mariadb/sql/examples/ha_archive.cc

936 lines
27 KiB
C++
Raw Normal View History

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include <mysql_priv.h>
#ifdef HAVE_ARCHIVE_DB
#include "ha_archive.h"
#include <my_dir.h>
/*
First, if you want to understand storage engines you should look at
ha_example.cc and ha_example.h.
This example was written as a test case for a customer who needed
a storage engine without indexes that could compress data very well.
So, welcome to a completely compressed storage engine. This storage
engine only does inserts. No replace, deletes, or updates. All reads are
complete table scans. Compression is done through gzip (bzip compresses
better, but only marginally, if someone asks I could add support for
it too, but beaware that it costs a lot more in CPU time then gzip).
We keep a file pointer open for each instance of ha_archive for each read
but for writes we keep one open file handle just for that. We flush it
only if we have a read occur. gzip handles compressing lots of records
at once much better then doing lots of little records between writes.
It is possible to not lock on writes but this would then mean we couldn't
handle bulk inserts as well (that is if someone was trying to read at
the same time since we would want to flush).
A "meta" file is kept. All this file does is contain information on
the number of rows.
No attempts at durability are made. You can corrupt your data. A repair
method was added to repair the meta file that stores row information,
but if your data file gets corrupted I haven't solved that. I could
create a repair that would solve this, but do you want to take a
chance of loosing your data?
Locks are row level, and you will get a consistant read. Transactions
will be added later (they are not that hard to add at this
stage).
For performance as far as table scans go it is quite fast. I don't have
good numbers but locally it has out performed both Innodb and MyISAM. For
Innodb the question will be if the table can be fit into the buffer
pool. For MyISAM its a question of how much the file system caches the
MyISAM file. With enough free memory MyISAM is faster. Its only when the OS
doesn't have enough memory to cache entire table that archive turns out
to be any faster. For writes it is always a bit slower then MyISAM. It has no
internal limits though for row length.
Examples between MyISAM (packed) and Archive.
Table with 76695844 identical rows:
29680807 a_archive.ARZ
920350317 a.MYD
Table with 8991478 rows (all of Slashdot's comments):
1922964506 comment_archive.ARZ
2944970297 comment_text.MYD
TODO:
Add bzip optional support.
Allow users to set compression level.
Add truncate table command.
Implement versioning, should be easy.
Allow for errors, find a way to mark bad rows.
Talk to the gzip guys, come up with a writable format so that updates are doable
without switching to a block method.
Add optional feature so that rows can be flushed at interval (which will cause less
compression but may speed up ordered searches).
Checkpoint the meta file to allow for faster rebuilds.
Dirty open (right now the meta file is repaired if a crash occured).
Transactions.
Option to allow for dirty reads, this would lower the sync calls, which would make
inserts a lot faster, but would mean highly arbitrary reads.
-Brian
*/
/*
Notes on file formats.
The Meta file is layed out as:
check - Just an int of 254 to make sure that the the file we are opening was
never corrupted.
version - The current version of the file format.
rows - This is an unsigned long long which is the number of rows in the data
file.
check point - Reserved for future use
dirty - Status of the file, whether or not its values are the latest. This
flag is what causes a repair to occur
The data file:
check - Just an int of 254 to make sure that the the file we are opening was
never corrupted.
version - The current version of the file format.
data - The data is stored in a "row +blobs" format.
*/
/* Variables for archive share methods */
pthread_mutex_t archive_mutex;
static HASH archive_open_tables;
static int archive_init= 0;
/* The file extension */
#define ARZ ".ARZ" // The data file
#define ARN ".ARN" // Files used during an optimize call
#define ARM ".ARM" // Meta file
/*
uchar + uchar + ulonglong + ulonglong + uchar
*/
#define META_BUFFER_SIZE 19 // Size of the data used in the meta file
/*
uchar + uchar
*/
#define DATA_BUFFER_SIZE 2 // Size of the data used in the data file
#define ARCHIVE_CHECK_HEADER 254 // The number we use to determine corruption
/*
Used for hash table that tracks open tables.
*/
static byte* archive_get_key(ARCHIVE_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)))
{
*length=share->table_name_length;
return (byte*) share->table_name;
}
/*
This method reads the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::read_data_header(gzFile file_to_read)
{
uchar data_buffer[DATA_BUFFER_SIZE];
DBUG_ENTER("ha_archive::read_data_header");
if (gzrewind(file_to_read) == -1)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
if (gzread(file_to_read, data_buffer, DATA_BUFFER_SIZE) != DATA_BUFFER_SIZE)
DBUG_RETURN(errno ? errno : -1);
DBUG_PRINT("ha_archive::read_data_header", ("Check %u", data_buffer[0]));
DBUG_PRINT("ha_archive::read_data_header", ("Version %u", data_buffer[1]));
if ((data_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) &&
(data_buffer[1] != (uchar)ARCHIVE_VERSION))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
DBUG_RETURN(0);
}
/*
This method writes out the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::write_data_header(gzFile file_to_write)
{
uchar data_buffer[DATA_BUFFER_SIZE];
DBUG_ENTER("ha_archive::write_data_header");
data_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
data_buffer[1]= (uchar)ARCHIVE_VERSION;
if (gzwrite(file_to_write, &data_buffer, DATA_BUFFER_SIZE) !=
sizeof(DATA_BUFFER_SIZE))
goto error;
DBUG_PRINT("ha_archive::write_data_header", ("Check %u", (uint)data_buffer[0]));
DBUG_PRINT("ha_archive::write_data_header", ("Version %u", (uint)data_buffer[1]));
DBUG_RETURN(0);
error:
DBUG_RETURN(errno);
}
/*
This method reads the header of a meta file and returns whether or not it was successful.
*rows will contain the current number of rows in the data file upon success.
*/
int ha_archive::read_meta_file(File meta_file, ulonglong *rows)
{
uchar meta_buffer[META_BUFFER_SIZE];
ulonglong check_point;
DBUG_ENTER("ha_archive::read_meta_file");
VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
if (my_read(meta_file, (byte*)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
DBUG_RETURN(-1);
/*
Parse out the meta data, we ignore version at the moment
*/
*rows= uint8korr(meta_buffer + 2);
check_point= uint8korr(meta_buffer + 10);
DBUG_PRINT("ha_archive::read_meta_file", ("Check %d", (uint)meta_buffer[0]));
DBUG_PRINT("ha_archive::read_meta_file", ("Version %d", (uint)meta_buffer[1]));
DBUG_PRINT("ha_archive::read_meta_file", ("Rows %lld", *rows));
DBUG_PRINT("ha_archive::read_meta_file", ("Checkpoint %lld", check_point));
DBUG_PRINT("ha_archive::read_meta_file", ("Dirty %d", (int)meta_buffer[18]));
if ((meta_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) ||
((bool)meta_buffer[18] == TRUE))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
my_sync(meta_file, MYF(MY_WME));
DBUG_RETURN(0);
}
/*
This method writes out the header of a meta file and returns whether or not it was successful.
By setting dirty you say whether or not the file represents the actual state of the data file.
Upon ::open() we set to dirty, and upon ::close() we set to clean.
*/
int ha_archive::write_meta_file(File meta_file, ulonglong rows, bool dirty)
{
uchar meta_buffer[META_BUFFER_SIZE];
ulonglong check_point= 0; //Reserved for the future
DBUG_ENTER("ha_archive::write_meta_file");
meta_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
meta_buffer[1]= (uchar)ARCHIVE_VERSION;
int8store(meta_buffer + 2, rows);
int8store(meta_buffer + 10, check_point);
*(meta_buffer + 18)= (uchar)dirty;
DBUG_PRINT("ha_archive::write_meta_file", ("Check %d", (uint)ARCHIVE_CHECK_HEADER));
DBUG_PRINT("ha_archive::write_meta_file", ("Version %d", (uint)ARCHIVE_VERSION));
DBUG_PRINT("ha_archive::write_meta_file", ("Rows %llu", rows));
DBUG_PRINT("ha_archive::write_meta_file", ("Checkpoint %llu", check_point));
DBUG_PRINT("ha_archive::write_meta_file", ("Dirty %d", (uint)dirty));
VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
if (my_write(meta_file, (byte *)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
DBUG_RETURN(-1);
my_sync(meta_file, MYF(MY_WME));
DBUG_RETURN(0);
}
/*
We create the shared memory space that we will use for the open table.
See ha_example.cc for a longer description.
*/
ARCHIVE_SHARE *ha_archive::get_share(const char *table_name, TABLE *table)
{
ARCHIVE_SHARE *share;
char meta_file_name[FN_REFLEN];
uint length;
char *tmp_name;
if (!archive_init)
{
/* Hijack a mutex for init'ing the storage engine */
pthread_mutex_lock(&LOCK_mysql_create_db);
if (!archive_init)
{
VOID(pthread_mutex_init(&archive_mutex,MY_MUTEX_INIT_FAST));
if (hash_init(&archive_open_tables,system_charset_info,32,0,0,
2004-07-20 22:25:55 +02:00
(hash_get_key) archive_get_key,0,0))
{
pthread_mutex_unlock(&LOCK_mysql_create_db);
return NULL;
}
archive_init++;
}
pthread_mutex_unlock(&LOCK_mysql_create_db);
}
pthread_mutex_lock(&archive_mutex);
length=(uint) strlen(table_name);
if (!(share=(ARCHIVE_SHARE*) hash_search(&archive_open_tables,
(byte*) table_name,
length)))
{
2004-07-20 22:25:55 +02:00
if (!my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
&share, sizeof(*share),
&tmp_name, length+1,
2004-07-20 22:25:55 +02:00
NullS))
{
pthread_mutex_unlock(&archive_mutex);
return NULL;
}
share->use_count= 0;
share->table_name_length= length;
share->table_name= tmp_name;
share->crashed= FALSE;
fn_format(share->data_file_name,table_name,"",ARZ,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
fn_format(meta_file_name,table_name,"",ARM,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
strmov(share->table_name,table_name);
/*
We will use this lock for rows.
*/
VOID(pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST));
if ((share->meta_file= my_open(meta_file_name, O_RDWR, MYF(0))) == -1)
goto error;
/*
After we read, we set the file to dirty. When we close, we will do the
opposite. If the meta file will not open we assume it is crashed and
leave it up to the user to fix.
*/
if (read_meta_file(share->meta_file, &share->rows_recorded))
share->crashed= TRUE;
else
(void)write_meta_file(share->meta_file, share->rows_recorded, TRUE);
/*
It is expensive to open and close the data files and since you can't have
a gzip file that can be both read and written we keep a writer open
that is shared amoung all open tables.
*/
if ((share->archive_write= gzopen(share->data_file_name, "ab")) == NULL)
goto error2;
if (my_hash_insert(&archive_open_tables, (byte*) share))
goto error2;
thr_lock_init(&share->lock);
if (pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST))
goto error3;
}
share->use_count++;
pthread_mutex_unlock(&archive_mutex);
return share;
error3:
VOID(pthread_mutex_destroy(&share->mutex));
thr_lock_delete(&share->lock);
/* We close, but ignore errors since we already have errors */
(void)gzclose(share->archive_write);
error2:
my_close(share->meta_file,MYF(0));
error:
pthread_mutex_unlock(&archive_mutex);
my_free((gptr) share, MYF(0));
return NULL;
}
/*
Free the share.
See ha_example.cc for a description.
*/
int ha_archive::free_share(ARCHIVE_SHARE *share)
{
int rc= 0;
pthread_mutex_lock(&archive_mutex);
if (!--share->use_count)
{
hash_delete(&archive_open_tables, (byte*) share);
thr_lock_delete(&share->lock);
VOID(pthread_mutex_destroy(&share->mutex));
(void)write_meta_file(share->meta_file, share->rows_recorded, FALSE);
if (gzclose(share->archive_write) == Z_ERRNO)
rc= 1;
my_free((gptr) share, MYF(0));
}
pthread_mutex_unlock(&archive_mutex);
return rc;
}
/*
We just implement one additional file extension.
*/
const char **ha_archive::bas_ext() const
{ static const char *ext[]= { ARZ, ARN, ARM, NullS }; return ext; }
/*
When opening a file we:
Create/get our shared structure.
Init out lock.
We open the file we will read from.
*/
int ha_archive::open(const char *name, int mode, uint test_if_locked)
{
DBUG_ENTER("ha_archive::open");
if (!(share= get_share(name, table)))
DBUG_RETURN(-1);
thr_lock_data_init(&share->lock,&lock,NULL);
if ((archive= gzopen(share->data_file_name, "rb")) == NULL)
{
(void)free_share(share); //We void since we already have an error
DBUG_RETURN(errno ? errno : -1);
}
DBUG_RETURN(0);
}
/*
Closes the file.
SYNOPSIS
close();
IMPLEMENTATION:
We first close this storage engines file handle to the archive and
then remove our reference count to the table (and possibly free it
as well).
RETURN
0 ok
1 Error
*/
int ha_archive::close(void)
{
int rc= 0;
DBUG_ENTER("ha_archive::close");
/* First close stream */
if (gzclose(archive) == Z_ERRNO)
rc= 1;
/* then also close share */
rc|= free_share(share);
DBUG_RETURN(rc);
}
/*
We create our data file here. The format is pretty simple.
You can read about the format of the data file above.
Unlike other storage engines we do not "pack" our data. Since we
are about to do a general compression, packing would just be a waste of
CPU time. If the table has blobs they are written after the row in the order
of creation.
*/
int ha_archive::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
File create_file; // We use to create the datafile and the metafile
char name_buff[FN_REFLEN];
int error;
DBUG_ENTER("ha_archive::create");
if ((create_file= my_create(fn_format(name_buff,name,"",ARM,
MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
{
error= my_errno;
goto error;
}
write_meta_file(create_file, 0, FALSE);
my_close(create_file,MYF(0));
/*
We reuse name_buff since it is available.
*/
if ((create_file= my_create(fn_format(name_buff,name,"",ARZ,
MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
{
error= my_errno;
goto error;
}
if ((archive= gzdopen(create_file, "ab")) == NULL)
{
error= errno;
delete_table(name);
goto error;
}
if (write_data_header(archive))
{
gzclose(archive);
goto error2;
}
if (gzclose(archive))
goto error2;
DBUG_RETURN(0);
error2:
error= errno;
delete_table(name);
error:
/* Return error number, if we got one */
DBUG_RETURN(error ? error : -1);
}
/*
Look at ha_archive::open() for an explanation of the row format.
Here we just write out the row.
Wondering about start_bulk_insert()? We don't implement it for
archive since it optimizes for lots of writes. The only save
for implementing start_bulk_insert() is that we could skip
setting dirty to true each time.
*/
int ha_archive::write_row(byte * buf)
{
z_off_t written;
Field_blob **field;
DBUG_ENTER("ha_archive::write_row");
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
statistic_increment(table->in_use->status_var.ha_write_count, &LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
pthread_mutex_lock(&share->mutex);
written= gzwrite(share->archive_write, buf, table->reclength);
DBUG_PRINT("ha_archive::write_row", ("Wrote %d bytes expected %d", written, table->reclength));
if (!delayed_insert || !bulk_insert)
share->dirty= TRUE;
2004-07-20 22:25:55 +02:00
if (written != table->reclength)
goto error;
/*
We should probably mark the table as damagaged if the record is written
but the blob fails.
*/
for (field= table->blob_field ; *field ; field++)
{
char *ptr;
uint32 size= (*field)->get_length();
if (size)
{
(*field)->get_ptr(&ptr);
written= gzwrite(share->archive_write, ptr, (unsigned)size);
if (written != size)
goto error;
}
}
share->rows_recorded++;
pthread_mutex_unlock(&share->mutex);
DBUG_RETURN(0);
error:
pthread_mutex_unlock(&share->mutex);
DBUG_RETURN(errno ? errno : -1);
}
/*
All calls that need to scan the table start with this method. If we are told
that it is a table scan we rewind the file to the beginning, otherwise
we assume the position will be set.
*/
int ha_archive::rnd_init(bool scan)
{
DBUG_ENTER("ha_archive::rnd_init");
int read; // gzread() returns int, and we use this to check the header
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/* We rewind the file so that we can read from the beginning if scan */
if (scan)
{
scan_rows= share->rows_recorded;
records= 0;
/*
If dirty, we lock, and then reset/flush the data.
I found that just calling gzflush() doesn't always work.
*/
if (share->dirty == TRUE)
{
pthread_mutex_lock(&share->mutex);
if (share->dirty == TRUE)
{
gzflush(share->archive_write, Z_SYNC_FLUSH);
share->dirty= FALSE;
}
pthread_mutex_unlock(&share->mutex);
}
if (read_data_header(archive))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
}
DBUG_RETURN(0);
}
/*
This is the method that is used to read a row. It assumes that the row is
positioned where you want it.
*/
int ha_archive::get_row(gzFile file_to_read, byte *buf)
{
int read; // Bytes read, gzread() returns int
char *last;
size_t total_blob_length= 0;
Field_blob **field;
DBUG_ENTER("ha_archive::get_row");
read= gzread(file_to_read, buf, table->reclength);
DBUG_PRINT("ha_archive::get_row", ("Read %d bytes expected %d", read, table->reclength));
if (read == Z_STREAM_ERROR)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/* If we read nothing we are at the end of the file */
if (read == 0)
DBUG_RETURN(HA_ERR_END_OF_FILE);
/*
If the record is the wrong size, the file is probably damaged, unless
we are dealing with a delayed insert or a bulk insert.
*/
if ((ulong) read != table->reclength)
DBUG_RETURN(HA_ERR_END_OF_FILE);
/* Calculate blob length, we use this for our buffer */
for (field=table->blob_field; *field ; field++)
total_blob_length += (*field)->get_length();
/* Adjust our row buffer if we need be */
buffer.alloc(total_blob_length);
last= (char *)buffer.ptr();
/* Loop through our blobs and read them */
for (field=table->blob_field; *field ; field++)
{
size_t size= (*field)->get_length();
if (size)
{
read= gzread(file_to_read, last, size);
if ((size_t) read != size)
DBUG_RETURN(HA_ERR_END_OF_FILE);
(*field)->set_ptr(size, last);
last += size;
}
}
DBUG_RETURN(0);
}
/*
Called during ORDER BY. Its position is either from being called sequentially
or by having had ha_archive::rnd_pos() called before it is called.
*/
int ha_archive::rnd_next(byte *buf)
{
int rc;
DBUG_ENTER("ha_archive::rnd_next");
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
if (!scan_rows)
DBUG_RETURN(HA_ERR_END_OF_FILE);
scan_rows--;
statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
&LOCK_status);
current_position= gztell(archive);
rc= get_row(archive, buf);
if (rc != HA_ERR_END_OF_FILE)
records++;
DBUG_RETURN(rc);
}
/*
Thanks to the table flag HA_REC_NOT_IN_SEQ this will be called after
each call to ha_archive::rnd_next() if an ordering of the rows is
needed.
*/
void ha_archive::position(const byte *record)
{
DBUG_ENTER("ha_archive::position");
ha_store_ptr(ref, ref_length, current_position);
DBUG_VOID_RETURN;
}
/*
This is called after a table scan for each row if the results of the
scan need to be ordered. It will take *pos and use it to move the
cursor in the file so that the next row that is called is the
correctly ordered row.
*/
int ha_archive::rnd_pos(byte * buf, byte *pos)
{
DBUG_ENTER("ha_archive::rnd_pos");
statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
&LOCK_status);
current_position= ha_get_ptr(pos, ref_length);
z_off_t seek= gzseek(archive, current_position, SEEK_SET);
DBUG_RETURN(get_row(archive, buf));
}
/*
This method repairs the meta file. It does this by walking the datafile and
rewriting the meta file.
*/
int ha_archive::repair(THD* thd, HA_CHECK_OPT* check_opt)
{
int rc;
byte *buf;
ulonglong rows_recorded= 0;
gzFile rebuild_file; // Archive file we are working with
File meta_file; // Meta file we use
char data_file_name[FN_REFLEN];
DBUG_ENTER("ha_archive::repair");
/*
Open up the meta file to recreate it.
*/
fn_format(data_file_name, share->table_name, "", ARZ,
MY_REPLACE_EXT|MY_UNPACK_FILENAME);
if ((rebuild_file= gzopen(data_file_name, "rb")) == NULL)
DBUG_RETURN(errno ? errno : -1);
if (rc= read_data_header(rebuild_file))
goto error;
/*
We malloc up the buffer we will use for counting the rows.
I know, this malloc'ing memory but this should be a very
rare event.
*/
if (!(buf= (byte*) my_malloc(table->rec_buff_length > sizeof(ulonglong) +1 ?
table->rec_buff_length : sizeof(ulonglong) +1 ,
MYF(MY_WME))))
{
rc= HA_ERR_CRASHED_ON_USAGE;
goto error;
}
while (!(rc= get_row(rebuild_file, buf)))
rows_recorded++;
/*
Only if we reach the end of the file do we assume we can rewrite.
At this point we reset rc to a non-message state.
*/
if (rc == HA_ERR_END_OF_FILE)
{
fn_format(data_file_name,share->table_name,"",ARM,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
if ((meta_file= my_open(data_file_name, O_RDWR, MYF(0))) == -1)
{
rc= HA_ERR_CRASHED_ON_USAGE;
goto error;
}
(void)write_meta_file(meta_file, rows_recorded, TRUE);
rc= 0;
}
my_free((gptr) buf, MYF(0));
share->crashed= FALSE;
error:
gzclose(rebuild_file);
DBUG_RETURN(rc);
}
/*
The table can become fragmented if data was inserted, read, and then
inserted again. What we do is open up the file and recompress it completely.
*/
int ha_archive::optimize(THD* thd, HA_CHECK_OPT* check_opt)
{
DBUG_ENTER("ha_archive::optimize");
int read; // Bytes read, gzread() returns int
gzFile reader, writer;
char block[IO_SIZE];
char writer_filename[FN_REFLEN];
2004-12-17 01:27:52 +01:00
/* Closing will cause all data waiting to be flushed */
gzclose(share->archive_write);
share->archive_write= NULL;
/* Lets create a file to contain the new data */
fn_format(writer_filename, share->table_name, "", ARN,
MY_REPLACE_EXT|MY_UNPACK_FILENAME);
if ((reader= gzopen(share->data_file_name, "rb")) == NULL)
DBUG_RETURN(-1);
if ((writer= gzopen(writer_filename, "wb")) == NULL)
{
gzclose(reader);
DBUG_RETURN(-1);
}
while (read= gzread(reader, block, IO_SIZE))
gzwrite(writer, block, read);
gzclose(reader);
gzclose(writer);
my_rename(writer_filename,share->data_file_name,MYF(0));
DBUG_RETURN(0);
}
/*
Below is an example of how to setup row level locking.
*/
THR_LOCK_DATA **ha_archive::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type == TL_WRITE_DELAYED)
delayed_insert= TRUE;
else
delayed_insert= FALSE;
if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
{
/*
Here is where we get into the guts of a row level lock.
If TL_UNLOCK is set
If we are not doing a LOCK TABLE or DISCARD/IMPORT
TABLESPACE, then allow multiple writers
*/
if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
lock_type <= TL_WRITE) && !thd->in_lock_tables
&& !thd->tablespace_op)
lock_type = TL_WRITE_ALLOW_WRITE;
/*
In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
MySQL would use the lock TL_READ_NO_INSERT on t2, and that
would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
to t2. Convert the lock to a normal read lock to allow
concurrent inserts to t2.
*/
if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables)
lock_type = TL_READ;
lock.type=lock_type;
}
*to++= &lock;
return to;
}
/*
Hints for optimizer, see ha_tina for more information
*/
void ha_archive::info(uint flag)
{
DBUG_ENTER("ha_archive::info");
/*
This should be an accurate number now, though bulk and delayed inserts can
cause the number to be inaccurate.
*/
records= share->rows_recorded;
deleted= 0;
/* Costs quite a bit more to get all information */
if (flag & HA_STATUS_TIME)
{
MY_STAT file_stat; // Stat information for the data file
VOID(my_stat(share->data_file_name, &file_stat, MYF(MY_WME)));
2004-12-17 01:27:52 +01:00
mean_rec_length= table->reclength + buffer.alloced_length();
data_file_length= file_stat.st_size;
create_time= file_stat.st_ctime;
update_time= file_stat.st_mtime;
2004-12-17 01:27:52 +01:00
max_data_file_length= share->rows_recorded * mean_rec_length;
}
delete_length= 0;
index_file_length=0;
DBUG_VOID_RETURN;
}
/*
This method tells us that a bulk insert operation is about to occur. We set
a flag which will keep write_row from saying that its data is dirty. This in
turn will keep selects from causing a sync to occur.
Basically, yet another optimizations to keep compression working well.
*/
void ha_archive::start_bulk_insert(ha_rows rows)
{
DBUG_ENTER("ha_archive::start_bulk_insert");
bulk_insert= TRUE;
DBUG_VOID_RETURN;
}
/*
Other side of start_bulk_insert, is end_bulk_insert. Here we turn off the bulk insert
flag, and set the share dirty so that the next select will call sync for us.
*/
int ha_archive::end_bulk_insert()
{
DBUG_ENTER("ha_archive::end_bulk_insert");
bulk_insert= FALSE;
share->dirty= TRUE;
DBUG_RETURN(0);
}
#endif /* HAVE_ARCHIVE_DB */