
void
trx_commit(
/*=======*/
trx_t* trx) /*!< in/out: transaction */
{
mtr_t* mtr;
mtr_t local_mtr;
DBUG_EXECUTE_IF("ib_trx_commit_crash_before_trx_commit_start",
DBUG_SUICIDE(););
if (trx->has_logged()) {
mtr = &local_mtr;
mtr->start();
} else {
mtr = NULL;
}
trx_commit_low(trx, mtr);
}
/****************************************************************//**
Cleans up a transaction at database startup. The cleanup is needed if
the transaction already got to the middle of a commit when the database
crashed, and we cannot roll it back. */
void
trx_cleanup_at_db_startup(
/*======================*/
trx_t* trx) /*!< in: transaction */
{
ut_ad(trx->is_recovered);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
ut_ad(!trx->rsegs.m_noredo.undo);
ut_ad(!trx->rsegs.m_redo.update_undo);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (trx_undo_t*& undo = trx->rsegs.m_redo.insert_undo) {
ut_ad(undo->rseg == trx->rsegs.m_redo.rseg);
trx_undo_commit_cleanup(undo, false);
undo = NULL;
}
memset(&trx->rsegs, 0x0, sizeof(trx->rsegs));
trx->undo_no = 0;
trx->undo_rseg_space = 0;
trx->last_sql_stat_start.least_undo_no = 0;
trx_sys_mutex_enter();
ut_a(!trx->read_only);
UT_LIST_REMOVE(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = FALSE);
trx_sys_mutex_exit();
/* Change the transaction state without mutex protection, now
that it no longer is in the trx_list. Recovered transactions
are never placed in the mysql_trx_list. */
ut_ad(trx->is_recovered);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx->in_mysql_trx_list);
DBUG_LOG("trx", "Cleanup at startup: " << trx);
trx->id = 0;
trx->state = TRX_STATE_NOT_STARTED;
}
/********************************************************************//**
Assigns a read view for a consistent read query. All the consistent reads
within the same transaction will get the same read view, which is created
when this function is first called for a new started transaction.
@return consistent read view */
ReadView*
trx_assign_read_view(
/*=================*/
trx_t* trx) /*!< in/out: active transaction */
{
ut_ad(trx->state == TRX_STATE_ACTIVE);
if (srv_read_only_mode) {
ut_ad(trx->read_view == NULL);
return(NULL);
} else if (!MVCC::is_view_active(trx->read_view)) {
trx_sys->mvcc->view_open(trx->read_view, trx);
}
return(trx->read_view);
}
/****************************************************************//**
Prepares a transaction for commit/rollback. */
void
trx_commit_or_rollback_prepare(
/*===========================*/
trx_t* trx) /*!< in/out: transaction */
{
/* We are reading trx->state without holding trx_sys->mutex
here, because the commit or rollback should be invoked for a
running (or recovered prepared) transaction that is associated
with the current thread. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
trx_start_low(trx, true);
/* fall through */
case TRX_STATE_ACTIVE:
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
/* If the trx is in a lock wait state, moves the waiting
query thread to the suspended state */
if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {
ut_a(trx->lock.wait_thr != NULL);
trx->lock.wait_thr->state = QUE_THR_SUSPENDED;
trx->lock.wait_thr = NULL;
trx->lock.que_state = TRX_QUE_RUNNING;
}
ut_a(trx->lock.n_active_thrs == 1);
return;
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*********************************************************************//**
Creates a commit command node struct.
@return own: commit node struct */
commit_node_t*
trx_commit_node_create(
/*===================*/
mem_heap_t* heap) /*!< in: mem heap where created */
{
commit_node_t* node;
node = static_cast<commit_node_t*>(mem_heap_alloc(heap, sizeof(*node)));
node->common.type = QUE_NODE_COMMIT;
node->state = COMMIT_NODE_SEND;
return(node);
}
/***********************************************************//**
Performs an execution step for a commit type node in a query graph.
@return query thread to run next, or NULL */
que_thr_t*
trx_commit_step(
/*============*/
que_thr_t* thr) /*!< in: query thread */
{
commit_node_t* node;
node = static_cast<commit_node_t*>(thr->run_node);
ut_ad(que_node_get_type(node) == QUE_NODE_COMMIT);
if (thr->prev_node == que_node_get_parent(node)) {
node->state = COMMIT_NODE_SEND;
}
if (node->state == COMMIT_NODE_SEND) {
trx_t* trx;
node->state = COMMIT_NODE_WAIT;
trx = thr_get_trx(thr);
ut_a(trx->lock.wait_thr == NULL);
ut_a(trx->lock.que_state != TRX_QUE_LOCK_WAIT);
trx_commit_or_rollback_prepare(trx);
trx->lock.que_state = TRX_QUE_COMMITTING;
trx_commit(trx);
ut_ad(trx->lock.wait_thr == NULL);
trx->lock.que_state = TRX_QUE_RUNNING;
thr = NULL;
} else {
ut_ad(node->state == COMMIT_NODE_WAIT);
node->state = COMMIT_NODE_SEND;
thr->run_node = que_node_get_parent(node);
}
return(thr);
}
/**********************************************************************//**
Does the transaction commit for MySQL.
@return DB_SUCCESS or error number */
2013-03-26 00:03:13 +02:00
dberr_t
trx_commit_for_mysql(
/*=================*/
trx_t* trx) /*!< in/out: transaction */
{
/* Because we do not do the commit by sending an Innobase
sig to the transaction, we must here make sure that trx has been
started. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
2013-03-26 00:03:13 +02:00
ut_d(trx->start_file = __FILE__);
ut_d(trx->start_line = __LINE__);
trx_start_low(trx, true);
/* fall through */
case TRX_STATE_ACTIVE:
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
trx->op_info = "committing";
if (trx->id != 0) {
trx_update_mod_tables_timestamp(trx);
}
trx_commit(trx);
MONITOR_DEC(MONITOR_TRX_ACTIVE);
trx->op_info = "";
return(DB_SUCCESS);
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
return(DB_CORRUPTION);
}
/**********************************************************************//**
If required, flushes the log to disk if we called trx_commit_for_mysql()
2013-03-26 00:03:13 +02:00
with trx->flush_log_later == TRUE. */
void
trx_commit_complete_for_mysql(
/*==========================*/
2013-03-26 00:03:13 +02:00
trx_t* trx) /*!< in/out: transaction */
{
if (trx->id != 0
|| !trx->must_flush_log_later
|| (srv_flush_log_at_trx_commit == 1 && trx->active_commit_ordered)) {
2013-03-26 00:03:13 +02:00
return;
}
2013-03-26 00:03:13 +02:00
trx_flush_log_if_needed(trx->commit_lsn, trx);
trx->must_flush_log_later = false;
}
/**********************************************************************//**
Marks the latest SQL statement ended. */
void
trx_mark_sql_stat_end(
/*==================*/
trx_t* trx) /*!< in: trx handle */
{
ut_a(trx);
switch (trx->state) {
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
case TRX_STATE_NOT_STARTED:
trx->undo_no = 0;
trx->undo_rseg_space = 0;
/* fall through */
case TRX_STATE_ACTIVE:
trx->last_sql_stat_start.least_undo_no = trx->undo_no;
if (trx->fts_trx != NULL) {
fts_savepoint_laststmt_refresh(trx);
}
return;
}
ut_error;
}
/**********************************************************************//**
Prints info about a transaction.
Caller must hold trx_sys->mutex. */
void
trx_print_low(
/*==========*/
FILE* f,
/*!< in: output stream */
const trx_t* trx,
/*!< in: transaction */
ulint max_query_len,
/*!< in: max query length to print,
or 0 to use the default max length */
2013-03-26 00:03:13 +02:00
ulint n_rec_locks,
/*!< in: lock_number_of_rows_locked(&trx->lock) */
2013-03-26 00:03:13 +02:00
ulint n_trx_locks,
/*!< in: length of trx->lock.trx_locks */
ulint heap_size)
/*!< in: mem_heap_get_size(trx->lock.lock_heap) */
{
ibool newline;
const char* op_info;
ut_ad(trx_sys_mutex_own());
fprintf(f, "TRANSACTION " TRX_ID_FMT, trx_get_id_for_print(trx));
/* trx->state cannot change from or to NOT_STARTED while we
are holding the trx_sys->mutex. It may change from ACTIVE to
PREPARED or COMMITTED. */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
fputs(", not started", f);
goto state_ok;
case TRX_STATE_ACTIVE:
fprintf(f, ", ACTIVE %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_COMMITTED_IN_MEMORY:
fputs(", COMMITTED IN MEMORY", f);
goto state_ok;
}
fprintf(f, ", state %lu", (ulong) trx->state);
ut_ad(0);
state_ok:
/* prevent a race condition */
op_info = trx->op_info;
if (*op_info) {
putc(' ', f);
fputs(op_info, f);
}
if (trx->is_recovered) {
fputs(" recovered trx", f);
}
if (trx->declared_to_be_inside_innodb) {
fprintf(f, ", thread declared inside InnoDB %lu",
(ulong) trx->n_tickets_to_enter_innodb);
}
putc('\n', f);
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
fprintf(f, "mysql tables in use %lu, locked %lu\n",
(ulong) trx->n_mysql_tables_in_use,
(ulong) trx->mysql_n_tables_locked);
}
newline = TRUE;
/* trx->lock.que_state of an ACTIVE transaction may change
while we are not holding trx->mutex. We perform a dirty read
for performance reasons. */
switch (trx->lock.que_state) {
case TRX_QUE_RUNNING:
newline = FALSE; break;
case TRX_QUE_LOCK_WAIT:
fputs("LOCK WAIT ", f); break;
case TRX_QUE_ROLLING_BACK:
fputs("ROLLING BACK ", f); break;
case TRX_QUE_COMMITTING:
fputs("COMMITTING ", f); break;
default:
fprintf(f, "que state %lu ", (ulong) trx->lock.que_state);
}
2013-03-26 00:03:13 +02:00
if (n_trx_locks > 0 || heap_size > 400) {
newline = TRUE;
fprintf(f, "%lu lock struct(s), heap size %lu,"
" %lu row lock(s)",
2013-03-26 00:03:13 +02:00
(ulong) n_trx_locks,
(ulong) heap_size,
2013-03-26 00:03:13 +02:00
(ulong) n_rec_locks);
}
if (trx->undo_no != 0) {
newline = TRUE;
2014-06-09 18:16:00 +02:00
fprintf(f, ", undo log entries " TRX_ID_FMT, trx->undo_no);
}
if (newline) {
putc('\n', f);
}
if (trx->state != TRX_STATE_NOT_STARTED && trx->mysql_thd != NULL) {
2014-05-06 21:13:16 +02:00
innobase_mysql_print_thd(
f, trx->mysql_thd, static_cast<uint>(max_query_len));
}
}
/**********************************************************************//**
Prints info about a transaction.
The caller must hold lock_sys->mutex and trx_sys->mutex.
When possible, use trx_print() instead. */
void
trx_print_latched(
/*==============*/
FILE* f, /*!< in: output stream */
const trx_t* trx, /*!< in: transaction */
ulint max_query_len) /*!< in: max query length to print,
or 0 to use the default max length */
{
ut_ad(lock_mutex_own());
ut_ad(trx_sys_mutex_own());
trx_print_low(f, trx, max_query_len,
lock_number_of_rows_locked(&trx->lock),
UT_LIST_GET_LEN(trx->lock.trx_locks),
mem_heap_get_size(trx->lock.lock_heap));
}
#ifdef WITH_WSREP
/**********************************************************************//**
Prints info about a transaction.
Transaction information may be retrieved without having trx_sys->mutex acquired
so it may not be completely accurate. The caller must own lock_sys->mutex
and the trx must have some locks to make sure that it does not escape
without locking lock_sys->mutex. */
UNIV_INTERN
void
wsrep_trx_print_locking(
FILE* f,
/*!< in: output stream */
const trx_t* trx,
/*!< in: transaction */
ulint max_query_len)
/*!< in: max query length to print,
or 0 to use the default max length */
{
ibool newline;
const char* op_info;
ut_ad(lock_mutex_own());
ut_ad(trx->lock.trx_locks.count > 0);
fprintf(f, "TRANSACTION " TRX_ID_FMT, trx->id);
/* trx->state may change since trx_sys->mutex is not required */
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
fputs(", not started", f);
goto state_ok;
case TRX_STATE_ACTIVE:
fprintf(f, ", ACTIVE %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
fprintf(f, ", ACTIVE (PREPARED) %lu sec",
(ulong) difftime(time(NULL), trx->start_time));
goto state_ok;
case TRX_STATE_COMMITTED_IN_MEMORY:
fputs(", COMMITTED IN MEMORY", f);
goto state_ok;
}
fprintf(f, ", state %lu", (ulong) trx->state);
ut_ad(0);
state_ok:
/* prevent a race condition */
op_info = trx->op_info;
if (*op_info) {
putc(' ', f);
fputs(op_info, f);
}
if (trx->is_recovered) {
fputs(" recovered trx", f);
}
if (trx->declared_to_be_inside_innodb) {
fprintf(f, ", thread declared inside InnoDB %lu",
(ulong) trx->n_tickets_to_enter_innodb);
}
putc('\n', f);
if (trx->n_mysql_tables_in_use > 0 || trx->mysql_n_tables_locked > 0) {
fprintf(f, "mysql tables in use %lu, locked %lu\n",
(ulong) trx->n_mysql_tables_in_use,
(ulong) trx->mysql_n_tables_locked);
}
newline = TRUE;
/* trx->lock.que_state of an ACTIVE transaction may change
while we are not holding trx->mutex. We perform a dirty read
for performance reasons. */
switch (trx->lock.que_state) {
case TRX_QUE_RUNNING:
newline = FALSE; break;
case TRX_QUE_LOCK_WAIT:
fputs("LOCK WAIT ", f); break;
case TRX_QUE_ROLLING_BACK:
fputs("ROLLING BACK ", f); break;
case TRX_QUE_COMMITTING:
fputs("COMMITTING ", f); break;
default:
fprintf(f, "que state %lu ", (ulong) trx->lock.que_state);
}
if (trx->undo_no != 0) {
newline = TRUE;
fprintf(f, ", undo log entries " TRX_ID_FMT, trx->undo_no);
}
if (newline) {
putc('\n', f);
}
if (trx->mysql_thd != NULL) {
innobase_mysql_print_thd(
f, trx->mysql_thd, static_cast<uint>(max_query_len));
}
}
#endif /* WITH_WSREP */
/**********************************************************************//**
Prints info about a transaction.
Acquires and releases lock_sys->mutex and trx_sys->mutex. */
void
trx_print(
/*======*/
FILE* f, /*!< in: output stream */
const trx_t* trx, /*!< in: transaction */
ulint max_query_len) /*!< in: max query length to print,
or 0 to use the default max length */
{
2013-03-26 00:03:13 +02:00
ulint n_rec_locks;
ulint n_trx_locks;
ulint heap_size;
lock_mutex_enter();
2013-03-26 00:03:13 +02:00
n_rec_locks = lock_number_of_rows_locked(&trx->lock);
n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks);
heap_size = mem_heap_get_size(trx->lock.lock_heap);
lock_mutex_exit();
mutex_enter(&trx_sys->mutex);
trx_print_low(f, trx, max_query_len,
2013-03-26 00:03:13 +02:00
n_rec_locks, n_trx_locks, heap_size);
mutex_exit(&trx_sys->mutex);
}
#ifdef UNIV_DEBUG
/**********************************************************************//**
Asserts that a transaction has been started.
The caller must hold trx_sys->mutex.
@return TRUE if started */
ibool
trx_assert_started(
/*===============*/
const trx_t* trx) /*!< in: transaction */
{
ut_ad(trx_sys_mutex_own());
/* Non-locking autocommits should not hold any locks and this
function is only called from the locking code. */
check_trx_state(trx);
/* trx->state can change from or to NOT_STARTED while we are holding
trx_sys->mutex for non-locking autocommit selects but not for other
types of transactions. It may change from ACTIVE to PREPARED. Unless
we are holding lock_sys->mutex, it may also change to COMMITTED. */
switch (trx->state) {
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
return(TRUE);
case TRX_STATE_ACTIVE:
case TRX_STATE_COMMITTED_IN_MEMORY:
return(TRUE);
case TRX_STATE_NOT_STARTED:
break;
}
ut_error;
return(FALSE);
}
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Compares the "weight" (or size) of two transactions. Transactions that
have edited non-transactional tables are considered heavier than ones
that have not.
@return TRUE if weight(a) >= weight(b) */
bool
trx_weight_ge(
/*==========*/
const trx_t* a, /*!< in: transaction to be compared */
const trx_t* b) /*!< in: transaction to be compared */
{
ibool a_notrans_edit;
ibool b_notrans_edit;
/* If mysql_thd is NULL for a transaction we assume that it has
not edited non-transactional tables. */
a_notrans_edit = a->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(a->mysql_thd);
b_notrans_edit = b->mysql_thd != NULL
&& thd_has_edited_nontrans_tables(b->mysql_thd);
if (a_notrans_edit != b_notrans_edit) {
return(a_notrans_edit);
}
/* Either both had edited non-transactional tables or both had
not, we fall back to comparing the number of altered/locked
rows. */
return(TRX_WEIGHT(a) >= TRX_WEIGHT(b));
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/** Prepare a transaction.
@return log sequence number that makes the XA PREPARE durable
@retval 0 if no changes needed to be made durable */
static
lsn_t
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
trx_prepare_low(trx_t* trx)
{
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mtr_t mtr;
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/* It is not necessary to acquire trx->undo_mutex here because
only the owning (connection) thread of the transaction is
allowed to perform XA PREPARE. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (trx_undo_t* undo = trx->rsegs.m_noredo.undo) {
ut_ad(undo->rseg == trx->rsegs.m_noredo.rseg);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mtr.start();
mtr.set_log_mode(MTR_LOG_NO_REDO);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mutex_enter(&undo->rseg->mutex);
trx_undo_set_state_at_prepare(trx, undo, false, &mtr);
mutex_exit(&undo->rseg->mutex);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mtr.commit();
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
trx_undo_t* insert = trx->rsegs.m_redo.insert_undo;
trx_undo_t* update = trx->rsegs.m_redo.update_undo;
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (!insert && !update) {
/* There were no changes to persistent tables. */
return(0);
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
trx_rseg_t* rseg = trx->rsegs.m_redo.rseg;
mtr.start();
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
/* Change the undo log segment states from TRX_UNDO_ACTIVE to
TRX_UNDO_PREPARED: these modifications to the file data
structure define the transaction as prepared in the file-based
world, at the serialization point of lsn. */
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
mutex_enter(&rseg->mutex);
if (insert) {
ut_ad(insert->rseg == rseg);
trx_undo_set_state_at_prepare(trx, insert, false, &mtr);
}
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
if (update) {
ut_ad(update->rseg == rseg);
trx_undo_set_state_at_prepare(trx, update, false, &mtr);
}
mutex_exit(&rseg->mutex);
/* Make the XA PREPARE durable. */
mtr.commit();
ut_ad(mtr.commit_lsn() > 0);
return(mtr.commit_lsn());
}
/****************************************************************//**
Prepares a transaction. */
static
void
trx_prepare(
/*========*/
trx_t* trx) /*!< in/out: transaction */
{
/* Only fresh user transactions can be prepared.
Recovered transactions cannot. */
ut_a(!trx->is_recovered);
MDEV-12219 Discard temporary undo logs at transaction commit Starting with MySQL 5.7, temporary tables in InnoDB are handled differently from persistent tables. Because temporary tables are private to a connection, concurrency control and multi-versioning (MVCC) are not applicable. For performance reasons, purge is disabled as well. Rollback is supported for temporary tables; that is why we have the temporary undo logs in the first place. Because MVCC and purge are disabled for temporary tables, we should discard all temporary undo logs already at transaction commit, just like we discard the persistent insert_undo logs. Before this change, update_undo logs were being preserved. trx_temp_undo_t: A wrapper for temporary undo logs, comprising a rollback segment and a single temporary undo log. trx_rsegs_t::m_noredo: Use trx_temp_undo_t. (Instead of insert_undo, update_undo, there will be a single undo.) trx_is_noredo_rseg_updated(), trx_is_rseg_assigned(): Remove. trx_undo_add_page(): Remove the parameter undo_ptr. Acquire and release the rollback segment mutex inside the function. trx_undo_free_last_page(): Remove the parameter trx. trx_undo_truncate_end(): Remove the parameter trx, and add the parameter is_temp. Clean up the code a bit. trx_undo_assign_undo(): Split the parameter undo_ptr into rseg, undo. trx_undo_commit_cleanup(): Renamed from trx_undo_insert_cleanup(). Replace the parameter undo_ptr with undo. This will discard the temporary undo or insert_undo log at commit/rollback. trx_purge_add_update_undo_to_history(), trx_undo_update_cleanup(): Remove 3 parameters. Always operate on the persistent update_undo. trx_serialise(): Renamed from trx_serialisation_number_get(). trx_write_serialisation_history(): Simplify the code flow. If there are no persistent changes, do not update MONITOR_TRX_COMMIT_UNDO. trx_commit_in_memory(): Simplify the logic, and add assertions. trx_undo_page_report_modify(): Keep a direct reference to the persistent update_undo log. trx_undo_report_row_operation(): Simplify some code. Always assign TRX_UNDO_INSERT for temporary undo logs. trx_prepare_low(): Keep only one parameter. Prepare all 3 undo logs. trx_roll_try_truncate(): Remove the parameter undo_ptr. Try to truncate all 3 undo logs of the transaction. trx_roll_pop_top_rec_of_trx_low(): Remove. trx_roll_pop_top_rec_of_trx(): Remove the redundant parameter trx->roll_limit. Clear roll_limit when exhausting the undo logs. Consider all 3 undo logs at once, prioritizing the persistent undo logs. row_undo(): Minor cleanup. Let trx_roll_pop_top_rec_of_trx() reset the trx->roll_limit.
2017-03-09 23:20:51 +02:00
lsn_t lsn = trx_prepare_low(trx);
DBUG_EXECUTE_IF("ib_trx_crash_during_xa_prepare_step", DBUG_SUICIDE(););
/*--------------------------------------*/
ut_a(trx->state == TRX_STATE_ACTIVE);
trx_mutex_enter(trx);
trx->state = TRX_STATE_PREPARED;
trx_mutex_exit(trx);
/*--------------------------------------*/
if (lsn) {
/* Depending on the my.cnf options, we may now write the log
buffer to the log files, making the prepared state of the
transaction durable if the OS does not crash. We may also
flush the log files to disk, making the prepared state of the
transaction durable also at an OS crash or a power outage.
The idea in InnoDB's group prepare is that a group of
transactions gather behind a trx doing a physical disk write
to log files, and when that physical write has been completed,
one of those transactions does a write which prepares the whole
group. Note that this group prepare will only bring benefit if
there are > 2 users in the database. Then at least 2 users can
gather behind one doing the physical log write to disk.
We must not be holding any mutexes or latches here. */
2013-03-26 00:03:13 +02:00
trx_flush_log_if_needed(lsn, trx);
}
}
/** XA PREPARE a transaction.
@param[in,out] trx transaction to prepare */
void trx_prepare_for_mysql(trx_t* trx)
{
trx_start_if_not_started_xa(trx, false);
trx->op_info = "preparing";
trx_prepare(trx);
trx->op_info = "";
}
/**********************************************************************//**
This function is used to find number of prepared transactions and
their transaction objects for a recovery.
@return number of prepared transactions stored in xid_list */
int
trx_recover_for_mysql(
/*==================*/
XID* xid_list, /*!< in/out: prepared transactions */
ulint len) /*!< in: number of slots in xid_list */
{
2019-04-24 12:03:11 +03:00
trx_t* trx;
ulint count = 0;
ut_ad(xid_list);
ut_ad(len);
/* We should set those transactions which are in the prepared state
to the xid_list */
trx_sys_mutex_enter();
for (trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
assert_trx_in_rw_list(trx);
/* The state of a read-write transaction cannot change
from or to NOT_STARTED while we are holding the
trx_sys->mutex. It may change to PREPARED, but not if
trx->is_recovered. It may also change to COMMITTED. */
if (trx_state_eq(trx, TRX_STATE_PREPARED)) {
2019-04-24 12:03:11 +03:00
trx->state = TRX_STATE_PREPARED_RECOVERED;
xid_list[count] = *trx->xid;
if (count == 0) {
ib::info() << "Starting recovery for"
" XA transactions...";
}
ib::info() << "Transaction "
<< trx_get_id_for_print(trx)
<< " in prepared state after recovery";
ib::info() << "Transaction contains changes to "
<< trx->undo_no << " rows";
count++;
if (count == len) {
2019-04-24 12:03:11 +03:00
goto partial;
}
}
}
2019-04-24 12:03:11 +03:00
/* After returning the full list, reset the state, because
there will be a second call to recover the transactions. */
for (trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
if (trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED)) {
trx->state = TRX_STATE_PREPARED;
}
}
partial:
trx_sys_mutex_exit();
if (count > 0){
ib::info() << count << " transactions in prepared state"
" after recovery";
}
2013-03-26 00:03:13 +02:00
return(int (count));
}
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
/** Look up an X/Open distributed transaction in XA PREPARE state.
@param[in] xid X/Open XA transaction identifier
@return trx on match, the trx->xid will be invalidated;
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
note that the trx may have been committed before the caller
acquires trx_t::mutex */
static MY_ATTRIBUTE((warn_unused_result))
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx_t* trx_get_trx_by_xid_low(const XID* xid)
{
trx_t* trx;
ut_ad(trx_sys_mutex_own());
for (trx = UT_LIST_GET_FIRST(trx_sys->rw_trx_list);
trx != NULL;
trx = UT_LIST_GET_NEXT(trx_list, trx)) {
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx_mutex_enter(trx);
assert_trx_in_rw_list(trx);
/* Compare two X/Open XA transaction id's: their
length should be the same and binary comparison
of gtrid_length+bqual_length bytes should be
the same */
if (trx->is_recovered
2019-04-24 12:03:11 +03:00
&& (trx_state_eq(trx, TRX_STATE_PREPARED)
|| trx_state_eq(trx, TRX_STATE_PREPARED_RECOVERED))
2019-04-25 09:04:09 +03:00
&& xid->eq(trx->xid)) {
#ifdef WITH_WSREP
/* The commit of a prepared recovered Galera
transaction needs a valid trx->xid for
invoking trx_sys_update_wsrep_checkpoint(). */
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
if (!wsrep_is_wsrep_xid(trx->xid))
#endif
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
/* Invalidate the XID, so that subsequent calls
will not find it. */
trx->xid->null();
trx_mutex_exit(trx);
break;
}
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx_mutex_exit(trx);
}
return(trx);
}
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
/** Look up an X/Open distributed transaction in XA PREPARE state.
@param[in] xid X/Open XA transaction identifier
@return transaction on match (the trx_t::xid will be invalidated);
note that the trx may have been committed before the caller acquires
trx_t::mutex
@retval NULL if no match */
trx_t* trx_get_trx_by_xid(const XID* xid)
{
trx_t* trx;
if (xid == NULL) {
return(NULL);
}
trx_sys_mutex_enter();
/* Recovered/Resurrected transactions are always only on the
trx_sys_t::rw_trx_list. */
MDEV-15326: InnoDB: Failing assertion: !other_lock MySQL 5.7.9 (and MariaDB 10.2.2) introduced a race condition between InnoDB transaction commit and the conversion of implicit locks into explicit ones. The assertion failure can be triggered with a test that runs 3 concurrent single-statement transactions in a loop on a simple table: CREATE TABLE t (a INT PRIMARY KEY) ENGINE=InnoDB; thread1: INSERT INTO t SET a=1; thread2: DELETE FROM t; thread3: SELECT * FROM t FOR UPDATE; -- or DELETE FROM t; The failure scenarios are like the following: (1) The INSERT statement is being committed, waiting for lock_sys->mutex. (2) At the time of the failure, both the DELETE and SELECT transactions are active but have not logged any changes yet. (3) The transaction where the !other_lock assertion fails started lock_rec_convert_impl_to_expl(). (4) After this point, the commit of the INSERT removed the transaction from trx_sys->rw_trx_set, in trx_erase_lists(). (5) The other transaction consulted trx_sys->rw_trx_set and determined that there is no implicit lock. Hence, it grabbed the lock. (6) The !other_lock assertion fails in lock_rec_add_to_queue() for the lock_rec_convert_impl_to_expl(), because the lock was 'stolen'. This assertion failure looks genuine, because the INSERT transaction is still active (trx->state=TRX_STATE_ACTIVE). The problematic step (4) was introduced in mysql/mysql-server@e27e0e0bb75b4d35e87059816f1cc370c09890ad which fixed something related to MVCC (covered by the test innodb.innodb-read-view). Basically, it reintroduced an error that had been mentioned in an earlier commit mysql/mysql-server@a17be6963fc0d9210fa0642d3985b7219cdaf0c5: "The active transaction was removed from trx_sys->rw_trx_set prematurely." Our fix goes along the following lines: (a) Implicit locks will released by assigning trx->state=TRX_STATE_COMMITTED_IN_MEMORY as the first step. This transition will no longer be protected by lock_sys_t::mutex, only by trx->mutex. This idea is by Sergey Vojtovich. (b) We detach the transaction from trx_sys before starting to release explicit locks. (c) All callers of trx_rw_is_active() and trx_rw_is_active_low() must recheck trx->state after acquiring trx->mutex. (d) Before releasing any explicit locks, we will ensure that any activity by other threads to convert implicit locks into explicit will have ceased, by checking !trx_is_referenced(trx). There was a glitch in this check when it was part of lock_trx_release_locks(); at the end we would release trx->mutex and acquire lock_sys->mutex and trx->mutex, and fail to recheck (trx_is_referenced() is protected by trx_t::mutex). (e) Explicit locks can be released in batches (LOCK_RELEASE_INTERVAL=1000) just like we did before. trx_t::state: Document that the transition to COMMITTED is only protected by trx_t::mutex, no longer by lock_sys_t::mutex. trx_rw_is_active_low(), trx_rw_is_active(): Document that the transaction state should be rechecked after acquiring trx_t::mutex. trx_t::commit_state(): New function to change a transaction to committed state, to release implicit locks. trx_t::release_locks(): New function to release the explicit locks after commit_state(). lock_trx_release_locks(): Move much of the logic to the caller (which must invoke trx_t::commit_state() and trx_t::release_locks() as needed), and assert that the transaction will have locks. trx_get_trx_by_xid(): Make the parameter a pointer to const. lock_rec_other_trx_holds_expl(): Recheck trx->state after acquiring trx->mutex, and avoid a redundant lookup of the transaction. lock_rec_queue_validate(): Recheck impl_trx->state while holding impl_trx->mutex. row_vers_impl_x_locked(), row_vers_impl_x_locked_low(): Document that the transaction state must be rechecked after trx_mutex_enter(). trx_free_prepared(): Adjust for the changes to lock_trx_release_locks().
2019-09-03 12:31:37 +03:00
trx = trx_get_trx_by_xid_low(xid);
trx_sys_mutex_exit();
return(trx);
}
/*************************************************************//**
Starts the transaction if it is not yet started. */
void
2013-03-26 00:03:13 +02:00
trx_start_if_not_started_xa_low(
/*============================*/
trx_t* trx, /*!< in/out: transaction */
bool read_write) /*!< in: true if read write transaction */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
trx_start_low(trx, read_write);
return;
case TRX_STATE_ACTIVE:
if (trx->id == 0 && read_write) {
/* If the transaction is tagged as read-only then
it can only write to temp tables and for such
transactions we don't want to move them to the
trx_sys_t::rw_trx_list. */
if (!trx->read_only) {
trx_set_rw_mode(trx);
}
}
return;
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*************************************************************//**
Starts the transaction if it is not yet started. */
void
2013-03-26 00:03:13 +02:00
trx_start_if_not_started_low(
/*==========================*/
trx_t* trx, /*!< in: transaction */
bool read_write) /*!< in: true if read write transaction */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
trx_start_low(trx, read_write);
return;
case TRX_STATE_ACTIVE:
if (read_write && trx->id == 0 && !trx->read_only) {
trx_set_rw_mode(trx);
}
return;
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
2013-03-26 00:03:13 +02:00
/*************************************************************//**
Starts a transaction for internal processing. */
void
trx_start_internal_low(
/*===================*/
trx_t* trx) /*!< in/out: transaction */
{
/* Ensure it is not flagged as an auto-commit-non-locking
transaction. */
trx->will_lock = 1;
trx->internal = true;
trx_start_low(trx, true);
}
/** Starts a read-only transaction for internal processing.
@param[in,out] trx transaction to be started */
void
trx_start_internal_read_only_low(
trx_t* trx)
{
/* Ensure it is not flagged as an auto-commit-non-locking
transaction. */
trx->will_lock = 1;
trx->internal = true;
trx_start_low(trx, false);
}
2013-03-26 00:03:13 +02:00
/*************************************************************//**
Starts the transaction for a DDL operation. */
void
trx_start_for_ddl_low(
/*==================*/
trx_t* trx, /*!< in/out: transaction */
trx_dict_op_t op) /*!< in: dictionary operation type */
{
switch (trx->state) {
case TRX_STATE_NOT_STARTED:
/* Flag this transaction as a dictionary operation, so that
the data dictionary will be locked in crash recovery. */
trx_set_dict_operation(trx, op);
/* Ensure it is not flagged as an auto-commit-non-locking
transation. */
trx->will_lock = 1;
trx->ddl= true;
2013-03-26 00:03:13 +02:00
trx_start_internal_low(trx);
2013-03-26 00:03:13 +02:00
return;
case TRX_STATE_ACTIVE:
2013-03-26 00:03:13 +02:00
/* We have this start if not started idiom, therefore we
can't add stronger checks here. */
trx->ddl = true;
ut_ad(trx->dict_operation != TRX_DICT_OP_NONE);
ut_ad(trx->will_lock > 0);
return;
2013-03-26 00:03:13 +02:00
case TRX_STATE_PREPARED:
2019-04-24 12:03:11 +03:00
case TRX_STATE_PREPARED_RECOVERED:
2013-03-26 00:03:13 +02:00
case TRX_STATE_COMMITTED_IN_MEMORY:
break;
}
ut_error;
}
/*************************************************************//**
Set the transaction as a read-write transaction if it is not already
tagged as such. Read-only transactions that are writing to temporary
tables are assigned an ID and a rollback segment but are not added
to the trx read-write list because their updates should not be visible
to other transactions and therefore their changes can be ignored by
by MVCC. */
void
trx_set_rw_mode(
/*============*/
trx_t* trx) /*!< in/out: transaction that is RW */
{
ut_ad(trx->rsegs.m_redo.rseg == 0);
ut_ad(!trx->in_rw_trx_list);
ut_ad(!trx_is_autocommit_non_locking(trx));
ut_ad(!trx->read_only);
if (high_level_read_only) {
return;
}
/* Function is promoting existing trx from ro mode to rw mode.
In this process it has acquired trx_sys->mutex as it plan to
move trx from ro list to rw list. If in future, some other thread
looks at this trx object while it is being promoted then ensure
that both threads are synced by acquring trx->mutex to avoid decision
based on in-consistent view formed during promotion. */
MDEV-12289 Keep 128 persistent rollback segments for compatibility and performance InnoDB divides the allocation of undo logs into rollback segments. The DB_ROLL_PTR system column of clustered indexes can address up to 128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin for MySQL 5.1, all 128 rollback segments were created. MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs. On upgrade, unless a slow shutdown (innodb_fast_shutdown=0) was performed on the old server instance, these rollback segments could be in use by transactions that are in XA PREPARE state or transactions that were left behind by a server kill followed by a normal shutdown immediately after restart. Persistent tables cannot refer to temporary undo logs or vice versa. Therefore, we should keep two distinct sets of rollback segments: one for persistent tables and another for temporary tables. In this way, all 128 rollback segments will be available for both types of tables, which could improve performance. Also, MariaDB 10.2 will remain more compatible than MySQL 5.7 with data files from earlier versions of MySQL or MariaDB. trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will be solely for persistent undo logs. srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS. srv_available_undo_logs: Change the type to ulong. trx_rseg_get_on_id(): Remove. Instead, let the callers refer to trx_sys directly. trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters. These functions only deal with persistent undo logs. trx_temp_rseg_create(): New function, to create all temporary rollback segments at server startup. trx_rseg_t::is_persistent(): Determine if the rollback segment is for persistent tables. trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on context (such as table handle) whether the DB_ROLL_PTR is referring to a persistent undo log. trx_sys_create_rsegs(): Remove all parameters, which were always passed as global variables. Instead, modify the global variables directly. enum trx_rseg_type_t: Remove. trx_t::get_temp_rseg(): A method to ensure that a temporary rollback segment has been assigned for the transaction. trx_t::assign_temp_rseg(): Replaces trx_assign_rseg(). trx_purge_free_segment(), trx_purge_truncate_rseg_history(): Remove the redundant variable noredo=false. Temporary undo logs are discarded immediately at transaction commit or rollback, not lazily by purge. trx_purge_mark_undo_for_truncate(): Remove references to the temporary rollback segments. trx_purge_mark_undo_for_truncate(): Remove a check for temporary rollback segments. Only the dedicated persistent undo log tablespaces can be truncated. trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the parameter is_temp. trx_rseg_mem_restore(): Split from trx_rseg_mem_create(). Initialize the undo log and the rollback segment from the file data structures. trx_sysf_get_n_rseg_slots(): Renamed from trx_sysf_used_slots_for_redo_rseg(). Count the persistent rollback segment headers that have been initialized. trx_sys_close(): Also free trx_sys->temp_rsegs[]. get_next_redo_rseg(): Merged to trx_assign_rseg_low(). trx_assign_rseg_low(): Remove the parameters and access the global variables directly. Revert to simple round-robin, now that the whole trx_sys->rseg_array[] is for persistent undo log again. get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg(). srv_undo_tablespaces_init(): Remove some parameters and use the global variables directly. Clarify some error messages. Adjust the test innodb.log_file. Apparently, before these changes, InnoDB somehow ignored missing dedicated undo tablespace files that are pointed by the TRX_SYS header page, possibly losing part of essential transaction system state.
2017-03-30 13:11:34 +03:00
trx->rsegs.m_redo.rseg = trx_assign_rseg_low();
ut_ad(trx->rsegs.m_redo.rseg != 0);
mutex_enter(&trx_sys->mutex);
ut_ad(trx->id == 0);
trx->id = trx_sys_get_new_trx_id();
trx_sys->rw_trx_ids.push_back(trx->id);
trx_sys->rw_trx_set.insert(TrxTrack(trx->id, trx));
/* So that we can see our own changes. */
if (MVCC::is_view_active(trx->read_view)) {
MVCC::set_view_creator_trx_id(trx->read_view, trx->id);
}
#ifdef UNIV_DEBUG
if (trx->id > trx_sys->rw_max_trx_id) {
trx_sys->rw_max_trx_id = trx->id;
}
#endif /* UNIV_DEBUG */
UT_LIST_ADD_FIRST(trx_sys->rw_trx_list, trx);
ut_d(trx->in_rw_trx_list = true);
mutex_exit(&trx_sys->mutex);
}