mariadb/newbrt/tests/brt-serialize-test.c

828 lines
31 KiB
C
Raw Normal View History

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
#include "test.h"
#include "includes.h"
#define TESTMSNVAL 0x1234567890123456 // arbitrary number
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
static int omt_int_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
assert(al == 4 && bl == 4);
int ai = *(int *) ak;
int bi = *(int *) bk;
int c = ai - bi;
if (c < 0) { return -1; }
if (c > 0) { return +1; }
else { return 0; }
}
static int omt_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
int l = MIN(al, bl);
int c = memcmp(ak, bk, l);
if (c < 0) { return -1; }
if (c > 0) { return +1; }
int d = al - bl;
if (d < 0) { return -1; }
if (d > 0) { return +1; }
else { return 0; }
}
static LEAFENTRY
le_fastmalloc(char *key, int keylen, char *val, int vallen)
{
LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) +
keylen + vallen);
resource_assert(r);
r->type = LE_CLEAN;
r->keylen = keylen;
r->u.clean.vallen = vallen;
memcpy(&r->u.clean.key_val[0], key, keylen);
memcpy(&r->u.clean.key_val[keylen], val, vallen);
return r;
}
static LEAFENTRY
le_malloc(char *key, char *val)
{
int keylen = strlen(key) + 1;
int vallen = strlen(val) + 1;
return le_fastmalloc(key, keylen, val, vallen);
}
struct check_leafentries_struct {
int nelts;
LEAFENTRY *elts;
int i;
int (*cmp)(OMTVALUE, void *);
};
static int check_leafentries(OMTVALUE v, u_int32_t UU(i), void *extra) {
struct check_leafentries_struct *e = extra;
assert(e->i < e->nelts);
assert(e->cmp(v, e->elts[e->i]) == 0);
e->i++;
return 0;
}
static void
test_serialize_leaf_with_large_pivots(void) {
int r;
struct brtnode sn, *dn;
const int keylens = 256*1024, vallens = 0, nrows = 8;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
memset(&sn, 0, sizeof sn);
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = nrows;
LEAFENTRY les[nrows];
{
char key[keylens], val[vallens];
key[keylens-1] = '\0';
for (int i = 0; i < nrows; ++i) {
char c = 'a' + i;
memset(key, c, keylens-1);
les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val));
}
}
MALLOC_N(sn.n_children, sn.u.l.bn);
MALLOC_N(sn.n_children, sn.subtree_estimates);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
for (int i = 0; i < sn.n_children; ++i) {
sn.subtree_estimates[i].ndata = random() + (((long long) random())<<32);
sn.subtree_estimates[i].nkeys = random() + (((long long) random())<<32);
sn.subtree_estimates[i].dsize = random() + (((long long) random())<<32);
sn.subtree_estimates[i].exact = (BOOL)(random()%2 != 0);
r = toku_omt_create(&sn.u.l.bn[i].buffer); assert(r==0);
sn.u.l.bn[i].optimized_for_upgrade = BRT_LAYOUT_VERSION;
sn.u.l.bn[i].soft_copy_is_up_to_date = TRUE;
sn.u.l.bn[i].seqinsert = 0;
}
for (int i = 0; i < nrows; ++i) {
r = toku_omt_insert(sn.u.l.bn[i].buffer, les[i], omt_cmp, les[i], NULL); assert(r==0);
sn.u.l.bn[i].n_bytes_in_buffer = OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]);
if (i < nrows-1) {
u_int32_t keylen;
char *key = le_key_and_len(les[i], &keylen);
sn.childkeys[i] = kv_pair_malloc(key, keylen, 0, 0);
}
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(keylens*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(toku_omt_size(dn->u.l.bn[i].buffer) > 0);
toku_omt_iterate(dn->u.l.bn[i].buffer, check_leafentries, &extra);
assert(dn->u.l.bn[i].optimized_for_upgrade == BRT_LAYOUT_VERSION);
// don't check soft_copy_is_up_to_date or seqinsert
assert(dn->u.l.bn[i].n_bytes_in_buffer == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(dn->u.l.bn[i].buffer));
last_i = extra.i;
}
assert(extra.i == nrows);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_destroy(&sn.u.l.bn[i].buffer);
}
for (int i = 0; i < nrows; ++i) {
toku_free(les[i]);
}
toku_free(sn.u.l.bn);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_many_rows(void) {
int r;
struct brtnode sn, *dn;
const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
memset(&sn, 0, sizeof sn);
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 1;
LEAFENTRY les[nrows];
{
int key = 0, val = 0;
for (int i = 0; i < nrows; ++i, key++, val++) {
les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val));
}
}
MALLOC_N(sn.n_children, sn.u.l.bn);
MALLOC_N(sn.n_children, sn.subtree_estimates);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
for (int i = 0; i < sn.n_children; ++i) {
sn.subtree_estimates[i].ndata = random() + (((long long) random())<<32);
sn.subtree_estimates[i].nkeys = random() + (((long long) random())<<32);
sn.subtree_estimates[i].dsize = random() + (((long long) random())<<32);
sn.subtree_estimates[i].exact = (BOOL)(random()%2 != 0);
r = toku_omt_create(&sn.u.l.bn[i].buffer); assert(r==0);
sn.u.l.bn[i].optimized_for_upgrade = BRT_LAYOUT_VERSION;
sn.u.l.bn[i].soft_copy_is_up_to_date = TRUE;
sn.u.l.bn[i].seqinsert = 0;
}
sn.u.l.bn[0].n_bytes_in_buffer = 0;
for (int i = 0; i < nrows; ++i) {
r = toku_omt_insert(sn.u.l.bn[0].buffer, les[i], omt_int_cmp, les[i], NULL); assert(r==0);
sn.u.l.bn[0].n_bytes_in_buffer += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]);
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(toku_omt_size(dn->u.l.bn[i].buffer) > 0);
toku_omt_iterate(dn->u.l.bn[i].buffer, check_leafentries, &extra);
assert(dn->u.l.bn[i].optimized_for_upgrade == BRT_LAYOUT_VERSION);
// don't check soft_copy_is_up_to_date or seqinsert
assert(dn->u.l.bn[i].n_bytes_in_buffer == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(dn->u.l.bn[i].buffer));
assert(dn->u.l.bn[i].n_bytes_in_buffer < 128*1024); // BN_MAX_SIZE, apt to change
last_i = extra.i;
}
assert(extra.i == nrows);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_destroy(&sn.u.l.bn[i].buffer);
}
for (int i = 0; i < nrows; ++i) {
toku_free(les[i]);
}
toku_free(sn.u.l.bn);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_large_rows(void) {
int r;
struct brtnode sn, *dn;
const size_t val_size = 512*1024;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
memset(&sn, 0, sizeof sn);
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 1;
LEAFENTRY les[7];
{
char key[8], val[val_size];
key[7] = '\0';
val[val_size-1] = '\0';
for (int i = 0; i < 7; ++i) {
char c = 'a' + i;
memset(key, c, 7);
memset(val, c, val_size-1);
les[i] = le_fastmalloc(key, 8, val, val_size);
}
}
MALLOC_N(sn.n_children, sn.u.l.bn);
MALLOC_N(sn.n_children, sn.subtree_estimates);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*8;
for (int i = 0; i < sn.n_children; ++i) {
sn.subtree_estimates[i].ndata = random() + (((long long) random())<<32);
sn.subtree_estimates[i].nkeys = random() + (((long long) random())<<32);
sn.subtree_estimates[i].dsize = random() + (((long long) random())<<32);
sn.subtree_estimates[i].exact = (BOOL)(random()%2 != 0);
r = toku_omt_create(&sn.u.l.bn[i].buffer); assert(r==0);
sn.u.l.bn[i].optimized_for_upgrade = BRT_LAYOUT_VERSION;
sn.u.l.bn[i].soft_copy_is_up_to_date = TRUE;
sn.u.l.bn[i].seqinsert = 0;
}
sn.u.l.bn[0].n_bytes_in_buffer = 0;
for (int i = 0; i < 7; ++i) {
r = toku_omt_insert(sn.u.l.bn[0].buffer, les[i], omt_cmp, les[i], NULL); assert(r==0);
sn.u.l.bn[0].n_bytes_in_buffer += OMT_ITEM_OVERHEAD + leafentry_disksize(les[i]);
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
const u_int32_t npartitions = dn->n_children;
assert(npartitions == 7);
assert(dn->totalchildkeylens==(8*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 7, .elts = les, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(toku_omt_size(dn->u.l.bn[i].buffer) > 0);
toku_omt_iterate(dn->u.l.bn[i].buffer, check_leafentries, &extra);
assert(dn->u.l.bn[i].optimized_for_upgrade == BRT_LAYOUT_VERSION);
// don't check soft_copy_is_up_to_date or seqinsert
assert(dn->u.l.bn[i].n_bytes_in_buffer == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(dn->u.l.bn[i].buffer));
last_i = extra.i;
}
assert(extra.i == 7);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_destroy(&sn.u.l.bn[i].buffer);
}
for (int i = 0; i < 7; ++i) {
toku_free(les[i]);
}
toku_free(sn.u.l.bn);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_empty_basement_nodes(void) {
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
memset(&sn, 0, sizeof sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 7;
LEAFENTRY elts[3];
elts[0] = le_malloc("a", "aval");
elts[1] = le_malloc("b", "bval");
elts[2] = le_malloc("x", "xval");
MALLOC_N(sn.n_children, sn.u.l.bn);
MALLOC_N(sn.n_children, sn.subtree_estimates);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0);
sn.childkeys[1] = kv_pair_malloc("a", 2, 0, 0);
sn.childkeys[2] = kv_pair_malloc("a", 2, 0, 0);
sn.childkeys[3] = kv_pair_malloc("b", 2, 0, 0);
sn.childkeys[4] = kv_pair_malloc("b", 2, 0, 0);
sn.childkeys[5] = kv_pair_malloc("x", 2, 0, 0);
sn.totalchildkeylens = (sn.n_children-1)*2;
for (int i = 0; i < sn.n_children; ++i) {
sn.subtree_estimates[i].ndata = random() + (((long long)random())<<32);
sn.subtree_estimates[i].nkeys = random() + (((long long)random())<<32);
sn.subtree_estimates[i].dsize = random() + (((long long)random())<<32);
sn.subtree_estimates[i].exact = (BOOL)(random()%2 != 0);
r = toku_omt_create(&sn.u.l.bn[i].buffer); assert(r==0);
sn.u.l.bn[i].optimized_for_upgrade = BRT_LAYOUT_VERSION;
sn.u.l.bn[i].soft_copy_is_up_to_date = TRUE;
sn.u.l.bn[i].seqinsert = 0;
}
r = toku_omt_insert(sn.u.l.bn[1].buffer, elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(sn.u.l.bn[3].buffer, elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(sn.u.l.bn[5].buffer, elts[2], omt_cmp, elts[2], NULL); assert(r==0);
sn.u.l.bn[0].n_bytes_in_buffer = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[0].buffer);
sn.u.l.bn[1].n_bytes_in_buffer = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[1].buffer);
sn.u.l.bn[2].n_bytes_in_buffer = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[2].buffer);
sn.u.l.bn[3].n_bytes_in_buffer = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[3].buffer);
sn.u.l.bn[4].n_bytes_in_buffer = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[4].buffer);
sn.u.l.bn[5].n_bytes_in_buffer = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[5].buffer);
sn.u.l.bn[6].n_bytes_in_buffer = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[6].buffer);
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children>0);
{
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(toku_omt_size(dn->u.l.bn[i].buffer) > 0);
toku_omt_iterate(dn->u.l.bn[i].buffer, check_leafentries, &extra);
assert(dn->u.l.bn[i].optimized_for_upgrade == BRT_LAYOUT_VERSION);
// don't check soft_copy_is_up_to_date or seqinsert
assert(dn->u.l.bn[i].n_bytes_in_buffer == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(dn->u.l.bn[i].buffer));
last_i = extra.i;
}
assert(extra.i == 3);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_destroy(&sn.u.l.bn[i].buffer);
}
for (int i = 0; i < 3; ++i) {
toku_free(elts[i]);
}
toku_free(sn.u.l.bn);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf(void) {
// struct brt source_brt;
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
memset(&sn, 0, sizeof sn);
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 2;
LEAFENTRY elts[3];
elts[0] = le_malloc("a", "aval");
elts[1] = le_malloc("b", "bval");
elts[2] = le_malloc("x", "xval");
MALLOC_N(2, sn.u.l.bn);
MALLOC_N(2, sn.subtree_estimates);
MALLOC_N(1, sn.childkeys);
sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0);
sn.totalchildkeylens = 2;
sn.subtree_estimates[0].ndata = random() + (((long long)random())<<32);
sn.subtree_estimates[1].ndata = random() + (((long long)random())<<32);
sn.subtree_estimates[0].nkeys = random() + (((long long)random())<<32);
sn.subtree_estimates[1].nkeys = random() + (((long long)random())<<32);
sn.subtree_estimates[0].dsize = random() + (((long long)random())<<32);
sn.subtree_estimates[1].dsize = random() + (((long long)random())<<32);
sn.subtree_estimates[0].exact = (BOOL)(random()%2 != 0);
sn.subtree_estimates[1].exact = (BOOL)(random()%2 != 0);
r = toku_omt_create(&sn.u.l.bn[0].buffer); assert(r==0);
r = toku_omt_create(&sn.u.l.bn[1].buffer); assert(r==0);
r = toku_omt_insert(sn.u.l.bn[0].buffer, elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(sn.u.l.bn[0].buffer, elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(sn.u.l.bn[1].buffer, elts[2], omt_cmp, elts[2], NULL); assert(r==0);
sn.u.l.bn[0].n_bytes_in_buffer = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[0].buffer);
sn.u.l.bn[1].n_bytes_in_buffer = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(sn.u.l.bn[1].buffer);
for (int i = 0; i < 2; ++i) {
sn.u.l.bn[i].optimized_for_upgrade = BRT_LAYOUT_VERSION;
sn.u.l.bn[i].soft_copy_is_up_to_date = TRUE;
sn.u.l.bn[i].seqinsert = 0;
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children>=1);
{
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
toku_omt_iterate(dn->u.l.bn[i].buffer, check_leafentries, &extra);
u_int32_t keylen;
if (i < npartitions-1) {
assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0);
}
assert(dn->u.l.bn[i].optimized_for_upgrade == BRT_LAYOUT_VERSION);
// don't check soft_copy_is_up_to_date or seqinsert
assert(dn->u.l.bn[i].n_bytes_in_buffer == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(dn->u.l.bn[i].buffer));
last_i = extra.i;
}
assert(extra.i == 3);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_destroy(&sn.u.l.bn[i].buffer);
}
for (int i = 0; i < 3; ++i) {
toku_free(elts[i]);
}
toku_free(sn.u.l.bn);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
static void
test_serialize_nonleaf(void) {
// struct brt source_brt;
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
// source_brt.fd=fd;
memset(&sn, 0, sizeof sn);
char *hello_string;
sn.max_msn_applied_to_node = (MSN) {TESTMSNVAL};
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 1;
sn.n_children = 2;
hello_string = toku_strdup("hello");
MALLOC_N(2, sn.u.n.childinfos);
MALLOC_N(2, sn.subtree_estimates);
MALLOC_N(1, sn.childkeys);
sn.childkeys[0] = kv_pair_malloc(hello_string, 6, 0, 0);
sn.totalchildkeylens = 6;
BNC_BLOCKNUM(&sn, 0).b = 30;
BNC_BLOCKNUM(&sn, 1).b = 35;
sn.subtree_estimates[0].ndata = random() + (((long long)random())<<32);
sn.subtree_estimates[1].ndata = random() + (((long long)random())<<32);
sn.subtree_estimates[0].nkeys = random() + (((long long)random())<<32);
sn.subtree_estimates[1].nkeys = random() + (((long long)random())<<32);
sn.subtree_estimates[0].dsize = random() + (((long long)random())<<32);
sn.subtree_estimates[1].dsize = random() + (((long long)random())<<32);
sn.subtree_estimates[0].exact = (BOOL)(random()%2 != 0);
sn.subtree_estimates[1].exact = (BOOL)(random()%2 != 0);
r = toku_fifo_create(&BNC_BUFFER(&sn,0)); assert(r==0);
r = toku_fifo_create(&BNC_BUFFER(&sn,1)); assert(r==0);
//Create XIDS
XIDS xids_0 = xids_get_root_xids();
XIDS xids_123;
XIDS xids_234;
r = xids_create_child(xids_0, &xids_123, (TXNID)123);
CKERR(r);
r = xids_create_child(xids_123, &xids_234, (TXNID)234);
CKERR(r);
r = toku_fifo_enq(BNC_BUFFER(&sn,0), "a", 2, "aval", 5, BRT_NONE, next_dummymsn(), xids_0); assert(r==0);
r = toku_fifo_enq(BNC_BUFFER(&sn,0), "b", 2, "bval", 5, BRT_NONE, next_dummymsn(), xids_123); assert(r==0);
r = toku_fifo_enq(BNC_BUFFER(&sn,1), "x", 2, "xval", 5, BRT_NONE, next_dummymsn(), xids_234); assert(r==0);
BNC_NBYTESINBUF(&sn, 0) = 2*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_0) + xids_get_serialize_size(xids_123);
BNC_NBYTESINBUF(&sn, 1) = 1*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_234);
sn.u.n.n_bytes_in_buffers = 3*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_0) + xids_get_serialize_size(xids_123) + xids_get_serialize_size(xids_234);
//Cleanup:
xids_destroy(&xids_0);
xids_destroy(&xids_123);
xids_destroy(&xids_234);
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
assert(r==0);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, &dn, brt_h);
assert(r==0);
assert(dn->thisnodename.b==20);
assert(dn->max_msn_applied_to_node.msn == TESTMSNVAL);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 1);
assert(dn->n_children==2);
assert(strcmp(kv_pair_key(dn->childkeys[0]), "hello")==0);
assert(toku_brt_pivot_key_len(dn->childkeys[0])==6);
assert(dn->totalchildkeylens==6);
assert(BNC_BLOCKNUM(dn,0).b==30);
assert(BNC_BLOCKNUM(dn,1).b==35);
toku_brtnode_free(&dn);
kv_pair_free(sn.childkeys[0]);
toku_free(hello_string);
toku_fifo_free(&BNC_BUFFER(&sn,0));
toku_fifo_free(&BNC_BUFFER(&sn,1));
toku_free(sn.u.n.childinfos);
toku_free(sn.childkeys);
toku_free(sn.subtree_estimates);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_free(brt_h);
toku_free(brt);
r = close(fd); assert(r != -1);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
toku_memory_check = 1;
test_serialize_leaf();
test_serialize_leaf_with_empty_basement_nodes();
test_serialize_leaf_with_large_rows();
test_serialize_leaf_with_many_rows();
test_serialize_leaf_with_large_pivots();
test_serialize_nonleaf();
return 0;
}