mariadb/sql/tztime.cc

2781 lines
82 KiB
C++
Raw Normal View History

/* Copyright (C) 2004 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
2004-06-23 23:41:56 +02:00
Most of the following code and structures were derived from
public domain code from ftp://elsie.nci.nih.gov/pub
(We will refer to this code as to elsie-code further.)
*/
/*
We should not include mysql_priv.h in mysql_tzinfo_to_sql utility since
it creates unsolved link dependencies on some platforms.
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include <my_global.h>
#if !defined(TZINFO2SQL) && !defined(TESTTIME)
#include "mysql_priv.h"
#else
#include <my_time.h>
#include "tztime.h"
#include <my_sys.h>
#endif
#include "tzfile.h"
#include <m_string.h>
#include <my_dir.h>
/*
Now we don't use abbreviations in server but we will do this in future.
*/
#if defined(TZINFO2SQL) || defined(TESTTIME)
#define ABBR_ARE_USED
#else
#if !defined(DBUG_OFF)
/* Let use abbreviations for debug purposes */
#undef ABBR_ARE_USED
#define ABBR_ARE_USED
#endif /* !defined(DBUG_OFF) */
#endif /* defined(TZINFO2SQL) || defined(TESTTIME) */
/* Structure describing local time type (e.g. Moscow summer time (MSD)) */
typedef struct ttinfo
{
long tt_gmtoff; // Offset from UTC in seconds
uint tt_isdst; // Is daylight saving time or not. Used to set tm_isdst
#ifdef ABBR_ARE_USED
uint tt_abbrind; // Index of start of abbreviation for this time type.
#endif
2004-06-23 23:41:56 +02:00
/*
We don't use tt_ttisstd and tt_ttisgmt members of original elsie-code
struct since we don't support POSIX-style TZ descriptions in variables.
*/
} TRAN_TYPE_INFO;
/* Structure describing leap-second corrections. */
2004-06-23 23:41:56 +02:00
typedef struct lsinfo
{
my_time_t ls_trans; // Transition time
long ls_corr; // Correction to apply
} LS_INFO;
/*
2004-06-23 23:41:56 +02:00
Structure with information describing ranges of my_time_t shifted to local
time (my_time_t + offset). Used for local MYSQL_TIME -> my_time_t conversion.
See comments for TIME_to_gmt_sec() for more info.
*/
2004-06-23 23:41:56 +02:00
typedef struct revtinfo
{
long rt_offset; // Offset of local time from UTC in seconds
uint rt_type; // Type of period 0 - Normal period. 1 - Spring time-gap
} REVT_INFO;
#ifdef TZNAME_MAX
#define MY_TZNAME_MAX TZNAME_MAX
#endif
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX 255
#endif
/*
2004-06-23 23:41:56 +02:00
Structure which fully describes time zone which is
described in our db or in zoneinfo files.
*/
2004-06-23 23:41:56 +02:00
typedef struct st_time_zone_info
{
uint leapcnt; // Number of leap-second corrections
uint timecnt; // Number of transitions between time types
uint typecnt; // Number of local time types
uint charcnt; // Number of characters used for abbreviations
uint revcnt; // Number of transition descr. for TIME->my_time_t conversion
/* The following are dynamical arrays are allocated in MEM_ROOT */
my_time_t *ats; // Times of transitions between time types
uchar *types; // Local time types for transitions
TRAN_TYPE_INFO *ttis; // Local time types descriptions
#ifdef ABBR_ARE_USED
/* Storage for local time types abbreviations. They are stored as ASCIIZ */
char *chars;
#endif
2004-06-23 23:41:56 +02:00
/*
Leap seconds corrections descriptions, this array is shared by
all time zones who use leap seconds.
*/
LS_INFO *lsis;
2004-06-23 23:41:56 +02:00
/*
Starting points and descriptions of shifted my_time_t (my_time_t + offset)
ranges on which shifted my_time_t -> my_time_t mapping is linear or undefined.
Used for tm -> my_time_t conversion.
*/
my_time_t *revts;
REVT_INFO *revtis;
/*
Time type which is used for times smaller than first transition or if
there are no transitions at all.
*/
TRAN_TYPE_INFO *fallback_tti;
2004-06-23 23:41:56 +02:00
} TIME_ZONE_INFO;
static my_bool prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage);
#if defined(TZINFO2SQL) || defined(TESTTIME)
/*
Load time zone description from zoneinfo (TZinfo) file.
2004-06-23 23:41:56 +02:00
SYNOPSIS
tz_load()
name - path to zoneinfo file
2004-06-23 23:41:56 +02:00
sp - TIME_ZONE_INFO structure to fill
RETURN VALUES
0 - Ok
1 - Error
*/
static my_bool
tz_load(const char *name, TIME_ZONE_INFO *sp, MEM_ROOT *storage)
{
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
uchar *p;
int read_from_file;
uint i;
FILE *file;
2004-06-23 23:41:56 +02:00
if (!(file= my_fopen(name, O_RDONLY|O_BINARY, MYF(MY_WME))))
return 1;
{
union
{
struct tzhead tzhead;
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
uchar buf[sizeof(struct tzhead) + sizeof(my_time_t) * TZ_MAX_TIMES +
TZ_MAX_TIMES + sizeof(TRAN_TYPE_INFO) * TZ_MAX_TYPES +
#ifdef ABBR_ARE_USED
max(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1))) +
#endif
sizeof(LS_INFO) * TZ_MAX_LEAPS];
} u;
uint ttisstdcnt;
uint ttisgmtcnt;
char *tzinfo_buf;
2004-06-23 23:41:56 +02:00
read_from_file= my_fread(file, u.buf, sizeof(u.buf), MYF(MY_WME));
if (my_fclose(file, MYF(MY_WME)) != 0)
return 1;
if (read_from_file < (int)sizeof(struct tzhead))
return 1;
2004-06-23 23:41:56 +02:00
ttisstdcnt= int4net(u.tzhead.tzh_ttisgmtcnt);
ttisgmtcnt= int4net(u.tzhead.tzh_ttisstdcnt);
sp->leapcnt= int4net(u.tzhead.tzh_leapcnt);
sp->timecnt= int4net(u.tzhead.tzh_timecnt);
sp->typecnt= int4net(u.tzhead.tzh_typecnt);
sp->charcnt= int4net(u.tzhead.tzh_charcnt);
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
p= u.tzhead.tzh_charcnt + sizeof(u.tzhead.tzh_charcnt);
if (sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt == 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
return 1;
2004-06-23 23:41:56 +02:00
if ((uint)(read_from_file - (p - u.buf)) <
sp->timecnt * 4 + /* ats */
sp->timecnt + /* types */
sp->typecnt * (4 + 2) + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (4 + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
ttisgmtcnt) /* ttisgmts */
return 1;
if (!(tzinfo_buf= (char *)alloc_root(storage,
ALIGN_SIZE(sp->timecnt *
sizeof(my_time_t)) +
ALIGN_SIZE(sp->timecnt) +
ALIGN_SIZE(sp->typecnt *
sizeof(TRAN_TYPE_INFO)) +
#ifdef ABBR_ARE_USED
ALIGN_SIZE(sp->charcnt) +
#endif
sp->leapcnt * sizeof(LS_INFO))))
return 1;
2004-06-23 23:41:56 +02:00
sp->ats= (my_time_t *)tzinfo_buf;
tzinfo_buf+= ALIGN_SIZE(sp->timecnt * sizeof(my_time_t));
sp->types= (uchar *)tzinfo_buf;
tzinfo_buf+= ALIGN_SIZE(sp->timecnt);
sp->ttis= (TRAN_TYPE_INFO *)tzinfo_buf;
tzinfo_buf+= ALIGN_SIZE(sp->typecnt * sizeof(TRAN_TYPE_INFO));
#ifdef ABBR_ARE_USED
sp->chars= tzinfo_buf;
tzinfo_buf+= ALIGN_SIZE(sp->charcnt);
#endif
sp->lsis= (LS_INFO *)tzinfo_buf;
2004-06-23 23:41:56 +02:00
for (i= 0; i < sp->timecnt; i++, p+= 4)
sp->ats[i]= int4net(p);
2004-06-23 23:41:56 +02:00
for (i= 0; i < sp->timecnt; i++)
{
sp->types[i]= (uchar) *p++;
if (sp->types[i] >= sp->typecnt)
return 1;
}
for (i= 0; i < sp->typecnt; i++)
{
TRAN_TYPE_INFO * ttisp;
2004-06-23 23:41:56 +02:00
ttisp= &sp->ttis[i];
ttisp->tt_gmtoff= int4net(p);
p+= 4;
ttisp->tt_isdst= (uchar) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
return 1;
ttisp->tt_abbrind= (uchar) *p++;
if (ttisp->tt_abbrind > sp->charcnt)
return 1;
}
for (i= 0; i < sp->charcnt; i++)
sp->chars[i]= *p++;
sp->chars[i]= '\0'; /* ensure '\0' at end */
for (i= 0; i < sp->leapcnt; i++)
{
LS_INFO *lsisp;
2004-06-23 23:41:56 +02:00
lsisp= &sp->lsis[i];
lsisp->ls_trans= int4net(p);
p+= 4;
lsisp->ls_corr= int4net(p);
p+= 4;
}
2004-06-23 23:41:56 +02:00
/*
Since we don't support POSIX style TZ definitions in variables we
2004-06-23 23:41:56 +02:00
don't read further like glibc or elsie code.
*/
}
2004-06-23 23:41:56 +02:00
return prepare_tz_info(sp, storage);
}
#endif /* defined(TZINFO2SQL) || defined(TESTTIME) */
/*
2004-06-23 23:41:56 +02:00
Finish preparation of time zone description for use in TIME_to_gmt_sec()
and gmt_sec_to_TIME() functions.
2004-06-23 23:41:56 +02:00
SYNOPSIS
prepare_tz_info()
sp - pointer to time zone description
storage - pointer to MEM_ROOT where arrays for map allocated
2004-06-23 23:41:56 +02:00
DESCRIPTION
2004-06-23 23:41:56 +02:00
First task of this function is to find fallback time type which will
be used if there are no transitions or we have moment in time before
any transitions.
Second task is to build "shifted my_time_t" -> my_time_t map used in
MYSQL_TIME -> my_time_t conversion.
2004-06-23 23:41:56 +02:00
Note: See description of TIME_to_gmt_sec() function first.
In order to perform MYSQL_TIME -> my_time_t conversion we need to build table
2004-06-23 23:41:56 +02:00
which defines "shifted by tz offset and leap seconds my_time_t" ->
my_time_t function wich is almost the same (except ranges of ambiguity)
as reverse function to piecewise linear function used for my_time_t ->
"shifted my_time_t" conversion and which is also specified as table in
zoneinfo file or in our db (It is specified as start of time type ranges
2004-06-23 23:41:56 +02:00
and time type offsets). So basic idea is very simple - let us iterate
through my_time_t space from one point of discontinuity of my_time_t ->
"shifted my_time_t" function to another and build our approximation of
2004-06-23 23:41:56 +02:00
reverse function. (Actually we iterate through ranges on which
my_time_t -> "shifted my_time_t" is linear function).
2004-06-23 23:41:56 +02:00
RETURN VALUES
0 Ok
2004-06-23 23:41:56 +02:00
1 Error
*/
2004-06-23 23:41:56 +02:00
static my_bool
prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage)
{
my_time_t cur_t= MY_TIME_T_MIN;
my_time_t cur_l, end_t, end_l;
my_time_t cur_max_seen_l= MY_TIME_T_MIN;
long cur_offset, cur_corr, cur_off_and_corr;
uint next_trans_idx, next_leap_idx;
uint i;
2004-06-23 23:41:56 +02:00
/*
Temporary arrays where we will store tables. Needed because
we don't know table sizes ahead. (Well we can estimate their
upper bound but this will take extra space.)
*/
my_time_t revts[TZ_MAX_REV_RANGES];
REVT_INFO revtis[TZ_MAX_REV_RANGES];
LINT_INIT(end_l);
2004-06-23 23:41:56 +02:00
/*
Let us setup fallback time type which will be used if we have not any
transitions or if we have moment of time before first transition.
We will find first non-DST local time type and use it (or use first
local time type if all of them are DST types).
*/
for (i= 0; i < sp->typecnt && sp->ttis[i].tt_isdst; i++)
/* no-op */ ;
if (i == sp->typecnt)
i= 0;
sp->fallback_tti= &(sp->ttis[i]);
2004-06-23 23:41:56 +02:00
/*
Let us build shifted my_time_t -> my_time_t map.
*/
sp->revcnt= 0;
2004-06-23 23:41:56 +02:00
/* Let us find initial offset */
if (sp->timecnt == 0 || cur_t < sp->ats[0])
{
2004-06-23 23:41:56 +02:00
/*
If we have not any transitions or t is before first transition we are using
already found fallback time type which index is already in i.
*/
next_trans_idx= 0;
}
else
{
/* cur_t == sp->ats[0] so we found transition */
i= sp->types[0];
next_trans_idx= 1;
}
cur_offset= sp->ttis[i].tt_gmtoff;
/* let us find leap correction... unprobable, but... */
2004-06-23 23:41:56 +02:00
for (next_leap_idx= 0; next_leap_idx < sp->leapcnt &&
cur_t >= sp->lsis[next_leap_idx].ls_trans;
++next_leap_idx)
continue;
if (next_leap_idx > 0)
cur_corr= sp->lsis[next_leap_idx - 1].ls_corr;
else
cur_corr= 0;
/* Iterate trough t space */
while (sp->revcnt < TZ_MAX_REV_RANGES - 1)
{
cur_off_and_corr= cur_offset - cur_corr;
2004-06-23 23:41:56 +02:00
/*
We assuming that cur_t could be only overflowed downwards,
we also assume that end_t won't be overflowed in this case.
*/
2004-06-23 23:41:56 +02:00
if (cur_off_and_corr < 0 &&
cur_t < MY_TIME_T_MIN - cur_off_and_corr)
cur_t= MY_TIME_T_MIN - cur_off_and_corr;
2004-06-23 23:41:56 +02:00
cur_l= cur_t + cur_off_and_corr;
2004-06-23 23:41:56 +02:00
/*
Let us choose end_t as point before next time type change or leap
second correction.
*/
end_t= min((next_trans_idx < sp->timecnt) ? sp->ats[next_trans_idx] - 1:
MY_TIME_T_MAX,
2004-06-23 23:41:56 +02:00
(next_leap_idx < sp->leapcnt) ?
sp->lsis[next_leap_idx].ls_trans - 1: MY_TIME_T_MAX);
2004-06-23 23:41:56 +02:00
/*
again assuming that end_t can be overlowed only in positive side
we also assume that end_t won't be overflowed in this case.
*/
if (cur_off_and_corr > 0 &&
end_t > MY_TIME_T_MAX - cur_off_and_corr)
end_t= MY_TIME_T_MAX - cur_off_and_corr;
2004-06-23 23:41:56 +02:00
end_l= end_t + cur_off_and_corr;
2004-06-23 23:41:56 +02:00
if (end_l > cur_max_seen_l)
{
/* We want special handling in the case of first range */
if (cur_max_seen_l == MY_TIME_T_MIN)
{
revts[sp->revcnt]= cur_l;
revtis[sp->revcnt].rt_offset= cur_off_and_corr;
revtis[sp->revcnt].rt_type= 0;
sp->revcnt++;
cur_max_seen_l= end_l;
}
else
{
if (cur_l > cur_max_seen_l + 1)
{
/* We have a spring time-gap and we are not at the first range */
revts[sp->revcnt]= cur_max_seen_l + 1;
revtis[sp->revcnt].rt_offset= revtis[sp->revcnt-1].rt_offset;
revtis[sp->revcnt].rt_type= 1;
sp->revcnt++;
if (sp->revcnt == TZ_MAX_TIMES + TZ_MAX_LEAPS + 1)
break; /* That was too much */
cur_max_seen_l= cur_l - 1;
}
2004-06-23 23:41:56 +02:00
/* Assume here end_l > cur_max_seen_l (because end_l>=cur_l) */
revts[sp->revcnt]= cur_max_seen_l + 1;
revtis[sp->revcnt].rt_offset= cur_off_and_corr;
revtis[sp->revcnt].rt_type= 0;
sp->revcnt++;
cur_max_seen_l= end_l;
}
}
2004-06-23 23:41:56 +02:00
if (end_t == MY_TIME_T_MAX ||
((cur_off_and_corr > 0) &&
(end_t >= MY_TIME_T_MAX - cur_off_and_corr)))
/* end of t space */
break;
2004-06-23 23:41:56 +02:00
cur_t= end_t + 1;
2004-06-23 23:41:56 +02:00
/*
Let us find new offset and correction. Because of our choice of end_t
2004-06-23 23:41:56 +02:00
cur_t can only be point where new time type starts or/and leap
correction is performed.
*/
if (sp->timecnt != 0 && cur_t >= sp->ats[0]) /* else reuse old offset */
2004-06-23 23:41:56 +02:00
if (next_trans_idx < sp->timecnt &&
cur_t == sp->ats[next_trans_idx])
{
/* We are at offset point */
cur_offset= sp->ttis[sp->types[next_trans_idx]].tt_gmtoff;
++next_trans_idx;
}
2004-06-23 23:41:56 +02:00
if (next_leap_idx < sp->leapcnt &&
cur_t == sp->lsis[next_leap_idx].ls_trans)
{
/* we are at leap point */
cur_corr= sp->lsis[next_leap_idx].ls_corr;
++next_leap_idx;
}
}
2004-06-23 23:41:56 +02:00
/* check if we have had enough space */
if (sp->revcnt == TZ_MAX_REV_RANGES - 1)
return 1;
/* set maximum end_l as finisher */
revts[sp->revcnt]= end_l;
/* Allocate arrays of proper size in sp and copy result there */
if (!(sp->revts= (my_time_t *)alloc_root(storage,
sizeof(my_time_t) * (sp->revcnt + 1))) ||
!(sp->revtis= (REVT_INFO *)alloc_root(storage,
sizeof(REVT_INFO) * sp->revcnt)))
return 1;
memcpy(sp->revts, revts, sizeof(my_time_t) * (sp->revcnt + 1));
memcpy(sp->revtis, revtis, sizeof(REVT_INFO) * sp->revcnt);
2004-06-23 23:41:56 +02:00
return 0;
}
#if !defined(TZINFO2SQL)
static const uint mon_lengths[2][MONS_PER_YEAR]=
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const uint mon_starts[2][MONS_PER_YEAR]=
{
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 },
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 }
};
static const uint year_lengths[2]=
{
DAYS_PER_NYEAR, DAYS_PER_LYEAR
};
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
2004-06-23 23:41:56 +02:00
/*
Converts time from my_time_t representation (seconds in UTC since Epoch)
to broken down representation using given local time zone offset.
2004-06-23 23:41:56 +02:00
SYNOPSIS
sec_to_TIME()
tmp - pointer to structure for broken down representation
t - my_time_t value to be converted
offset - local time zone offset
2004-06-23 23:41:56 +02:00
DESCRIPTION
Convert my_time_t with offset to MYSQL_TIME struct. Differs from timesub
2004-06-23 23:41:56 +02:00
(from elsie code) because doesn't contain any leap correction and
TM_GMTOFF and is_dst setting and contains some MySQL specific
initialization. Funny but with removing of these we almost have
glibc's offtime function.
*/
static void
sec_to_TIME(MYSQL_TIME * tmp, my_time_t t, long offset)
{
long days;
long rem;
int y;
int yleap;
const uint *ip;
Fixed compiler warnings Fixed compile-pentium64 scripts Fixed wrong estimate of update_with_key_prefix in sql-bench Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1 Fixed unsafe define of uint4korr() Fixed that --extern works with mysql-test-run.pl Small trivial cleanups This also fixes a bug in counting number of rows that are updated when we have many simultanous queries Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc Split handle_one_connection() into reusable sub functions. Split create_new_thread() into reusable sub functions. Added thread_scheduler; Preliminary interface code for future thread_handling code. Use 'my_thread_id' for internal thread id's Make thr_alarm_kill() to depend on thread_id instead of thread Make thr_abort_locks_for_thread() depend on thread_id instead of thread In store_globals(), set my_thread_var->id to be thd->thread_id. Use my_thread_var->id as basis for my_thread_name() The above changes makes the connection we have between THD and threads more soft. Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions Fixed compiler warnings Fixed core dumps when running with --debug Removed setting of signal masks (was never used) Made event code call pthread_exit() (portability fix) Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called. Made handling of thread_id and thd->variables.pseudo_thread_id uniform. Removed one common 'not freed memory' warning from mysqltest Fixed a couple of usage of not initialized warnings (unlikely cases) Suppress compiler warnings from bdb and (for the moment) warnings from ndb
2007-02-23 13:13:55 +02:00
days= (long) (t / SECS_PER_DAY);
rem= (long) (t % SECS_PER_DAY);
2004-06-23 23:41:56 +02:00
/*
We do this as separate step after dividing t, because this
allows us handle times near my_time_t bounds without overflows.
*/
rem+= offset;
while (rem < 0)
{
rem+= SECS_PER_DAY;
days--;
}
while (rem >= SECS_PER_DAY)
{
rem -= SECS_PER_DAY;
days++;
}
tmp->hour= (uint)(rem / SECS_PER_HOUR);
rem= rem % SECS_PER_HOUR;
tmp->minute= (uint)(rem / SECS_PER_MIN);
/*
A positive leap second requires a special
representation. This uses "... ??:59:60" et seq.
*/
tmp->second= (uint)(rem % SECS_PER_MIN);
2004-06-23 23:41:56 +02:00
y= EPOCH_YEAR;
while (days < 0 || days >= (long)year_lengths[yleap= isleap(y)])
{
int newy;
2004-06-23 23:41:56 +02:00
newy= y + days / DAYS_PER_NYEAR;
if (days < 0)
newy--;
days-= (newy - y) * DAYS_PER_NYEAR +
LEAPS_THRU_END_OF(newy - 1) -
LEAPS_THRU_END_OF(y - 1);
y= newy;
}
tmp->year= y;
2004-06-23 23:41:56 +02:00
ip= mon_lengths[yleap];
for (tmp->month= 0; days >= (long) ip[tmp->month]; tmp->month++)
days= days - (long) ip[tmp->month];
tmp->month++;
tmp->day= (uint)(days + 1);
/* filling MySQL specific MYSQL_TIME members */
tmp->neg= 0; tmp->second_part= 0;
tmp->time_type= MYSQL_TIMESTAMP_DATETIME;
}
/*
Find time range wich contains given my_time_t value
2004-06-23 23:41:56 +02:00
SYNOPSIS
find_time_range()
2004-06-23 23:41:56 +02:00
t - my_time_t value for which we looking for range
range_boundaries - sorted array of range starts.
higher_bound - number of ranges
2004-06-23 23:41:56 +02:00
DESCRIPTION
2004-06-23 23:41:56 +02:00
Performs binary search for range which contains given my_time_t value.
It has sense if number of ranges is greater than zero and my_time_t value
is greater or equal than beginning of first range. It also assumes that
t belongs to some range specified or end of last is MY_TIME_T_MAX.
2004-06-23 23:41:56 +02:00
With this localtime_r on real data may takes less time than with linear
search (I've seen 30% speed up).
2004-06-23 23:41:56 +02:00
RETURN VALUE
Index of range to which t belongs
*/
2004-06-23 23:41:56 +02:00
static uint
find_time_range(my_time_t t, const my_time_t *range_boundaries,
uint higher_bound)
{
uint i, lower_bound= 0;
2004-06-23 23:41:56 +02:00
/*
Function will work without this assertion but result would be meaningless.
*/
DBUG_ASSERT(higher_bound > 0 && t >= range_boundaries[0]);
2004-06-23 23:41:56 +02:00
/*
Do binary search for minimal interval which contain t. We preserve:
2004-06-23 23:41:56 +02:00
range_boundaries[lower_bound] <= t < range_boundaries[higher_bound]
invariant and decrease this higher_bound - lower_bound gap twice
times on each step.
*/
2004-06-23 23:41:56 +02:00
while (higher_bound - lower_bound > 1)
{
i= (lower_bound + higher_bound) >> 1;
if (range_boundaries[i] <= t)
lower_bound= i;
else
higher_bound= i;
}
return lower_bound;
}
/*
2004-06-23 23:41:56 +02:00
Find local time transition for given my_time_t.
SYNOPSIS
find_transition_type()
t - my_time_t value to be converted
sp - pointer to struct with time zone description
2004-06-23 23:41:56 +02:00
RETURN VALUE
Pointer to structure in time zone description describing
local time type for given my_time_t.
*/
static
2004-06-23 23:41:56 +02:00
const TRAN_TYPE_INFO *
find_transition_type(my_time_t t, const TIME_ZONE_INFO *sp)
{
if (unlikely(sp->timecnt == 0 || t < sp->ats[0]))
{
2004-06-23 23:41:56 +02:00
/*
If we have not any transitions or t is before first transition let
us use fallback time type.
*/
return sp->fallback_tti;
}
2004-06-23 23:41:56 +02:00
/*
Do binary search for minimal interval between transitions which
2004-06-23 23:41:56 +02:00
contain t. With this localtime_r on real data may takes less
time than with linear search (I've seen 30% speed up).
*/
return &(sp->ttis[sp->types[find_time_range(t, sp->ats, sp->timecnt)]]);
}
/*
Converts time in my_time_t representation (seconds in UTC since Epoch) to
broken down MYSQL_TIME representation in local time zone.
2004-06-23 23:41:56 +02:00
SYNOPSIS
gmt_sec_to_TIME()
tmp - pointer to structure for broken down represenatation
sec_in_utc - my_time_t value to be converted
sp - pointer to struct with time zone description
TODO
2004-06-23 23:41:56 +02:00
We can improve this function by creating joined array of transitions and
leap corrections. This will require adding extra field to TRAN_TYPE_INFO
2004-06-23 23:41:56 +02:00
for storing number of "extra" seconds to minute occured due to correction
(60th and 61st second, look how we calculate them as "hit" in this
function).
2004-06-23 23:41:56 +02:00
Under realistic assumptions about frequency of transitions the same array
can be used fot MYSQL_TIME -> my_time_t conversion. For this we need to
2004-06-23 23:41:56 +02:00
implement tweaked binary search which will take into account that some
MYSQL_TIME has two matching my_time_t ranges and some of them have none.
*/
static void
gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t sec_in_utc, const TIME_ZONE_INFO *sp)
{
const TRAN_TYPE_INFO *ttisp;
const LS_INFO *lp;
long corr= 0;
int hit= 0;
int i;
2004-06-23 23:41:56 +02:00
/*
Find proper transition (and its local time type) for our sec_in_utc value.
2004-06-23 23:41:56 +02:00
Funny but again by separating this step in function we receive code
which very close to glibc's code. No wonder since they obviously use
the same base and all steps are sensible.
*/
ttisp= find_transition_type(sec_in_utc, sp);
2004-06-23 23:41:56 +02:00
/*
Let us find leap correction for our sec_in_utc value and number of extra
secs to add to this minute.
2004-06-23 23:41:56 +02:00
This loop is rarely used because most users will use time zones without
leap seconds, and even in case when we have such time zone there won't
be many iterations (we have about 22 corrections at this moment (2004)).
*/
for ( i= sp->leapcnt; i-- > 0; )
{
lp= &sp->lsis[i];
if (sec_in_utc >= lp->ls_trans)
{
if (sec_in_utc == lp->ls_trans)
{
hit= ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
if (hit)
{
while (i > 0 &&
sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1)
{
hit++;
i--;
}
}
}
corr= lp->ls_corr;
break;
}
}
2004-06-23 23:41:56 +02:00
sec_to_TIME(tmp, sec_in_utc, ttisp->tt_gmtoff - corr);
tmp->second+= hit;
}
/*
Converts local time in broken down representation to local
time zone analog of my_time_t represenation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
sec_since_epoch()
year, mon, mday, hour, min, sec - broken down representation.
2004-06-23 23:41:56 +02:00
DESCRIPTION
Converts time in broken down representation to my_time_t representation
ignoring time zone. Note that we cannot convert back some valid _local_
2004-06-23 23:41:56 +02:00
times near ends of my_time_t range because of my_time_t overflow. But we
ignore this fact now since MySQL will never pass such argument.
2004-06-23 23:41:56 +02:00
RETURN VALUE
Seconds since epoch time representation.
*/
2004-06-23 23:41:56 +02:00
static my_time_t
sec_since_epoch(int year, int mon, int mday, int hour, int min ,int sec)
{
/* Guard against my_time_t overflow(on system with 32 bit my_time_t) */
DBUG_ASSERT(!(year == TIMESTAMP_MAX_YEAR && mon == 1 && mday > 17));
#ifndef WE_WANT_TO_HANDLE_UNORMALIZED_DATES
2004-06-23 23:41:56 +02:00
/*
It turns out that only whenever month is normalized or unnormalized
plays role.
*/
DBUG_ASSERT(mon > 0 && mon < 13);
long days= year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR +
LEAPS_THRU_END_OF(year - 1) -
LEAPS_THRU_END_OF(EPOCH_YEAR - 1);
days+= mon_starts[isleap(year)][mon - 1];
#else
long norm_month= (mon - 1) % MONS_PER_YEAR;
long a_year= year + (mon - 1)/MONS_PER_YEAR - (int)(norm_month < 0);
long days= a_year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR +
LEAPS_THRU_END_OF(a_year - 1) -
LEAPS_THRU_END_OF(EPOCH_YEAR - 1);
days+= mon_starts[isleap(a_year)]
[norm_month + (norm_month < 0 ? MONS_PER_YEAR : 0)];
#endif
days+= mday - 1;
2004-06-23 23:41:56 +02:00
return ((days * HOURS_PER_DAY + hour) * MINS_PER_HOUR + min) *
SECS_PER_MIN + sec;
}
/*
Converts local time in broken down MYSQL_TIME representation to my_time_t
representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
TIME_to_gmt_sec()
t - pointer to structure for broken down represenatation
sp - pointer to struct with time zone description
2004-06-23 23:41:56 +02:00
in_dst_time_gap - pointer to bool which is set to true if datetime
value passed doesn't really exist (i.e. falls into
spring time-gap) and is not touched otherwise.
2004-06-23 23:41:56 +02:00
DESCRIPTION
2004-06-23 23:41:56 +02:00
This is mktime analog for MySQL. It is essentially different
from mktime (or hypotetical my_mktime) because:
2004-06-23 23:41:56 +02:00
- It has no idea about tm_isdst member so if it
has two answers it will give the smaller one
2004-06-23 23:41:56 +02:00
- If we are in spring time gap then it will return
beginning of the gap
2004-06-23 23:41:56 +02:00
- It can give wrong results near the ends of my_time_t due to
overflows, but we are safe since in MySQL we will never
call this function for such dates (its restriction for year
between 1970 and 2038 gives us several days of reserve).
2004-06-23 23:41:56 +02:00
- By default it doesn't support un-normalized input. But if
sec_since_epoch() function supports un-normalized dates
2004-06-23 23:41:56 +02:00
then this function should handle un-normalized input right,
altough it won't normalize structure TIME.
2004-06-23 23:41:56 +02:00
Traditional approach to problem of conversion from broken down
representation to time_t is iterative. Both elsie's and glibc
implementation try to guess what time_t value should correspond to
this broken-down value. They perform localtime_r function on their
guessed value and then calculate the difference and try to improve
their guess. Elsie's code guesses time_t value in bit by bit manner,
2004-06-23 23:41:56 +02:00
Glibc's code tries to add difference between broken-down value
corresponding to guess and target broken-down value to current guess.
2004-06-23 23:41:56 +02:00
It also uses caching of last found correction... So Glibc's approach
is essentially faster but introduces some undetermenism (in case if
is_dst member of broken-down representation (tm struct) is not known
and we have two possible answers).
2004-06-23 23:41:56 +02:00
We use completely different approach. It is better since it is both
faster than iterative implementations and fully determenistic. If you
look at my_time_t to MYSQL_TIME conversion then you'll find that it consist
of two steps:
The first is calculating shifted my_time_t value and the second - TIME
2004-06-23 23:41:56 +02:00
calculation from shifted my_time_t value (well it is a bit simplified
picture). The part in which we are interested in is my_time_t -> shifted
my_time_t conversion. It is piecewise linear function which is defined
2004-06-23 23:41:56 +02:00
by combination of transition times as break points and times offset
as changing function parameter. The possible inverse function for this
converison would be ambiguos but with MySQL's restrictions we can use
some function which is the same as inverse function on unambigiuos
ranges and coincides with one of branches of inverse function in
other ranges. Thus we just need to build table which will determine
this shifted my_time_t -> my_time_t conversion similar to existing
(my_time_t -> shifted my_time_t table). We do this in
prepare_tz_info function.
2004-06-23 23:41:56 +02:00
TODO
2004-06-23 23:41:56 +02:00
If we can even more improve this function. For doing this we will need to
build joined map of transitions and leap corrections for gmt_sec_to_TIME()
2004-06-23 23:41:56 +02:00
function (similar to revts/revtis). Under realistic assumptions about
frequency of transitions we can use the same array for TIME_to_gmt_sec().
We need to implement special version of binary search for this. Such step
will be beneficial to CPU cache since we will decrease data-set used for
conversion twice.
2004-06-23 23:41:56 +02:00
RETURN VALUE
2004-06-23 23:41:56 +02:00
Seconds in UTC since Epoch.
0 in case of error.
*/
static my_time_t
TIME_to_gmt_sec(const MYSQL_TIME *t, const TIME_ZONE_INFO *sp,
my_bool *in_dst_time_gap)
{
my_time_t local_t;
uint saved_seconds;
uint i;
int shift= 0;
DBUG_ENTER("TIME_to_gmt_sec");
2004-06-23 23:41:56 +02:00
if (!validate_timestamp_range(t))
2006-11-05 23:25:34 +03:00
DBUG_RETURN(0);
/* We need this for correct leap seconds handling */
if (t->second < SECS_PER_MIN)
saved_seconds= 0;
else
saved_seconds= t->second;
2004-06-23 23:41:56 +02:00
/*
NOTE: to convert full my_time_t range we do a shift of the
boundary dates here to avoid overflow of my_time_t.
We use alike approach in my_system_gmt_sec().
However in that function we also have to take into account
overflow near 0 on some platforms. That's because my_system_gmt_sec
uses localtime_r(), which doesn't work with negative values correctly
on platforms with unsigned time_t (QNX). Here we don't use localtime()
=> we negative values of local_t are ok.
*/
2004-06-23 23:41:56 +02:00
if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4)
{
/*
We will pass (t->day - shift) to sec_since_epoch(), and
want this value to be a positive number, so we shift
only dates > 4.01.2038 (to avoid owerflow).
*/
shift= 2;
}
local_t= sec_since_epoch(t->year, t->month, (t->day - shift),
2004-06-23 23:41:56 +02:00
t->hour, t->minute,
saved_seconds ? 0 : t->second);
/* We have at least one range */
DBUG_ASSERT(sp->revcnt >= 1);
if (local_t < sp->revts[0] || local_t > sp->revts[sp->revcnt])
{
2004-06-23 23:41:56 +02:00
/*
This means that source time can't be represented as my_time_t due to
limited my_time_t range.
*/
DBUG_RETURN(0);
}
/* binary search for our range */
i= find_time_range(local_t, sp->revts, sp->revcnt);
2004-06-23 23:41:56 +02:00
/*
As there are no offset switches at the end of TIMESTAMP range,
we could simply check for overflow here (and don't need to bother
about DST gaps etc)
*/
if (shift)
{
if (local_t > (my_time_t) (TIMESTAMP_MAX_VALUE - shift * SECS_PER_DAY +
sp->revtis[i].rt_offset - saved_seconds))
{
DBUG_RETURN(0); /* my_time_t overflow */
}
local_t+= shift * SECS_PER_DAY;
}
if (sp->revtis[i].rt_type)
{
2004-06-23 23:41:56 +02:00
/*
Oops! We are in spring time gap.
May be we should return error here?
Now we are returning my_time_t value corresponding to the
beginning of the gap.
*/
*in_dst_time_gap= 1;
local_t= sp->revts[i] - sp->revtis[i].rt_offset + saved_seconds;
}
else
local_t= local_t - sp->revtis[i].rt_offset + saved_seconds;
/* check for TIMESTAMP_MAX_VALUE was already done above */
if (local_t < TIMESTAMP_MIN_VALUE)
local_t= 0;
DBUG_RETURN(local_t);
}
/*
2004-06-23 23:41:56 +02:00
End of elsie derived code.
*/
#endif /* !defined(TZINFO2SQL) */
#if !defined(TESTTIME) && !defined(TZINFO2SQL)
/*
String with names of SYSTEM time zone.
*/
static const String tz_SYSTEM_name("SYSTEM", 6, &my_charset_latin1);
/*
2004-06-23 23:41:56 +02:00
Instance of this class represents local time zone used on this system
(specified by TZ environment variable or via any other system mechanism).
2004-06-23 23:41:56 +02:00
It uses system functions (localtime_r, my_system_gmt_sec) for conversion
and is always available. Because of this it is used by default - if there
were no explicit time zone specified. On the other hand because of this
2004-06-23 23:41:56 +02:00
conversion methods provided by this class is significantly slower and
possibly less multi-threaded-friendly than corresponding Time_zone_db
methods so the latter should be preffered there it is possible.
*/
2004-06-23 23:41:56 +02:00
class Time_zone_system : public Time_zone
{
public:
Time_zone_system() {} /* Remove gcc warning */
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t,
my_bool *in_dst_time_gap) const;
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const;
virtual const String * get_name() const;
};
/*
Converts local time in system time zone in MYSQL_TIME representation
to its my_time_t representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
TIME_to_gmt_sec()
t - pointer to MYSQL_TIME structure with local time in
broken-down representation.
2004-06-23 23:41:56 +02:00
in_dst_time_gap - pointer to bool which is set to true if datetime
value passed doesn't really exist (i.e. falls into
spring time-gap) and is not touched otherwise.
DESCRIPTION
This method uses system function (localtime_r()) for conversion
local time in system time zone in MYSQL_TIME structure to its my_time_t
representation. Unlike the same function for Time_zone_db class
2004-06-23 23:41:56 +02:00
it it won't handle unnormalized input properly. Still it will
return lowest possible my_time_t in case of ambiguity or if we
provide time corresponding to the time-gap.
2004-06-23 23:41:56 +02:00
You should call my_init_time() function before using this function.
RETURN VALUE
Corresponding my_time_t value or 0 in case of error
*/
2004-06-23 23:41:56 +02:00
my_time_t
Time_zone_system::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const
{
long not_used;
return my_system_gmt_sec(t, &not_used, in_dst_time_gap);
}
/*
Converts time from UTC seconds since Epoch (my_time_t) representation
to system local time zone broken-down representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
gmt_sec_to_TIME()
tmp - pointer to MYSQL_TIME structure to fill-in
2004-06-23 23:41:56 +02:00
t - my_time_t value to be converted
2004-06-23 23:41:56 +02:00
NOTE
We assume that value passed to this function will fit into time_t range
2004-06-23 23:41:56 +02:00
supported by localtime_r. This conversion is putting restriction on
TIMESTAMP range in MySQL. If we can get rid of SYSTEM time zone at least
2004-06-23 23:41:56 +02:00
for interaction with client then we can extend TIMESTAMP range down to
the 1902 easily.
*/
2004-06-23 23:41:56 +02:00
void
Time_zone_system::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const
{
struct tm tmp_tm;
time_t tmp_t= (time_t)t;
localtime_r(&tmp_t, &tmp_tm);
localtime_to_TIME(tmp, &tmp_tm);
tmp->time_type= MYSQL_TIMESTAMP_DATETIME;
adjust_leap_second(tmp);
}
/*
Get name of time zone
2004-06-23 23:41:56 +02:00
SYNOPSIS
get_name()
RETURN VALUE
Name of time zone as String
*/
const String *
Time_zone_system::get_name() const
{
return &tz_SYSTEM_name;
}
/*
2004-06-23 23:41:56 +02:00
Instance of this class represents UTC time zone. It uses system gmtime_r
function for conversions and is always available. It is used only for
my_time_t -> MYSQL_TIME conversions in various UTC_... functions, it is not
intended for MYSQL_TIME -> my_time_t conversions and shouldn't be exposed to user.
*/
2004-06-23 23:41:56 +02:00
class Time_zone_utc : public Time_zone
{
public:
Time_zone_utc() {} /* Remove gcc warning */
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t,
my_bool *in_dst_time_gap) const;
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const;
virtual const String * get_name() const;
};
/*
Convert UTC time from MYSQL_TIME representation to its my_time_t representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
TIME_to_gmt_sec()
t - pointer to MYSQL_TIME structure with local time
in broken-down representation.
2004-06-23 23:41:56 +02:00
in_dst_time_gap - pointer to bool which is set to true if datetime
value passed doesn't really exist (i.e. falls into
spring time-gap) and is not touched otherwise.
DESCRIPTION
2004-06-23 23:41:56 +02:00
Since Time_zone_utc is used only internally for my_time_t -> TIME
conversions, this function of Time_zone interface is not implemented for
this class and should not be called.
RETURN VALUE
0
*/
2004-06-23 23:41:56 +02:00
my_time_t
Time_zone_utc::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const
{
/* Should be never called */
DBUG_ASSERT(0);
return 0;
}
2004-06-23 23:41:56 +02:00
/*
Converts time from UTC seconds since Epoch (my_time_t) representation
to broken-down representation (also in UTC).
2004-06-23 23:41:56 +02:00
SYNOPSIS
gmt_sec_to_TIME()
tmp - pointer to MYSQL_TIME structure to fill-in
2004-06-23 23:41:56 +02:00
t - my_time_t value to be converted
NOTE
See note for apropriate Time_zone_system method.
*/
2004-06-23 23:41:56 +02:00
void
Time_zone_utc::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const
{
struct tm tmp_tm;
time_t tmp_t= (time_t)t;
gmtime_r(&tmp_t, &tmp_tm);
localtime_to_TIME(tmp, &tmp_tm);
tmp->time_type= MYSQL_TIMESTAMP_DATETIME;
adjust_leap_second(tmp);
}
/*
Get name of time zone
2004-06-23 23:41:56 +02:00
SYNOPSIS
get_name()
DESCRIPTION
2004-06-23 23:41:56 +02:00
Since Time_zone_utc is used only internally by SQL's UTC_* functions it
is not accessible directly, and hence this function of Time_zone
interface is not implemented for this class and should not be called.
2004-06-23 23:41:56 +02:00
RETURN VALUE
0
*/
const String *
Time_zone_utc::get_name() const
{
/* Should be never called */
DBUG_ASSERT(0);
return 0;
}
/*
2004-06-23 23:41:56 +02:00
Instance of this class represents some time zone which is
described in mysql.time_zone family of tables.
*/
2004-06-23 23:41:56 +02:00
class Time_zone_db : public Time_zone
{
public:
Time_zone_db(TIME_ZONE_INFO *tz_info_arg, const String * tz_name_arg);
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t,
my_bool *in_dst_time_gap) const;
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const;
virtual const String * get_name() const;
private:
TIME_ZONE_INFO *tz_info;
const String *tz_name;
};
/*
2004-06-23 23:41:56 +02:00
Initializes object representing time zone described by mysql.time_zone
tables.
2004-06-23 23:41:56 +02:00
SYNOPSIS
Time_zone_db()
2004-06-23 23:41:56 +02:00
tz_info_arg - pointer to TIME_ZONE_INFO structure which is filled
according to db or other time zone description
(for example by my_tz_init()).
2004-06-23 23:41:56 +02:00
Several Time_zone_db instances can share one
TIME_ZONE_INFO structure.
tz_name_arg - name of time zone.
*/
2004-06-23 23:41:56 +02:00
Time_zone_db::Time_zone_db(TIME_ZONE_INFO *tz_info_arg,
const String *tz_name_arg):
tz_info(tz_info_arg), tz_name(tz_name_arg)
{
}
/*
2004-06-23 23:41:56 +02:00
Converts local time in time zone described from TIME
representation to its my_time_t representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
TIME_to_gmt_sec()
t - pointer to MYSQL_TIME structure with local time
in broken-down representation.
2004-06-23 23:41:56 +02:00
in_dst_time_gap - pointer to bool which is set to true if datetime
value passed doesn't really exist (i.e. falls into
spring time-gap) and is not touched otherwise.
DESCRIPTION
2004-06-23 23:41:56 +02:00
Please see ::TIME_to_gmt_sec for function description and
parameter restrictions.
RETURN VALUE
Corresponding my_time_t value or 0 in case of error
*/
2004-06-23 23:41:56 +02:00
my_time_t
Time_zone_db::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const
{
return ::TIME_to_gmt_sec(t, tz_info, in_dst_time_gap);
}
/*
Converts time from UTC seconds since Epoch (my_time_t) representation
to local time zone described in broken-down representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
gmt_sec_to_TIME()
tmp - pointer to MYSQL_TIME structure to fill-in
2004-06-23 23:41:56 +02:00
t - my_time_t value to be converted
*/
2004-06-23 23:41:56 +02:00
void
Time_zone_db::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const
{
::gmt_sec_to_TIME(tmp, t, tz_info);
adjust_leap_second(tmp);
}
/*
Get name of time zone
2004-06-23 23:41:56 +02:00
SYNOPSIS
get_name()
RETURN VALUE
Name of time zone as ASCIIZ-string
*/
const String *
Time_zone_db::get_name() const
{
return tz_name;
}
/*
2004-06-23 23:41:56 +02:00
Instance of this class represents time zone which
was specified as offset from UTC.
*/
2004-06-23 23:41:56 +02:00
class Time_zone_offset : public Time_zone
{
public:
Time_zone_offset(long tz_offset_arg);
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t,
my_bool *in_dst_time_gap) const;
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const;
virtual const String * get_name() const;
2004-06-23 23:41:56 +02:00
/*
This have to be public because we want to be able to access it from
my_offset_tzs_get_key() function
*/
long offset;
private:
/* Extra reserve because of snprintf */
char name_buff[7+16];
String name;
};
/*
Initializes object representing time zone described by its offset from UTC.
2004-06-23 23:41:56 +02:00
SYNOPSIS
Time_zone_offset()
2004-06-23 23:41:56 +02:00
tz_offset_arg - offset from UTC in seconds.
Positive for direction to east.
*/
Time_zone_offset::Time_zone_offset(long tz_offset_arg):
offset(tz_offset_arg)
{
uint hours= abs((int)(offset / SECS_PER_HOUR));
uint minutes= abs((int)(offset % SECS_PER_HOUR / SECS_PER_MIN));
2004-06-23 23:41:56 +02:00
ulong length= my_snprintf(name_buff, sizeof(name_buff), "%s%02d:%02d",
(offset>=0) ? "+" : "-", hours, minutes);
name.set(name_buff, length, &my_charset_latin1);
}
/*
Converts local time in time zone described as offset from UTC
from MYSQL_TIME representation to its my_time_t representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
TIME_to_gmt_sec()
t - pointer to MYSQL_TIME structure with local time
in broken-down representation.
2004-06-23 23:41:56 +02:00
in_dst_time_gap - pointer to bool which should be set to true if
datetime value passed doesn't really exist
(i.e. falls into spring time-gap) and is not
touched otherwise.
It is not really used in this class.
RETURN VALUE
Corresponding my_time_t value or 0 in case of error
*/
2004-06-23 23:41:56 +02:00
my_time_t
Time_zone_offset::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const
{
my_time_t local_t;
int shift= 0;
/*
Check timestamp range.we have to do this as calling function relies on
us to make all validation checks here.
*/
if (!validate_timestamp_range(t))
return 0;
/*
Do a temporary shift of the boundary dates to avoid
overflow of my_time_t if the time value is near it's
maximum range
*/
if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4)
shift= 2;
local_t= sec_since_epoch(t->year, t->month, (t->day - shift),
t->hour, t->minute, t->second) -
offset;
if (shift)
{
/* Add back the shifted time */
local_t+= shift * SECS_PER_DAY;
}
if (local_t >= TIMESTAMP_MIN_VALUE && local_t <= TIMESTAMP_MAX_VALUE)
return local_t;
/* range error*/
return 0;
}
/*
Converts time from UTC seconds since Epoch (my_time_t) representation
2004-06-23 23:41:56 +02:00
to local time zone described as offset from UTC and in broken-down
representation.
2004-06-23 23:41:56 +02:00
SYNOPSIS
gmt_sec_to_TIME()
tmp - pointer to MYSQL_TIME structure to fill-in
2004-06-23 23:41:56 +02:00
t - my_time_t value to be converted
*/
2004-06-23 23:41:56 +02:00
void
Time_zone_offset::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const
{
sec_to_TIME(tmp, t, offset);
}
/*
Get name of time zone
2004-06-23 23:41:56 +02:00
SYNOPSIS
get_name()
RETURN VALUE
Name of time zone as pointer to String object
*/
const String *
Time_zone_offset::get_name() const
{
return &name;
}
static Time_zone_utc tz_UTC;
static Time_zone_system tz_SYSTEM;
static Time_zone_offset tz_OFFSET0(0);
Time_zone *my_tz_OFFSET0= &tz_OFFSET0;
Time_zone *my_tz_UTC= &tz_UTC;
Time_zone *my_tz_SYSTEM= &tz_SYSTEM;
static HASH tz_names;
static HASH offset_tzs;
static MEM_ROOT tz_storage;
2004-06-23 23:41:56 +02:00
/*
These mutex protects offset_tzs and tz_storage.
2004-06-23 23:41:56 +02:00
These protection needed only when we are trying to set
time zone which is specified as offset, and searching for existing
time zone in offset_tzs or creating if it didn't existed before in
tz_storage. So contention is low.
*/
static pthread_mutex_t tz_LOCK;
static bool tz_inited= 0;
/*
This two static variables are inteded for holding info about leap seconds
shared by all time zones.
*/
static uint tz_leapcnt= 0;
static LS_INFO *tz_lsis= 0;
/*
Shows whenever we have found time zone tables during start-up.
Used for avoiding of putting those tables to global table list
for queries that use time zone info.
*/
static bool time_zone_tables_exist= 1;
2004-06-23 23:41:56 +02:00
/*
Names of tables (with their lengths) that are needed
for dynamical loading of time zone descriptions.
*/
static const LEX_STRING tz_tables_names[MY_TZ_TABLES_COUNT]=
{
{ C_STRING_WITH_LEN("time_zone_name")},
{ C_STRING_WITH_LEN("time_zone")},
{ C_STRING_WITH_LEN("time_zone_transition_type")},
{ C_STRING_WITH_LEN("time_zone_transition")}
};
/* Name of database to which those tables belong. */
static const LEX_STRING tz_tables_db_name= { C_STRING_WITH_LEN("mysql")};
class Tz_names_entry: public Sql_alloc
{
public:
String name;
Time_zone *tz;
};
/*
2004-06-23 23:41:56 +02:00
We are going to call both of these functions from C code so
they should obey C calling conventions.
*/
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
extern "C" uchar *
my_tz_names_get_key(Tz_names_entry *entry, size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= entry->name.length();
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
return (uchar*) entry->name.ptr();
}
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
extern "C" uchar *
my_offset_tzs_get_key(Time_zone_offset *entry,
size_t *length,
my_bool not_used __attribute__((unused)))
{
*length= sizeof(long);
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
return (uchar*) &entry->offset;
}
/*
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
Prepare table list with time zone related tables from preallocated array.
SYNOPSIS
tz_init_table_list()
tz_tabs - pointer to preallocated array of MY_TZ_TABLES_COUNT
TABLE_LIST objects
DESCRIPTION
This function prepares list of TABLE_LIST objects which can be used
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
for opening of time zone tables from preallocated array.
*/
static void
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
tz_init_table_list(TABLE_LIST *tz_tabs)
{
bzero(tz_tabs, sizeof(TABLE_LIST) * MY_TZ_TABLES_COUNT);
for (int i= 0; i < MY_TZ_TABLES_COUNT; i++)
{
tz_tabs[i].alias= tz_tabs[i].table_name= tz_tables_names[i].str;
tz_tabs[i].table_name_length= tz_tables_names[i].length;
tz_tabs[i].db= tz_tables_db_name.str;
tz_tabs[i].db_length= tz_tables_db_name.length;
tz_tabs[i].lock_type= TL_READ;
if (i != MY_TZ_TABLES_COUNT - 1)
tz_tabs[i].next_global= tz_tabs[i].next_local= &tz_tabs[i+1];
if (i != 0)
tz_tabs[i].prev_global= &tz_tabs[i-1].next_global;
}
}
/*
Initialize time zone support infrastructure.
SYNOPSIS
my_tz_init()
thd - current thread object
default_tzname - default time zone or 0 if none.
bootstrap - indicates whenever we are in bootstrap mode
2004-06-23 23:41:56 +02:00
DESCRIPTION
This function will init memory structures needed for time zone support,
it will register mandatory SYSTEM time zone in them. It will try to open
mysql.time_zone* tables and load information about default time zone and
information which further will be shared among all time zones loaded.
If system tables with time zone descriptions don't exist it won't fail
(unless default_tzname is time zone from tables). If bootstrap parameter
is true then this routine assumes that we are in bootstrap mode and won't
load time zone descriptions unless someone specifies default time zone
which is supposedly stored in those tables.
It'll also set default time zone if it is specified.
2004-06-23 23:41:56 +02:00
RETURN VALUES
0 - ok
2004-06-23 23:41:56 +02:00
1 - Error
*/
2004-06-23 23:41:56 +02:00
my_bool
my_tz_init(THD *org_thd, const char *default_tzname, my_bool bootstrap)
{
THD *thd;
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
TABLE_LIST tz_tables[1+MY_TZ_TABLES_COUNT];
Open_tables_state open_tables_state_backup;
TABLE *table;
Tz_names_entry *tmp_tzname;
my_bool return_val= 1;
A fix and a test case for Bug#19022 "Memory bug when switching db during trigger execution" Bug#17199 "Problem when view calls function from another database." Bug#18444 "Fully qualified stored function names don't work correctly in SELECT statements" Documentation note: this patch introduces a change in behaviour of prepared statements. This patch adds a few new invariants with regard to how THD::db should be used. These invariants should be preserved in future: - one should never refer to THD::db by pointer and always make a deep copy (strmake, strdup) - one should never compare two databases by pointer, but use strncmp or my_strncasecmp - TABLE_LIST object table->db should be always initialized in the parser or by creator of the object. For prepared statements it means that if the current database is changed after a statement is prepared, the database that was current at prepare remains active. This also means that you can not prepare a statement that implicitly refers to the current database if the latter is not set. This is not documented, and therefore needs documentation. This is NOT a change in behavior for almost all SQL statements except: - ALTER TABLE t1 RENAME t2 - OPTIMIZE TABLE t1 - ANALYZE TABLE t1 - TRUNCATE TABLE t1 -- until this patch t1 or t2 could be evaluated at the first execution of prepared statement. CURRENT_DATABASE() still works OK and is evaluated at every execution of prepared statement. Note, that in stored routines this is not an issue as the default database is the database of the stored procedure and "use" statement is prohibited in stored routines. This patch makes obsolete the use of check_db_used (it was never used in the old code too) and all other places that check for table->db and assign it from THD::db if it's NULL, except the parser. How this patch was created: THD::{db,db_length} were replaced with a LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were manually checked and: - if the place uses thd->db by pointer, it was fixed to make a deep copy - if a place compared two db pointers, it was fixed to compare them by value (via strcmp/my_strcasecmp, whatever was approproate) Then this intermediate patch was used to write a smaller patch that does the same thing but without a rename. TODO in 5.1: - remove check_db_used - deploy THD::set_db in mysql_change_db See also comments to individual files.
2006-06-27 00:47:52 +04:00
char db[]= "mysql";
int res;
DBUG_ENTER("my_tz_init");
/*
To be able to run this from boot, we allocate a temporary THD
*/
if (!(thd= new THD))
DBUG_RETURN(1);
thd->thread_stack= (char*) &thd;
thd->store_globals();
lex_start(thd);
/* Init all memory structures that require explicit destruction */
if (hash_init(&tz_names, &my_charset_latin1, 20,
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
0, 0, (hash_get_key) my_tz_names_get_key, 0, 0))
{
sql_print_error("Fatal error: OOM while initializing time zones");
goto end;
}
if (hash_init(&offset_tzs, &my_charset_latin1, 26, 0, 0,
(hash_get_key)my_offset_tzs_get_key, 0, 0))
{
sql_print_error("Fatal error: OOM while initializing time zones");
hash_free(&tz_names);
goto end;
}
init_alloc_root(&tz_storage, 32 * 1024, 0);
VOID(pthread_mutex_init(&tz_LOCK, MY_MUTEX_INIT_FAST));
tz_inited= 1;
/* Add 'SYSTEM' time zone to tz_names hash */
if (!(tmp_tzname= new (&tz_storage) Tz_names_entry()))
{
sql_print_error("Fatal error: OOM while initializing time zones");
goto end_with_cleanup;
}
tmp_tzname->name.set(STRING_WITH_LEN("SYSTEM"), &my_charset_latin1);
tmp_tzname->tz= my_tz_SYSTEM;
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
if (my_hash_insert(&tz_names, (const uchar *)tmp_tzname))
{
sql_print_error("Fatal error: OOM while initializing time zones");
goto end_with_cleanup;
}
2004-06-23 23:41:56 +02:00
if (bootstrap)
{
/* If we are in bootstrap mode we should not load time zone tables */
return_val= time_zone_tables_exist= 0;
goto end_with_setting_default_tz;
}
2004-06-23 23:41:56 +02:00
/*
After this point all memory structures are inited and we even can live
without time zone description tables. Now try to load information about
leap seconds shared by all time zones.
*/
A fix and a test case for Bug#19022 "Memory bug when switching db during trigger execution" Bug#17199 "Problem when view calls function from another database." Bug#18444 "Fully qualified stored function names don't work correctly in SELECT statements" Documentation note: this patch introduces a change in behaviour of prepared statements. This patch adds a few new invariants with regard to how THD::db should be used. These invariants should be preserved in future: - one should never refer to THD::db by pointer and always make a deep copy (strmake, strdup) - one should never compare two databases by pointer, but use strncmp or my_strncasecmp - TABLE_LIST object table->db should be always initialized in the parser or by creator of the object. For prepared statements it means that if the current database is changed after a statement is prepared, the database that was current at prepare remains active. This also means that you can not prepare a statement that implicitly refers to the current database if the latter is not set. This is not documented, and therefore needs documentation. This is NOT a change in behavior for almost all SQL statements except: - ALTER TABLE t1 RENAME t2 - OPTIMIZE TABLE t1 - ANALYZE TABLE t1 - TRUNCATE TABLE t1 -- until this patch t1 or t2 could be evaluated at the first execution of prepared statement. CURRENT_DATABASE() still works OK and is evaluated at every execution of prepared statement. Note, that in stored routines this is not an issue as the default database is the database of the stored procedure and "use" statement is prohibited in stored routines. This patch makes obsolete the use of check_db_used (it was never used in the old code too) and all other places that check for table->db and assign it from THD::db if it's NULL, except the parser. How this patch was created: THD::{db,db_length} were replaced with a LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were manually checked and: - if the place uses thd->db by pointer, it was fixed to make a deep copy - if a place compared two db pointers, it was fixed to compare them by value (via strcmp/my_strcasecmp, whatever was approproate) Then this intermediate patch was used to write a smaller patch that does the same thing but without a rename. TODO in 5.1: - remove check_db_used - deploy THD::set_db in mysql_change_db See also comments to individual files.
2006-06-27 00:47:52 +04:00
thd->set_db(db, sizeof(db)-1);
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
bzero((char*) &tz_tables[0], sizeof(TABLE_LIST));
tz_tables[0].alias= tz_tables[0].table_name=
(char*)"time_zone_leap_second";
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
tz_tables[0].table_name_length= 21;
tz_tables[0].db= db;
tz_tables[0].db_length= sizeof(db)-1;
tz_tables[0].lock_type= TL_READ;
tz_init_table_list(tz_tables+1);
tz_tables[0].next_global= tz_tables[0].next_local= &tz_tables[1];
tz_tables[1].prev_global= &tz_tables[0].next_global;
/*
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
We need to open only mysql.time_zone_leap_second, but we try to
open all time zone tables to see if they exist.
*/
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
if (open_system_tables_for_read(thd, tz_tables, &open_tables_state_backup))
{
sql_print_warning("Can't open and lock time zone table: %s "
"trying to live without them", thd->stmt_da->message());
/* We will try emulate that everything is ok */
return_val= time_zone_tables_exist= 0;
goto end_with_setting_default_tz;
}
/*
Now we are going to load leap seconds descriptions that are shared
between all time zones that use them. We are using index for getting
records in proper order. Since we share the same MEM_ROOT between
all time zones we just allocate enough memory for it first.
*/
if (!(tz_lsis= (LS_INFO*) alloc_root(&tz_storage,
sizeof(LS_INFO) * TZ_MAX_LEAPS)))
{
sql_print_error("Fatal error: Out of memory while loading "
"mysql.time_zone_leap_second table");
goto end_with_close;
}
2004-06-23 23:41:56 +02:00
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
table= tz_tables[0].table;
/*
It is OK to ignore ha_index_init()/ha_index_end() return values since
mysql.time_zone* tables are MyISAM and these operations always succeed
for MyISAM.
*/
2005-07-18 13:31:02 +02:00
(void)table->file->ha_index_init(0, 1);
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
table->use_all_columns();
tz_leapcnt= 0;
2004-06-23 23:41:56 +02:00
res= table->file->index_first(table->record[0]);
while (!res)
{
if (tz_leapcnt + 1 > TZ_MAX_LEAPS)
{
sql_print_error("Fatal error: While loading mysql.time_zone_leap_second"
" table: too much leaps");
2004-06-23 23:41:56 +02:00
table->file->ha_index_end();
goto end_with_close;
}
2004-06-23 23:41:56 +02:00
tz_lsis[tz_leapcnt].ls_trans= (my_time_t)table->field[0]->val_int();
tz_lsis[tz_leapcnt].ls_corr= (long)table->field[1]->val_int();
tz_leapcnt++;
DBUG_PRINT("info",
("time_zone_leap_second table: tz_leapcnt: %u tt_time: %lu offset: %ld",
tz_leapcnt, (ulong) tz_lsis[tz_leapcnt-1].ls_trans,
tz_lsis[tz_leapcnt-1].ls_corr));
2004-06-23 23:41:56 +02:00
res= table->file->index_next(table->record[0]);
}
(void)table->file->ha_index_end();
2004-06-23 23:41:56 +02:00
if (res != HA_ERR_END_OF_FILE)
{
sql_print_error("Fatal error: Error while loading "
"mysql.time_zone_leap_second table");
goto end_with_close;
}
/*
Loading of info about leap seconds succeeded
*/
2004-06-23 23:41:56 +02:00
return_val= 0;
2004-06-23 23:41:56 +02:00
end_with_setting_default_tz:
/* If we have default time zone try to load it */
if (default_tzname)
{
String tmp_tzname2(default_tzname, &my_charset_latin1);
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
/*
Time zone tables may be open here, and my_tz_find() may open
most of them once more, but this is OK for system tables open
for READ.
*/
if (!(global_system_variables.time_zone= my_tz_find(thd, &tmp_tzname2)))
{
sql_print_error("Fatal error: Illegal or unknown default time zone '%s'",
default_tzname);
return_val= 1;
}
}
2004-06-23 23:41:56 +02:00
end_with_close:
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
if (time_zone_tables_exist)
{
thd->version--; /* Force close to free memory */
close_system_tables(thd, &open_tables_state_backup);
}
end_with_cleanup:
2004-06-23 23:41:56 +02:00
/* if there were error free time zone describing structs */
if (return_val)
my_tz_free();
end:
delete thd;
if (org_thd)
org_thd->store_globals(); /* purecov: inspected */
else
{
/* Remember that we don't have a THD */
my_pthread_setspecific_ptr(THR_THD, 0);
my_pthread_setspecific_ptr(THR_MALLOC, 0);
}
DBUG_RETURN(return_val);
}
/*
Free resources used by time zone support infrastructure.
SYNOPSIS
my_tz_free()
*/
void my_tz_free()
{
if (tz_inited)
{
tz_inited= 0;
VOID(pthread_mutex_destroy(&tz_LOCK));
hash_free(&offset_tzs);
hash_free(&tz_names);
free_root(&tz_storage, MYF(0));
}
}
/*
Load time zone description from system tables.
SYNOPSIS
tz_load_from_open_tables()
tz_name - name of time zone that should be loaded.
tz_tables - list of tables from which time zone description
should be loaded
2004-06-23 23:41:56 +02:00
DESCRIPTION
This function will try to load information about time zone specified
from the list of the already opened and locked tables (first table in
tz_tables should be time_zone_name, next time_zone, then
time_zone_transition_type and time_zone_transition should be last).
It will also update information in hash used for time zones lookup.
2004-06-23 23:41:56 +02:00
RETURN VALUES
Returns pointer to newly created Time_zone object or 0 in case of error.
*/
2004-06-23 23:41:56 +02:00
static Time_zone*
tz_load_from_open_tables(const String *tz_name, TABLE_LIST *tz_tables)
{
TABLE *table= 0;
TIME_ZONE_INFO *tz_info;
Tz_names_entry *tmp_tzname;
Time_zone *return_val= 0;
int res;
uint tzid, ttid;
my_time_t ttime;
char buff[MAX_FIELD_WIDTH];
String abbr(buff, sizeof(buff), &my_charset_latin1);
char *alloc_buff, *tz_name_buff;
2004-06-23 23:41:56 +02:00
/*
Temporary arrays that are used for loading of data for filling
TIME_ZONE_INFO structure
*/
my_time_t ats[TZ_MAX_TIMES];
uchar types[TZ_MAX_TIMES];
TRAN_TYPE_INFO ttis[TZ_MAX_TYPES];
#ifdef ABBR_ARE_USED
char chars[max(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1)))];
#endif
/*
Used as a temporary tz_info until we decide that we actually want to
allocate and keep the tz info and tz name in tz_storage.
*/
TIME_ZONE_INFO tmp_tz_info;
memset(&tmp_tz_info, 0, sizeof(TIME_ZONE_INFO));
DBUG_ENTER("tz_load_from_open_tables");
2004-06-23 23:41:56 +02:00
/* Prepare tz_info for loading also let us make copy of time zone name */
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
if (!(alloc_buff= (char*) alloc_root(&tz_storage, sizeof(TIME_ZONE_INFO) +
tz_name->length() + 1)))
{
sql_print_error("Out of memory while loading time zone description");
return 0;
}
tz_info= (TIME_ZONE_INFO *)alloc_buff;
bzero(tz_info, sizeof(TIME_ZONE_INFO));
tz_name_buff= alloc_buff + sizeof(TIME_ZONE_INFO);
/*
By writing zero to the end we guarantee that we can call ptr()
instead of c_ptr() for time zone name.
*/
2004-06-23 23:41:56 +02:00
strmake(tz_name_buff, tz_name->ptr(), tz_name->length());
2004-06-23 23:41:56 +02:00
/*
Let us find out time zone id by its name (there is only one index
and it is specifically for this purpose).
*/
table= tz_tables->table;
tz_tables= tz_tables->next_local;
table->field[0]->store(tz_name->ptr(), tz_name->length(),
&my_charset_latin1);
/*
It is OK to ignore ha_index_init()/ha_index_end() return values since
mysql.time_zone* tables are MyISAM and these operations always succeed
for MyISAM.
*/
2005-07-18 13:31:02 +02:00
(void)table->file->ha_index_init(0, 1);
2004-06-23 23:41:56 +02:00
if (table->file->index_read_map(table->record[0], table->field[0]->ptr,
HA_WHOLE_KEY, HA_READ_KEY_EXACT))
{
#ifdef EXTRA_DEBUG
/*
Most probably user has mistyped time zone name, so no need to bark here
unless we need it for debugging.
*/
sql_print_error("Can't find description of time zone '%.*s'",
tz_name->length(), tz_name->ptr());
#endif
goto end;
}
2004-06-23 23:41:56 +02:00
2004-06-24 01:08:07 +04:00
tzid= (uint)table->field[1]->val_int();
(void)table->file->ha_index_end();
2004-06-23 23:41:56 +02:00
/*
Now we need to lookup record in mysql.time_zone table in order to
understand whenever this timezone uses leap seconds (again we are
using the only index in this table).
*/
table= tz_tables->table;
tz_tables= tz_tables->next_local;
table->field[0]->store((longlong) tzid, TRUE);
2005-07-18 13:31:02 +02:00
(void)table->file->ha_index_init(0, 1);
2004-06-23 23:41:56 +02:00
if (table->file->index_read_map(table->record[0], table->field[0]->ptr,
HA_WHOLE_KEY, HA_READ_KEY_EXACT))
{
sql_print_error("Can't find description of time zone '%u'", tzid);
goto end;
}
2004-06-23 23:41:56 +02:00
/* If Uses_leap_seconds == 'Y' */
if (table->field[1]->val_int() == 1)
{
tmp_tz_info.leapcnt= tz_leapcnt;
tmp_tz_info.lsis= tz_lsis;
}
2004-06-23 23:41:56 +02:00
(void)table->file->ha_index_end();
2004-06-23 23:41:56 +02:00
/*
Now we will iterate through records for out time zone in
mysql.time_zone_transition_type table. Because we want records
only for our time zone guess what are we doing?
Right - using special index.
*/
table= tz_tables->table;
tz_tables= tz_tables->next_local;
table->field[0]->store((longlong) tzid, TRUE);
2005-07-18 13:31:02 +02:00
(void)table->file->ha_index_init(0, 1);
2004-06-23 23:41:56 +02:00
res= table->file->index_read_map(table->record[0], table->field[0]->ptr,
(key_part_map)1, HA_READ_KEY_EXACT);
while (!res)
{
2004-06-24 01:08:07 +04:00
ttid= (uint)table->field[1]->val_int();
if (ttid >= TZ_MAX_TYPES)
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition_type table: too big "
"transition type id");
goto end;
}
2004-06-24 01:08:07 +04:00
ttis[ttid].tt_gmtoff= (long)table->field[2]->val_int();
ttis[ttid].tt_isdst= (table->field[3]->val_int() > 0);
#ifdef ABBR_ARE_USED
// FIXME should we do something with duplicates here ?
table->field[4]->val_str(&abbr, &abbr);
if (tmp_tz_info.charcnt + abbr.length() + 1 > sizeof(chars))
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition_type table: not enough "
"room for abbreviations");
goto end;
}
ttis[ttid].tt_abbrind= tmp_tz_info.charcnt;
memcpy(chars + tmp_tz_info.charcnt, abbr.ptr(), abbr.length());
tmp_tz_info.charcnt+= abbr.length();
chars[tmp_tz_info.charcnt]= 0;
tmp_tz_info.charcnt++;
2004-06-23 23:41:56 +02:00
DBUG_PRINT("info",
("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld "
2004-06-23 23:41:56 +02:00
"abbr='%s' tt_isdst=%u", tzid, ttid, ttis[ttid].tt_gmtoff,
chars + ttis[ttid].tt_abbrind, ttis[ttid].tt_isdst));
#else
DBUG_PRINT("info",
("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld "
"tt_isdst=%u", tzid, ttid, ttis[ttid].tt_gmtoff, ttis[ttid].tt_isdst));
#endif
/* ttid is increasing because we are reading using index */
DBUG_ASSERT(ttid >= tmp_tz_info.typecnt);
2004-06-23 23:41:56 +02:00
tmp_tz_info.typecnt= ttid + 1;
2004-06-23 23:41:56 +02:00
res= table->file->index_next_same(table->record[0],
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
table->field[0]->ptr, 4);
}
2004-06-23 23:41:56 +02:00
if (res != HA_ERR_END_OF_FILE)
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition_type table");
goto end;
}
(void)table->file->ha_index_end();
2004-06-23 23:41:56 +02:00
/*
2004-06-23 23:41:56 +02:00
At last we are doing the same thing for records in
mysql.time_zone_transition table. Here we additionaly need records
in ascending order by index scan also satisfies us.
*/
table= tz_tables->table;
table->field[0]->store((longlong) tzid, TRUE);
2005-07-18 13:31:02 +02:00
(void)table->file->ha_index_init(0, 1);
2004-06-23 23:41:56 +02:00
res= table->file->index_read_map(table->record[0], table->field[0]->ptr,
(key_part_map)1, HA_READ_KEY_EXACT);
while (!res)
{
ttime= (my_time_t)table->field[1]->val_int();
ttid= (uint)table->field[2]->val_int();
if (tmp_tz_info.timecnt + 1 > TZ_MAX_TIMES)
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition table: "
"too much transitions");
goto end;
}
if (ttid + 1 > tmp_tz_info.typecnt)
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition table: "
"bad transition type id");
goto end;
}
2004-06-23 23:41:56 +02:00
ats[tmp_tz_info.timecnt]= ttime;
types[tmp_tz_info.timecnt]= ttid;
tmp_tz_info.timecnt++;
DBUG_PRINT("info",
("time_zone_transition table: tz_id: %u tt_time: %lu tt_id: %u",
tzid, (ulong) ttime, ttid));
2004-06-23 23:41:56 +02:00
res= table->file->index_next_same(table->record[0],
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
table->field[0]->ptr, 4);
}
2004-06-23 23:41:56 +02:00
/*
We have to allow HA_ERR_KEY_NOT_FOUND because some time zones
for example UTC have no transitons.
*/
if (res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND)
{
sql_print_error("Error while loading time zone description from "
"mysql.time_zone_transition table");
goto end;
}
2004-06-23 23:41:56 +02:00
(void)table->file->ha_index_end();
table= 0;
2004-06-23 23:41:56 +02:00
/*
Let us check how correct our time zone description is. We don't check for
tz->timecnt < 1 since it is ok for GMT.
*/
if (tmp_tz_info.typecnt < 1)
{
sql_print_error("loading time zone without transition types");
goto end;
}
/* Allocate memory for the timezone info and timezone name in tz_storage. */
if (!(alloc_buff= (char*) alloc_root(&tz_storage, sizeof(TIME_ZONE_INFO) +
tz_name->length() + 1)))
{
sql_print_error("Out of memory while loading time zone description");
return 0;
}
/* Move the temporary tz_info into the allocated area */
tz_info= (TIME_ZONE_INFO *)alloc_buff;
memcpy(tz_info, &tmp_tz_info, sizeof(TIME_ZONE_INFO));
tz_name_buff= alloc_buff + sizeof(TIME_ZONE_INFO);
/*
By writing zero to the end we guarantee that we can call ptr()
instead of c_ptr() for time zone name.
*/
strmake(tz_name_buff, tz_name->ptr(), tz_name->length());
/*
Now we will allocate memory and init TIME_ZONE_INFO structure.
*/
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
if (!(alloc_buff= (char*) alloc_root(&tz_storage,
ALIGN_SIZE(sizeof(my_time_t) *
tz_info->timecnt) +
ALIGN_SIZE(tz_info->timecnt) +
#ifdef ABBR_ARE_USED
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
ALIGN_SIZE(tz_info->charcnt) +
#endif
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
sizeof(TRAN_TYPE_INFO) *
tz_info->typecnt)))
{
sql_print_error("Out of memory while loading time zone description");
goto end;
}
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
tz_info->ats= (my_time_t *) alloc_buff;
memcpy(tz_info->ats, ats, tz_info->timecnt * sizeof(my_time_t));
alloc_buff+= ALIGN_SIZE(sizeof(my_time_t) * tz_info->timecnt);
tz_info->types= (uchar *)alloc_buff;
memcpy(tz_info->types, types, tz_info->timecnt);
alloc_buff+= ALIGN_SIZE(tz_info->timecnt);
#ifdef ABBR_ARE_USED
tz_info->chars= alloc_buff;
memcpy(tz_info->chars, chars, tz_info->charcnt);
alloc_buff+= ALIGN_SIZE(tz_info->charcnt);
#endif
tz_info->ttis= (TRAN_TYPE_INFO *)alloc_buff;
memcpy(tz_info->ttis, ttis, tz_info->typecnt * sizeof(TRAN_TYPE_INFO));
2004-06-23 23:41:56 +02:00
/* Build reversed map. */
if (prepare_tz_info(tz_info, &tz_storage))
{
sql_print_error("Unable to build mktime map for time zone");
goto end;
}
2004-06-23 23:41:56 +02:00
if (!(tmp_tzname= new (&tz_storage) Tz_names_entry()) ||
2004-06-23 23:41:56 +02:00
!(tmp_tzname->tz= new (&tz_storage) Time_zone_db(tz_info,
&(tmp_tzname->name))) ||
2004-06-23 23:41:56 +02:00
(tmp_tzname->name.set(tz_name_buff, tz_name->length(),
&my_charset_latin1),
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
my_hash_insert(&tz_names, (const uchar *)tmp_tzname)))
{
sql_print_error("Out of memory while loading time zone");
goto end;
}
/*
Loading of time zone succeeded
*/
return_val= tmp_tzname->tz;
2004-06-23 23:41:56 +02:00
end:
if (table)
(void)table->file->ha_index_end();
DBUG_RETURN(return_val);
}
/*
Parse string that specifies time zone as offset from UTC.
SYNOPSIS
str_to_offset()
2004-06-23 23:41:56 +02:00
str - pointer to string which contains offset
length - length of string
offset - out parameter for storing found offset in seconds.
DESCRIPTION
2004-06-23 23:41:56 +02:00
This function parses string which contains time zone offset
in form similar to '+10:00' and converts found value to
seconds from UTC form (east is positive).
2004-06-23 23:41:56 +02:00
RETURN VALUE
0 - Ok
1 - String doesn't contain valid time zone offset
*/
my_bool
str_to_offset(const char *str, uint length, long *offset)
{
const char *end= str + length;
my_bool negative;
ulong number_tmp;
long offset_tmp;
2004-06-23 23:41:56 +02:00
if (length < 4)
return 1;
2004-06-23 23:41:56 +02:00
if (*str == '+')
negative= 0;
else if (*str == '-')
negative= 1;
else
return 1;
str++;
number_tmp= 0;
while (str < end && my_isdigit(&my_charset_latin1, *str))
{
number_tmp= number_tmp*10 + *str - '0';
str++;
}
2004-06-23 23:41:56 +02:00
if (str + 1 >= end || *str != ':')
return 1;
str++;
offset_tmp = number_tmp * MINS_PER_HOUR; number_tmp= 0;
2004-06-23 23:41:56 +02:00
while (str < end && my_isdigit(&my_charset_latin1, *str))
{
number_tmp= number_tmp * 10 + *str - '0';
str++;
}
if (str != end)
return 1;
offset_tmp= (offset_tmp + number_tmp) * SECS_PER_MIN;
if (negative)
offset_tmp= -offset_tmp;
2004-06-23 23:41:56 +02:00
/*
Check if offset is in range prescribed by standard
(from -12:59 to 13:00).
*/
2004-06-23 23:41:56 +02:00
if (number_tmp > 59 || offset_tmp < -13 * SECS_PER_HOUR + 1 ||
offset_tmp > 13 * SECS_PER_HOUR)
return 1;
2004-06-23 23:41:56 +02:00
*offset= offset_tmp;
2004-06-23 23:41:56 +02:00
return 0;
}
/*
Get Time_zone object for specified time zone.
SYNOPSIS
my_tz_find()
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
thd - pointer to thread THD structure
name - time zone specification
DESCRIPTION
This function checks if name is one of time zones described in db,
2004-06-23 23:41:56 +02:00
predefined SYSTEM time zone or valid time zone specification as
offset from UTC (In last case it will create proper Time_zone_offset
object if there were not any.). If name is ok it returns corresponding
Time_zone object.
2004-06-23 23:41:56 +02:00
Clients of this function are not responsible for releasing resources
occupied by returned Time_zone object so they can just forget pointers
to Time_zone object if they are not needed longer.
2004-06-23 23:41:56 +02:00
Other important property of this function: if some Time_zone found once
it will be for sure found later, so this function can also be used for
checking if proper Time_zone object exists (and if there will be error
it will be reported during first call).
If name pointer is 0 then this function returns 0 (this allows to pass 0
2004-06-23 23:41:56 +02:00
values as parameter without additional external check and this property
is used by @@time_zone variable handling code).
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
It will perform lookup in system tables (mysql.time_zone*),
opening and locking them, and closing afterwards. It won't perform
such lookup if no time zone describing tables were found during
server start up.
2004-06-23 23:41:56 +02:00
RETURN VALUE
2004-06-23 23:41:56 +02:00
Pointer to corresponding Time_zone object. 0 - in case of bad time zone
specification or other error.
2004-06-23 23:41:56 +02:00
*/
2004-06-23 23:41:56 +02:00
Time_zone *
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
my_tz_find(THD *thd, const String *name)
{
Tz_names_entry *tmp_tzname;
Time_zone *result_tz= 0;
long offset;
DBUG_ENTER("my_tz_find");
2004-06-23 23:41:56 +02:00
DBUG_PRINT("enter", ("time zone name='%s'",
name ? ((String *)name)->c_ptr_safe() : "NULL"));
if (!name)
DBUG_RETURN(0);
2004-06-23 23:41:56 +02:00
VOID(pthread_mutex_lock(&tz_LOCK));
2004-06-23 23:41:56 +02:00
if (!str_to_offset(name->ptr(), name->length(), &offset))
{
2004-06-23 23:41:56 +02:00
if (!(result_tz= (Time_zone_offset *)hash_search(&offset_tzs,
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
(const uchar *)&offset,
sizeof(long))))
{
DBUG_PRINT("info", ("Creating new Time_zone_offset object"));
2004-06-23 23:41:56 +02:00
if (!(result_tz= new (&tz_storage) Time_zone_offset(offset)) ||
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
my_hash_insert(&offset_tzs, (const uchar *) result_tz))
{
result_tz= 0;
sql_print_error("Fatal error: Out of memory "
"while setting new time zone");
}
}
}
else
{
result_tz= 0;
if ((tmp_tzname= (Tz_names_entry *)hash_search(&tz_names,
WL#3817: Simplify string / memory area types and make things more consistent (first part) The following type conversions was done: - Changed byte to uchar - Changed gptr to uchar* - Change my_string to char * - Change my_size_t to size_t - Change size_s to size_t Removed declaration of byte, gptr, my_string, my_size_t and size_s. Following function parameter changes was done: - All string functions in mysys/strings was changed to use size_t instead of uint for string lengths. - All read()/write() functions changed to use size_t (including vio). - All protocoll functions changed to use size_t instead of uint - Functions that used a pointer to a string length was changed to use size_t* - Changed malloc(), free() and related functions from using gptr to use void * as this requires fewer casts in the code and is more in line with how the standard functions work. - Added extra length argument to dirname_part() to return the length of the created string. - Changed (at least) following functions to take uchar* as argument: - db_dump() - my_net_write() - net_write_command() - net_store_data() - DBUG_DUMP() - decimal2bin() & bin2decimal() - Changed my_compress() and my_uncompress() to use size_t. Changed one argument to my_uncompress() from a pointer to a value as we only return one value (makes function easier to use). - Changed type of 'pack_data' argument to packfrm() to avoid casts. - Changed in readfrm() and writefrom(), ha_discover and handler::discover() the type for argument 'frmdata' to uchar** to avoid casts. - Changed most Field functions to use uchar* instead of char* (reduced a lot of casts). - Changed field->val_xxx(xxx, new_ptr) to take const pointers. Other changes: - Removed a lot of not needed casts - Added a few new cast required by other changes - Added some cast to my_multi_malloc() arguments for safety (as string lengths needs to be uint, not size_t). - Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done explicitely as this conflict was often hided by casting the function to hash_get_key). - Changed some buffers to memory regions to uchar* to avoid casts. - Changed some string lengths from uint to size_t. - Changed field->ptr to be uchar* instead of char*. This allowed us to get rid of a lot of casts. - Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar - Include zlib.h in some files as we needed declaration of crc32() - Changed MY_FILE_ERROR to be (size_t) -1. - Changed many variables to hold the result of my_read() / my_write() to be size_t. This was needed to properly detect errors (which are returned as (size_t) -1). - Removed some very old VMS code - Changed packfrm()/unpackfrm() to not be depending on uint size (portability fix) - Removed windows specific code to restore cursor position as this causes slowdown on windows and we should not mix read() and pread() calls anyway as this is not thread safe. Updated function comment to reflect this. Changed function that depended on original behavior of my_pwrite() to itself restore the cursor position (one such case). - Added some missing checking of return value of malloc(). - Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow. - Changed type of table_def::m_size from my_size_t to ulong to reflect that m_size is the number of elements in the array, not a string/memory length. - Moved THD::max_row_length() to table.cc (as it's not depending on THD). Inlined max_row_length_blob() into this function. - More function comments - Fixed some compiler warnings when compiled without partitions. - Removed setting of LEX_STRING() arguments in declaration (portability fix). - Some trivial indentation/variable name changes. - Some trivial code simplifications: - Replaced some calls to alloc_root + memcpy to use strmake_root()/strdup_root(). - Changed some calls from memdup() to strmake() (Safety fix) - Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
(const uchar *)name->ptr(),
name->length())))
result_tz= tmp_tzname->tz;
BUG#9953: CONVERT_TZ requires mysql.time_zone_name to be locked The problem was that some facilities (like CONVERT_TZ() function or server HELP statement) may require implicit access to some tables in 'mysql' database. This access was done by ordinary means of adding such tables to the list of tables the query is going to open. However, if we issued LOCK TABLES before that, we would get "table was not locked" error trying to open such implicit tables. The solution is to treat certain tables as MySQL system tables, like we already do for mysql.proc. Such tables may be opened for reading at any moment regardless of any locks in effect. The cost of this is that system table may be locked for writing only together with other system tables, it is disallowed to lock system tables for writing and have any other lock on any other table. After this patch the following tables are treated as MySQL system tables: mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc (it already was) mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type These tables are now opened with open_system_tables_for_read() and closed with close_system_tables(), or one table may be opened with open_system_table_for_update() and closed with close_thread_tables() (the latter is used for mysql.proc table, which is updated as part of normal MySQL server operation). These functions may be used when some tables were opened and locked already. NOTE: online update of time zone tables is not possible during replication, because there's no time zone cache flush neither on LOCK TABLES, nor on FLUSH TABLES, so the master may serve stale time zone data from cache, while on slave updated data will be loaded from the time zone tables.
2007-03-09 13:12:31 +03:00
else if (time_zone_tables_exist)
{
TABLE_LIST tz_tables[MY_TZ_TABLES_COUNT];
Open_tables_state open_tables_state_backup;
tz_init_table_list(tz_tables);
if (!open_system_tables_for_read(thd, tz_tables,
&open_tables_state_backup))
{
result_tz= tz_load_from_open_tables(name, tz_tables);
close_system_tables(thd, &open_tables_state_backup);
}
}
}
2004-06-23 23:41:56 +02:00
VOID(pthread_mutex_unlock(&tz_LOCK));
DBUG_RETURN(result_tz);
}
/**
Convert leap seconds into non-leap
This function will convert the leap seconds added by the OS to
non-leap seconds, e.g. 23:59:59, 23:59:60 -> 23:59:59, 00:00:01 ...
This check is not checking for years on purpose : although it's not a
complete check this way it doesn't require looking (and having installed)
the leap seconds table.
@param[in,out] broken down time structure as filled in by the OS
*/
void Time_zone::adjust_leap_second(MYSQL_TIME *t)
{
if (t->second == 60 || t->second == 61)
t->second= 59;
}
#endif /* !defined(TESTTIME) && !defined(TZINFO2SQL) */
#ifdef TZINFO2SQL
/*
This code belongs to mysql_tzinfo_to_sql converter command line utility.
This utility should be used by db admin for populating mysql.time_zone
tables.
*/
/*
2004-06-23 23:41:56 +02:00
Print info about time zone described by TIME_ZONE_INFO struct as
SQL statements populating mysql.time_zone* tables.
SYNOPSIS
print_tz_as_sql()
tz_name - name of time zone
2004-06-23 23:41:56 +02:00
sp - structure describing time zone
*/
void
print_tz_as_sql(const char* tz_name, const TIME_ZONE_INFO *sp)
{
uint i;
/* Here we assume that all time zones have same leap correction tables */
2004-06-23 23:41:56 +02:00
printf("INSERT INTO time_zone (Use_leap_seconds) VALUES ('%s');\n",
sp->leapcnt ? "Y" : "N");
printf("SET @time_zone_id= LAST_INSERT_ID();\n");
printf("INSERT INTO time_zone_name (Name, Time_zone_id) VALUES \
('%s', @time_zone_id);\n", tz_name);
if (sp->timecnt)
{
printf("INSERT INTO time_zone_transition \
(Time_zone_id, Transition_time, Transition_type_id) VALUES\n");
for (i= 0; i < sp->timecnt; i++)
printf("%s(@time_zone_id, %ld, %u)\n", (i == 0 ? " " : ","), sp->ats[i],
(uint)sp->types[i]);
printf(";\n");
}
2004-06-23 23:41:56 +02:00
printf("INSERT INTO time_zone_transition_type \
(Time_zone_id, Transition_type_id, Offset, Is_DST, Abbreviation) VALUES\n");
2004-06-23 23:41:56 +02:00
for (i= 0; i < sp->typecnt; i++)
printf("%s(@time_zone_id, %u, %ld, %d, '%s')\n", (i == 0 ? " " : ","), i,
2004-06-23 23:41:56 +02:00
sp->ttis[i].tt_gmtoff, sp->ttis[i].tt_isdst,
sp->chars + sp->ttis[i].tt_abbrind);
printf(";\n");
}
/*
Print info about leap seconds in time zone as SQL statements
populating mysql.time_zone_leap_second table.
SYNOPSIS
print_tz_leaps_as_sql()
2004-06-23 23:41:56 +02:00
sp - structure describing time zone
*/
void
print_tz_leaps_as_sql(const TIME_ZONE_INFO *sp)
{
uint i;
2004-06-23 23:41:56 +02:00
/*
We are assuming that there are only one list of leap seconds
For all timezones.
*/
printf("TRUNCATE TABLE time_zone_leap_second;\n");
2004-06-23 23:41:56 +02:00
if (sp->leapcnt)
{
printf("INSERT INTO time_zone_leap_second \
(Transition_time, Correction) VALUES\n");
for (i= 0; i < sp->leapcnt; i++)
2004-06-23 23:41:56 +02:00
printf("%s(%ld, %ld)\n", (i == 0 ? " " : ","),
sp->lsis[i].ls_trans, sp->lsis[i].ls_corr);
printf(";\n");
}
printf("ALTER TABLE time_zone_leap_second ORDER BY Transition_time;\n");
}
/*
2004-06-23 23:41:56 +02:00
Some variables used as temporary or as parameters
in recursive scan_tz_dir() code.
*/
TIME_ZONE_INFO tz_info;
MEM_ROOT tz_storage;
char fullname[FN_REFLEN + 1];
char *root_name_end;
/*
Recursively scan zoneinfo directory and print all found time zone
descriptions as SQL.
2004-06-23 23:41:56 +02:00
SYNOPSIS
2004-06-23 23:41:56 +02:00
scan_tz_dir()
name_end - pointer to end of path to directory to be searched.
2004-06-23 23:41:56 +02:00
DESCRIPTION
2004-06-23 23:41:56 +02:00
This auxiliary recursive function also uses several global
variables as in parameters and for storing temporary values.
2004-06-23 23:41:56 +02:00
fullname - path to directory that should be scanned.
2004-06-23 23:41:56 +02:00
root_name_end - pointer to place in fullname where part with
path to initial directory ends.
current_tz_id - last used time zone id
2004-06-23 23:41:56 +02:00
RETURN VALUE
0 - Ok, 1 - Fatal error
2004-06-23 23:41:56 +02:00
*/
my_bool
scan_tz_dir(char * name_end)
{
MY_DIR *cur_dir;
char *name_end_tmp;
uint i;
2004-06-23 23:41:56 +02:00
if (!(cur_dir= my_dir(fullname, MYF(MY_WANT_STAT))))
return 1;
name_end= strmake(name_end, "/", FN_REFLEN - (name_end - fullname));
2004-06-23 23:41:56 +02:00
for (i= 0; i < cur_dir->number_off_files; i++)
{
if (cur_dir->dir_entry[i].name[0] != '.')
{
name_end_tmp= strmake(name_end, cur_dir->dir_entry[i].name,
FN_REFLEN - (name_end - fullname));
if (MY_S_ISDIR(cur_dir->dir_entry[i].mystat->st_mode))
{
if (scan_tz_dir(name_end_tmp))
{
my_dirend(cur_dir);
return 1;
}
}
else if (MY_S_ISREG(cur_dir->dir_entry[i].mystat->st_mode))
{
init_alloc_root(&tz_storage, 32768, 0);
if (!tz_load(fullname, &tz_info, &tz_storage))
print_tz_as_sql(root_name_end + 1, &tz_info);
else
fprintf(stderr,
"Warning: Unable to load '%s' as time zone. Skipping it.\n",
fullname);
free_root(&tz_storage, MYF(0));
}
else
fprintf(stderr, "Warning: '%s' is not regular file or directory\n",
fullname);
}
}
my_dirend(cur_dir);
return 0;
}
int
main(int argc, char **argv)
{
2005-12-13 18:30:10 +02:00
#ifndef __NETWARE__
MY_INIT(argv[0]);
if (argc != 2 && argc != 3)
{
fprintf(stderr, "Usage:\n");
fprintf(stderr, " %s timezonedir\n", argv[0]);
fprintf(stderr, " %s timezonefile timezonename\n", argv[0]);
fprintf(stderr, " %s --leap timezonefile\n", argv[0]);
return 1;
}
if (argc == 2)
{
root_name_end= strmake(fullname, argv[1], FN_REFLEN);
2004-06-23 23:41:56 +02:00
printf("TRUNCATE TABLE time_zone;\n");
printf("TRUNCATE TABLE time_zone_name;\n");
printf("TRUNCATE TABLE time_zone_transition;\n");
printf("TRUNCATE TABLE time_zone_transition_type;\n");
2004-06-23 23:41:56 +02:00
if (scan_tz_dir(root_name_end))
{
fprintf(stderr, "There were fatal errors during processing "
"of zoneinfo directory\n");
return 1;
}
2004-06-23 23:41:56 +02:00
printf("ALTER TABLE time_zone_transition "
"ORDER BY Time_zone_id, Transition_time;\n");
printf("ALTER TABLE time_zone_transition_type "
"ORDER BY Time_zone_id, Transition_type_id;\n");
}
else
{
init_alloc_root(&tz_storage, 32768, 0);
2004-06-23 23:41:56 +02:00
if (strcmp(argv[1], "--leap") == 0)
{
if (tz_load(argv[2], &tz_info, &tz_storage))
{
fprintf(stderr, "Problems with zoneinfo file '%s'\n", argv[2]);
return 1;
}
print_tz_leaps_as_sql(&tz_info);
}
else
{
if (tz_load(argv[1], &tz_info, &tz_storage))
{
fprintf(stderr, "Problems with zoneinfo file '%s'\n", argv[2]);
return 1;
}
print_tz_as_sql(argv[2], &tz_info);
}
2004-06-23 23:41:56 +02:00
free_root(&tz_storage, MYF(0));
}
2005-12-13 18:30:10 +02:00
#else
fprintf(stderr, "This tool has not been ported to NetWare\n");
#endif /* __NETWARE__ */
return 0;
}
#endif /* defined(TZINFO2SQL) */
#ifdef TESTTIME
/*
Some simple brute-force test wich allowed to catch a pair of bugs.
Also can provide interesting facts about system's time zone support
implementation.
*/
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif
#ifndef TYPE_BIT
#define TYPE_BIT(type) (sizeof (type) * CHAR_BIT)
2004-06-23 23:41:56 +02:00
#endif
#ifndef TYPE_SIGNED
#define TYPE_SIGNED(type) (((type) -1) < 0)
#endif
my_bool
is_equal_TIME_tm(const TIME* time_arg, const struct tm * tm_arg)
{
return (time_arg->year == (uint)tm_arg->tm_year+TM_YEAR_BASE) &&
(time_arg->month == (uint)tm_arg->tm_mon+1) &&
(time_arg->day == (uint)tm_arg->tm_mday) &&
(time_arg->hour == (uint)tm_arg->tm_hour) &&
(time_arg->minute == (uint)tm_arg->tm_min) &&
(time_arg->second == (uint)tm_arg->tm_sec) &&
time_arg->second_part == 0;
}
int
main(int argc, char **argv)
{
my_bool localtime_negative;
TIME_ZONE_INFO tz_info;
struct tm tmp;
MYSQL_TIME time_tmp;
time_t t, t1, t2;
char fullname[FN_REFLEN+1];
char *str_end;
MEM_ROOT tz_storage;
MY_INIT(argv[0]);
init_alloc_root(&tz_storage, 32768, 0);
/* let us set some well known timezone */
setenv("TZ", "MET", 1);
tzset();
2004-06-23 23:41:56 +02:00
/* Some initial time zone related system info */
printf("time_t: %s %u bit\n", TYPE_SIGNED(time_t) ? "signed" : "unsigned",
(uint)TYPE_BIT(time_t));
if (TYPE_SIGNED(time_t))
{
t= -100;
localtime_negative= test(localtime_r(&t, &tmp) != 0);
printf("localtime_r %s negative params \
2004-06-23 23:41:56 +02:00
(time_t=%d is %d-%d-%d %d:%d:%d)\n",
(localtime_negative ? "supports" : "doesn't support"), (int)t,
2004-06-23 23:41:56 +02:00
TM_YEAR_BASE + tmp.tm_year, tmp.tm_mon + 1, tmp.tm_mday,
tmp.tm_hour, tmp.tm_min, tmp.tm_sec);
2004-06-23 23:41:56 +02:00
printf("mktime %s negative results (%d)\n",
2004-06-23 23:41:56 +02:00
(t == mktime(&tmp) ? "doesn't support" : "supports"),
(int)mktime(&tmp));
}
tmp.tm_year= 103; tmp.tm_mon= 2; tmp.tm_mday= 30;
tmp.tm_hour= 2; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= -1;
t= mktime(&tmp);
printf("mktime returns %s for spring time gap (%d)\n",
(t != (time_t)-1 ? "something" : "error"), (int)t);
2004-06-23 23:41:56 +02:00
tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1;
tmp.tm_hour= 0; tmp.tm_min= 0; tmp.tm_sec= 0; tmp.tm_isdst= 0;
t= mktime(&tmp);
printf("mktime returns %s for non existing date (%d)\n",
(t != (time_t)-1 ? "something" : "error"), (int)t);
2004-06-23 23:41:56 +02:00
tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1;
tmp.tm_hour= 25; tmp.tm_min=0; tmp.tm_sec=0; tmp.tm_isdst=1;
t= mktime(&tmp);
printf("mktime %s unnormalized input (%d)\n",
(t != (time_t)-1 ? "handles" : "doesn't handle"), (int)t);
tmp.tm_year= 103; tmp.tm_mon= 9; tmp.tm_mday= 26;
tmp.tm_hour= 0; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= 1;
mktime(&tmp);
tmp.tm_hour= 2; tmp.tm_isdst= -1;
t= mktime(&tmp);
tmp.tm_hour= 4; tmp.tm_isdst= 0;
mktime(&tmp);
tmp.tm_hour= 2; tmp.tm_isdst= -1;
t1= mktime(&tmp);
printf("mktime is %s (%d %d)\n",
2004-06-23 23:41:56 +02:00
(t == t1 ? "determenistic" : "is non-determenistic"),
(int)t, (int)t1);
/* Let us load time zone description */
str_end= strmake(fullname, TZDIR, FN_REFLEN);
strmake(str_end, "/MET", FN_REFLEN - (str_end - fullname));
2004-06-23 23:41:56 +02:00
if (tz_load(fullname, &tz_info, &tz_storage))
{
printf("Unable to load time zone info from '%s'\n", fullname);
free_root(&tz_storage, MYF(0));
return 1;
}
printf("Testing our implementation\n");
2004-06-23 23:41:56 +02:00
if (TYPE_SIGNED(time_t) && localtime_negative)
{
for (t= -40000; t < 20000; t++)
{
localtime_r(&t, &tmp);
gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info);
if (!is_equal_TIME_tm(&time_tmp, &tmp))
{
printf("Problem with negative time_t = %d\n", (int)t);
free_root(&tz_storage, MYF(0));
return 1;
}
}
printf("gmt_sec_to_TIME = localtime for time_t in [-40000,20000) range\n");
}
2004-06-23 23:41:56 +02:00
for (t= 1000000000; t < 1100000000; t+= 13)
{
localtime_r(&t,&tmp);
gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info);
2004-06-23 23:41:56 +02:00
if (!is_equal_TIME_tm(&time_tmp, &tmp))
{
printf("Problem with time_t = %d\n", (int)t);
free_root(&tz_storage, MYF(0));
return 1;
}
}
printf("gmt_sec_to_TIME = localtime for time_t in [1000000000,1100000000) range\n");
my_init_time();
2004-06-23 23:41:56 +02:00
/*
Be careful here! my_system_gmt_sec doesn't fully handle unnormalized
dates.
*/
for (time_tmp.year= 1980; time_tmp.year < 2010; time_tmp.year++)
{
for (time_tmp.month= 1; time_tmp.month < 13; time_tmp.month++)
{
2004-06-23 23:41:56 +02:00
for (time_tmp.day= 1;
time_tmp.day < mon_lengths[isleap(time_tmp.year)][time_tmp.month-1];
time_tmp.day++)
{
for (time_tmp.hour= 0; time_tmp.hour < 24; time_tmp.hour++)
{
for (time_tmp.minute= 0; time_tmp.minute < 60; time_tmp.minute+= 5)
{
for (time_tmp.second=0; time_tmp.second<60; time_tmp.second+=25)
{
long not_used;
my_bool not_used_2;
t= (time_t)my_system_gmt_sec(&time_tmp, &not_used, &not_used_2);
t1= (time_t)TIME_to_gmt_sec(&time_tmp, &tz_info, &not_used_2);
if (t != t1)
{
2004-06-23 23:41:56 +02:00
/*
We need special handling during autumn since my_system_gmt_sec
prefers greater time_t values (in MET) for ambiguity.
And BTW that is a bug which should be fixed !!!
2004-06-23 23:41:56 +02:00
*/
tmp.tm_year= time_tmp.year - TM_YEAR_BASE;
tmp.tm_mon= time_tmp.month - 1;
tmp.tm_mday= time_tmp.day;
tmp.tm_hour= time_tmp.hour;
tmp.tm_min= time_tmp.minute;
tmp.tm_sec= time_tmp.second;
tmp.tm_isdst= 1;
t2= mktime(&tmp);
if (t1 == t2)
continue;
2004-06-23 23:41:56 +02:00
printf("Problem: %u/%u/%u %u:%u:%u with times t=%d, t1=%d\n",
time_tmp.year, time_tmp.month, time_tmp.day,
time_tmp.hour, time_tmp.minute, time_tmp.second,
(int)t,(int)t1);
2004-06-23 23:41:56 +02:00
free_root(&tz_storage, MYF(0));
return 1;
}
}
}
}
}
}
}
2004-06-23 23:41:56 +02:00
printf("TIME_to_gmt_sec = my_system_gmt_sec for test range\n");
free_root(&tz_storage, MYF(0));
return 0;
}
#endif /* defined(TESTTIME) */