mariadb/storage/federatedx/ha_federatedx.h

489 lines
17 KiB
C
Raw Normal View History

#ifndef HA_FEDERATEDX_INCLUDED
#define HA_FEDERATEDX_INCLUDED
/*
Copyright (c) 2008, Patrick Galbraith
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Patrick Galbraith nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
2011-04-25 17:22:25 +02:00
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
//#include <mysql.h>
#include <my_global.h>
#include <thr_lock.h>
#include "handler.h"
class federatedx_io;
/*
FEDERATEDX_SERVER will eventually be a structure that will be shared among
all FEDERATEDX_SHARE instances so that the federated server can minimise
the number of open connections. This will eventually lead to the support
of reliable XA federated tables.
*/
typedef struct st_fedrated_server {
MEM_ROOT mem_root;
uint use_count, io_count;
uchar *key;
uint key_length;
const char *scheme;
const char *hostname;
const char *username;
const char *password;
const char *database;
const char *socket;
ushort port;
const char *csname;
mysql_mutex_t mutex;
federatedx_io *idle_list;
} FEDERATEDX_SERVER;
/*
Please read ha_exmple.cc before reading this file.
Please keep in mind that the federatedx storage engine implements all methods
that are required to be implemented. handler.h has a full list of methods
that you can implement.
*/
/*
handler::print_error has a case statement for error numbers.
This value is (10000) is far out of range and will envoke the
default: case.
(Current error range is 120-159 from include/my_base.h)
*/
#define HA_FEDERATEDX_ERROR_WITH_REMOTE_SYSTEM 10000
#define FEDERATEDX_QUERY_BUFFER_SIZE STRING_BUFFER_USUAL_SIZE * 5
#define FEDERATEDX_RECORDS_IN_RANGE 2
#define FEDERATEDX_MAX_KEY_LENGTH 3500 // Same as innodb
/*
FEDERATEDX_SHARE is a structure that will be shared amoung all open handlers
The example implements the minimum of what you will probably need.
*/
typedef struct st_federatedx_share {
MEM_ROOT mem_root;
bool parsed;
/* this key is unique db/tablename */
const char *share_key;
/*
the primary select query to be used in rnd_init
*/
Reduce usage of strlen() Changes: - To detect automatic strlen() I removed the methods in String that uses 'const char *' without a length: - String::append(const char*) - Binary_string(const char *str) - String(const char *str, CHARSET_INFO *cs) - append_for_single_quote(const char *) All usage of append(const char*) is changed to either use String::append(char), String::append(const char*, size_t length) or String::append(LEX_CSTRING) - Added STRING_WITH_LEN() around constant string arguments to String::append() - Added overflow argument to escape_string_for_mysql() and escape_quotes_for_mysql() instead of returning (size_t) -1 on overflow. This was needed as most usage of the above functions never tested the result for -1 and would have given wrong results or crashes in case of overflows. - Added Item_func_or_sum::func_name_cstring(), which returns LEX_CSTRING. Changed all Item_func::func_name()'s to func_name_cstring()'s. The old Item_func_or_sum::func_name() is now an inline function that returns func_name_cstring().str. - Changed Item::mode_name() and Item::func_name_ext() to return LEX_CSTRING. - Changed for some functions the name argument from const char * to to const LEX_CSTRING &: - Item::Item_func_fix_attributes() - Item::check_type_...() - Type_std_attributes::agg_item_collations() - Type_std_attributes::agg_item_set_converter() - Type_std_attributes::agg_arg_charsets...() - Type_handler_hybrid_field_type::aggregate_for_result() - Type_handler_geometry::check_type_geom_or_binary() - Type_handler::Item_func_or_sum_illegal_param() - Predicant_to_list_comparator::add_value_skip_null() - Predicant_to_list_comparator::add_value() - cmp_item_row::prepare_comparators() - cmp_item_row::aggregate_row_elements_for_comparison() - Cursor_ref::print_func() - Removes String_space() as it was only used in one cases and that could be simplified to not use String_space(), thanks to the fixed my_vsnprintf(). - Added some const LEX_CSTRING's for common strings: - NULL_clex_str, DATA_clex_str, INDEX_clex_str. - Changed primary_key_name to a LEX_CSTRING - Renamed String::set_quick() to String::set_buffer_if_not_allocated() to clarify what the function really does. - Rename of protocol function: bool store(const char *from, CHARSET_INFO *cs) to bool store_string_or_null(const char *from, CHARSET_INFO *cs). This was done to both clarify the difference between this 'store' function and also to make it easier to find unoptimal usage of store() calls. - Added Protocol::store(const LEX_CSTRING*, CHARSET_INFO*) - Changed some 'const char*' arrays to instead be of type LEX_CSTRING. - class Item_func_units now used LEX_CSTRING for name. Other things: - Fixed a bug in mysql.cc:construct_prompt() where a wrong escape character in the prompt would cause some part of the prompt to be duplicated. - Fixed a lot of instances where the length of the argument to append is known or easily obtain but was not used. - Removed some not needed 'virtual' definition for functions that was inherited from the parent. I added override to these. - Fixed Ordered_key::print() to preallocate needed buffer. Old code could case memory overruns. - Simplified some loops when adding char * to a String with delimiters.
2020-08-12 19:29:55 +02:00
LEX_CSTRING select_query;
/*
remote host info, parse_url supplies
*/
char *server_name;
char *connection_string;
char *scheme;
char *hostname;
char *username;
char *password;
char *database;
char *table_name;
char *table;
char *socket;
char *sport;
int share_key_length;
ushort port;
size_t table_name_length, server_name_length, connect_string_length;
uint use_count;
THR_LOCK lock;
FEDERATEDX_SERVER *s;
} FEDERATEDX_SHARE;
typedef struct st_federatedx_result FEDERATEDX_IO_RESULT;
typedef struct st_federatedx_row FEDERATEDX_IO_ROW;
typedef struct st_federatedx_rows FEDERATEDX_IO_ROWS;
typedef ptrdiff_t FEDERATEDX_IO_OFFSET;
class federatedx_io
{
friend class federatedx_txn;
FEDERATEDX_SERVER * const server;
federatedx_io **owner_ptr;
federatedx_io *txn_next;
federatedx_io *idle_next;
bool active; /* currently participating in a transaction */
bool busy; /* in use by a ha_federated instance */
bool readonly;/* indicates that no updates have occurred */
protected:
void set_active(bool new_active)
{ active= new_active; }
public:
federatedx_io(FEDERATEDX_SERVER *);
virtual ~federatedx_io();
bool is_readonly() const { return readonly; }
bool is_active() const { return active; }
const char * get_charsetname() const
{ return server->csname ? server->csname : "latin1"; }
const char * get_hostname() const { return server->hostname; }
const char * get_username() const { return server->username; }
const char * get_password() const { return server->password; }
const char * get_database() const { return server->database; }
ushort get_port() const { return server->port; }
const char * get_socket() const { return server->socket; }
static bool handles_scheme(const char *scheme);
static federatedx_io *construct(MEM_ROOT *server_root,
FEDERATEDX_SERVER *server);
static void *operator new(size_t size, MEM_ROOT *mem_root) throw ()
{ return alloc_root(mem_root, size); }
static void operator delete(void *ptr, size_t size)
{ TRASH_FREE(ptr, size); }
static void operator delete(void *, MEM_ROOT *)
{ }
virtual int query(const char *buffer, size_t length)=0;
virtual FEDERATEDX_IO_RESULT *store_result()=0;
virtual size_t max_query_size() const=0;
virtual my_ulonglong affected_rows() const=0;
virtual my_ulonglong last_insert_id() const=0;
virtual int error_code()=0;
virtual const char *error_str()=0;
virtual void reset()=0;
virtual int commit()=0;
virtual int rollback()=0;
virtual int savepoint_set(ulong sp)=0;
virtual ulong savepoint_release(ulong sp)=0;
virtual ulong savepoint_rollback(ulong sp)=0;
virtual void savepoint_restrict(ulong sp)=0;
virtual ulong last_savepoint() const=0;
virtual ulong actual_savepoint() const=0;
virtual bool is_autocommit() const=0;
virtual bool table_metadata(ha_statistics *stats, const char *table_name,
uint table_name_length, uint flag) = 0;
/* resultset operations */
virtual void free_result(FEDERATEDX_IO_RESULT *io_result)=0;
virtual unsigned int get_num_fields(FEDERATEDX_IO_RESULT *io_result)=0;
virtual my_ulonglong get_num_rows(FEDERATEDX_IO_RESULT *io_result)=0;
virtual FEDERATEDX_IO_ROW *fetch_row(FEDERATEDX_IO_RESULT *io_result,
FEDERATEDX_IO_ROWS **current= NULL)=0;
virtual ulong *fetch_lengths(FEDERATEDX_IO_RESULT *io_result)=0;
virtual const char *get_column_data(FEDERATEDX_IO_ROW *row,
unsigned int column)=0;
virtual bool is_column_null(const FEDERATEDX_IO_ROW *row,
unsigned int column) const=0;
virtual size_t get_ref_length() const=0;
virtual void mark_position(FEDERATEDX_IO_RESULT *io_result,
void *ref, FEDERATEDX_IO_ROWS *current)=0;
virtual int seek_position(FEDERATEDX_IO_RESULT **io_result,
const void *ref)=0;
virtual void set_thd(void *thd) { }
};
class federatedx_txn
{
federatedx_io *txn_list;
ulong savepoint_level;
ulong savepoint_stmt;
ulong savepoint_next;
void release_scan();
public:
federatedx_txn();
~federatedx_txn();
bool has_connections() const { return txn_list != NULL; }
bool in_transaction() const { return savepoint_next != 0; }
int acquire(FEDERATEDX_SHARE *share, void *thd, bool readonly, federatedx_io **io);
void release(federatedx_io **io);
void close(FEDERATEDX_SERVER *);
bool txn_begin();
int txn_commit();
int txn_rollback();
bool sp_acquire(ulong *save);
int sp_rollback(ulong *save);
int sp_release(ulong *save);
bool stmt_begin();
int stmt_commit();
int stmt_rollback();
void stmt_autocommit();
};
/*
Class definition for the storage engine
*/
class ha_federatedx final : public handler
{
friend int federatedx_db_init(void *p);
THR_LOCK_DATA lock; /* MySQL lock */
FEDERATEDX_SHARE *share; /* Shared lock info */
federatedx_txn *txn;
federatedx_io *io;
FEDERATEDX_IO_RESULT *stored_result;
FEDERATEDX_IO_ROWS *current;
/**
Array of all stored results we get during a query execution.
*/
DYNAMIC_ARRAY results;
bool position_called;
int remote_error_number;
char remote_error_buf[FEDERATEDX_QUERY_BUFFER_SIZE];
bool ignore_duplicates, replace_duplicates;
2010-07-23 22:37:21 +02:00
bool insert_dup_update, table_will_be_deleted;
DYNAMIC_STRING bulk_insert;
private:
/*
return 0 on success
return errorcode otherwise
*/
uint convert_row_to_internal_format(uchar *buf, FEDERATEDX_IO_ROW *row,
FEDERATEDX_IO_RESULT *result);
bool create_where_from_key(String *to, KEY *key_info,
const key_range *start_key,
2022-01-01 16:25:48 +01:00
const key_range *end_key, bool eq_range);
int stash_remote_error();
static federatedx_txn *get_txn(THD *thd, bool no_create= FALSE);
static int disconnect(handlerton *hton, MYSQL_THD thd);
static int savepoint_set(handlerton *hton, MYSQL_THD thd, void *sv);
static int savepoint_rollback(handlerton *hton, MYSQL_THD thd, void *sv);
static int savepoint_release(handlerton *hton, MYSQL_THD thd, void *sv);
static int commit(handlerton *hton, MYSQL_THD thd, bool all);
static int rollback(handlerton *hton, MYSQL_THD thd, bool all);
2013-04-09 16:19:18 +02:00
static int discover_assisted(handlerton *, THD*, TABLE_SHARE *,
HA_CREATE_INFO *);
bool append_stmt_insert(String *query);
int read_next(uchar *buf, FEDERATEDX_IO_RESULT *result);
int index_read_idx_with_result_set(uchar *buf, uint index,
const uchar *key,
uint key_len,
ha_rkey_function find_flag,
FEDERATEDX_IO_RESULT **result);
int real_query(const char *query, uint length);
int real_connect(FEDERATEDX_SHARE *my_share, uint create_flag);
public:
ha_federatedx(handlerton *hton, TABLE_SHARE *table_arg);
~ha_federatedx() {}
/*
The name of the index type that will be used for display
don't implement this method unless you really have indexes
*/
// perhaps get index type
const char *index_type(uint inx) { return "REMOTE"; }
/*
This is a list of flags that says what the storage engine
implements. The current table flags are documented in
handler.h
*/
ulonglong table_flags() const
{
/* fix server to be able to get remote server table flags */
return (HA_PRIMARY_KEY_IN_READ_INDEX | HA_FILE_BASED
| HA_REC_NOT_IN_SEQ | HA_AUTO_PART_KEY | HA_CAN_INDEX_BLOBS |
HA_BINLOG_ROW_CAPABLE | HA_BINLOG_STMT_CAPABLE | HA_CAN_REPAIR |
HA_PRIMARY_KEY_REQUIRED_FOR_DELETE | HA_CAN_ONLINE_BACKUPS |
HA_PARTIAL_COLUMN_READ | HA_NULL_IN_KEY | HA_NON_COMPARABLE_ROWID);
}
/*
This is a bitmap of flags that says how the storage engine
implements indexes. The current index flags are documented in
handler.h. If you do not implement indexes, just return zero
here.
part is the key part to check. First key part is 0
If all_parts it's set, MySQL want to know the flags for the combined
index up to and including 'part'.
*/
/* fix server to be able to get remote server index flags */
ulong index_flags(uint inx, uint part, bool all_parts) const
{
return (HA_READ_NEXT | HA_READ_RANGE);
}
uint max_supported_record_length() const { return HA_MAX_REC_LENGTH; }
uint max_supported_keys() const { return MAX_KEY; }
uint max_supported_key_parts() const { return MAX_REF_PARTS; }
uint max_supported_key_length() const { return FEDERATEDX_MAX_KEY_LENGTH; }
uint max_supported_key_part_length() const { return FEDERATEDX_MAX_KEY_LENGTH; }
/*
Called in test_quick_select to determine if indexes should be used.
Normally, we need to know number of blocks . For federatedx we need to
know number of blocks on remote side, and number of packets and blocks
on the network side (?)
Talk to Kostja about this - how to get the
number of rows * ...
disk scan time on other side (block size, size of the row) + network time ...
The reason for "records * 1000" is that such a large number forces
this to use indexes "
*/
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
IO_AND_CPU_COST scan_time()
{
DBUG_PRINT("info", ("records %lu", (ulong) stats.records));
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
return
{
(double) (stats.mean_rec_length * stats.records)/8192 * avg_io_cost(),
0
};
}
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
IO_AND_CPU_COST keyread_time(uint index, ulong ranges, ha_rows rows,
ulonglong blocks)
{
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
return { (double) (ranges + rows) * avg_io_cost(), 0 };
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 11:34:24 +01:00
}
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
IO_AND_CPU_COST rnd_pos_time(ha_rows rows)
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 11:34:24 +01:00
{
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 12:05:23 +02:00
return { (double) rows * avg_io_cost(), 0 };
}
const key_map *keys_to_use_for_scanning() { return &key_map_full; }
/*
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 11:34:24 +01:00
Everything below are methods that we implement in ha_federatedx.cc.
Most of these methods are not obligatory, skip them and
MySQL will treat them as not implemented
*/
int open(const char *name, int mode, uint test_if_locked); // required
int close(void); // required
void start_bulk_insert(ha_rows rows, uint flags);
2010-07-23 22:37:21 +02:00
int end_bulk_insert();
int write_row(const uchar *buf);
int update_row(const uchar *old_data, const uchar *new_data);
int delete_row(const uchar *buf);
int index_init(uint keynr, bool sorted);
ha_rows estimate_rows_upper_bound();
int index_read(uchar *buf, const uchar *key,
uint key_len, enum ha_rkey_function find_flag);
int index_read_idx(uchar *buf, uint idx, const uchar *key,
uint key_len, enum ha_rkey_function find_flag);
int index_next(uchar *buf);
int index_end();
int read_range_first(const key_range *start_key,
const key_range *end_key,
bool eq_range, bool sorted);
int read_range_next();
/*
unlike index_init(), rnd_init() can be called two times
without rnd_end() in between (it only makes sense if scan=1).
then the second call should prepare for the new table scan
(e.g if rnd_init allocates the cursor, second call should
position it to the start of the table, no need to deallocate
and allocate it again
*/
int rnd_init(bool scan); //required
int rnd_end();
int rnd_next(uchar *buf); //required
int rnd_pos(uchar *buf, uchar *pos); //required
void position(const uchar *record); //required
/*
A ref is a pointer inside a local buffer. It is not comparable to
other ref's. This is never called as HA_NON_COMPARABLE_ROWID is set.
*/
int cmp_ref(const uchar *ref1, const uchar *ref2)
{
#ifdef NOT_YET
DBUG_ASSERT(0);
return 0;
#else
return handler::cmp_ref(ref1,ref2); /* Works if table scan is used */
#endif
}
int info(uint); //required
int extra(ha_extra_function operation);
void update_auto_increment(void);
int repair(THD* thd, HA_CHECK_OPT* check_opt);
int optimize(THD* thd, HA_CHECK_OPT* check_opt);
MDEV-11412 Ensure that table is truly dropped when using DROP TABLE The used code is largely based on code from Tencent The problem is that in some rare cases there may be a conflict between .frm files and the files in the storage engine. In this case the DROP TABLE was not able to properly drop the table. Some MariaDB/MySQL forks has solved this by adding a FORCE option to DROP TABLE. After some discussion among MariaDB developers, we concluded that users expects that DROP TABLE should always work, even if the table would not be consistent. There should not be a need to use a separate keyword to ensure that the table is really deleted. The used solution is: - If a .frm table doesn't exists, try dropping the table from all storage engines. - If the .frm table exists but the table does not exist in the engine try dropping the table from all storage engines. - Update storage engines using many table files (.CVS, MyISAM, Aria) to succeed with the drop even if some of the files are missing. - Add HTON_AUTOMATIC_DELETE_TABLE to handlerton's where delete_table() is not needed and always succeed. This is used by ha_delete_table_force() to know which handlers to ignore when trying to drop a table without a .frm file. The disadvantage of this solution is that a DROP TABLE on a non existing table will be a bit slower as we have to ask all active storage engines if they know anything about the table. Other things: - Added a new flag MY_IGNORE_ENOENT to my_delete() to not give an error if the file doesn't exist. This simplifies some of the code. - Don't clear thd->error in ha_delete_table() if there was an active error. This is a bug fix. - handler::delete_table() will not abort if first file doesn't exists. This is bug fix to handle the case when a drop table was aborted in the middle. - Cleaned up mysql_rm_table_no_locks() to ensure that if_exists uses same code path as when it's not used. - Use non_existing_Table_error() to detect if table didn't exists. Old code used different errors tests in different position. - Table_triggers_list::drop_all_triggers() now drops trigger file if it can't be parsed instead of leaving it hanging around (bug fix) - InnoDB doesn't anymore print error about .frm file out of sync with InnoDB directory if .frm file does not exists. This change was required to be able to try to drop an InnoDB file when .frm doesn't exists. - Fixed bug in mi_delete_table() where the .MYD file would not be dropped if the .MYI file didn't exists. - Fixed memory leak in Mroonga when deleting non existing table - Fixed memory leak in Connect when deleting non existing table Bugs fixed introduced by the original version of this commit: MDEV-22826 Presence of Spider prevents tables from being force-deleted from other engines
2020-06-01 22:27:14 +02:00
int delete_table(const char *name)
{
return 0;
}
int delete_all_rows(void);
int create(const char *name, TABLE *form,
HA_CREATE_INFO *create_info); //required
ha_rows records_in_range(uint inx, const key_range *start_key,
const key_range *end_key, page_range *pages);
uint8 table_cache_type() { return HA_CACHE_TBL_NOCACHE; }
THR_LOCK_DATA **store_lock(THD *thd, THR_LOCK_DATA **to,
enum thr_lock_type lock_type); //required
bool get_error_message(int error, String *buf);
int start_stmt(THD *thd, thr_lock_type lock_type);
int external_lock(THD *thd, int lock_type);
int reset(void);
int free_result(void);
const FEDERATEDX_SHARE *get_federatedx_share() const { return share; }
friend class ha_federatedx_derived_handler;
friend class ha_federatedx_select_handler;
};
extern const char ident_quote_char; // Character for quoting
// identifiers
extern const char value_quote_char; // Character for quoting
// literals
extern bool append_ident(String *string, const char *name, size_t length,
const char quote_char);
extern federatedx_io *instantiate_io_mysql(MEM_ROOT *server_root,
FEDERATEDX_SERVER *server);
extern federatedx_io *instantiate_io_null(MEM_ROOT *server_root,
FEDERATEDX_SERVER *server);
#include "federatedx_pushdown.h"
#endif /* HA_FEDERATEDX_INCLUDED */