mariadb/sql/multi_range_read.cc

2169 lines
69 KiB
C++
Raw Normal View History

/* Copyright (C) 2010, 2011 Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
2011-04-25 17:22:25 +02:00
#include "sql_parse.h"
#include <my_bit.h>
#include "sql_select.h"
#include "key.h"
#include "sql_statistics.h"
#include "rowid_filter.h"
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
#include "optimizer_defaults.h"
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
static void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
Cost_estimate *cost);
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
/*
The following calculation is the same as in multi_range_read_info()
@param cost Total cost is stored here
@param keyno Key number
@param n_ranges Number of different ranges
@param multi_row_ranges Number of ranges that are not EQ_REF
@param flags Flags. Only HA_MRR_INDEX_ONLY is used.
@param total_rows Number of rows expected to be read.
@param io_blocks Number of blocks we expect to read for
a not clustered index.
@param unassigned_single_point_ranges
Number of blocks we have not yet read for
a clustered index.
*/
void handler::calculate_costs(Cost_estimate *cost, uint keyno,
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
uint n_ranges, uint multi_row_ranges,
uint flags,
ha_rows total_rows,
ulonglong io_blocks,
ulonglong unassigned_single_point_ranges)
{
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->reset(this);
if (!is_clustering_key(keyno))
{
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
cost->index_cost= ha_keyread_time(keyno, n_ranges,
total_rows + multi_row_ranges,
io_blocks);
if (!(flags & HA_MRR_INDEX_ONLY))
{
/* ha_rnd_pos_time includes ROW_COPY_COST */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->row_cost= ha_rnd_pos_time(total_rows);
/* Adjust io cost to data size */
cost->row_cost.io= MY_MIN(cost->row_cost.io, row_blocks());
}
else
{
/* Index only read */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->copy_cost= rows2double(total_rows) * KEY_COPY_COST;
}
}
else
{
/* Clustered index */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
io_blocks= unassigned_single_point_ranges;
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
cost->index_cost= ha_keyread_time(keyno, n_ranges,
total_rows + multi_row_ranges,
io_blocks);
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->copy_cost= rows2double(total_rows) * ROW_COPY_COST;
}
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
/* Adjust io cost to data size */
cost->index_cost.io= MY_MIN(cost->index_cost.io, index_blocks(keyno));
MDEV-31356: Range cost calculations does not take into account join_buffer This patch also fixes MDEV-31391 Assertion `((best.records_out) == 0.0 ... failed Cost changes caused by this change: - range queries with join buffer now have a notable smaller cost. - range ranges are bit more expensive as the MULTI_RANGE_COST is now properly applied to it in all cases (this extra cost is equal to a key lookup). - table scan cost is slight smaller as we now assume data is cached in the engine after the first scan pass. (We did this before for range scans and other access methods). - partition tables had wrong values for max_row_blocks and max_index_blocks. Correcting this, causes range access on partitioned tables to have slightly higher cost because of the increased estimated IO. - Using first match + join buffer caused 'filtered' to be calcualted wrong. (Only affected EXPLAIN, not query costs). - Added cost_without_join_buffer to optimizer_trace. - check_quick_select() adjusted the number of rows according to persistent statistics, but did not adjust cost. Now fixed. The big change in the patch are: - In best_access_path(), where we now are using storing the cost in 'ALL_READ_COST cost' and only converting it to a double at the end. This allows us to more exactly calculate the effect of the join_cache. - In JOIN_TAB::estimate_scan_time(), store the cost also in a ALL_READ_COST object. One of effect if this change is that when joining very small tables: t1 some_access_method t2 range t3 ALL Use join buffer This is swiched to t1 some_access_method t3 ALL t2 range use join buffer Both plans has the same cost, but as table scan in this case has less cost than rang, the table scan will be considered first and thus have precidence. Test case changes: - optimizer_trace - Addition of cost_without_join_buffer - subselect_mat_cost_bugs - Small tables and scan versus range - range & range_mrr_icp - Range + join_cache is faster than ref - optimizer_trace - cost_without_join_buffer, smaller scan cost, range setup cost. - mrr - range+join_buffer used as smaller cost
2023-05-26 17:26:42 +03:00
cost->comp_cost= rows2double(total_rows) * WHERE_COST;
cost->setup_cost= MULTI_RANGE_READ_SETUP_COST;
}
/****************************************************************************
* Default MRR implementation (MRR to non-MRR converter)
***************************************************************************/
/**
Get cost and other information about MRR scan over a known list of ranges
Calculate estimated cost and other information about an MRR scan for given
sequence of ranges.
@param keyno Index number
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges_arg Number of ranges in the sequence, or 0 if the caller
can't efficiently determine it
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that is expected to be
actually used, or 0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@note
This method (or an overriding one in a derived class) must check for
thd->killed and return HA_POS_ERROR if it is not zero. This is required
for a user to be able to interrupt the calculation by killing the
connection/query.
@retval
HA_POS_ERROR Error or the engine is unable to perform the requested
scan. Values of OUT parameters are undefined.
@retval
other OK, *cost contains cost of the scan, *bufsz and *flags
contain scan parameters.
*/
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
ha_rows
handler::multi_range_read_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges_arg,
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
uint *bufsz, uint *flags,
ha_rows top_limit,
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
Cost_estimate *cost)
{
KEY_MULTI_RANGE range;
range_seq_t seq_it;
ha_rows total_rows= 0;
uint n_ranges=0;
ha_rows max_rows= stats.records;
THD *thd= table->in_use;
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
ulonglong io_blocks;
/*
Counter of blocks that contain range edges for those ranges
for which records_in_range() is called
*/
ulonglong edge_blocks_cnt= 0;
/*
Counter of blocks that contain index tuples for those ranges
for which records_in_range() is called
*/
ulonglong range_blocks_cnt= 0;
/*
The position of the block containing the last record of the previous range
for which the info about range position is provided
*/
ulonglong prev_range_last_block= UNUSED_PAGE_NO;
/* The counter of records the staring from prev_range_last_block */
ulonglong prev_range_last_block_records= 0;
/*
The counter of single point ranges.
(For single point ranges we do not call records_in_range())
*/
ulonglong single_point_ranges= 0;
/*
The counter of of single point ranges that we succeded to assign
to some blocks
*/
ulonglong assigned_single_point_ranges= 0;
/*
Counter of single point ranges for which records_in_range in not
called and that are encountered between two ranges without such property
For example, let's have a subsequence of ranges
R1,r1,....rk,R2
where r1,...,rk are single point ranges for which records_in_range is
called while R1 and R2 are not such ranges.
Then single_point_ranges_delta will count ranges r1,...,rk.
*/
ulonglong unassigned_single_point_ranges= 0;
uint len= table->key_info[keyno].key_length + table->file->ref_length;
if (table->file->is_clustering_key(keyno))
len= table->s->stored_rec_length;
/* Assume block is 75 % full */
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
uint avg_block_records= ((uint) (stats.block_size*3/4))/len + 1;
uint limit= thd->variables.eq_range_index_dive_limit;
bool use_statistics_for_eq_range= eq_ranges_exceeds_limit(seq,
seq_init_param,
limit);
DBUG_ENTER("multi_range_read_info_const");
/* Default MRR implementation doesn't need buffer */
*bufsz= 0;
seq_it= seq->init(seq_init_param, n_ranges, *flags);
while (!seq->next(seq_it, &range))
{
ha_rows rows;
if (unlikely(thd->killed != 0))
DBUG_RETURN(HA_POS_ERROR);
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
n_ranges++;
key_range *min_endp, *max_endp;
if (range.range_flag & GEOM_FLAG)
{
/* In this case tmp_min_flag contains the handler-read-function */
range.start_key.flag= (ha_rkey_function) (range.range_flag ^ GEOM_FLAG);
min_endp= &range.start_key;
max_endp= NULL;
}
else
{
min_endp= range.start_key.length? &range.start_key : NULL;
max_endp= range.end_key.length? &range.end_key : NULL;
}
int keyparts_used= my_count_bits(range.start_key.keypart_map);
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
if ((range.range_flag & UNIQUE_RANGE) && !(range.range_flag & NULL_RANGE))
{
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
rows= 1;
/*
In this case we do not call records_in_range() and as a result
do not get any info on the edge blocks for this range. However if it
happens that the range for which we have such info uses the same block
for its first record as the last range for which such info is
provided uses for its last record then this range can be assigned
later to one of the blocks used by other ranges.
Note that we don't have to increment edge_blocks_cnt or
range_blocks_cnt here.
*/
single_point_ranges++;
}
else if (use_statistics_for_eq_range &&
!(range.range_flag & NULL_RANGE) &&
(range.range_flag & EQ_RANGE) &&
table->key_info[keyno].actual_rec_per_key(keyparts_used - 1) > 0.5)
{
rows= ((ha_rows) table->key_info[keyno].
actual_rec_per_key(keyparts_used-1));
range_blocks_cnt+= ((MY_MAX(rows, 1) - 1) / avg_block_records + 1);
}
else
{
page_range pages= unused_page_range;
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
if ((rows= this->records_in_range(keyno, min_endp, max_endp, &pages)) ==
HA_POS_ERROR)
{
/* Can't scan one range => can't do MRR scan at all */
total_rows= HA_POS_ERROR;
if (thd->is_error())
DBUG_RETURN(HA_POS_ERROR);
break;
}
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
if (pages.first_page == UNUSED_PAGE_NO)
{
/*
The engine does not provide info on the range position.
Place the range in a new block. Note that in this case
any new range will be placed in a new block.
*/
ulonglong additional_blocks= ((MY_MAX(rows,1) - 1) / avg_block_records +
1);
edge_blocks_cnt+= additional_blocks == 1 ? 1 : 2;
range_blocks_cnt+= additional_blocks;
}
else
{
/* The info on the range position is provided */
if (pages.first_page == prev_range_last_block)
{
/*
The new range starts in the same block that the last range
for which the position of the range was provided.
*/
/*
First add records of single point ranges that can be placed
between these two ranges.
*/
prev_range_last_block_records+= (single_point_ranges -
assigned_single_point_ranges);
assigned_single_point_ranges= single_point_ranges;
if (pages.first_page == pages.last_page)
{
/*
All records of the current range are in the same block
Note that the prev_range_last_block_records can be much larger
than max_records_in_block as the rows can be compressed!
*/
prev_range_last_block_records+= rows;
DBUG_ASSERT(prev_range_last_block_records <
stats.block_size);
}
else
{
/*
The current range spans more than one block
Place part of the range records in 'prev_range_last_block'
and the remaining records in additional blocks.
We don't know where the first key was positioned in the
block, so we assume the range started in the middle of the
block.
Note that prev_range_last_block_records > avg_block_records
can be true in case of compressed rows.
*/
ha_rows rem_rows= rows;
if (avg_block_records > prev_range_last_block_records)
{
ha_rows space_left_in_prev_block=
(avg_block_records - prev_range_last_block_records)/2;
rem_rows= 0;
if (rows > space_left_in_prev_block)
rem_rows= rows - space_left_in_prev_block;
}
/* Calculate how many additional blocks we need for rem_rows */
ulonglong additional_blocks= ((MY_MAX(rem_rows, 1) - 1) /
avg_block_records + 1);
edge_blocks_cnt++;
range_blocks_cnt+= additional_blocks;
prev_range_last_block= pages.last_page;
/* There is at least one row on last page */
prev_range_last_block_records= 1;
}
}
else
{
/*
The new range does not start in the same block that the last range
for which the position of the range was provided.
Note that rows may be 0!
*/
ulonglong additional_blocks= ((MY_MAX(rows, 1) - 1) /
avg_block_records + 1);
edge_blocks_cnt+= additional_blocks == 1 ? 1 : 2;
range_blocks_cnt+= additional_blocks;
unassigned_single_point_ranges+= (single_point_ranges -
assigned_single_point_ranges);
assigned_single_point_ranges= single_point_ranges;
prev_range_last_block= pages.last_page;
/* There is at least one row on last page */
prev_range_last_block_records= 1;
}
}
}
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
total_rows+= rows;
}
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
/*
Count the number of io_blocks that where not yet read and thus not cached.
The number of equal read blocks that where not read are:
(single_point_ranges - assigned_single_point_ranges).
We don't add these to io_blocks as we don't want to penalize equal
reads (if we did, a range that would read 5 rows would be
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
regarded as better than one equal read).
Better to assume we have done a records_in_range() for the equal
range and it's also cached.
One effect of this is that io_blocks for simple ranges are often 0,
as the blocks where already read by records_in_range and we assume
that we don't have to read it again.
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
*/
io_blocks= (range_blocks_cnt - edge_blocks_cnt);
unassigned_single_point_ranges+= (single_point_ranges -
assigned_single_point_ranges);
if (total_rows != HA_POS_ERROR)
{
set_if_smaller(total_rows, max_rows);
*flags |= HA_MRR_USE_DEFAULT_IMPL;
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
calculate_costs(cost, keyno, n_ranges,
n_ranges - (uint) single_point_ranges,
*flags, total_rows,
io_blocks, unassigned_single_point_ranges);
if (top_limit < total_rows)
{
/*
Calculate what the cost would be if we only have to read 'top_limit'
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
rows. This is the lowest possible cost when using the range
when we find the 'accepted rows' at once.
*/
Cost_estimate limit_cost;
Change cost for REF to take into account cost for 1 extra key read_next The main difference in code path between EQ_REF and REF is that for REF we have to do an extra read_next on the index to check that there is no more matching rows. Before this patch we added a preference of EQ_REF by ensuring that REF would always estimate to find at least 2 rows. This patch adds the cost of the extra key read_next to REF access and removes the code that limited REF to at least 2 rows. For some queries this can have a big effect as the total estimated rows will be halved for each REF table with 1 rows. multi_range cost calculations are also changed to take into account the difference between EQ_REF and REF. The effect of the patch to the test suite: - About 80 test case changed - Almost all changes where for EXPLAIN where estimated rows for REF where changed from 2 to 1. - A few test cases using explain extended had a change of 'filtered'. This is because of the estimated rows are now closer to the calculated selectivity. - A very few test had a change of table order. This is because the change of estimated rows from 2 to 1 or the small cost change for REF (main.subselect_sj_jcl6, main.group_by, main.dervied_cond_pushdown, main.distinct, main.join_nested, main.order_by, main.join_cache) - No key statistics and the estimated rows are now smaller which cased estimated filtering to be lower. (main.subselect_sj_mat) - The number of total rows are halved. (main.derived_cond_pushdown) - Plans with 1 row changed to use RANGE instead of REF. (main.group_min_max) - ALL changed to REF (main.key_diff) - Key changed from ref + index_only to PRIMARY key for InnoDB, as OPTIMIZER_ROW_LOOKUP_COST + OPTIMIZER_ROW_NEXT_FIND_COST is smaller than OPTIMIZER_KEY_LOOKUP_COST + OPTIMIZER_KEY_NEXT_FIND_COST. (main.join_outer_innodb) - Cost changes printouts (main.opt_trace*) - Result order change (innodb_gis.rtree)
2022-12-27 14:49:27 +02:00
calculate_costs(&limit_cost, keyno, n_ranges,
n_ranges - (uint)single_point_ranges,
*flags, top_limit, io_blocks,
unassigned_single_point_ranges);
cost->limit_cost= limit_cost.total_cost();
}
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
DBUG_PRINT("statistics",
("key: %s rows: %llu total_cost: %.3f io_blocks: %llu "
"cpu_cost: %.3f",
table->s->keynames.type_names[keyno],
(ulonglong) total_rows, cost->total_cost(),
(ulonglong) (cost->row_cost.io + cost->index_cost.io),
(double) (cost->row_cost.cpu + cost->index_cost.cpu)));
}
DBUG_RETURN(total_rows);
}
/**
Get cost and other information about MRR scan over some sequence of ranges
Calculate estimated cost and other information about an MRR scan for some
sequence of ranges.
The ranges themselves will be known only at execution phase. When this
function is called we only know number of ranges and a (rough) E(#records)
within those ranges.
Currently this function is only called for "n-keypart singlepoint" ranges,
i.e. each range is "keypart1=someconst1 AND ... AND keypartN=someconstN"
The flags parameter is a combination of those flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION, HA_MRR_LIMITS.
@param keyno Index number
@param n_ranges Estimated number of ranges (i.e. intervals) in the
range sequence.
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
@param total_rows Estimated total number of records contained within all
of the ranges
@param bufsz INOUT IN: Size of the buffer available for use
OUT: Size of the buffer that will be actually used, or
0 if buffer is not needed.
@param flags INOUT A combination of HA_MRR_* flags
@param cost OUT Estimated cost of MRR access
@retval
0 OK, *cost contains cost of the scan, *bufsz and *flags contain scan
parameters.
@retval
other Error or can't perform the requested scan
*/
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
ha_rows handler::multi_range_read_info(uint keyno, uint n_ranges,
uint total_rows,
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
uint key_parts, uint *bufsz,
uint *flags, Cost_estimate *cost)
{
/*
Currently we expect this function to be called only in preparation of scan
with HA_MRR_SINGLE_POINT property.
*/
DBUG_ASSERT(*flags | HA_MRR_SINGLE_POINT);
*bufsz= 0; /* Default implementation doesn't need a buffer */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->reset(this);
/* Produce the same cost as non-MRR code does */
if (!is_clustering_key(keyno))
{
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->index_cost= ha_keyread_time(keyno, n_ranges, total_rows, 0);
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
if (!(*flags & HA_MRR_INDEX_ONLY))
{
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
/* ha_rnd_pos_time includes ROW_COPY_COST */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->row_cost= ha_rnd_pos_time(total_rows);
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
}
else
{
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
/* Index only read */
cost->copy_cost= rows2double(total_rows) * KEY_COPY_COST;
}
}
else
{
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
/* Clustering key */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->index_cost= ha_keyread_clustered_time(keyno, n_ranges, total_rows,
0);
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
cost->copy_cost= rows2double(total_rows) * ROW_COPY_COST;
}
Changing all cost calculation to be given in milliseconds This makes it easier to compare different costs and also allows the optimizer to optimizer different storage engines more reliably. - Added tests/check_costs.pl, a tool to verify optimizer cost calculations. - Most engine costs has been found with this program. All steps to calculate the new costs are documented in Docs/optimizer_costs.txt - User optimizer_cost variables are given in microseconds (as individual costs can be very small). Internally they are stored in ms. - Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost (9 ms) to common SSD cost (400MB/sec). - Removed cost calculations for hard disks (rotation etc). - Changed the following handler functions to return IO_AND_CPU_COST. This makes it easy to apply different cost modifiers in ha_..time() functions for io and cpu costs. - scan_time() - rnd_pos_time() & rnd_pos_call_time() - keyread_time() - Enhanched keyread_time() to calculate the full cost of reading of a set of keys with a given number of ranges and optional number of blocks that need to be accessed. - Removed read_time() as keyread_time() + rnd_pos_time() can do the same thing and more. - Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks. Used heap table costs for json_table. The rest are using default engine costs. - Added the following new optimizer variables: - optimizer_disk_read_ratio - optimizer_disk_read_cost - optimizer_key_lookup_cost - optimizer_row_lookup_cost - optimizer_row_next_find_cost - optimizer_scan_cost - Moved all engine specific cost to OPTIMIZER_COSTS structure. - Changed costs to use 'records_out' instead of 'records_read' when recalculating costs. - Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h. This allows one to change costs without having to compile a lot of files. - Updated costs for filter lookup. - Use a better cost estimate in best_extension_by_limited_search() for the sorting cost. - Fixed previous issues with 'filtered' explain column as we are now using 'records_out' (min rows seen for table) to calculate filtering. This greatly simplifies the filtering code in JOIN_TAB::save_explain_data(). This change caused a lot of queries to be optimized differently than before, which exposed different issues in the optimizer that needs to be fixed. These fixes are in the following commits. To not have to change the same test case over and over again, the changes in the test cases are done in a single commit after all the critical change sets are done. InnoDB changes: - Updated InnoDB to not divide big range cost with 2. - Added cost for InnoDB (innobase_update_optimizer_costs()). - Don't mark clustered primary key with HA_KEYREAD_ONLY. This will prevent that the optimizer is trying to use index-only scans on the clustered key. - Disabled ha_innobase::scan_time() and ha_innobase::read_time() and ha_innobase::rnd_pos_time() as the default engine cost functions now works good for InnoDB. Other things: - Added --show-query-costs (\Q) option to mysql.cc to show the query cost after each query (good when working with query costs). - Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust the value that user is given. This is used to change cost from microseconds (user input) to milliseconds (what the server is internally using). - Added include/my_tracker.h ; Useful include file to quickly test costs of a function. - Use handler::set_table() in all places instead of 'table= arg'. - Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and shown in microseconds for the user but stored as milliseconds. This is to make the numbers easier to read for the user (less pre-zeros). Implemented in 'Sys_var_optimizer_cost' class. - In test_quick_select() do not use index scans if 'no_keyread' is set for the table. This is what we do in other places of the server. - Added THD parameter to Unique::get_use_cost() and check_index_intersect_extension() and similar functions to be able to provide costs to called functions. - Changed 'records' to 'rows' in optimizer_trace. - Write more information to optimizer_trace. - Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3) to calculate usage space of keys in b-trees. (Before we used numeric constants). - Removed code that assumed that b-trees has similar costs as binary trees. Replaced with engine calls that returns the cost. - Added Bitmap::find_first_bit() - Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia). - Added records_init and records_after_filter to POSITION to remember more of what best_access_patch() calculates. - table_after_join_selectivity() changed to recalculate 'records_out' based on the new fields from best_access_patch() Bug fixes: - Some queries did not update last_query_cost (was 0). Fixed by moving setting thd->...last_query_cost in JOIN::optimize(). - Write '0' as number of rows for const tables with a matching row. Some internals: - Engine cost are stored in OPTIMIZER_COSTS structure. When a handlerton is created, we also created a new cost variable for the handlerton. We also create a new variable if the user changes a optimizer cost for a not yet loaded handlerton either with command line arguments or with SET @@global.engine.optimizer_cost_variable=xx. - There are 3 global OPTIMIZER_COSTS variables: default_optimizer_costs The default costs + changes from the command line without an engine specifier. heap_optimizer_costs Heap table costs, used for temporary tables tmp_table_optimizer_costs The cost for the default on disk internal temporary table (MyISAM or Aria) - The engine cost for a table is stored in table_share. To speed up accesses the handler has a pointer to this. The cost is copied to the table on first access. If one wants to change the cost one must first update the global engine cost and then do a FLUSH TABLES. This was done to be able to access the costs for an open table without any locks. - When a handlerton is created, the cost are updated the following way: See sql/keycaches.cc for details: - Use 'default_optimizer_costs' as a base - Call hton->update_optimizer_costs() to override with the engines default costs. - Override the costs that the user has specified for the engine. - One handler open, copy the engine cost from handlerton to TABLE_SHARE. - Call handler::update_optimizer_costs() to allow the engine to update cost for this particular table. - There are two costs stored in THD. These are copied to the handler when the table is used in a query: - optimizer_where_cost - optimizer_scan_setup_cost - Simply code in best_access_path() by storing all cost result in a structure. (Idea/Suggestion by Igor)
2022-08-11 13:05:23 +03:00
cost->comp_cost= rows2double(total_rows) * WHERE_COST;
return 0;
}
/**
Initialize the MRR scan
Initialize the MRR scan. This function may do heavyweight scan
initialization like row prefetching/sorting/etc (NOTE: but better not do
it here as we may not need it, e.g. if we never satisfy WHERE clause on
previous tables. For many implementations it would be natural to do such
initializations in the first multi_read_range_next() call)
mode is a combination of the following flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges Number of ranges in the sequence
@param mode Flags, see the description section for the details
@param buf INOUT: memory buffer to be used
@note
One must have called index_init() before calling this function. Several
multi_range_read_init() calls may be made in course of one query.
Buffer memory management is done according to the following scenario:
The caller allocates the buffer and provides it to the callee by filling
the members of HANDLER_BUFFER structure.
The callee consumes all or some fraction of the provided buffer space, and
sets the HANDLER_BUFFER members accordingly.
The callee may use the buffer memory until the next multi_range_read_init()
call is made, all records have been read, or until index_end() call is
made, whichever comes first.
@retval 0 OK
@retval 1 Error
*/
int
handler::multi_range_read_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
uint n_ranges, uint mode, HANDLER_BUFFER *buf)
{
DBUG_ENTER("handler::multi_range_read_init");
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
mrr_funcs= *seq_funcs;
mrr_is_output_sorted= MY_TEST(mode & HA_MRR_SORTED);
mrr_have_range= FALSE;
DBUG_RETURN(0);
}
/**
Get next record in MRR scan
Default MRR implementation: read the next record
@param range_info OUT Undefined if HA_MRR_NO_ASSOCIATION flag is in effect
Otherwise, the opaque value associated with the range
that contains the returned record.
@retval 0 OK
@retval other Error code
*/
int handler::multi_range_read_next(range_id_t *range_info)
{
int result= HA_ERR_END_OF_FILE;
2010-12-17 13:06:21 +03:00
bool range_res;
DBUG_ENTER("handler::multi_range_read_next");
if (!mrr_have_range)
{
mrr_have_range= TRUE;
goto start;
}
do
{
/* Save a call if there can be only one row in range. */
if (mrr_cur_range.range_flag != (UNIQUE_RANGE | EQ_RANGE))
{
result= read_range_next();
/* On success or non-EOF errors jump to the end. */
if (result != HA_ERR_END_OF_FILE)
break;
}
else
{
if (ha_was_semi_consistent_read())
2010-12-17 14:58:08 +03:00
{
/*
The following assignment is redundant, but for extra safety and to
remove the compiler warning:
*/
range_res= FALSE;
goto scan_it_again;
2010-12-17 14:58:08 +03:00
}
/*
We need to set this for the last range only, but checking this
condition is more expensive than just setting the result code.
*/
result= HA_ERR_END_OF_FILE;
}
start:
/* Try the next range(s) until one matches a record. */
while (!(range_res= mrr_funcs.next(mrr_iter, &mrr_cur_range)))
{
scan_it_again:
result= read_range_first(mrr_cur_range.start_key.keypart_map ?
&mrr_cur_range.start_key : 0,
mrr_cur_range.end_key.keypart_map ?
&mrr_cur_range.end_key : 0,
MY_TEST(mrr_cur_range.range_flag & EQ_RANGE),
mrr_is_output_sorted);
if (result != HA_ERR_END_OF_FILE)
break;
}
}
while ((result == HA_ERR_END_OF_FILE) && !range_res);
*range_info= mrr_cur_range.ptr;
DBUG_PRINT("exit",("handler::multi_range_read_next result %d", result));
DBUG_RETURN(result);
}
/****************************************************************************
2010-11-03 00:09:28 +03:00
* Mrr_*_reader classes (building blocks for DS-MRR)
***************************************************************************/
2010-09-10 20:48:11 +04:00
2010-11-03 00:09:28 +03:00
int Mrr_simple_index_reader::init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges,
uint mode, Key_parameters *key_par_arg,
Lifo_buffer *key_buffer_arg,
Buffer_manager *buf_manager_arg)
2010-11-03 00:09:28 +03:00
{
HANDLER_BUFFER no_buffer = {NULL, NULL, NULL};
file= h_arg;
return file->handler::multi_range_read_init(seq_funcs, seq_init_param,
n_ranges, mode, &no_buffer);
2010-11-03 00:09:28 +03:00
}
int Mrr_simple_index_reader::get_next(range_id_t *range_info)
{
int res;
while (!(res= file->handler::multi_range_read_next(range_info)))
{
KEY_MULTI_RANGE *curr_range= &file->handler::mrr_cur_range;
if (!file->mrr_funcs.skip_index_tuple ||
!file->mrr_funcs.skip_index_tuple(file->mrr_iter, curr_range->ptr))
break;
}
if (res && res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND)
file->print_error(res, MYF(0)); // Fatal error
return res;
}
/**
2010-11-03 00:09:28 +03:00
@brief Get next index record
@param range_info OUT identifier of range that the returned record belongs to
@note
We actually iterate over nested sequences:
2010-11-03 00:09:28 +03:00
- an ordered sequence of groups of identical keys
- each key group has key value, which has multiple matching records
- thus, each record matches all members of the key group
@retval 0 OK, next record was successfully read
@retval HA_ERR_END_OF_FILE End of records
@retval Other Some other error; Error is printed
*/
int Mrr_ordered_index_reader::get_next(range_id_t *range_info)
{
int res;
DBUG_ENTER("Mrr_ordered_index_reader::get_next");
2010-11-01 13:52:10 +03:00
for(;;)
{
if (!scanning_key_val_iter)
{
while ((res= kv_it.init(this)))
{
if ((res != HA_ERR_KEY_NOT_FOUND && res != HA_ERR_END_OF_FILE))
DBUG_RETURN(res); /* Some fatal error */
if (key_buffer->is_empty())
{
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
}
scanning_key_val_iter= TRUE;
}
if ((res= kv_it.get_next(range_info)))
{
scanning_key_val_iter= FALSE;
if ((res != HA_ERR_KEY_NOT_FOUND && res != HA_ERR_END_OF_FILE))
DBUG_RETURN(res);
kv_it.move_to_next_key_value();
continue;
}
if (!skip_index_tuple(*range_info) &&
!skip_record(*range_info, NULL))
{
break;
}
/* Go get another (record, range_id) combination */
} /* while */
DBUG_RETURN(0);
}
/*
Supply index reader with the O(1)space it needs for scan interrupt/restore
operation
*/
bool Mrr_ordered_index_reader::set_interruption_temp_buffer(uint rowid_length,
uint key_len,
uint saved_pk_len,
uchar **space_start,
uchar *space_end)
{
if (space_end - *space_start <= (ptrdiff_t)(rowid_length + key_len + saved_pk_len))
return TRUE;
support_scan_interruptions= TRUE;
saved_rowid= *space_start;
*space_start += rowid_length;
if (saved_pk_len)
{
saved_primary_key= *space_start;
*space_start += saved_pk_len;
}
else
saved_primary_key= NULL;
saved_key_tuple= *space_start;
*space_start += key_len;
have_saved_rowid= FALSE;
read_was_interrupted= FALSE;
return FALSE;
}
void Mrr_ordered_index_reader::set_no_interruption_temp_buffer()
{
support_scan_interruptions= FALSE;
saved_key_tuple= saved_rowid= saved_primary_key= NULL; /* safety */
have_saved_rowid= FALSE;
read_was_interrupted= FALSE;
}
void Mrr_ordered_index_reader::interrupt_read()
{
DBUG_ASSERT(support_scan_interruptions);
TABLE *table= file->get_table();
KEY *used_index= &table->key_info[file->active_index];
/* Save the current key value */
key_copy(saved_key_tuple, table->record[0],
used_index, used_index->key_length);
if (saved_primary_key)
{
key_copy(saved_primary_key, table->record[0],
&table->key_info[table->s->primary_key],
table->key_info[table->s->primary_key].key_length);
}
read_was_interrupted= TRUE;
/* Save the last rowid */
memcpy(saved_rowid, file->ref, file->ref_length);
have_saved_rowid= TRUE;
}
void Mrr_ordered_index_reader::position()
{
if (have_saved_rowid)
memcpy(file->ref, saved_rowid, file->ref_length);
else
Mrr_index_reader::position();
}
void Mrr_ordered_index_reader::resume_read()
{
TABLE *table= file->get_table();
if (!read_was_interrupted)
return;
KEY *used_index= &table->key_info[file->active_index];
key_restore(table->record[0], saved_key_tuple,
used_index, used_index->key_length);
if (saved_primary_key)
{
key_restore(table->record[0], saved_primary_key,
&table->key_info[table->s->primary_key],
table->key_info[table->s->primary_key].key_length);
}
}
/**
2010-11-03 00:09:28 +03:00
Fill the buffer with (lookup_tuple, range_id) pairs and sort
@return
0 OK, the buffer is non-empty and sorted
HA_ERR_END_OF_FILE Source exhausted, the buffer is empty.
*/
int Mrr_ordered_index_reader::refill_buffer(bool initial)
{
KEY_MULTI_RANGE cur_range;
DBUG_ENTER("Mrr_ordered_index_reader::refill_buffer");
DBUG_ASSERT(key_buffer->is_empty());
if (source_exhausted)
DBUG_RETURN(HA_ERR_END_OF_FILE);
buf_manager->reset_buffer_sizes(buf_manager->arg);
key_buffer->reset();
key_buffer->setup_writing(keypar.key_size_in_keybuf,
is_mrr_assoc? sizeof(range_id_t) : 0);
while (key_buffer->can_write() &&
!(source_exhausted= mrr_funcs.next(mrr_iter, &cur_range)))
{
DBUG_ASSERT(cur_range.range_flag & EQ_RANGE);
/* Put key, or {key, range_id} pair into the buffer */
key_buffer->write_ptr1= keypar.use_key_pointers ?
(uchar*)&cur_range.start_key.key :
(uchar*)cur_range.start_key.key;
key_buffer->write_ptr2= (uchar*)&cur_range.ptr;
key_buffer->write();
}
/* Force get_next() to start with kv_it.init() call: */
scanning_key_val_iter= FALSE;
if (source_exhausted && key_buffer->is_empty())
DBUG_RETURN(HA_ERR_END_OF_FILE);
if (!initial)
{
/* This is a non-initial buffer fill and we've got a non-empty buffer */
THD *thd= current_thd;
status_var_increment(thd->status_var.ha_mrr_key_refills_count);
}
key_buffer->sort((key_buffer->type() == Lifo_buffer::FORWARD)?
(qsort2_cmp)Mrr_ordered_index_reader::compare_keys_reverse :
(qsort2_cmp)Mrr_ordered_index_reader::compare_keys,
this);
DBUG_RETURN(0);
}
int Mrr_ordered_index_reader::init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges,
uint mode, Key_parameters *key_par_arg,
Lifo_buffer *key_buffer_arg,
Buffer_manager *buf_manager_arg)
{
file= h_arg;
key_buffer= key_buffer_arg;
buf_manager= buf_manager_arg;
keypar= *key_par_arg;
KEY *key_info= &file->get_table()->key_info[file->active_index];
keypar.index_ranges_unique= MY_TEST(key_info->flags & HA_NOSAME &&
key_info->user_defined_key_parts ==
my_count_bits(keypar.key_tuple_map));
mrr_iter= seq_funcs->init(seq_init_param, n_ranges, mode);
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
mrr_funcs= *seq_funcs;
source_exhausted= FALSE;
read_was_interrupted= false;
have_saved_rowid= FALSE;
return 0;
}
static int rowid_cmp_reverse(void *file, uchar *a, uchar *b)
{
return - ((handler*)file)->cmp_ref(a, b);
}
int Mrr_ordered_rndpos_reader::init(handler *h_arg,
Mrr_index_reader *index_reader_arg,
uint mode,
Lifo_buffer *buf,
Rowid_filter *filter)
{
file= h_arg;
index_reader= index_reader_arg;
rowid_buffer= buf;
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
2010-11-01 13:52:10 +03:00
index_reader_exhausted= FALSE;
index_reader_needs_refill= TRUE;
rowid_filter= filter;
return 0;
}
/**
DS-MRR: Fill and sort the rowid buffer
Scan the MRR ranges and collect ROWIDs (or {ROWID, range_id} pairs) into
buffer. When the buffer is full or scan is completed, sort the buffer by
rowid and return.
When this function returns, either rowid buffer is not empty, or the source
of lookup keys (i.e. ranges) is exhaused.
@retval 0 OK, the next portion of rowids is in the buffer,
properly ordered
@retval other Error
*/
int Mrr_ordered_rndpos_reader::refill_buffer(bool initial)
2010-11-01 13:52:10 +03:00
{
int res;
bool first_call= initial;
2010-11-01 13:52:10 +03:00
DBUG_ENTER("Mrr_ordered_rndpos_reader::refill_buffer");
if (index_reader_exhausted)
DBUG_RETURN(HA_ERR_END_OF_FILE);
while (initial || index_reader_needs_refill ||
(res= refill_from_index_reader()) == HA_ERR_END_OF_FILE)
2010-11-01 13:52:10 +03:00
{
if ((res= index_reader->refill_buffer(initial)))
2010-11-01 13:52:10 +03:00
{
if (res == HA_ERR_END_OF_FILE)
index_reader_exhausted= TRUE;
break;
}
initial= FALSE;
index_reader_needs_refill= FALSE;
2010-11-01 13:52:10 +03:00
}
if (!first_call && !index_reader_exhausted)
{
/* Ok, this was a successful buffer refill operation */
THD *thd= current_thd;
status_var_increment(thd->status_var.ha_mrr_rowid_refills_count);
}
2010-11-01 13:52:10 +03:00
DBUG_RETURN(res);
}
2010-11-03 00:09:28 +03:00
void Mrr_index_reader::position()
{
file->position(file->get_table()->record[0]);
2010-11-03 00:09:28 +03:00
}
/*
@brief Try to refill the rowid buffer without calling
index_reader->refill_buffer().
*/
int Mrr_ordered_rndpos_reader::refill_from_index_reader()
{
range_id_t range_info;
int res;
DBUG_ENTER("Mrr_ordered_rndpos_reader::refill_from_index_reader");
2010-11-01 13:52:10 +03:00
DBUG_ASSERT(rowid_buffer->is_empty());
index_rowid= index_reader->get_rowid_ptr();
rowid_buffer->reset();
rowid_buffer->setup_writing(file->ref_length,
is_mrr_assoc? sizeof(range_id_t) : 0);
last_identical_rowid= NULL;
index_reader->resume_read();
while (rowid_buffer->can_write())
{
res= index_reader->get_next(&range_info);
if (res)
{
if (res != HA_ERR_END_OF_FILE)
DBUG_RETURN(res);
index_reader_needs_refill=TRUE;
break;
}
2010-11-03 00:09:28 +03:00
index_reader->position();
/*
If the built rowid filter cannot be used at the engine level, use it here.
*/
if (rowid_filter && !file->pushed_rowid_filter &&
!rowid_filter->check((char *)index_rowid))
continue;
/* Put rowid, or {rowid, range_id} pair into the buffer */
rowid_buffer->write_ptr1= index_rowid;
rowid_buffer->write_ptr2= (uchar*)&range_info;
rowid_buffer->write();
}
/*
When index_reader_needs_refill=TRUE, this means we've got all of index
tuples for lookups keys that index_reader had. We are not in the middle
of an index read, so there is no need to call interrupt_read.
Actually, we must not call interrupt_read(), because it could be that we
haven't read a single row (because all index lookups returned
HA_ERR_KEY_NOT_FOUND). In this case, interrupt_read() will cause [harmless]
valgrind warnings when trying to save garbage from table->record[0].
*/
if (!index_reader_needs_refill)
index_reader->interrupt_read();
/* Sort the buffer contents by rowid */
rowid_buffer->sort((qsort2_cmp)rowid_cmp_reverse, (void*)file);
rowid_buffer->setup_reading(file->ref_length,
is_mrr_assoc ? sizeof(range_id_t) : 0);
2010-11-01 13:52:10 +03:00
DBUG_RETURN(rowid_buffer->is_empty()? HA_ERR_END_OF_FILE : 0);
}
2010-11-03 00:09:28 +03:00
/*
Get the next {record, range_id} using ordered array of rowid+range_id pairs
2010-11-03 00:09:28 +03:00
@note
Since we have sorted rowids, we try not to make multiple rnd_pos() calls
with the same rowid value.
*/
int Mrr_ordered_rndpos_reader::get_next(range_id_t *range_info)
{
int res;
/*
First, check if rowid buffer has elements with the same rowid value as
the previous.
*/
while (last_identical_rowid)
{
/*
Current record (the one we've returned in previous call) was obtained
from a rowid that matched multiple range_ids. Return this record again,
with next matching range_id.
*/
(void)rowid_buffer->read();
if (rowid_buffer->read_ptr1 == last_identical_rowid)
last_identical_rowid= NULL; /* reached the last of identical rowids */
if (!is_mrr_assoc)
return 0;
memcpy(range_info, rowid_buffer->read_ptr2, sizeof(range_id_t));
if (!index_reader->skip_record(*range_info, rowid_buffer->read_ptr1))
return 0;
}
/*
Ok, last_identical_rowid==NULL, it's time to read next different rowid
value and get record for it.
*/
for(;;)
{
/* Return eof if there are no rowids in the buffer after re-fill attempt */
if (rowid_buffer->read())
return HA_ERR_END_OF_FILE;
if (is_mrr_assoc)
{
memcpy(range_info, rowid_buffer->read_ptr2, sizeof(range_id_t));
if (index_reader->skip_record(*range_info, rowid_buffer->read_ptr1))
continue;
}
res= file->ha_rnd_pos(file->get_table()->record[0],
rowid_buffer->read_ptr1);
if (res)
return res; /* Some fatal error */
break; /* Got another record */
}
/*
Check if subsequent buffer elements have the same rowid value as this
one. If yes, remember this fact so that we don't make any more rnd_pos()
calls with this value.
Note: this implies that SQL layer doesn't touch table->record[0]
between calls.
*/
Lifo_buffer_iterator it;
it.init(rowid_buffer);
while (!it.read())
{
if (file->cmp_ref(it.read_ptr1, rowid_buffer->read_ptr1))
break;
last_identical_rowid= it.read_ptr1;
}
return 0;
}
/****************************************************************************
2010-11-03 00:09:28 +03:00
* Top-level DS-MRR implementation functions (the ones called by storage engine)
***************************************************************************/
/**
DS-MRR: Initialize and start MRR scan
Initialize and start the MRR scan. Depending on the mode parameter, this
may use default or DS-MRR implementation.
@param h_arg Table handler to be used
@param key Index to be used
@param seq_funcs Interval sequence enumeration functions
@param seq_init_param Interval sequence enumeration parameter
@param n_ranges Number of ranges in the sequence.
@param mode HA_MRR_* modes to use
@param buf INOUT Buffer to use
@retval 0 Ok, Scan started.
@retval other Error
*/
int DsMrr_impl::dsmrr_init(handler *h_arg, RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges, uint mode,
HANDLER_BUFFER *buf)
{
TABLE *table= h_arg->get_table();
THD *thd= table->in_use;
int res;
Key_parameters keypar;
uint UNINIT_VAR(key_buff_elem_size); /* set/used when do_sort_keys==TRUE */
handler *h_idx;
Mrr_ordered_rndpos_reader *disk_strategy= NULL;
bool do_sort_keys= FALSE;
DBUG_ENTER("DsMrr_impl::dsmrr_init");
/*
index_merge may invoke a scan on an object for which dsmrr_info[_const]
has not been called, so set the owner handler here as well.
*/
primary_file= h_arg;
is_mrr_assoc= !MY_TEST(mode & HA_MRR_NO_ASSOCIATION);
2010-11-26 15:45:46 +03:00
strategy_exhausted= FALSE;
/* By default, have do-nothing buffer manager */
buf_manager.arg= this;
buf_manager.reset_buffer_sizes= do_nothing;
buf_manager.redistribute_buffer_space= do_nothing;
2010-11-26 15:45:46 +03:00
if (mode & (HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED))
goto use_default_impl;
/*
Determine whether we'll need to do key sorting and/or rnd_pos() scan
*/
index_strategy= NULL;
if ((mode & HA_MRR_SINGLE_POINT) &&
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS))
{
do_sort_keys= TRUE;
index_strategy= &reader_factory.ordered_index_reader;
}
else
2010-11-02 23:25:35 +03:00
index_strategy= &reader_factory.simple_index_reader;
strategy= index_strategy;
/*
We don't need a rowid-to-rndpos step if
- We're doing a scan on clustered primary key
- [In the future] We're doing an index_only read
*/
DBUG_ASSERT(primary_file->inited == handler::INDEX ||
(primary_file->inited == handler::RND &&
secondary_file &&
secondary_file->inited == handler::INDEX));
h_idx= (primary_file->inited == handler::INDEX)? primary_file: secondary_file;
keyno= h_idx->active_index;
if (! h_idx->is_clustering_key(keyno))
{
2010-11-02 23:25:35 +03:00
strategy= disk_strategy= &reader_factory.ordered_rndpos_reader;
if (h_arg->pushed_rowid_filter)
{
/*
Currently usage of a rowid filter within InnoDB engine is not supported
if the table is accessed by the primary key.
With optimizer switches ''mrr' and 'mrr_sort_keys' are both enabled
any access by a secondary index is converted to the rndpos access. In
InnoDB the rndpos access is always uses the primary key.
Do not use pushed rowid filter if the table is accessed actually by the
primary key. Use the rowid filter outside the engine code (see
Mrr_ordered_rndpos_reader::refill_from_index_reader).
*/
rowid_filter= h_arg->pushed_rowid_filter;
h_arg->cancel_pushed_rowid_filter();
}
}
2010-09-10 20:48:11 +04:00
full_buf= buf->buffer;
full_buf_end= buf->buffer_end;
if (do_sort_keys)
{
/* Pre-calculate some parameters of key sorting */
keypar.use_key_pointers= MY_TEST(mode & HA_MRR_MATERIALIZED_KEYS);
seq_funcs->get_key_info(seq_init_param, &keypar.key_tuple_length,
&keypar.key_tuple_map);
keypar.key_size_in_keybuf= keypar.use_key_pointers?
sizeof(char*) : keypar.key_tuple_length;
key_buff_elem_size= keypar.key_size_in_keybuf + (int)is_mrr_assoc * sizeof(void*);
/* Ordered index reader needs some space to store an index tuple */
if (strategy != index_strategy)
{
uint saved_pk_length=0;
uint pk= h_idx->get_table()->s->primary_key;
if (h_idx->pk_is_clustering_key(pk))
{
saved_pk_length= h_idx->get_table()->key_info[pk].key_length;
}
KEY *used_index= &h_idx->get_table()->key_info[h_idx->active_index];
if (reader_factory.ordered_index_reader.
set_interruption_temp_buffer(primary_file->ref_length,
used_index->key_length,
saved_pk_length,
&full_buf, full_buf_end))
goto use_default_impl;
}
else
reader_factory.ordered_index_reader.set_no_interruption_temp_buffer();
}
if (strategy == index_strategy)
{
/*
Index strategy alone handles the record retrieval. Give all buffer space
to it. Key buffer should have forward orientation so we can return the
end of it.
*/
key_buffer= &forward_key_buf;
key_buffer->set_buffer_space(full_buf, full_buf_end);
/* Safety: specify that rowid buffer has zero size: */
rowid_buffer.set_buffer_space(full_buf_end, full_buf_end);
if (do_sort_keys && !key_buffer->have_space_for(key_buff_elem_size))
goto use_default_impl;
if ((res= index_strategy->init(primary_file, seq_funcs, seq_init_param, n_ranges,
mode, &keypar, key_buffer, &buf_manager)))
goto error;
}
else
{
/* We'll have both index and rndpos strategies working together */
if (do_sort_keys)
{
/* Both strategies will need buffer space, share the buffer */
if (setup_buffer_sharing(keypar.key_size_in_keybuf, keypar.key_tuple_map))
goto use_default_impl;
buf_manager.reset_buffer_sizes= reset_buffer_sizes;
buf_manager.redistribute_buffer_space= redistribute_buffer_space;
}
else
{
/* index strategy doesn't need buffer, give all space to rowids*/
rowid_buffer.set_buffer_space(full_buf, full_buf_end);
if (!rowid_buffer.have_space_for(primary_file->ref_length +
(int)is_mrr_assoc * sizeof(range_id_t)))
goto use_default_impl;
}
// setup_two_handlers() will call dsmrr_close() will clears the filter.
// Save its value and restore afterwards.
Rowid_filter *tmp = rowid_filter;
if ((res= setup_two_handlers()))
goto error;
rowid_filter= tmp;
if ((res= index_strategy->init(secondary_file, seq_funcs, seq_init_param,
n_ranges, mode, &keypar, key_buffer,
&buf_manager)) ||
(res= disk_strategy->init(primary_file, index_strategy, mode,
&rowid_buffer, rowid_filter)))
{
goto error;
}
}
/*
At this point, we're sure that we're running a native MRR scan (i.e. we
didnt fall back to default implementation for some reason).
*/
status_var_increment(thd->status_var.ha_mrr_init_count);
2010-11-26 00:30:39 +03:00
res= strategy->refill_buffer(TRUE);
2010-11-26 00:30:39 +03:00
if (res)
{
if (res != HA_ERR_END_OF_FILE)
goto error;
strategy_exhausted= TRUE;
}
/*
If we have scanned through all intervals in *seq, then adjust *buf to
indicate that the remaining buffer space will not be used.
*/
// if (dsmrr_eof)
// buf->end_of_used_area= rowid_buffer.end_of_space();
DBUG_RETURN(0);
error:
close_second_handler();
/* Safety, not really needed but: */
strategy= NULL;
Fix for lp:711565 "Index Condition Pushdown can make a thread hold MyISAM locks as well as be unKILLable for long time" - In Maria/MyISAM: Release/re-acquire locks to give queries that wait on them a chance to make progress - In Maria/MyISAM: Change from numeric constants to ICP_RES values. - In Maria: Do check index condition in maria_rprev() (was lost in the merge/backport?) - In Maria/MyISAM/XtraDB: Check if the query was killed, and return immediately if it was. Added new storage engine error: HA_ERR_ABORTED_BY_USER, for handler to signal that it detected a kill of the query and aborted Authors: Sergey Petrunia & Monty include/my_base.h: Added HA_ERR_ABORTED_BY_USER, for handler to signal that it detected a kill of the query and aborted include/my_handler.h: Added comment mysql-test/r/myisam_icp.result: Updated test mysql-test/t/myisam_icp.test: Drop used tables at start of test Added test case that can help with manual testing of killing index condition pushdown query. mysys/my_handler_errors.h: Text for new storage engine error sql/handler.cc: If engine got HA_ERR_ABORTED_BY_USER, send kill message. sql/multi_range_read.cc: Return error code storage/maria/ha_maria.cc: Added ma_killed_in_mariadb() to detect kill. Ensure that file->external_ref points to TABLE object. storage/maria/ma_extra.c: Dummy test-if-killed for standalone storage/maria/ma_key.c: If ma_check_index_cond() fails, set my_errno and info->cur_row.lastpos storage/maria/ma_rkey.c: Release/re-acquire locks to give queries that wait on them a chance to make progress Check if the query was killed, and return immediately if it was storage/maria/ma_rnext.c: Check if the query was killed, and return immediately if it was Added missing fast_ma_writeinfo(info) storage/maria/ma_rnext_same.c: Check if the query was killed, and return immediately if it was Added missing fast_ma_writeinfo(info) storage/maria/ma_rprev.c: Check if the query was killed, and return immediately if it was Added missing fast_ma_writeinfo(info) and ma_check_index_cond() storage/maria/ma_search.c: Give error message if we find a wrong key storage/maria/ma_static.c: Added pointer to test-if-killed function storage/maria/maria_def.h: New prototypes storage/myisam/ha_myisam.cc: Added mi_killed_in_mariadb() Ensure that file->external_ref points to TABLE object. storage/myisam/mi_extra.c: Dummy test-if-killed for standalone storage/myisam/mi_key.c: If ma_check_index_cond() fails, set my_errno and info->lastpos storage/myisam/mi_rkey.c: Ensure that info->lastpos= HA_OFFSET_ERROR in case of error Release/re-acquire locks to give queries that wait on them a chance to make progress Check if the query was killed, and return immediately if it was Reorder code to do less things in case of error. Added missing fast_mi_writeinfo() storage/myisam/mi_rnext.c: Check if the query was killed, and return immediately if it was Simplify old ICP code Added missing fast_ma_writeinfo(info) storage/myisam/mi_rnext_same.c: Check if the query was killed, and return immediately if it was Added missing fast_mi_writeinfo(info) storage/myisam/mi_rprev.c: Check if the query was killed, and return immediately if it was Simplify error handling of ICP Added missing fast_mi_writeinfo(info) storage/myisam/mi_search.c: Give error message if we find a wrong key storage/myisam/mi_static.c: Added pointer to test-if-killed function storage/myisam/myisamdef.h: New prototypes storage/xtradb/handler/ha_innodb.cc: Added DB_SEARCH_ABORTED_BY_USER and ha_innobase::is_thd_killed() Check if the query was killed, and return immediately if it was storage/xtradb/handler/ha_innodb.h: Added prototype storage/xtradb/include/db0err.h: Added DB_SEARCH_ABORTED_BY_USER storage/xtradb/include/row0mysql.h: Added possible ICP errors storage/xtradb/row/row0sel.c: Use ICP errors instead of constants. Detect if killed and return B_SEARCH_ABORTED_BY_USER
2011-02-18 17:43:59 +02:00
DBUG_RETURN(res);
use_default_impl:
if (primary_file->inited != handler::INDEX)
{
/* We can get here when
- we've previously successfully done a DS-MRR scan (and so have
secondary_file!= NULL, secondary_file->inited= INDEX,
primary_file->inited=RND)
- for this invocation, we haven't got enough buffer space, and so we
have to use the default MRR implementation.
note: primary_file->ha_index_end() will call dsmrr_close() which will
close/destroy the secondary_file, this is intentional.
(Yes this is slow, but one can't expect performance with join buffer
so small that it can accomodate one rowid and one index tuple)
*/
if ((res= primary_file->ha_rnd_end()) ||
(res= primary_file->ha_index_init(keyno, MY_TEST(mode & HA_MRR_SORTED))))
{
DBUG_RETURN(res);
}
}
/* Call correct init function and assign to top level object */
Mrr_simple_index_reader *s= &reader_factory.simple_index_reader;
res= s->init(primary_file, seq_funcs, seq_init_param, n_ranges, mode, NULL,
NULL, NULL);
strategy= s;
DBUG_RETURN(res);
}
/*
Whatever the current state is, make it so that we have two handler objects:
- primary_file - initialized for rnd_pos() scan
- secondary_file - initialized for scanning the index specified in
this->keyno
RETURN
0 OK
HA_XXX Error code
*/
int DsMrr_impl::setup_two_handlers()
{
int res;
THD *thd= primary_file->get_table()->in_use;
DBUG_ENTER("DsMrr_impl::setup_two_handlers");
if (!secondary_file)
{
handler *new_h2;
Item *pushed_cond= NULL;
DBUG_ASSERT(primary_file->inited == handler::INDEX);
/* Create a separate handler object to do rnd_pos() calls. */
/*
::clone() takes up a lot of stack, especially on 64 bit platforms.
The constant 5 is an empiric result.
*/
if (check_stack_overrun(thd, 5*STACK_MIN_SIZE, (uchar*) &new_h2))
DBUG_RETURN(1);
/* Create a separate handler object to do rnd_pos() calls. */
2011-05-10 18:17:43 +03:00
if (!(new_h2= primary_file->clone(primary_file->get_table()->s->
normalized_path.str,
thd->mem_root)) ||
new_h2->ha_external_lock(thd, F_RDLCK))
{
delete new_h2;
DBUG_RETURN(1);
}
if (keyno == primary_file->pushed_idx_cond_keyno)
pushed_cond= primary_file->pushed_idx_cond;
Mrr_reader *save_strategy= strategy;
strategy= NULL;
/*
Caution: this call will invoke this->dsmrr_close(). Do not put the
created secondary table handler new_h2 into this->secondary_file or it
will delete it. Also, save the picked strategy
*/
res= primary_file->ha_index_end();
strategy= save_strategy;
secondary_file= new_h2;
if (res || (res= (primary_file->ha_rnd_init(FALSE))))
goto error;
table->prepare_for_position();
secondary_file->extra(HA_EXTRA_KEYREAD);
secondary_file->mrr_iter= primary_file->mrr_iter;
if ((res= secondary_file->ha_index_init(keyno, FALSE)))
goto error;
if (pushed_cond)
secondary_file->idx_cond_push(keyno, pushed_cond);
}
else
{
DBUG_ASSERT(secondary_file && secondary_file->inited==handler::INDEX);
/*
We get here when the access alternates betwen MRR scan(s) and non-MRR
scans.
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
Calling primary_file->index_end() will invoke dsmrr_close() for this
object, which will delete secondary_file. We need to keep it, so put it
away and don't let it be deleted:
*/
if (primary_file->inited == handler::INDEX)
{
handler *save_h2= secondary_file;
Mrr_reader *save_strategy= strategy;
secondary_file= NULL;
strategy= NULL;
res= primary_file->ha_index_end();
secondary_file= save_h2;
strategy= save_strategy;
if (res)
goto error;
}
2010-12-17 13:06:21 +03:00
if ((primary_file->inited != handler::RND) &&
(res= primary_file->ha_rnd_init(FALSE)))
goto error;
}
DBUG_RETURN(0);
error:
DBUG_RETURN(res);
}
void DsMrr_impl::close_second_handler()
{
if (secondary_file)
{
-Run test suite with smaller aria keybuffer size (to make it possible to run more tests in parallel) -Added test and extra code to ensure we don't leave keyread on for a handler table. -Create on disk temporary files always with long data pointers if SQL_SMALL_RESULT is not used. This ensures that we can handle temporary files bigger than 4G. mysql-test/include/default_mysqld.cnf: Run test suite with smaller aria keybuffer size mysql-test/suite/maria/maria3.result: Run test suite with smaller aria keybuffer size mysql-test/suite/sys_vars/r/aria_pagecache_buffer_size_basic.result: Run test suite with smaller aria keybuffer size sql/handler.cc: Disable key read (extra safety if something went wrong) sql/multi_range_read.cc: Ensure we have don't leave keyread on for secondary_file sql/opt_range.cc: Simplify code with mark_columns_used_by_index_no_reset() Ensure that read_keys_and_merge() disableds keyread if it enables it sql/opt_subselect.cc: Remove not anymore used argument for create_internal_tmp_table() sql/sql_derived.cc: Remove not anymore used argument for create_internal_tmp_table() sql/sql_select.cc: Use 'enable_keyread()' instead of calling HA_EXTRA_RESET. (Makes debugging easier) Create on disk temporary files always with long data pointers if SQL_SMALL_RESULT is not used. This ensures that we can handle temporary files bigger than 4G. Remove not anymore used argument for create_internal_tmp_table() More DBUG sql/sql_select.h: Remove not anymore used argument for create_internal_tmp_table()
2013-06-05 23:53:35 +03:00
secondary_file->extra(HA_EXTRA_NO_KEYREAD);
secondary_file->ha_index_or_rnd_end();
secondary_file->ha_external_unlock(current_thd);
New status variables: Rows_tmp_read, Handler_tmp_update and Handler_tmp_write Split status variable Rows_read to Rows_read and Rows_tmp_read so that one can see how much real data is read. Same was done with with Handler_update and Handler_write. Fixed bug in MEMORY tables where some variables was counted twice. Added new internal handler call 'ha_close()' to have one place to gather statistics. Fixed bug where thd->open_options was set to wrong value when doing admin_recreate_table() mysql-test/r/status.result: Updated test results and added new tests mysql-test/r/status_user.result: Udated test results mysql-test/t/status.test: Added new test for temporary table status variables sql/ha_partition.cc: Changed to call ha_close() instead of close() sql/handler.cc: Added internal_tmp_table variable for easy checking of temporary tables. Added new internal handler call 'ha_close()' to have one place to gather statistics. Gather statistics for internal temporary tables. sql/handler.h: Added handler variables internal_tmp_table, rows_tmp_read. Split function update_index_statistics() to two. Added ha_update_tmp_row() for faster tmp table handling with more statistics. sql/item_sum.cc: ha_write_row() -> ha_write_tmp_row() sql/multi_range_read.cc: close() -> ha_close() sql/mysqld.cc: New status variables: Rows_tmp_read, Handler_tmp_update and Handler_tmp_write sql/opt_range.cc: close() -> ha_close() sql/sql_base.cc: close() -> ha_close() sql/sql_class.cc: Added handling of rows_tmp_read sql/sql_class.h: Added new satistics variables. rows_read++ -> update_rows_read() to be able to correctly count reads to internal temp tables. Added handler::ha_update_tmp_row() sql/sql_connect.cc: Added comment sql/sql_expression_cache.cc: ha_write_row() -> ha_write_tmp_row() sql/sql_select.cc: close() -> ha_close() ha_update_row() -> ha_update_tmp_row() sql/sql_show.cc: ha_write_row() -> ha_write_tmp_row() sql/sql_table.cc: Fixed bug where thd->open_options was set to wrong value when doing admin_recreate_table() sql/sql_union.cc: ha_write_row() -> ha_write_tmp_row() sql/sql_update.cc: ha_write_row() -> ha_write_tmp_row() sql/table.cc: close() -> ha_close() storage/heap/ha_heap.cc: Removed double counting of statistic variables. close -> ha_close() to get tmp table statistics. storage/maria/ha_maria.cc: close -> ha_close() to get tmp table statistics.
2011-06-27 19:07:24 +03:00
secondary_file->ha_close();
delete secondary_file;
secondary_file= NULL;
}
}
void DsMrr_impl::dsmrr_close()
{
DBUG_ENTER("DsMrr_impl::dsmrr_close");
rowid_filter= NULL;
close_second_handler();
strategy= NULL;
DBUG_VOID_RETURN;
}
/*
my_qsort2-compatible static member function to compare key tuples
*/
int Mrr_ordered_index_reader::compare_keys(void* arg, uchar* key1_arg,
uchar* key2_arg)
{
Mrr_ordered_index_reader *reader= (Mrr_ordered_index_reader*)arg;
TABLE *table= reader->file->get_table();
KEY_PART_INFO *part= table->key_info[reader->file->active_index].key_part;
uchar *key1, *key2;
if (reader->keypar.use_key_pointers)
{
/* the buffer stores pointers to keys, get to the keys */
memcpy(&key1, key1_arg, sizeof(char*));
memcpy(&key2, key2_arg, sizeof(char*));
}
else
{
key1= key1_arg;
key2= key2_arg;
}
return key_tuple_cmp(part, key1, key2, reader->keypar.key_tuple_length);
}
int Mrr_ordered_index_reader::compare_keys_reverse(void* arg, uchar* key1,
uchar* key2)
{
return -compare_keys(arg, key1, key2);
}
/**
Set the buffer space to be shared between rowid and key buffer
@return FALSE ok
@return TRUE There is so little buffer space that we won't be able to use
the strategy.
This happens when we don't have enough space for one rowid
element and one key element so this is mainly targeted at
testing.
*/
bool DsMrr_impl::setup_buffer_sharing(uint key_size_in_keybuf,
key_part_map key_tuple_map)
{
long key_buff_elem_size= key_size_in_keybuf +
(int)is_mrr_assoc * sizeof(range_id_t);
KEY *key_info= &primary_file->get_table()->key_info[keyno];
/*
Ok if we got here we need to allocate one part of the buffer
for keys and another part for rowids.
*/
ulonglong rowid_buf_elem_size= primary_file->ref_length +
(int)is_mrr_assoc * sizeof(range_id_t);
/*
Use rec_per_key statistics as a basis to find out how many rowids
we'll get for each key value.
TODO: what should be the default value to use when there is no
statistics?
*/
uint parts= my_count_bits(key_tuple_map);
Fixed errors and compiler warnings found by buildbot Solaris fixes: - Fixed that wait_timeout_func and wait_timeout tests works on solaris - We have to compile without NO_ALARM on Solaris as Solaris doesn't support timeouts on sockets with setsockopt(.. SO_RCVTIMEO). - Fixed that compile-solaris-amd64-debug works (before that we got a wrong ELF class: ELFCLASS64 on linkage) - Added missing sync_with_master Other bug fixes: - Free memory for rpl_global_gtid_binlog_state before exit() to avoid 'accessing uninitalized mutex' error. BUILD/FINISH.sh: Fixed issues on Solaris with ksh BUILD/compile-solaris-amd64-debug: Added missing -m64 flag configure.cmake: We have to compile without NO_ALARM on Solaris as Solaris doesn't support timeouts on sockets with setsockopt(.. SO_RCVTIMEO) mysql-test/suite/rpl/t/rpl_gtid_mdev4473.test: - Added missing sync_with_master (fix by knielsen) sql-common/client.c: Added () to get rid of compiler warning sql/item_strfunc.cc: Fixed compiler warning sql/log.cc: Free memory for static variable rpl_global_gtid_binlog_state before exit() - If we are compiling with safemalloc, we would try to call sf_free() for some members after sf_terminate() was called, which would result of trying to access the uninitalized mutex 'sf_mutex' sql/multi_range_read.cc: Fixed compiler warnings of converting double to ulong. sql/opt_range.cc: Fixed compiler warnings of converting double to ulong or uint - Better to have all variables that can be number of rows as 'ha_rows' sql/rpl_gtid.cc: Added rpl_binlog_state::free() to be able to free memory for static objects before exit() sql/rpl_gtid.h: Added rpl_binlog_state::free() to be able to free memory for static objects before exit() sql/set_var.cc: Fixed compiler warning sql/sql_join_cache.cc: Fixed compiler warnings of converting double to uint sql/sql_show.cc: Added cast to get rid of compiler warning sql/sql_statistics.cc: Remove code that didn't do anything. (store_record() with record[0] is a no-op) storage/xtradb/os/os0file.c: Added __attribute__ ((unused)) support-files/compiler_warnings.supp: Ignore warnings from atomic_add_64_nv (was not able to fix this with a cast as the macro is a bit different between systems) vio/viosocket.c: Added more DBUG_PRINT
2013-05-05 21:39:31 +03:00
ha_rows rpc;
2010-11-29 17:27:23 +03:00
ulonglong rowids_size= rowid_buf_elem_size;
Fixed errors and compiler warnings found by buildbot Solaris fixes: - Fixed that wait_timeout_func and wait_timeout tests works on solaris - We have to compile without NO_ALARM on Solaris as Solaris doesn't support timeouts on sockets with setsockopt(.. SO_RCVTIMEO). - Fixed that compile-solaris-amd64-debug works (before that we got a wrong ELF class: ELFCLASS64 on linkage) - Added missing sync_with_master Other bug fixes: - Free memory for rpl_global_gtid_binlog_state before exit() to avoid 'accessing uninitalized mutex' error. BUILD/FINISH.sh: Fixed issues on Solaris with ksh BUILD/compile-solaris-amd64-debug: Added missing -m64 flag configure.cmake: We have to compile without NO_ALARM on Solaris as Solaris doesn't support timeouts on sockets with setsockopt(.. SO_RCVTIMEO) mysql-test/suite/rpl/t/rpl_gtid_mdev4473.test: - Added missing sync_with_master (fix by knielsen) sql-common/client.c: Added () to get rid of compiler warning sql/item_strfunc.cc: Fixed compiler warning sql/log.cc: Free memory for static variable rpl_global_gtid_binlog_state before exit() - If we are compiling with safemalloc, we would try to call sf_free() for some members after sf_terminate() was called, which would result of trying to access the uninitalized mutex 'sf_mutex' sql/multi_range_read.cc: Fixed compiler warnings of converting double to ulong. sql/opt_range.cc: Fixed compiler warnings of converting double to ulong or uint - Better to have all variables that can be number of rows as 'ha_rows' sql/rpl_gtid.cc: Added rpl_binlog_state::free() to be able to free memory for static objects before exit() sql/rpl_gtid.h: Added rpl_binlog_state::free() to be able to free memory for static objects before exit() sql/set_var.cc: Fixed compiler warning sql/sql_join_cache.cc: Fixed compiler warnings of converting double to uint sql/sql_show.cc: Added cast to get rid of compiler warning sql/sql_statistics.cc: Remove code that didn't do anything. (store_record() with record[0] is a no-op) storage/xtradb/os/os0file.c: Added __attribute__ ((unused)) support-files/compiler_warnings.supp: Ignore warnings from atomic_add_64_nv (was not able to fix this with a cast as the macro is a bit different between systems) vio/viosocket.c: Added more DBUG_PRINT
2013-05-05 21:39:31 +03:00
if ((rpc= (ha_rows) key_info->actual_rec_per_key(parts - 1)))
rowids_size= rowid_buf_elem_size * rpc;
double fraction_for_rowids=
(ulonglong2double(rowids_size) /
(ulonglong2double(rowids_size) + key_buff_elem_size));
ptrdiff_t bytes_for_rowids=
(ptrdiff_t)floor(0.5 + fraction_for_rowids * (full_buf_end - full_buf));
ptrdiff_t bytes_for_keys= (full_buf_end - full_buf) - bytes_for_rowids;
if (bytes_for_keys < key_buff_elem_size + 1 ||
bytes_for_rowids < (ptrdiff_t)rowid_buf_elem_size + 1)
return TRUE; /* Failed to provide minimum space for one of the buffers */
2010-08-12 21:18:41 +04:00
rowid_buffer_end= full_buf + bytes_for_rowids;
rowid_buffer.set_buffer_space(full_buf, rowid_buffer_end);
key_buffer= &backward_key_buf;
key_buffer->set_buffer_space(rowid_buffer_end, full_buf_end);
/* The above code guarantees that the buffers are big enough */
DBUG_ASSERT(key_buffer->have_space_for(key_buff_elem_size) &&
rowid_buffer.have_space_for((size_t)rowid_buf_elem_size));
return FALSE;
}
void DsMrr_impl::do_nothing(void *dsmrr_arg)
{
/* Do nothing */
}
void DsMrr_impl::reset_buffer_sizes(void *dsmrr_arg)
{
DsMrr_impl *dsmrr= (DsMrr_impl*)dsmrr_arg;
dsmrr->rowid_buffer.set_buffer_space(dsmrr->full_buf,
dsmrr->rowid_buffer_end);
dsmrr->key_buffer->set_buffer_space(dsmrr->rowid_buffer_end,
dsmrr->full_buf_end);
}
/*
Take unused space from the key buffer and give it to the rowid buffer
*/
void DsMrr_impl::redistribute_buffer_space(void *dsmrr_arg)
{
DsMrr_impl *dsmrr= (DsMrr_impl*)dsmrr_arg;
uchar *unused_start, *unused_end;
dsmrr->key_buffer->remove_unused_space(&unused_start, &unused_end);
dsmrr->rowid_buffer.grow(unused_start, unused_end);
}
/*
@brief Initialize the iterator
@note
Initialize the iterator to produce matches for the key of the first element
in owner_arg->key_buffer
@retval 0 OK
@retval HA_ERR_END_OF_FILE Either the owner->key_buffer is empty or
no matches for the key we've tried (check
key_buffer->is_empty() to tell these apart)
@retval other code Fatal error
*/
int Key_value_records_iterator::init(Mrr_ordered_index_reader *owner_arg)
{
int res;
owner= owner_arg;
identical_key_it.init(owner->key_buffer);
owner->key_buffer->setup_reading(owner->keypar.key_size_in_keybuf,
owner->is_mrr_assoc ? sizeof(void*) : 0);
if (identical_key_it.read())
return HA_ERR_END_OF_FILE;
uchar *key_in_buf= last_identical_key_ptr= identical_key_it.read_ptr1;
uchar *index_tuple= key_in_buf;
if (owner->keypar.use_key_pointers)
memcpy(&index_tuple, key_in_buf, sizeof(char*));
/* Check out how many more identical keys are following */
while (!identical_key_it.read())
{
if (Mrr_ordered_index_reader::compare_keys(owner, key_in_buf,
identical_key_it.read_ptr1))
break;
last_identical_key_ptr= identical_key_it.read_ptr1;
}
identical_key_it.init(owner->key_buffer);
res= owner->file->ha_index_read_map(owner->file->get_table()->record[0],
index_tuple,
owner->keypar.key_tuple_map,
HA_READ_KEY_EXACT);
if (res)
{
/* Failed to find any matching records */
move_to_next_key_value();
return res;
}
owner->have_saved_rowid= FALSE;
get_next_row= FALSE;
return 0;
}
int Key_value_records_iterator::get_next(range_id_t *range_info)
{
int res;
if (get_next_row)
{
if (owner->keypar.index_ranges_unique)
{
/* We're using a full unique key, no point to call index_next_same */
return HA_ERR_END_OF_FILE;
}
handler *h= owner->file;
uchar *lookup_key;
if (owner->keypar.use_key_pointers)
memcpy(&lookup_key, identical_key_it.read_ptr1, sizeof(void*));
else
lookup_key= identical_key_it.read_ptr1;
if ((res= h->ha_index_next_same(h->get_table()->record[0],
lookup_key,
owner->keypar.key_tuple_length)))
{
/* It's either HA_ERR_END_OF_FILE or some other error */
return res;
}
identical_key_it.init(owner->key_buffer);
owner->have_saved_rowid= FALSE;
get_next_row= FALSE;
}
identical_key_it.read(); /* This gets us next range_id */
memcpy(range_info, identical_key_it.read_ptr2, sizeof(range_id_t));
if (!last_identical_key_ptr ||
(identical_key_it.read_ptr1 == last_identical_key_ptr))
{
/*
We've reached the last of the identical keys that current record is a
match for. Set get_next_row=TRUE so that we read the next index record
on the next call to this function.
*/
get_next_row= TRUE;
}
return 0;
}
void Key_value_records_iterator::move_to_next_key_value()
{
while (!owner->key_buffer->read() &&
(owner->key_buffer->read_ptr1 != last_identical_key_ptr)) {}
}
2010-10-04 10:31:40 +04:00
/**
DS-MRR implementation: multi_range_read_next() function.
Calling convention is like multi_range_read_next() has.
*/
int DsMrr_impl::dsmrr_next(range_id_t *range_info)
{
2010-11-01 13:52:10 +03:00
int res;
2010-11-26 00:30:39 +03:00
if (strategy_exhausted)
return HA_ERR_END_OF_FILE;
2010-11-01 13:52:10 +03:00
while ((res= strategy->get_next(range_info)) == HA_ERR_END_OF_FILE)
{
if ((res= strategy->refill_buffer(FALSE)))
2010-11-01 13:52:10 +03:00
break; /* EOF or error */
}
return res;
}
/**
DS-MRR implementation: multi_range_read_info() function
*/
ha_rows DsMrr_impl::dsmrr_info(uint keyno, uint n_ranges, uint rows,
uint key_parts,
uint *bufsz, uint *flags, Cost_estimate *cost)
{
ha_rows res __attribute__((unused));
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
res= primary_file->handler::multi_range_read_info(keyno, n_ranges, rows,
key_parts, &def_bufsz,
&def_flags, cost);
DBUG_ASSERT(!res);
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
{
/* Default implementation is chosen */
DBUG_PRINT("info", ("Default MRR implementation chosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation chosen"));
}
return 0;
}
/**
DS-MRR Implementation: multi_range_read_info_const() function
*/
ha_rows DsMrr_impl::dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges,
uint *bufsz, uint *flags, ha_rows limit,
Cost_estimate *cost)
{
ha_rows rows;
uint def_flags= *flags;
uint def_bufsz= *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
rows= primary_file->handler::multi_range_read_info_const(keyno, seq,
seq_init_param,
n_ranges,
&def_bufsz,
&def_flags,
limit,
cost);
if (rows == HA_POS_ERROR)
{
/* Default implementation can't perform MRR scan => we can't either */
return rows;
}
/*
If HA_MRR_USE_DEFAULT_IMPL has been passed to us, that is an order to
use the default MRR implementation (we need it for UPDATE/DELETE).
Otherwise, make a choice based on cost and @@optimizer_switch settings
*/
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost))
{
DBUG_PRINT("info", ("Default MRR implementation chosen"));
*flags= def_flags;
*bufsz= def_bufsz;
}
else
{
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation chosen"));
}
return rows;
}
/**
Check if key has partially-covered columns
We can't use DS-MRR to perform range scans when the ranges are over
partially-covered keys, because we'll not have full key part values
(we'll have their prefixes from the index) and will not be able to check
if we've reached the end the range.
@param keyno Key to check
@todo
Allow use of DS-MRR in cases where the index has partially-covered
components but they are not used for scanning.
@retval TRUE Yes
@retval FALSE No
*/
bool key_uses_partial_cols(TABLE_SHARE *share, uint keyno)
{
KEY_PART_INFO *kp= share->key_info[keyno].key_part;
2013-09-26 21:20:15 +03:00
KEY_PART_INFO *kp_end= kp + share->key_info[keyno].user_defined_key_parts;
for (; kp != kp_end; kp++)
{
if (!kp->field->part_of_key.is_set(keyno))
return TRUE;
}
return FALSE;
}
/*
Check if key/flags allow DS-MRR/CPK strategy to be used
@param thd
@param keyno Index that will be used
@param mrr_flags
@retval TRUE DS-MRR/CPK should be used
@retval FALSE Otherwise
*/
bool DsMrr_impl::check_cpk_scan(THD *thd, TABLE_SHARE *share, uint keyno,
uint mrr_flags)
{
return MY_TEST((mrr_flags & HA_MRR_SINGLE_POINT) &&
primary_file->is_clustering_key(keyno) &&
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS));
}
/*
DS-MRR Internals: Choose between Default MRR implementation and DS-MRR
Make the choice between using Default MRR implementation and DS-MRR.
This function contains common functionality factored out of dsmrr_info()
and dsmrr_info_const(). The function assumes that the default MRR
implementation's applicability requirements are satisfied.
@param keyno Index number
@param rows E(full rows to be retrieved)
@param flags IN MRR flags provided by the MRR user
OUT If DS-MRR is chosen, flags of DS-MRR implementation
else the value is not modified
@param bufsz IN If DS-MRR is chosen, buffer use of DS-MRR implementation
else the value is not modified
@param cost IN Cost of default MRR implementation
OUT If DS-MRR is chosen, cost of DS-MRR scan
else the value is not modified
@retval TRUE Default MRR implementation should be used
@retval FALSE DS-MRR implementation should be used
*/
bool DsMrr_impl::choose_mrr_impl(uint keyno, ha_rows rows, uint *flags,
uint *bufsz, Cost_estimate *cost)
{
Cost_estimate dsmrr_cost;
bool res;
THD *thd= primary_file->get_table()->in_use;
TABLE_SHARE *share= primary_file->get_table_share();
bool doing_cpk_scan= check_cpk_scan(thd, share, keyno, *flags);
bool using_cpk= primary_file->is_clustering_key(keyno);
*flags &= ~HA_MRR_IMPLEMENTATION_FLAGS;
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_MRR) ||
*flags & HA_MRR_INDEX_ONLY ||
(using_cpk && !doing_cpk_scan) || key_uses_partial_cols(share, keyno))
{
/* Use the default implementation */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
*flags &= ~HA_MRR_IMPLEMENTATION_FLAGS;
return TRUE;
}
uint add_len= share->key_info[keyno].key_length + primary_file->ref_length;
if (get_disk_sweep_mrr_cost(keyno, rows, *flags, bufsz, add_len,
&dsmrr_cost))
return TRUE;
bool force_dsmrr;
/*
If mrr_cost_based flag is not set, then set cost of DS-MRR to be minimum of
DS-MRR and Default implementations cost. This allows one to force use of
DS-MRR whenever it is applicable without affecting other cost-based
choices.
*/
if ((force_dsmrr= !optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_COST_BASED)) &&
dsmrr_cost.total_cost() > cost->total_cost())
dsmrr_cost= *cost;
if (force_dsmrr || dsmrr_cost.total_cost() <= cost->total_cost())
{
*flags &= ~HA_MRR_USE_DEFAULT_IMPL; /* Use the DS-MRR implementation */
*flags &= ~HA_MRR_SORTED; /* We will return unordered output */
*cost= dsmrr_cost;
res= FALSE;
if ((using_cpk && doing_cpk_scan) ||
(optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS) &&
*flags & HA_MRR_SINGLE_POINT))
{
*flags |= DSMRR_IMPL_SORT_KEYS;
}
if (!(using_cpk && doing_cpk_scan) &&
!(*flags & HA_MRR_INDEX_ONLY))
{
*flags |= DSMRR_IMPL_SORT_ROWIDS;
}
/*
if ((*flags & HA_MRR_SINGLE_POINT) &&
optimizer_flag(thd, OPTIMIZER_SWITCH_MRR_SORT_KEYS))
*flags |= HA_MRR_MATERIALIZED_KEYS;
*/
}
else
{
/* Use the default MRR implementation */
res= TRUE;
}
return res;
}
/*
Take the flags we've returned previously and print one of
- Key-ordered scan
- Rowid-ordered scan
- Key-ordered Rowid-ordered scan
*/
int DsMrr_impl::dsmrr_explain_info(uint mrr_mode, char *str, size_t size)
{
const char *key_ordered= "Key-ordered scan";
const char *rowid_ordered= "Rowid-ordered scan";
const char *both_ordered= "Key-ordered Rowid-ordered scan";
const char *used_str="";
const uint BOTH_FLAGS= (DSMRR_IMPL_SORT_KEYS | DSMRR_IMPL_SORT_ROWIDS);
if (!(mrr_mode & HA_MRR_USE_DEFAULT_IMPL))
{
if ((mrr_mode & BOTH_FLAGS) == BOTH_FLAGS)
used_str= both_ordered;
else if (mrr_mode & DSMRR_IMPL_SORT_KEYS)
used_str= key_ordered;
else if (mrr_mode & DSMRR_IMPL_SORT_ROWIDS)
used_str= rowid_ordered;
size_t used_str_len= strlen(used_str);
size_t copy_len= MY_MIN(used_str_len, size);
memcpy(str, used_str, copy_len);
return (int)copy_len;
}
return 0;
}
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows,
Cost_estimate *cost);
/**
Get cost of DS-MRR scan
@param keynr Index to be used
@param rows E(Number of rows to be scanned)
@param flags Scan parameters (HA_MRR_* flags)
@param buffer_size INOUT Buffer size
IN: Buffer of size 0 means the function
will determine the best size and return it.
@param extra_mem_overhead Extra memory overhead of the MRR implementation
(the function assumes this many bytes of buffer
space will not be usable by DS-MRR)
@param cost OUT The cost
@retval FALSE OK
@retval TRUE Error, DS-MRR cannot be used (the buffer is too small
for even 1 rowid)
*/
bool DsMrr_impl::get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags,
uint *buffer_size,
uint extra_mem_overhead,
Cost_estimate *cost)
{
ulong max_buff_entries, elem_size;
ha_rows rows_in_full_step;
ha_rows rows_in_last_step;
uint n_full_steps;
elem_size= primary_file->ref_length +
sizeof(void*) * (!MY_TEST(flags & HA_MRR_NO_ASSOCIATION));
if (!*buffer_size)
{
/*
We are requested to determine how much memory we need.
Request memory to finish the scan in one pass but do not request
more than @@mrr_buff_size.
*/
*buffer_size= (uint) MY_MIN(extra_mem_overhead + elem_size*(ulong)rows,
MY_MAX(table->in_use->variables.mrr_buff_size,
extra_mem_overhead));
}
if (elem_size + extra_mem_overhead > *buffer_size)
return TRUE; /* Buffer has not enough space for even 1 rowid */
max_buff_entries = (*buffer_size - extra_mem_overhead) / elem_size;
/* Number of iterations we'll make with full buffer */
n_full_steps= (uint)floor(rows2double(rows) / max_buff_entries);
/*
Get numbers of rows we'll be processing in
- non-last sweep, with full buffer
- last iteration, with non-full buffer
*/
rows_in_full_step= max_buff_entries;
rows_in_last_step= rows % max_buff_entries;
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->reset(primary_file);
/* Adjust buffer size if we expect to use only part of the buffer */
if (n_full_steps)
{
get_sort_and_sweep_cost(table, rows_in_full_step, cost);
cost->multiply(n_full_steps);
}
else
{
*buffer_size= ((uint) MY_MAX(*buffer_size,
(size_t)(1.2*rows_in_last_step) * elem_size +
primary_file->ref_length +
table->key_info[keynr].key_length));
}
Cost_estimate last_step_cost;
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
last_step_cost.avg_io_cost= cost->avg_io_cost;
get_sort_and_sweep_cost(table, rows_in_last_step, &last_step_cost);
cost->add(&last_step_cost);
/* Total cost of all index accesses */
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->index_cost= primary_file->ha_keyread_and_copy_time(keynr, 1, rows, 0);
cost->comp_cost= rows2double(rows) * primary_file->WHERE_COST;
cost->setup_cost= primary_file->MULTI_RANGE_READ_SETUP_COST;
return FALSE;
}
/*
Get cost of one sort-and-sweep step
It consists of two parts:
- sort an array of #nrows ROWIDs using qsort
- read #nrows records from table in a sweep.
@param table Table being accessed
@param nrows Number of rows to be sorted and retrieved
@param cost OUT The cost of scan
*/
static
void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows, Cost_estimate *cost)
{
if (nrows)
{
get_sweep_read_cost(table, nrows, FALSE, cost);
/* Add cost of qsort call: n * log2(n) * cost(rowid_comparison) */
double cmp_op= rows2double(nrows) * ROWID_COMPARE_COST_THD(table->in_use);
if (cmp_op < 3)
cmp_op= 3;
cost->cpu_cost += cmp_op * log2(cmp_op);
}
}
/**
Get cost of reading nrows table records in a "disk sweep"
@param table Table to be accessed
@param nrows Number of rows to retrieve
@param interrupted TRUE <=> Assume that the disk sweep will be
interrupted by other disk IO. FALSE - otherwise.
@param cost OUT The cost.
*/
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
static void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
Cost_estimate *cost)
{
DBUG_ENTER("get_sweep_read_cost");
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
#ifndef OLD_SWEEP_COST
Add limits for how many IO operations a table access will do This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
2022-09-30 17:10:37 +03:00
cost->row_cost= table->file->ha_rnd_pos_call_time(nrows);
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
#else
if (table->file->pk_is_clustering_key(table->s->primary_key))
{
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
cost->cpu_cost= table->file->ha_read_and_copy_time(table->s->primary_key,
(uint) nrows, nrows);
}
Updated optimizer costs in multi_range_read_info_const() and sql_select.cc - multi_range_read_info_const now uses the new records_in_range interface - Added handler::avg_io_cost() - Don't calculate avg_io_cost() in get_sweep_read_cost if avg_io_cost is not 1.0. In this case we trust the avg_io_cost() from the handler. - Changed test_quick_select to use TIME_FOR_COMPARE instead of TIME_FOR_COMPARE_IDX to align this with the rest of the code. - Fixed bug when using test_if_cheaper_ordering where we didn't use keyread if index was changed - Fixed a bug where we didn't use index only read when using order-by-index - Added keyread_time() to HEAP. The default keyread_time() was optimized for blocks and not suitable for HEAP. The effect was the HEAP prefered table scans over ranges for btree indexes. - Fixed get_sweep_read_cost() for HEAP tables - Ensure that range and ref have same cost for simple ranges Added a small cost (MULTI_RANGE_READ_SETUP_COST) to ranges to ensure we favior ref for range for simple queries. - Fixed that matching_candidates_in_table() uses same number of records as the rest of the optimizer - Added avg_io_cost() to JT_EQ_REF cost. This helps calculate the cost for HEAP and temporary tables better. A few tests changed because of this. - heap::read_time() and heap::keyread_time() adjusted to not add +1. This was to ensure that handler::keyread_time() doesn't give higher cost for heap tables than for normal tables. One effect of this is that heap and derived tables stored in heap will prefer key access as this is now regarded as cheap. - Changed cost for index read in sql_select.cc to match multi_range_read_info_const(). All index cost calculation is now done trough one function. - 'ref' will now use quick_cost for keys if it exists. This is done so that for '=' ranges, 'ref' is prefered over 'range'. - scan_time() now takes avg_io_costs() into account - get_delayed_table_estimates() uses block_size and avg_io_cost() - Removed default argument to test_if_order_by_key(); simplifies code
2020-02-28 12:59:30 +02:00
else if ((cost->avg_io_cost= table->file->avg_io_cost()) >= 0.999)
{
double n_blocks=
ceil(ulonglong2double(table->file->stats.data_file_length) / IO_SIZE);
double busy_blocks=
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(nrows)));
if (busy_blocks < 1.0)
busy_blocks= 1.0;
DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
busy_blocks));
cost->io_count= busy_blocks;
if (!interrupted)
{
/* Assume reading is done in one 'sweep' */
cost->avg_io_cost= (DISK_SEEK_BASE_COST +
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
}
}
Update row and key fetch cost models to take into account data copy costs Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
cost->cpu_cost+= rows2double(n_rows) * ROW_COPY_COST;
#endif
DBUG_PRINT("info",("returning cost: %g", cost->total_cost()));
DBUG_VOID_RETURN;
}
/* **************************************************************************
* DS-MRR implementation ends
***************************************************************************/