mariadb/storage/innobase/buf/buf0flu.cc

3896 lines
106 KiB
C++
Raw Normal View History

/*****************************************************************************
2017-05-15 16:17:16 +02:00
Copyright (c) 1995, 2017, Oracle and/or its affiliates. All Rights Reserved.
2017-03-13 18:17:34 +01:00
Copyright (c) 2013, 2017, MariaDB Corporation.
Copyright (c) 2013, 2014, Fusion-io
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file buf/buf0flu.cc
The database buffer buf_pool flush algorithm
Created 11/11/1995 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include <mysql/service_thd_wait.h>
#include <my_dbug.h>
#include <sql_class.h>
#include "buf0flu.h"
#include "buf0buf.h"
#include "buf0checksum.h"
#include "srv0start.h"
#include "srv0srv.h"
#include "page0zip.h"
#include "ut0byte.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "trx0sys.h"
#include "srv0mon.h"
#include "fsp0sysspace.h"
#include "ut0stage.h"
#include "fil0pagecompress.h"
#ifdef UNIV_LINUX
/* include defs for CPU time priority settings */
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/resource.h>
static const int buf_flush_page_cleaner_priority = -20;
#endif /* UNIV_LINUX */
/** Sleep time in microseconds for loop waiting for the oldest
modification lsn */
static const ulint buf_flush_wait_flushed_sleep_time = 10000;
/** Number of pages flushed through non flush_list flushes. */
static ulint buf_lru_flush_page_count = 0;
/** Flag indicating if the page_cleaner is in active state. This flag
is set to TRUE by the page_cleaner thread when it is spawned and is set
back to FALSE at shutdown by the page_cleaner as well. Therefore no
need to protect it by a mutex. It is only ever read by the thread
doing the shutdown */
2017-06-12 16:43:07 +02:00
bool buf_page_cleaner_is_active;
/** Factor for scan length to determine n_pages for intended oldest LSN
progress */
static ulint buf_flush_lsn_scan_factor = 3;
/** Average redo generation rate */
static lsn_t lsn_avg_rate = 0;
/** Target oldest LSN for the requested flush_sync */
static lsn_t buf_flush_sync_lsn = 0;
#ifdef UNIV_PFS_THREAD
mysql_pfs_key_t page_cleaner_thread_key;
#endif /* UNIV_PFS_THREAD */
/** Event to synchronise with the flushing. */
os_event_t buf_flush_event;
/** State for page cleaner array slot */
enum page_cleaner_state_t {
/** Not requested any yet.
Moved from FINISHED by the coordinator. */
PAGE_CLEANER_STATE_NONE = 0,
/** Requested but not started flushing.
Moved from NONE by the coordinator. */
PAGE_CLEANER_STATE_REQUESTED,
/** Flushing is on going.
Moved from REQUESTED by the worker. */
PAGE_CLEANER_STATE_FLUSHING,
/** Flushing was finished.
Moved from FLUSHING by the worker. */
PAGE_CLEANER_STATE_FINISHED
};
/** Page cleaner request state for each buffer pool instance */
struct page_cleaner_slot_t {
page_cleaner_state_t state; /*!< state of the request.
protected by page_cleaner_t::mutex
if the worker thread got the slot and
set to PAGE_CLEANER_STATE_FLUSHING,
n_flushed_lru and n_flushed_list can be
updated only by the worker thread */
/* This value is set during state==PAGE_CLEANER_STATE_NONE */
ulint n_pages_requested;
/*!< number of requested pages
for the slot */
/* These values are updated during state==PAGE_CLEANER_STATE_FLUSHING,
and commited with state==PAGE_CLEANER_STATE_FINISHED.
The consistency is protected by the 'state' */
ulint n_flushed_lru;
/*!< number of flushed pages
by LRU scan flushing */
ulint n_flushed_list;
/*!< number of flushed pages
by flush_list flushing */
bool succeeded_list;
/*!< true if flush_list flushing
succeeded. */
ulint flush_lru_time;
/*!< elapsed time for LRU flushing */
ulint flush_list_time;
/*!< elapsed time for flush_list
flushing */
ulint flush_lru_pass;
/*!< count to attempt LRU flushing */
ulint flush_list_pass;
/*!< count to attempt flush_list
flushing */
};
/** Page cleaner structure common for all threads */
struct page_cleaner_t {
ib_mutex_t mutex; /*!< mutex to protect whole of
page_cleaner_t struct and
page_cleaner_slot_t slots. */
os_event_t is_requested; /*!< event to activate worker
threads. */
os_event_t is_finished; /*!< event to signal that all
slots were finished. */
os_event_t is_started; /*!< event to signal that
thread is started/exiting */
volatile ulint n_workers; /*!< number of worker threads
in existence */
bool requested; /*!< true if requested pages
to flush */
lsn_t lsn_limit; /*!< upper limit of LSN to be
flushed */
ulint n_slots; /*!< total number of slots */
ulint n_slots_requested;
/*!< number of slots
in the state
PAGE_CLEANER_STATE_REQUESTED */
ulint n_slots_flushing;
/*!< number of slots
in the state
PAGE_CLEANER_STATE_FLUSHING */
ulint n_slots_finished;
/*!< number of slots
in the state
PAGE_CLEANER_STATE_FINISHED */
ulint flush_time; /*!< elapsed time to flush
requests for all slots */
ulint flush_pass; /*!< count to finish to flush
requests for all slots */
page_cleaner_slot_t* slots; /*!< pointer to the slots */
bool is_running; /*!< false if attempt
to shutdown */
#ifdef UNIV_DEBUG
ulint n_disabled_debug;
/*<! how many of pc threads
have been disabled */
#endif /* UNIV_DEBUG */
};
static page_cleaner_t* page_cleaner = NULL;
#ifdef UNIV_DEBUG
my_bool innodb_page_cleaner_disabled_debug;
#endif /* UNIV_DEBUG */
/** If LRU list of a buf_pool is less than this size then LRU eviction
should not happen. This is because when we do LRU flushing we also put
the blocks on free list. If LRU list is very small then we can end up
in thrashing. */
#define BUF_LRU_MIN_LEN 256
/* @} */
/******************************************************************//**
Increases flush_list size in bytes with the page size in inline function */
static inline
void
incr_flush_list_size_in_bytes(
/*==========================*/
buf_block_t* block, /*!< in: control block */
buf_pool_t* buf_pool) /*!< in: buffer pool instance */
{
ut_ad(buf_flush_list_mutex_own(buf_pool));
buf_pool->stat.flush_list_bytes += block->page.size.physical();
ut_ad(buf_pool->stat.flush_list_bytes <= buf_pool->curr_pool_size);
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(
/*===================*/
buf_pool_t* buf_pool); /*!< in: Buffer pool instance */
/******************************************************************//**
Validates the flush list some of the time.
@return TRUE if ok or the check was skipped */
static
ibool
buf_flush_validate_skip(
/*====================*/
buf_pool_t* buf_pool) /*!< in: Buffer pool instance */
{
/** Try buf_flush_validate_low() every this many times */
# define BUF_FLUSH_VALIDATE_SKIP 23
/** The buf_flush_validate_low() call skip counter.
Use a signed type because of the race condition below. */
static int buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP;
/* There is a race condition below, but it does not matter,
because this call is only for heuristic purposes. We want to
reduce the call frequency of the costly buf_flush_validate_low()
check in debug builds. */
if (--buf_flush_validate_count > 0) {
return(TRUE);
}
buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP;
return(buf_flush_validate_low(buf_pool));
}
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
/******************************************************************//**
Insert a block in the flush_rbt and returns a pointer to its
predecessor or NULL if no predecessor. The ordering is maintained
on the basis of the <oldest_modification, space, offset> key.
@return pointer to the predecessor or NULL if no predecessor. */
static
buf_page_t*
buf_flush_insert_in_flush_rbt(
/*==========================*/
buf_page_t* bpage) /*!< in: bpage to be inserted. */
{
const ib_rbt_node_t* c_node;
const ib_rbt_node_t* p_node;
buf_page_t* prev = NULL;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(srv_shutdown_state != SRV_SHUTDOWN_FLUSH_PHASE);
ut_ad(buf_flush_list_mutex_own(buf_pool));
/* Insert this buffer into the rbt. */
c_node = rbt_insert(buf_pool->flush_rbt, &bpage, &bpage);
ut_a(c_node != NULL);
/* Get the predecessor. */
p_node = rbt_prev(buf_pool->flush_rbt, c_node);
if (p_node != NULL) {
buf_page_t** value;
value = rbt_value(buf_page_t*, p_node);
prev = *value;
ut_a(prev != NULL);
}
return(prev);
}
/*********************************************************//**
Delete a bpage from the flush_rbt. */
static
void
buf_flush_delete_from_flush_rbt(
/*============================*/
buf_page_t* bpage) /*!< in: bpage to be removed. */
{
#ifdef UNIV_DEBUG
ibool ret = FALSE;
#endif /* UNIV_DEBUG */
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_flush_list_mutex_own(buf_pool));
#ifdef UNIV_DEBUG
ret =
#endif /* UNIV_DEBUG */
rbt_delete(buf_pool->flush_rbt, &bpage);
ut_ad(ret);
}
/*****************************************************************//**
Compare two modified blocks in the buffer pool. The key for comparison
is:
key = <oldest_modification, space, offset>
This comparison is used to maintian ordering of blocks in the
buf_pool->flush_rbt.
Note that for the purpose of flush_rbt, we only need to order blocks
on the oldest_modification. The other two fields are used to uniquely
identify the blocks.
@return < 0 if b2 < b1, 0 if b2 == b1, > 0 if b2 > b1 */
static
int
buf_flush_block_cmp(
/*================*/
const void* p1, /*!< in: block1 */
const void* p2) /*!< in: block2 */
{
int ret;
const buf_page_t* b1 = *(const buf_page_t**) p1;
const buf_page_t* b2 = *(const buf_page_t**) p2;
ut_ad(b1 != NULL);
ut_ad(b2 != NULL);
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(b1);
#endif /* UNIV_DEBUG */
ut_ad(buf_flush_list_mutex_own(buf_pool));
ut_ad(b1->in_flush_list);
ut_ad(b2->in_flush_list);
if (b2->oldest_modification > b1->oldest_modification) {
return(1);
} else if (b2->oldest_modification < b1->oldest_modification) {
return(-1);
}
/* If oldest_modification is same then decide on the space. */
ret = (int)(b2->id.space() - b1->id.space());
/* Or else decide ordering on the page number. */
return(ret ? ret : (int) (b2->id.page_no() - b1->id.page_no()));
}
/********************************************************************//**
Initialize the red-black tree to speed up insertions into the flush_list
during recovery process. Should be called at the start of recovery
process before any page has been read/written. */
void
buf_flush_init_flush_rbt(void)
/*==========================*/
{
ulint i;
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_flush_list_mutex_enter(buf_pool);
ut_ad(buf_pool->flush_rbt == NULL);
/* Create red black tree for speedy insertions in flush list. */
buf_pool->flush_rbt = rbt_create(
sizeof(buf_page_t*), buf_flush_block_cmp);
buf_flush_list_mutex_exit(buf_pool);
}
}
/********************************************************************//**
Frees up the red-black tree. */
void
buf_flush_free_flush_rbt(void)
/*==========================*/
{
ulint i;
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_flush_list_mutex_enter(buf_pool);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
rbt_free(buf_pool->flush_rbt);
buf_pool->flush_rbt = NULL;
buf_flush_list_mutex_exit(buf_pool);
}
}
/********************************************************************//**
Inserts a modified block into the flush list. */
void
buf_flush_insert_into_flush_list(
/*=============================*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
buf_block_t* block, /*!< in/out: block which is modified */
lsn_t lsn) /*!< in: oldest modification */
{
ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(log_flush_order_mutex_own());
ut_ad(buf_page_mutex_own(block));
buf_flush_list_mutex_enter(buf_pool);
ut_ad((UT_LIST_GET_FIRST(buf_pool->flush_list) == NULL)
|| (UT_LIST_GET_FIRST(buf_pool->flush_list)->oldest_modification
<= lsn));
/* If we are in the recovery then we need to update the flush
red-black tree as well. */
if (buf_pool->flush_rbt != NULL) {
buf_flush_list_mutex_exit(buf_pool);
buf_flush_insert_sorted_into_flush_list(buf_pool, block, lsn);
return;
}
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
block->page.oldest_modification = lsn;
UT_LIST_ADD_FIRST(buf_pool->flush_list, &block->page);
incr_flush_list_size_in_bytes(block, buf_pool);
#ifdef UNIV_DEBUG_VALGRIND
void* p;
if (block->page.size.is_compressed()) {
p = block->page.zip.data;
} else {
p = block->frame;
}
UNIV_MEM_ASSERT_RW(p, block->page.size.physical());
#endif /* UNIV_DEBUG_VALGRIND */
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_skip(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Inserts a modified block into the flush list in the right sorted position.
This function is used by recovery, because there the modifications do not
necessarily come in the order of lsn's. */
void
buf_flush_insert_sorted_into_flush_list(
/*====================================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
buf_block_t* block, /*!< in/out: block which is modified */
lsn_t lsn) /*!< in: oldest modification */
{
buf_page_t* prev_b;
buf_page_t* b;
ut_ad(srv_shutdown_state != SRV_SHUTDOWN_FLUSH_PHASE);
ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(log_flush_order_mutex_own());
ut_ad(buf_page_mutex_own(block));
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
buf_flush_list_mutex_enter(buf_pool);
/* The field in_LRU_list is protected by buf_pool->mutex, which
we are not holding. However, while a block is in the flush
list, it is dirty and cannot be discarded, not from the
page_hash or from the LRU list. At most, the uncompressed
page frame of a compressed block may be discarded or created
(copying the block->page to or from a buf_page_t that is
dynamically allocated from buf_buddy_alloc()). Because those
transitions hold block->mutex and the flush list mutex (via
buf_flush_relocate_on_flush_list()), there is no possibility
of a race condition in the assertions below. */
ut_ad(block->page.in_LRU_list);
ut_ad(block->page.in_page_hash);
/* buf_buddy_block_register() will take a block in the
BUF_BLOCK_MEMORY state, not a file page. */
ut_ad(!block->page.in_zip_hash);
ut_ad(!block->page.in_flush_list);
ut_d(block->page.in_flush_list = TRUE);
block->page.oldest_modification = lsn;
#ifdef UNIV_DEBUG_VALGRIND
void* p;
if (block->page.size.is_compressed()) {
p = block->page.zip.data;
} else {
p = block->frame;
}
UNIV_MEM_ASSERT_RW(p, block->page.size.physical());
#endif /* UNIV_DEBUG_VALGRIND */
prev_b = NULL;
/* For the most part when this function is called the flush_rbt
should not be NULL. In a very rare boundary case it is possible
that the flush_rbt has already been freed by the recovery thread
before the last page was hooked up in the flush_list by the
io-handler thread. In that case we'll just do a simple
linear search in the else block. */
if (buf_pool->flush_rbt != NULL) {
prev_b = buf_flush_insert_in_flush_rbt(&block->page);
} else {
b = UT_LIST_GET_FIRST(buf_pool->flush_list);
while (b != NULL && b->oldest_modification
> block->page.oldest_modification) {
ut_ad(b->in_flush_list);
prev_b = b;
b = UT_LIST_GET_NEXT(list, b);
}
}
if (prev_b == NULL) {
UT_LIST_ADD_FIRST(buf_pool->flush_list, &block->page);
} else {
UT_LIST_INSERT_AFTER(buf_pool->flush_list, prev_b, &block->page);
}
incr_flush_list_size_in_bytes(block, buf_pool);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Returns TRUE if the file page block is immediately suitable for replacement,
i.e., the transition FILE_PAGE => NOT_USED allowed.
@return TRUE if can replace immediately */
ibool
buf_flush_ready_for_replace(
/*========================*/
buf_page_t* bpage) /*!< in: buffer control block, must be
buf_page_in_file(bpage) and in the LRU list */
{
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_pool_mutex_own(buf_pool));
2014-05-05 18:20:28 +02:00
#endif /* UNIV_DEBUG */
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(bpage->in_LRU_list);
2014-05-05 18:20:28 +02:00
if (buf_page_in_file(bpage)) {
return(bpage->oldest_modification == 0
2014-05-05 18:20:28 +02:00
&& bpage->buf_fix_count == 0
&& buf_page_get_io_fix(bpage) == BUF_IO_NONE);
}
ib::fatal() << "Buffer block " << bpage << " state " << bpage->state
<< " in the LRU list!";
return(FALSE);
}
/********************************************************************//**
Returns true if the block is modified and ready for flushing.
@return true if can flush immediately */
bool
buf_flush_ready_for_flush(
/*======================*/
buf_page_t* bpage, /*!< in: buffer control block, must be
buf_page_in_file(bpage) */
buf_flush_t flush_type)/*!< in: type of flush */
{
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_pool_mutex_own(buf_pool));
#endif /* UNIV_DEBUG */
ut_a(buf_page_in_file(bpage));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(flush_type < BUF_FLUSH_N_TYPES);
if (bpage->oldest_modification == 0
|| buf_page_get_io_fix(bpage) != BUF_IO_NONE) {
return(false);
}
ut_ad(bpage->in_flush_list);
switch (flush_type) {
case BUF_FLUSH_LIST:
case BUF_FLUSH_LRU:
case BUF_FLUSH_SINGLE_PAGE:
2014-05-05 18:20:28 +02:00
return(true);
case BUF_FLUSH_N_TYPES:
break;
}
ut_error;
return(false);
}
/********************************************************************//**
Remove a block from the flush list of modified blocks. */
void
buf_flush_remove(
/*=============*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
ut_ad(bpage->in_flush_list);
buf_flush_list_mutex_enter(buf_pool);
/* Important that we adjust the hazard pointer before removing
the bpage from flush list. */
buf_pool->flush_hp.adjust(bpage);
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_POOL_WATCH:
case BUF_BLOCK_ZIP_PAGE:
/* Clean compressed pages should not be on the flush list */
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
return;
case BUF_BLOCK_ZIP_DIRTY:
buf_page_set_state(bpage, BUF_BLOCK_ZIP_PAGE);
UT_LIST_REMOVE(buf_pool->flush_list, bpage);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
buf_LRU_insert_zip_clean(bpage);
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
break;
case BUF_BLOCK_FILE_PAGE:
UT_LIST_REMOVE(buf_pool->flush_list, bpage);
break;
}
/* If the flush_rbt is active then delete from there as well. */
if (buf_pool->flush_rbt != NULL) {
buf_flush_delete_from_flush_rbt(bpage);
}
/* Must be done after we have removed it from the flush_rbt
because we assert on in_flush_list in comparison function. */
ut_d(bpage->in_flush_list = FALSE);
buf_pool->stat.flush_list_bytes -= bpage->size.physical();
bpage->oldest_modification = 0;
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_skip(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
/* If there is an observer that want to know if the asynchronous
flushing was done then notify it. */
if (bpage->flush_observer != NULL) {
bpage->flush_observer->notify_remove(buf_pool, bpage);
bpage->flush_observer = NULL;
}
buf_flush_list_mutex_exit(buf_pool);
}
/*******************************************************************//**
Relocates a buffer control block on the flush_list.
Note that it is assumed that the contents of bpage have already been
copied to dpage.
IMPORTANT: When this function is called bpage and dpage are not
exact copies of each other. For example, they both will have different
::state. Also the ::list pointers in dpage may be stale. We need to
use the current list node (bpage) to do the list manipulation because
the list pointers could have changed between the time that we copied
the contents of bpage to the dpage and the flush list manipulation
below. */
void
buf_flush_relocate_on_flush_list(
/*=============================*/
buf_page_t* bpage, /*!< in/out: control block being moved */
buf_page_t* dpage) /*!< in/out: destination block */
{
buf_page_t* prev;
buf_page_t* prev_b = NULL;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_pool_mutex_own(buf_pool));
/* Must reside in the same buffer pool. */
ut_ad(buf_pool == buf_pool_from_bpage(dpage));
ut_ad(mutex_own(buf_page_get_mutex(bpage)));
buf_flush_list_mutex_enter(buf_pool);
/* FIXME: At this point we have both buf_pool and flush_list
mutexes. Theoretically removal of a block from flush list is
only covered by flush_list mutex but currently we do
have buf_pool mutex in buf_flush_remove() therefore this block
is guaranteed to be in the flush list. We need to check if
this will work without the assumption of block removing code
having the buf_pool mutex. */
ut_ad(bpage->in_flush_list);
ut_ad(dpage->in_flush_list);
/* If recovery is active we must swap the control blocks in
the flush_rbt as well. */
if (buf_pool->flush_rbt != NULL) {
buf_flush_delete_from_flush_rbt(bpage);
prev_b = buf_flush_insert_in_flush_rbt(dpage);
}
/* Important that we adjust the hazard pointer before removing
the bpage from the flush list. */
buf_pool->flush_hp.adjust(bpage);
/* Must be done after we have removed it from the flush_rbt
because we assert on in_flush_list in comparison function. */
ut_d(bpage->in_flush_list = FALSE);
prev = UT_LIST_GET_PREV(list, bpage);
UT_LIST_REMOVE(buf_pool->flush_list, bpage);
if (prev) {
ut_ad(prev->in_flush_list);
UT_LIST_INSERT_AFTER( buf_pool->flush_list, prev, dpage);
} else {
UT_LIST_ADD_FIRST(buf_pool->flush_list, dpage);
}
/* Just an extra check. Previous in flush_list
should be the same control block as in flush_rbt. */
ut_a(buf_pool->flush_rbt == NULL || prev_b == prev);
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
ut_a(buf_flush_validate_low(buf_pool));
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
buf_flush_list_mutex_exit(buf_pool);
}
/********************************************************************//**
Updates the flush system data structures when a write is completed. */
void
buf_flush_write_complete(
/*=====================*/
buf_page_t* bpage) /*!< in: pointer to the block in question */
{
buf_flush_t flush_type;
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(bpage);
buf_flush_remove(bpage);
flush_type = buf_page_get_flush_type(bpage);
buf_pool->n_flush[flush_type]--;
ut_ad(buf_pool->n_flush[flush_type] != ULINT_MAX);
ut_ad(buf_pool_mutex_own(buf_pool));
if (buf_pool->n_flush[flush_type] == 0
&& buf_pool->init_flush[flush_type] == FALSE) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
buf_dblwr_update(bpage, flush_type);
}
/** Calculate the checksum of a page from compressed table and update
the page.
@param[in,out] page page to update
@param[in] size compressed page size
@param[in] lsn LSN to stamp on the page */
void
buf_flush_update_zip_checksum(
buf_frame_t* page,
ulint size,
lsn_t lsn)
{
ut_a(size > 0);
const uint32_t checksum = page_zip_calc_checksum(
page, size,
static_cast<srv_checksum_algorithm_t>(srv_checksum_algorithm));
mach_write_to_8(page + FIL_PAGE_LSN, lsn);
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum);
}
/** Initialize a page for writing to the tablespace.
@param[in] block buffer block; NULL if bypassing the buffer pool
@param[in,out] page page frame
@param[in,out] page_zip_ compressed page, or NULL if uncompressed
@param[in] newest_lsn newest modification LSN to the page
@param[in] skip_checksum whether to disable the page checksum */
void
buf_flush_init_for_writing(
const buf_block_t* block,
byte* page,
void* page_zip_,
lsn_t newest_lsn,
bool skip_checksum)
{
ib_uint32_t checksum = BUF_NO_CHECKSUM_MAGIC;
ut_ad(block == NULL || block->frame == page);
ut_ad(block == NULL || page_zip_ == NULL
|| &block->page.zip == page_zip_);
ut_ad(page);
if (page_zip_) {
page_zip_des_t* page_zip;
ulint size;
page_zip = static_cast<page_zip_des_t*>(page_zip_);
size = page_zip_get_size(page_zip);
ut_ad(size);
ut_ad(ut_is_2pow(size));
ut_ad(size <= UNIV_ZIP_SIZE_MAX);
switch (fil_page_get_type(page)) {
case FIL_PAGE_TYPE_ALLOCATED:
case FIL_PAGE_INODE:
case FIL_PAGE_IBUF_BITMAP:
case FIL_PAGE_TYPE_FSP_HDR:
case FIL_PAGE_TYPE_XDES:
/* These are essentially uncompressed pages. */
memcpy(page_zip->data, page, size);
/* fall through */
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
case FIL_PAGE_INDEX:
case FIL_PAGE_RTREE:
buf_flush_update_zip_checksum(
page_zip->data, size, newest_lsn);
return;
}
ib::error() << "The compressed page to be written"
" seems corrupt:";
ut_print_buf(stderr, page, size);
fputs("\nInnoDB: Possibly older version of the page:", stderr);
ut_print_buf(stderr, page_zip->data, size);
putc('\n', stderr);
ut_error;
}
/* Write the newest modification lsn to the page header and trailer */
mach_write_to_8(page + FIL_PAGE_LSN, newest_lsn);
mach_write_to_8(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
newest_lsn);
if (skip_checksum) {
2017-03-30 12:48:42 +02:00
ut_ad(block == NULL
|| block->page.id.space() == SRV_TMP_SPACE_ID);
ut_ad(page_get_space_id(page) == SRV_TMP_SPACE_ID);
2015-01-19 00:11:05 +01:00
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum);
} else {
if (block != NULL && UNIV_PAGE_SIZE == 16384) {
/* The page type could be garbage in old files
created before MySQL 5.5. Such files always
had a page size of 16 kilobytes. */
ulint page_type = fil_page_get_type(page);
ulint reset_type = page_type;
switch (block->page.id.page_no() % 16384) {
case 0:
reset_type = block->page.id.page_no() == 0
? FIL_PAGE_TYPE_FSP_HDR
: FIL_PAGE_TYPE_XDES;
break;
case 1:
reset_type = FIL_PAGE_IBUF_BITMAP;
break;
case FSP_TRX_SYS_PAGE_NO:
if (block->page.id.page_no()
== TRX_SYS_PAGE_NO
&& block->page.id.space()
== TRX_SYS_SPACE) {
reset_type = FIL_PAGE_TYPE_TRX_SYS;
break;
}
/* fall through */
default:
switch (page_type) {
case FIL_PAGE_INDEX:
MDEV-11369 Instant ADD COLUMN for InnoDB For InnoDB tables, adding, dropping and reordering columns has required a rebuild of the table and all its indexes. Since MySQL 5.6 (and MariaDB 10.0) this has been supported online (LOCK=NONE), allowing concurrent modification of the tables. This work revises the InnoDB ROW_FORMAT=REDUNDANT, ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC so that columns can be appended instantaneously, with only minor changes performed to the table structure. The counter innodb_instant_alter_column in INFORMATION_SCHEMA.GLOBAL_STATUS is incremented whenever a table rebuild operation is converted into an instant ADD COLUMN operation. ROW_FORMAT=COMPRESSED tables will not support instant ADD COLUMN. Some usability limitations will be addressed in subsequent work: MDEV-13134 Introduce ALTER TABLE attributes ALGORITHM=NOCOPY and ALGORITHM=INSTANT MDEV-14016 Allow instant ADD COLUMN, ADD INDEX, LOCK=NONE The format of the clustered index (PRIMARY KEY) is changed as follows: (1) The FIL_PAGE_TYPE of the root page will be FIL_PAGE_TYPE_INSTANT, and a new field PAGE_INSTANT will contain the original number of fields in the clustered index ('core' fields). If instant ADD COLUMN has not been used or the table becomes empty, or the very first instant ADD COLUMN operation is rolled back, the fields PAGE_INSTANT and FIL_PAGE_TYPE will be reset to 0 and FIL_PAGE_INDEX. (2) A special 'default row' record is inserted into the leftmost leaf, between the page infimum and the first user record. This record is distinguished by the REC_INFO_MIN_REC_FLAG, and it is otherwise in the same format as records that contain values for the instantly added columns. This 'default row' always has the same number of fields as the clustered index according to the table definition. The values of 'core' fields are to be ignored. For other fields, the 'default row' will contain the default values as they were during the ALTER TABLE statement. (If the column default values are changed later, those values will only be stored in the .frm file. The 'default row' will contain the original evaluated values, which must be the same for every row.) The 'default row' must be completely hidden from higher-level access routines. Assertions have been added to ensure that no 'default row' is ever present in the adaptive hash index or in locked records. The 'default row' is never delete-marked. (3) In clustered index leaf page records, the number of fields must reside between the number of 'core' fields (dict_index_t::n_core_fields introduced in this work) and dict_index_t::n_fields. If the number of fields is less than dict_index_t::n_fields, the missing fields are replaced with the column value of the 'default row'. Note: The number of fields in the record may shrink if some of the last instantly added columns are updated to the value that is in the 'default row'. The function btr_cur_trim() implements this 'compression' on update and rollback; dtuple::trim() implements it on insert. (4) In ROW_FORMAT=COMPACT and ROW_FORMAT=DYNAMIC records, the new status value REC_STATUS_COLUMNS_ADDED will indicate the presence of a new record header that will encode n_fields-n_core_fields-1 in 1 or 2 bytes. (In ROW_FORMAT=REDUNDANT records, the record header always explicitly encodes the number of fields.) We introduce the undo log record type TRX_UNDO_INSERT_DEFAULT for covering the insert of the 'default row' record when instant ADD COLUMN is used for the first time. Subsequent instant ADD COLUMN can use TRX_UNDO_UPD_EXIST_REC. This is joint work with Vin Chen (陈福荣) from Tencent. The design that was discussed in April 2017 would not have allowed import or export of data files, because instead of the 'default row' it would have introduced a data dictionary table. The test rpl.rpl_alter_instant is exactly as contributed in pull request #408. The test innodb.instant_alter is based on a contributed test. The redo log record format changes for ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT are as contributed. (With this change present, crash recovery from MariaDB 10.3.1 will fail in spectacular ways!) Also the semantics of higher-level redo log records that modify the PAGE_INSTANT field is changed. The redo log format version identifier was already changed to LOG_HEADER_FORMAT_CURRENT=103 in MariaDB 10.3.1. Everything else has been rewritten by me. Thanks to Elena Stepanova, the code has been tested extensively. When rolling back an instant ADD COLUMN operation, we must empty the PAGE_FREE list after deleting or shortening the 'default row' record, by calling either btr_page_empty() or btr_page_reorganize(). We must know the size of each entry in the PAGE_FREE list. If rollback left a freed copy of the 'default row' in the PAGE_FREE list, we would be unable to determine its size (if it is in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC) because it would contain more fields than the rolled-back definition of the clustered index. UNIV_SQL_DEFAULT: A new special constant that designates an instantly added column that is not present in the clustered index record. len_is_stored(): Check if a length is an actual length. There are two magic length values: UNIV_SQL_DEFAULT, UNIV_SQL_NULL. dict_col_t::def_val: The 'default row' value of the column. If the column is not added instantly, def_val.len will be UNIV_SQL_DEFAULT. dict_col_t: Add the accessors is_virtual(), is_nullable(), is_instant(), instant_value(). dict_col_t::remove_instant(): Remove the 'instant ADD' status of a column. dict_col_t::name(const dict_table_t& table): Replaces dict_table_get_col_name(). dict_index_t::n_core_fields: The original number of fields. For secondary indexes and if instant ADD COLUMN has not been used, this will be equal to dict_index_t::n_fields. dict_index_t::n_core_null_bytes: Number of bytes needed to represent the null flags; usually equal to UT_BITS_IN_BYTES(n_nullable). dict_index_t::NO_CORE_NULL_BYTES: Magic value signalling that n_core_null_bytes was not initialized yet from the clustered index root page. dict_index_t: Add the accessors is_instant(), is_clust(), get_n_nullable(), instant_field_value(). dict_index_t::instant_add_field(): Adjust clustered index metadata for instant ADD COLUMN. dict_index_t::remove_instant(): Remove the 'instant ADD' status of a clustered index when the table becomes empty, or the very first instant ADD COLUMN operation is rolled back. dict_table_t: Add the accessors is_instant(), is_temporary(), supports_instant(). dict_table_t::instant_add_column(): Adjust metadata for instant ADD COLUMN. dict_table_t::rollback_instant(): Adjust metadata on the rollback of instant ADD COLUMN. prepare_inplace_alter_table_dict(): First create the ctx->new_table, and only then decide if the table really needs to be rebuilt. We must split the creation of table or index metadata from the creation of the dictionary table records and the creation of the data. In this way, we can transform a table-rebuilding operation into an instant ADD COLUMN operation. Dictionary objects will only be added to cache when table rebuilding or index creation is needed. The ctx->instant_table will never be added to cache. dict_table_t::add_to_cache(): Modified and renamed from dict_table_add_to_cache(). Do not modify the table metadata. Let the callers invoke dict_table_add_system_columns() and if needed, set can_be_evicted. dict_create_sys_tables_tuple(), dict_create_table_step(): Omit the system columns (which will now exist in the dict_table_t object already at this point). dict_create_table_step(): Expect the callers to invoke dict_table_add_system_columns(). pars_create_table(): Before creating the table creation execution graph, invoke dict_table_add_system_columns(). row_create_table_for_mysql(): Expect all callers to invoke dict_table_add_system_columns(). create_index_dict(): Replaces row_merge_create_index_graph(). innodb_update_n_cols(): Renamed from innobase_update_n_virtual(). Call my_error() if an error occurs. btr_cur_instant_init(), btr_cur_instant_init_low(), btr_cur_instant_root_init(): Load additional metadata from the clustered index and set dict_index_t::n_core_null_bytes. This is invoked when table metadata is first loaded into the data dictionary. dict_boot(): Initialize n_core_null_bytes for the four hard-coded dictionary tables. dict_create_index_step(): Initialize n_core_null_bytes. This is executed as part of CREATE TABLE. dict_index_build_internal_clust(): Initialize n_core_null_bytes to NO_CORE_NULL_BYTES if table->supports_instant(). row_create_index_for_mysql(): Initialize n_core_null_bytes for CREATE TEMPORARY TABLE. commit_cache_norebuild(): Call the code to rename or enlarge columns in the cache only if instant ADD COLUMN is not being used. (Instant ADD COLUMN would copy all column metadata from instant_table to old_table, including the names and lengths.) PAGE_INSTANT: A new 13-bit field for storing dict_index_t::n_core_fields. This is repurposing the 16-bit field PAGE_DIRECTION, of which only the least significant 3 bits were used. The original byte containing PAGE_DIRECTION will be accessible via the new constant PAGE_DIRECTION_B. page_get_instant(), page_set_instant(): Accessors for the PAGE_INSTANT. page_ptr_get_direction(), page_get_direction(), page_ptr_set_direction(): Accessors for PAGE_DIRECTION. page_direction_reset(): Reset PAGE_DIRECTION, PAGE_N_DIRECTION. page_direction_increment(): Increment PAGE_N_DIRECTION and set PAGE_DIRECTION. rec_get_offsets(): Use the 'leaf' parameter for non-debug purposes, and assume that heap_no is always set. Initialize all dict_index_t::n_fields for ROW_FORMAT=REDUNDANT records, even if the record contains fewer fields. rec_offs_make_valid(): Add the parameter 'leaf'. rec_copy_prefix_to_dtuple(): Assert that the tuple is only built on the core fields. Instant ADD COLUMN only applies to the clustered index, and we should never build a search key that has more than the PRIMARY KEY and possibly DB_TRX_ID,DB_ROLL_PTR. All these columns are always present. dict_index_build_data_tuple(): Remove assertions that would be duplicated in rec_copy_prefix_to_dtuple(). rec_init_offsets(): Support ROW_FORMAT=REDUNDANT records whose number of fields is between n_core_fields and n_fields. cmp_rec_rec_with_match(): Implement the comparison between two MIN_REC_FLAG records. trx_t::in_rollback: Make the field available in non-debug builds. trx_start_for_ddl_low(): Remove dangerous error-tolerance. A dictionary transaction must be flagged as such before it has generated any undo log records. This is because trx_undo_assign_undo() will mark the transaction as a dictionary transaction in the undo log header right before the very first undo log record is being written. btr_index_rec_validate(): Account for instant ADD COLUMN row_undo_ins_remove_clust_rec(): On the rollback of an insert into SYS_COLUMNS, revert instant ADD COLUMN in the cache by removing the last column from the table and the clustered index. row_search_on_row_ref(), row_undo_mod_parse_undo_rec(), row_undo_mod(), trx_undo_update_rec_get_update(): Handle the 'default row' as a special case. dtuple_t::trim(index): Omit a redundant suffix of an index tuple right before insert or update. After instant ADD COLUMN, if the last fields of a clustered index tuple match the 'default row', there is no need to store them. While trimming the entry, we must hold a page latch, so that the table cannot be emptied and the 'default row' be deleted. btr_cur_optimistic_update(), btr_cur_pessimistic_update(), row_upd_clust_rec_by_insert(), row_ins_clust_index_entry_low(): Invoke dtuple_t::trim() if needed. row_ins_clust_index_entry(): Restore dtuple_t::n_fields after calling row_ins_clust_index_entry_low(). rec_get_converted_size(), rec_get_converted_size_comp(): Allow the number of fields to be between n_core_fields and n_fields. Do not support infimum,supremum. They are never supposed to be stored in dtuple_t, because page creation nowadays uses a lower-level method for initializing them. rec_convert_dtuple_to_rec_comp(): Assign the status bits based on the number of fields. btr_cur_trim(): In an update, trim the index entry as needed. For the 'default row', handle rollback specially. For user records, omit fields that match the 'default row'. btr_cur_optimistic_delete_func(), btr_cur_pessimistic_delete(): Skip locking and adaptive hash index for the 'default row'. row_log_table_apply_convert_mrec(): Replace 'default row' values if needed. In the temporary file that is applied by row_log_table_apply(), we must identify whether the records contain the extra header for instantly added columns. For now, we will allocate an additional byte for this for ROW_T_INSERT and ROW_T_UPDATE records when the source table has been subject to instant ADD COLUMN. The ROW_T_DELETE records are fine, as they will be converted and will only contain 'core' columns (PRIMARY KEY and some system columns) that are converted from dtuple_t. rec_get_converted_size_temp(), rec_init_offsets_temp(), rec_convert_dtuple_to_temp(): Add the parameter 'status'. REC_INFO_DEFAULT_ROW = REC_INFO_MIN_REC_FLAG | REC_STATUS_COLUMNS_ADDED: An info_bits constant for distinguishing the 'default row' record. rec_comp_status_t: An enum of the status bit values. rec_leaf_format: An enum that replaces the bool parameter of rec_init_offsets_comp_ordinary().
2017-10-06 06:00:05 +02:00
case FIL_PAGE_TYPE_INSTANT:
case FIL_PAGE_RTREE:
case FIL_PAGE_UNDO_LOG:
case FIL_PAGE_INODE:
case FIL_PAGE_IBUF_FREE_LIST:
case FIL_PAGE_TYPE_ALLOCATED:
case FIL_PAGE_TYPE_SYS:
case FIL_PAGE_TYPE_TRX_SYS:
case FIL_PAGE_TYPE_BLOB:
case FIL_PAGE_TYPE_ZBLOB:
case FIL_PAGE_TYPE_ZBLOB2:
break;
case FIL_PAGE_TYPE_FSP_HDR:
case FIL_PAGE_TYPE_XDES:
case FIL_PAGE_IBUF_BITMAP:
/* These pages should have
predetermined page numbers
(see above). */
default:
reset_type = FIL_PAGE_TYPE_UNKNOWN;
break;
}
}
if (UNIV_UNLIKELY(page_type != reset_type)) {
ib::info()
<< "Resetting invalid page "
<< block->page.id << " type "
<< page_type << " to "
<< reset_type << " when flushing.";
fil_page_set_type(page, reset_type);
}
}
switch ((srv_checksum_algorithm_t) srv_checksum_algorithm) {
case SRV_CHECKSUM_ALGORITHM_CRC32:
case SRV_CHECKSUM_ALGORITHM_STRICT_CRC32:
checksum = buf_calc_page_crc32(page);
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM,
checksum);
break;
case SRV_CHECKSUM_ALGORITHM_INNODB:
case SRV_CHECKSUM_ALGORITHM_STRICT_INNODB:
checksum = (ib_uint32_t) buf_calc_page_new_checksum(
page);
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM,
checksum);
checksum = (ib_uint32_t) buf_calc_page_old_checksum(
page);
break;
case SRV_CHECKSUM_ALGORITHM_NONE:
case SRV_CHECKSUM_ALGORITHM_STRICT_NONE:
mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM,
checksum);
break;
/* no default so the compiler will emit a warning if
new enum is added and not handled here */
}
}
2015-01-19 00:11:05 +01:00
/* With the InnoDB checksum, we overwrite the first 4 bytes of
the end lsn field to store the old formula checksum. Since it
depends also on the field FIL_PAGE_SPACE_OR_CHKSUM, it has to
be calculated after storing the new formula checksum.
In other cases we write the same value to both fields.
If CRC32 is used then it is faster to use that checksum
(calculated above) instead of calculating another one.
We can afford to store something other than
buf_calc_page_old_checksum() or BUF_NO_CHECKSUM_MAGIC in
this field because the file will not be readable by old
versions of MySQL/InnoDB anyway (older than MySQL 5.6.3) */
mach_write_to_4(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM,
checksum);
}
/********************************************************************//**
Does an asynchronous write of a buffer page. NOTE: in simulated aio and
also when the doublewrite buffer is used, we must call
buf_dblwr_flush_buffered_writes after we have posted a batch of
writes! */
static
void
buf_flush_write_block_low(
/*======================*/
buf_page_t* bpage, /*!< in: buffer block to write */
buf_flush_t flush_type, /*!< in: type of flush */
bool sync) /*!< in: true if sync IO request */
{
fil_space_t* space = fil_space_acquire_for_io(bpage->id.space());
if (!space) {
return;
}
ut_ad(space->purpose == FIL_TYPE_TEMPORARY
|| space->purpose == FIL_TYPE_IMPORT
|| space->purpose == FIL_TYPE_TABLESPACE);
const bool is_temp = space->purpose == FIL_TYPE_TEMPORARY;
ut_ad(is_temp == fsp_is_system_temporary(space->id));
page_t* frame = NULL;
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(!buf_pool_mutex_own(buf_pool));
#endif /* UNIV_DEBUG */
DBUG_PRINT("ib_buf", ("flush %s %u page %u:%u",
sync ? "sync" : "async", (unsigned) flush_type,
bpage->id.space(), bpage->id.page_no()));
ut_ad(buf_page_in_file(bpage));
/* We are not holding buf_pool->mutex or block_mutex here.
Nevertheless, it is safe to access bpage, because it is
io_fixed and oldest_modification != 0. Thus, it cannot be
relocated in the buffer pool or removed from flush_list or
LRU_list. */
ut_ad(!buf_pool_mutex_own(buf_pool));
ut_ad(!buf_flush_list_mutex_own(buf_pool));
ut_ad(!buf_page_get_mutex(bpage)->is_owned());
ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_WRITE);
ut_ad(bpage->oldest_modification != 0);
#ifdef UNIV_IBUF_COUNT_DEBUG
ut_a(ibuf_count_get(bpage->id) == 0);
#endif /* UNIV_IBUF_COUNT_DEBUG */
ut_ad(bpage->newest_modification != 0);
/* Force the log to the disk before writing the modified block */
if (!srv_read_only_mode) {
log_write_up_to(bpage->newest_modification, true);
}
switch (buf_page_get_state(bpage)) {
case BUF_BLOCK_POOL_WATCH:
case BUF_BLOCK_ZIP_PAGE: /* The page should be dirty. */
case BUF_BLOCK_NOT_USED:
case BUF_BLOCK_READY_FOR_USE:
case BUF_BLOCK_MEMORY:
case BUF_BLOCK_REMOVE_HASH:
ut_error;
break;
case BUF_BLOCK_ZIP_DIRTY:
frame = bpage->zip.data;
2015-08-03 13:03:47 +02:00
mach_write_to_8(frame + FIL_PAGE_LSN,
bpage->newest_modification);
ut_a(page_zip_verify_checksum(frame, bpage->size.physical()));
break;
case BUF_BLOCK_FILE_PAGE:
frame = bpage->zip.data;
if (!frame) {
frame = ((buf_block_t*) bpage)->frame;
}
buf_flush_init_for_writing(
reinterpret_cast<const buf_block_t*>(bpage),
reinterpret_cast<const buf_block_t*>(bpage)->frame,
bpage->zip.data ? &bpage->zip : NULL,
2017-03-30 12:48:42 +02:00
bpage->newest_modification, is_temp);
break;
}
frame = buf_page_encrypt_before_write(space, bpage, frame);
2014-12-22 15:53:17 +01:00
/* Disable use of double-write buffer for temporary tablespace.
Given the nature and load of temporary tablespace doublewrite buffer
adds an overhead during flushing. */
if (is_temp || space->atomic_write_supported
|| !srv_use_doublewrite_buf
|| buf_dblwr == NULL) {
ulint type = IORequest::WRITE | IORequest::DO_NOT_WAKE;
MDEV-11254: innodb-use-trim has no effect in 10.2 Problem was that implementation merged from 10.1 was incompatible with InnoDB 5.7. buf0buf.cc: Add functions to return should we punch hole and how big. buf0flu.cc: Add written page to IORequest fil0fil.cc: Remove unneeded status call and add test is sparse files and punch hole supported by file system when tablespace is created. Add call to get file system block size. Used file node is added to IORequest. Added functions to check is punch hole supported and setting punch hole. ha_innodb.cc: Remove unneeded status variables (trim512-32768) and trim_op_saved. Deprecate innodb_use_trim and set it ON by default. Add function to set innodb-use-trim dynamically. dberr.h: Add error code DB_IO_NO_PUNCH_HOLE if punch hole operation fails. fil0fil.h: Add punch_hole variable to fil_space_t and block size to fil_node_t. os0api.h: Header to helper functions on buf0buf.cc and fil0fil.cc for os0file.h os0file.h: Remove unneeded m_block_size from IORequest and add bpage to IORequest to know actual size of the block and m_fil_node to know tablespace file system block size and does it support punch hole. os0file.cc: Add function punch_hole() to IORequest to do punch_hole operation, get the file system block size and determine does file system support sparse files (for punch hole). page0size.h: remove implicit copy disable and use this implicit copy to implement copy_from() function. buf0dblwr.cc, buf0flu.cc, buf0rea.cc, fil0fil.cc, fil0fil.h, os0file.h, os0file.cc, log0log.cc, log0recv.cc: Remove unneeded write_size parameter from fil_io calls. srv0mon.h, srv0srv.h, srv0mon.cc: Remove unneeded trim512-trim32678 status variables. Removed these from monitor tests.
2017-01-24 13:40:58 +01:00
IORequest request(type, bpage);
/* TODO: pass the tablespace to fil_io() */
fil_io(request,
sync, bpage->id, bpage->size, 0, bpage->size.physical(),
frame, bpage);
} else {
ut_ad(!srv_read_only_mode);
if (flush_type == BUF_FLUSH_SINGLE_PAGE) {
2014-03-03 13:27:56 +01:00
buf_dblwr_write_single_page(bpage, sync);
} else {
2014-03-03 13:27:56 +01:00
ut_ad(!sync);
buf_dblwr_add_to_batch(bpage);
}
}
/* When doing single page flushing the IO is done synchronously
and we flush the changes to disk only for the tablespace we
are working on. */
if (sync) {
ut_ad(flush_type == BUF_FLUSH_SINGLE_PAGE);
if (!is_temp) {
fil_flush(space);
}
/* The tablespace could already have been dropped,
because fil_io(request, sync) would already have
decremented the node->n_pending. However,
buf_page_io_complete() only needs to look up the
tablespace during read requests, not during writes. */
ut_ad(buf_page_get_io_fix(bpage) == BUF_IO_WRITE);
MDEV-12253: Buffer pool blocks are accessed after they have been freed Problem was that bpage was referenced after it was already freed from LRU. Fixed by adding a new variable encrypted that is passed down to buf_page_check_corrupt() and used in buf_page_get_gen() to stop processing page read. This patch should also address following test failures and bugs: MDEV-12419: IMPORT should not look up tablespace in PageConverter::validate(). This is now removed. MDEV-10099: encryption.innodb_onlinealter_encryption fails sporadically in buildbot MDEV-11420: encryption.innodb_encryption-page-compression failed in buildbot MDEV-11222: encryption.encrypt_and_grep failed in buildbot on P8 Removed dict_table_t::is_encrypted and dict_table_t::ibd_file_missing and replaced these with dict_table_t::file_unreadable. Table ibd file is missing if fil_get_space(space_id) returns NULL and encrypted if not. Removed dict_table_t::is_corrupted field. Ported FilSpace class from 10.2 and using that on buf_page_check_corrupt(), buf_page_decrypt_after_read(), buf_page_encrypt_before_write(), buf_dblwr_process(), buf_read_page(), dict_stats_save_defrag_stats(). Added test cases when enrypted page could be read while doing redo log crash recovery. Also added test case for row compressed blobs. btr_cur_open_at_index_side_func(), btr_cur_open_at_rnd_pos_func(): Avoid referencing block that is NULL. buf_page_get_zip(): Issue error if page read fails. buf_page_get_gen(): Use dberr_t for error detection and do not reference bpage after we hare freed it. buf_mark_space_corrupt(): remove bpage from LRU also when it is encrypted. buf_page_check_corrupt(): @return DB_SUCCESS if page has been read and is not corrupted, DB_PAGE_CORRUPTED if page based on checksum check is corrupted, DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. In read case only DB_SUCCESS is possible. buf_page_io_complete(): use dberr_t for error handling. buf_flush_write_block_low(), buf_read_ahead_random(), buf_read_page_async(), buf_read_ahead_linear(), buf_read_ibuf_merge_pages(), buf_read_recv_pages(), fil_aio_wait(): Issue error if page read fails. btr_pcur_move_to_next_page(): Do not reference page if it is NULL. Introduced dict_table_t::is_readable() and dict_index_t::is_readable() that will return true if tablespace exists and pages read from tablespace are not corrupted or page decryption failed. Removed buf_page_t::key_version. After page decryption the key version is not removed from page frame. For unencrypted pages, old key_version is removed at buf_page_encrypt_before_write() dict_stats_update_transient_for_index(), dict_stats_update_transient() Do not continue if table decryption failed or table is corrupted. dict0stats.cc: Introduced a dict_stats_report_error function to avoid code duplication. fil_parse_write_crypt_data(): Check that key read from redo log entry is found from encryption plugin and if it is not, refuse to start. PageConverter::validate(): Removed access to fil_space_t as tablespace is not available during import. Fixed error code on innodb.innodb test. Merged test cased innodb-bad-key-change5 and innodb-bad-key-shutdown to innodb-bad-key-change2. Removed innodb-bad-key-change5 test. Decreased unnecessary complexity on some long lasting tests. Removed fil_inc_pending_ops(), fil_decr_pending_ops(), fil_get_first_space(), fil_get_next_space(), fil_get_first_space_safe(), fil_get_next_space_safe() functions. fil_space_verify_crypt_checksum(): Fixed bug found using ASAN where FIL_PAGE_END_LSN_OLD_CHECKSUM field was incorrectly accessed from row compressed tables. Fixed out of page frame bug for row compressed tables in fil_space_verify_crypt_checksum() found using ASAN. Incorrect function was called for compressed table. Added new tests for discard, rename table and drop (we should allow them even when page decryption fails). Alter table rename is not allowed. Added test for restart with innodb-force-recovery=1 when page read on redo-recovery cant be decrypted. Added test for corrupted table where both page data and FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is corrupted. Adjusted the test case innodb_bug14147491 so that it does not anymore expect crash. Instead table is just mostly not usable. fil0fil.h: fil_space_acquire_low is not visible function and fil_space_acquire and fil_space_acquire_silent are inline functions. FilSpace class uses fil_space_acquire_low directly. recv_apply_hashed_log_recs() does not return anything.
2017-04-26 14:19:16 +02:00
#ifdef UNIV_DEBUG
dberr_t err =
#endif
Merge 10.1 into 10.2 This only merges MDEV-12253, adapting it to MDEV-12602 which is already present in 10.2 but not yet in the 10.1 revision that is being merged. TODO: Error handling in crash recovery needs to be improved. If a page cannot be decrypted (or read), we should cleanly abort the startup. If innodb_force_recovery is specified, we should ignore the problematic page and apply redo log to other pages. Currently, the test encryption.innodb-redo-badkey randomly fails like this (the last messages are from cmake -DWITH_ASAN): 2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1 2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption 2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown... i================================================================= ==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0 #0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750) #1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4 #2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17 #3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3 #4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2 #5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2 #6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
2017-05-05 09:25:29 +02:00
/* true means we want to evict this page from the
LRU list as well. */
buf_page_io_complete(bpage, true);
MDEV-12253: Buffer pool blocks are accessed after they have been freed Problem was that bpage was referenced after it was already freed from LRU. Fixed by adding a new variable encrypted that is passed down to buf_page_check_corrupt() and used in buf_page_get_gen() to stop processing page read. This patch should also address following test failures and bugs: MDEV-12419: IMPORT should not look up tablespace in PageConverter::validate(). This is now removed. MDEV-10099: encryption.innodb_onlinealter_encryption fails sporadically in buildbot MDEV-11420: encryption.innodb_encryption-page-compression failed in buildbot MDEV-11222: encryption.encrypt_and_grep failed in buildbot on P8 Removed dict_table_t::is_encrypted and dict_table_t::ibd_file_missing and replaced these with dict_table_t::file_unreadable. Table ibd file is missing if fil_get_space(space_id) returns NULL and encrypted if not. Removed dict_table_t::is_corrupted field. Ported FilSpace class from 10.2 and using that on buf_page_check_corrupt(), buf_page_decrypt_after_read(), buf_page_encrypt_before_write(), buf_dblwr_process(), buf_read_page(), dict_stats_save_defrag_stats(). Added test cases when enrypted page could be read while doing redo log crash recovery. Also added test case for row compressed blobs. btr_cur_open_at_index_side_func(), btr_cur_open_at_rnd_pos_func(): Avoid referencing block that is NULL. buf_page_get_zip(): Issue error if page read fails. buf_page_get_gen(): Use dberr_t for error detection and do not reference bpage after we hare freed it. buf_mark_space_corrupt(): remove bpage from LRU also when it is encrypted. buf_page_check_corrupt(): @return DB_SUCCESS if page has been read and is not corrupted, DB_PAGE_CORRUPTED if page based on checksum check is corrupted, DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. In read case only DB_SUCCESS is possible. buf_page_io_complete(): use dberr_t for error handling. buf_flush_write_block_low(), buf_read_ahead_random(), buf_read_page_async(), buf_read_ahead_linear(), buf_read_ibuf_merge_pages(), buf_read_recv_pages(), fil_aio_wait(): Issue error if page read fails. btr_pcur_move_to_next_page(): Do not reference page if it is NULL. Introduced dict_table_t::is_readable() and dict_index_t::is_readable() that will return true if tablespace exists and pages read from tablespace are not corrupted or page decryption failed. Removed buf_page_t::key_version. After page decryption the key version is not removed from page frame. For unencrypted pages, old key_version is removed at buf_page_encrypt_before_write() dict_stats_update_transient_for_index(), dict_stats_update_transient() Do not continue if table decryption failed or table is corrupted. dict0stats.cc: Introduced a dict_stats_report_error function to avoid code duplication. fil_parse_write_crypt_data(): Check that key read from redo log entry is found from encryption plugin and if it is not, refuse to start. PageConverter::validate(): Removed access to fil_space_t as tablespace is not available during import. Fixed error code on innodb.innodb test. Merged test cased innodb-bad-key-change5 and innodb-bad-key-shutdown to innodb-bad-key-change2. Removed innodb-bad-key-change5 test. Decreased unnecessary complexity on some long lasting tests. Removed fil_inc_pending_ops(), fil_decr_pending_ops(), fil_get_first_space(), fil_get_next_space(), fil_get_first_space_safe(), fil_get_next_space_safe() functions. fil_space_verify_crypt_checksum(): Fixed bug found using ASAN where FIL_PAGE_END_LSN_OLD_CHECKSUM field was incorrectly accessed from row compressed tables. Fixed out of page frame bug for row compressed tables in fil_space_verify_crypt_checksum() found using ASAN. Incorrect function was called for compressed table. Added new tests for discard, rename table and drop (we should allow them even when page decryption fails). Alter table rename is not allowed. Added test for restart with innodb-force-recovery=1 when page read on redo-recovery cant be decrypted. Added test for corrupted table where both page data and FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is corrupted. Adjusted the test case innodb_bug14147491 so that it does not anymore expect crash. Instead table is just mostly not usable. fil0fil.h: fil_space_acquire_low is not visible function and fil_space_acquire and fil_space_acquire_silent are inline functions. FilSpace class uses fil_space_acquire_low directly. recv_apply_hashed_log_recs() does not return anything.
2017-04-26 14:19:16 +02:00
ut_ad(err == DB_SUCCESS);
}
fil_space_release_for_io(space);
/* Increment the counter of I/O operations used
for selecting LRU policy. */
buf_LRU_stat_inc_io();
}
/********************************************************************//**
Writes a flushable page asynchronously from the buffer pool to a file.
NOTE: in simulated aio we must call
os_aio_simulated_wake_handler_threads after we have posted a batch of
writes! NOTE: buf_pool->mutex and buf_page_get_mutex(bpage) must be
held upon entering this function, and they will be released by this
2014-05-05 18:20:28 +02:00
function if it returns true.
@return TRUE if the page was flushed */
ibool
buf_flush_page(
/*===========*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
buf_page_t* bpage, /*!< in: buffer control block */
buf_flush_t flush_type, /*!< in: type of flush */
bool sync) /*!< in: true if sync IO request */
{
BPageMutex* block_mutex;
ut_ad(flush_type < BUF_FLUSH_N_TYPES);
ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(buf_page_in_file(bpage));
ut_ad(!sync || flush_type == BUF_FLUSH_SINGLE_PAGE);
block_mutex = buf_page_get_mutex(bpage);
ut_ad(mutex_own(block_mutex));
ut_ad(buf_flush_ready_for_flush(bpage, flush_type));
bool is_uncompressed;
is_uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE);
ut_ad(is_uncompressed == (block_mutex != &buf_pool->zip_mutex));
ibool flush;
rw_lock_t* rw_lock;
bool no_fix_count = bpage->buf_fix_count == 0;
if (!is_uncompressed) {
flush = TRUE;
2014-05-05 18:20:28 +02:00
rw_lock = NULL;
} else if (!(no_fix_count || flush_type == BUF_FLUSH_LIST)
|| (!no_fix_count
&& srv_shutdown_state <= SRV_SHUTDOWN_CLEANUP
&& fsp_is_system_temporary(bpage->id.space()))) {
/* This is a heuristic, to avoid expensive SX attempts. */
/* For table residing in temporary tablespace sync is done
using IO_FIX and so before scheduling for flush ensure that
page is not fixed. */
2014-05-05 18:20:28 +02:00
flush = FALSE;
} else {
rw_lock = &reinterpret_cast<buf_block_t*>(bpage)->lock;
if (flush_type != BUF_FLUSH_LIST) {
flush = rw_lock_sx_lock_nowait(rw_lock, BUF_IO_WRITE);
2014-05-05 18:20:28 +02:00
} else {
/* Will SX lock later */
2014-05-05 18:20:28 +02:00
flush = TRUE;
}
2014-05-05 18:20:28 +02:00
}
if (flush) {
2014-05-05 18:20:28 +02:00
/* We are committed to flushing by the time we get here */
2014-05-05 18:20:28 +02:00
buf_page_set_io_fix(bpage, BUF_IO_WRITE);
2014-05-05 18:20:28 +02:00
buf_page_set_flush_type(bpage, flush_type);
2014-05-05 18:20:28 +02:00
if (buf_pool->n_flush[flush_type] == 0) {
os_event_reset(buf_pool->no_flush[flush_type]);
}
2014-05-05 18:20:28 +02:00
++buf_pool->n_flush[flush_type];
ut_ad(buf_pool->n_flush[flush_type] != 0);
mutex_exit(block_mutex);
buf_pool_mutex_exit(buf_pool);
2014-05-05 18:20:28 +02:00
if (flush_type == BUF_FLUSH_LIST
&& is_uncompressed
&& !rw_lock_sx_lock_nowait(rw_lock, BUF_IO_WRITE)) {
if (!fsp_is_system_temporary(bpage->id.space())) {
/* avoiding deadlock possibility involves
doublewrite buffer, should flush it, because
it might hold the another block->lock. */
buf_dblwr_flush_buffered_writes();
} else {
buf_dblwr_sync_datafiles();
}
rw_lock_sx_lock_gen(rw_lock, BUF_IO_WRITE);
}
/* If there is an observer that want to know if the asynchronous
flushing was sent then notify it.
Note: we set flush observer to a page with x-latch, so we can
guarantee that notify_flush and notify_remove are called in pair
with s-latch on a uncompressed page. */
if (bpage->flush_observer != NULL) {
buf_pool_mutex_enter(buf_pool);
bpage->flush_observer->notify_flush(buf_pool, bpage);
buf_pool_mutex_exit(buf_pool);
}
/* Even though bpage is not protected by any mutex at this
point, it is safe to access bpage, because it is io_fixed and
oldest_modification != 0. Thus, it cannot be relocated in the
buffer pool or removed from flush_list or LRU_list. */
2014-05-05 18:20:28 +02:00
buf_flush_write_block_low(bpage, flush_type, sync);
}
2014-05-05 18:20:28 +02:00
return(flush);
}
# if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG
/********************************************************************//**
Writes a flushable page asynchronously from the buffer pool to a file.
NOTE: buf_pool->mutex and block->mutex must be held upon entering this
function, and they will be released by this function after flushing.
This is loosely based on buf_flush_batch() and buf_flush_page().
@return TRUE if the page was flushed and the mutexes released */
ibool
buf_flush_page_try(
/*===============*/
buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */
buf_block_t* block) /*!< in/out: buffer control block */
{
ut_ad(buf_pool_mutex_own(buf_pool));
ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE);
ut_ad(buf_page_mutex_own(block));
if (!buf_flush_ready_for_flush(&block->page, BUF_FLUSH_SINGLE_PAGE)) {
return(FALSE);
}
/* The following call will release the buffer pool and
block mutex. */
2014-05-05 18:20:28 +02:00
return(buf_flush_page(
buf_pool, &block->page,
BUF_FLUSH_SINGLE_PAGE, true));
}
# endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */
/** Check the page is in buffer pool and can be flushed.
@param[in] page_id page id
@param[in] flush_type BUF_FLUSH_LRU or BUF_FLUSH_LIST
@return true if the page can be flushed. */
static
bool
buf_flush_check_neighbor(
const page_id_t& page_id,
buf_flush_t flush_type)
{
buf_page_t* bpage;
buf_pool_t* buf_pool = buf_pool_get(page_id);
bool ret;
ut_ad(flush_type == BUF_FLUSH_LRU
|| flush_type == BUF_FLUSH_LIST);
buf_pool_mutex_enter(buf_pool);
/* We only want to flush pages from this buffer pool. */
bpage = buf_page_hash_get(buf_pool, page_id);
if (!bpage) {
buf_pool_mutex_exit(buf_pool);
return(false);
}
ut_a(buf_page_in_file(bpage));
/* We avoid flushing 'non-old' blocks in an LRU flush,
because the flushed blocks are soon freed */
ret = false;
if (flush_type != BUF_FLUSH_LRU || buf_page_is_old(bpage)) {
BPageMutex* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
if (buf_flush_ready_for_flush(bpage, flush_type)) {
ret = true;
}
mutex_exit(block_mutex);
}
buf_pool_mutex_exit(buf_pool);
return(ret);
}
/** Flushes to disk all flushable pages within the flush area.
@param[in] page_id page id
@param[in] flush_type BUF_FLUSH_LRU or BUF_FLUSH_LIST
@param[in] n_flushed number of pages flushed so far in this batch
@param[in] n_to_flush maximum number of pages we are allowed to flush
@return number of pages flushed */
static
ulint
buf_flush_try_neighbors(
const page_id_t& page_id,
buf_flush_t flush_type,
ulint n_flushed,
ulint n_to_flush)
{
ulint i;
ulint low;
ulint high;
ulint count = 0;
buf_pool_t* buf_pool = buf_pool_get(page_id);
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
if (UT_LIST_GET_LEN(buf_pool->LRU) < BUF_LRU_OLD_MIN_LEN
|| srv_flush_neighbors == 0) {
/* If there is little space or neighbor flushing is
not enabled then just flush the victim. */
low = page_id.page_no();
high = page_id.page_no() + 1;
} else {
/* When flushed, dirty blocks are searched in
neighborhoods of this size, and flushed along with the
original page. */
ulint buf_flush_area;
buf_flush_area = ut_min(
BUF_READ_AHEAD_AREA(buf_pool),
buf_pool->curr_size / 16);
low = (page_id.page_no() / buf_flush_area) * buf_flush_area;
high = (page_id.page_no() / buf_flush_area + 1) * buf_flush_area;
if (srv_flush_neighbors == 1) {
/* adjust 'low' and 'high' to limit
for contiguous dirty area */
if (page_id.page_no() > low) {
for (i = page_id.page_no() - 1; i >= low; i--) {
if (!buf_flush_check_neighbor(
page_id_t(page_id.space(), i),
flush_type)) {
break;
}
if (i == low) {
/* Avoid overwrap when low == 0
and calling
buf_flush_check_neighbor() with
i == (ulint) -1 */
i--;
break;
}
}
low = i + 1;
}
for (i = page_id.page_no() + 1;
i < high
&& buf_flush_check_neighbor(
page_id_t(page_id.space(), i),
flush_type);
i++) {
/* do nothing */
}
high = i;
}
}
const ulint space_size = fil_space_get_size(page_id.space());
if (high > space_size) {
high = space_size;
}
DBUG_PRINT("ib_buf", ("flush %u:%u..%u",
page_id.space(),
(unsigned) low, (unsigned) high));
for (ulint i = low; i < high; i++) {
buf_page_t* bpage;
if ((count + n_flushed) >= n_to_flush) {
/* We have already flushed enough pages and
should call it a day. There is, however, one
exception. If the page whose neighbors we
are flushing has not been flushed yet then
we'll try to flush the victim that we
selected originally. */
if (i <= page_id.page_no()) {
i = page_id.page_no();
} else {
break;
}
}
const page_id_t cur_page_id(page_id.space(), i);
buf_pool = buf_pool_get(cur_page_id);
buf_pool_mutex_enter(buf_pool);
/* We only want to flush pages from this buffer pool. */
bpage = buf_page_hash_get(buf_pool, cur_page_id);
2014-05-05 18:20:28 +02:00
if (bpage == NULL) {
buf_pool_mutex_exit(buf_pool);
continue;
}
ut_a(buf_page_in_file(bpage));
/* We avoid flushing 'non-old' blocks in an LRU flush,
because the flushed blocks are soon freed */
if (flush_type != BUF_FLUSH_LRU
|| i == page_id.page_no()
|| buf_page_is_old(bpage)) {
2014-05-05 18:20:28 +02:00
BPageMutex* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
if (buf_flush_ready_for_flush(bpage, flush_type)
&& (i == page_id.page_no()
|| bpage->buf_fix_count == 0)) {
/* We also try to flush those
neighbors != offset */
if (buf_flush_page(
2014-05-05 18:20:28 +02:00
buf_pool, bpage, flush_type, false)) {
++count;
} else {
mutex_exit(block_mutex);
buf_pool_mutex_exit(buf_pool);
}
2014-05-05 18:20:28 +02:00
continue;
} else {
mutex_exit(block_mutex);
}
}
buf_pool_mutex_exit(buf_pool);
}
if (count > 1) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_NEIGHBOR_TOTAL_PAGE,
MONITOR_FLUSH_NEIGHBOR_COUNT,
MONITOR_FLUSH_NEIGHBOR_PAGES,
(count - 1));
}
return(count);
}
/** Check if the block is modified and ready for flushing.
If the the block is ready to flush then flush the page and try o flush
its neighbors.
@param[in] bpage buffer control block,
must be buf_page_in_file(bpage)
@param[in] flush_type BUF_FLUSH_LRU or BUF_FLUSH_LIST
@param[in] n_to_flush number of pages to flush
@param[in,out] count number of pages flushed
@return TRUE if buf_pool mutex was released during this function.
This does not guarantee that some pages were written as well.
Number of pages written are incremented to the count. */
static
bool
buf_flush_page_and_try_neighbors(
buf_page_t* bpage,
buf_flush_t flush_type,
ulint n_to_flush,
ulint* count)
{
#ifdef UNIV_DEBUG
buf_pool_t* buf_pool = buf_pool_from_bpage(bpage);
ut_ad(buf_pool_mutex_own(buf_pool));
#endif /* UNIV_DEBUG */
bool flushed;
BPageMutex* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
ut_a(buf_page_in_file(bpage));
if (buf_flush_ready_for_flush(bpage, flush_type)) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_bpage(bpage);
const page_id_t page_id = bpage->id;
mutex_exit(block_mutex);
buf_pool_mutex_exit(buf_pool);
/* Try to flush also all the neighbors */
2014-05-05 18:20:28 +02:00
*count += buf_flush_try_neighbors(
page_id, flush_type, *count, n_to_flush);
buf_pool_mutex_enter(buf_pool);
flushed = TRUE;
} else {
mutex_exit(block_mutex);
flushed = false;
}
ut_ad(buf_pool_mutex_own(buf_pool));
return(flushed);
}
/*******************************************************************//**
This utility moves the uncompressed frames of pages to the free list.
Note that this function does not actually flush any data to disk. It
just detaches the uncompressed frames from the compressed pages at the
tail of the unzip_LRU and puts those freed frames in the free list.
Note that it is a best effort attempt and it is not guaranteed that
after a call to this function there will be 'max' blocks in the free
list.
@return number of blocks moved to the free list. */
static
ulint
buf_free_from_unzip_LRU_list_batch(
/*===============================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint max) /*!< in: desired number of
blocks in the free_list */
{
ulint scanned = 0;
ulint count = 0;
ulint free_len = UT_LIST_GET_LEN(buf_pool->free);
ulint lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU);
ut_ad(buf_pool_mutex_own(buf_pool));
buf_block_t* block = UT_LIST_GET_LAST(buf_pool->unzip_LRU);
while (block != NULL
&& count < max
&& free_len < srv_LRU_scan_depth
&& lru_len > UT_LIST_GET_LEN(buf_pool->LRU) / 10) {
++scanned;
if (buf_LRU_free_page(&block->page, false)) {
/* Block was freed. buf_pool->mutex potentially
released and reacquired */
++count;
block = UT_LIST_GET_LAST(buf_pool->unzip_LRU);
} else {
block = UT_LIST_GET_PREV(unzip_LRU, block);
}
free_len = UT_LIST_GET_LEN(buf_pool->free);
lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU);
}
ut_ad(buf_pool_mutex_own(buf_pool));
if (scanned) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_SCANNED,
MONITOR_LRU_BATCH_SCANNED_NUM_CALL,
MONITOR_LRU_BATCH_SCANNED_PER_CALL,
scanned);
}
return(count);
}
/*******************************************************************//**
This utility flushes dirty blocks from the end of the LRU list.
The calling thread is not allowed to own any latches on pages!
It attempts to make 'max' blocks available in the free list. Note that
it is a best effort attempt and it is not guaranteed that after a call
to this function there will be 'max' blocks in the free list.*/
void
buf_flush_LRU_list_batch(
/*=====================*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint max, /*!< in: desired number of
blocks in the free_list */
flush_counters_t* n) /*!< out: flushed/evicted page
counts */
{
buf_page_t* bpage;
2014-05-05 18:20:28 +02:00
ulint scanned = 0;
ulint evict_count = 0;
ulint count = 0;
ulint free_len = UT_LIST_GET_LEN(buf_pool->free);
ulint lru_len = UT_LIST_GET_LEN(buf_pool->LRU);
ulint withdraw_depth = 0;
n->flushed = 0;
n->evicted = 0;
n->unzip_LRU_evicted = 0;
ut_ad(buf_pool_mutex_own(buf_pool));
if (buf_pool->curr_size < buf_pool->old_size
&& buf_pool->withdraw_target > 0) {
withdraw_depth = buf_pool->withdraw_target
- UT_LIST_GET_LEN(buf_pool->withdraw);
}
for (bpage = UT_LIST_GET_LAST(buf_pool->LRU);
bpage != NULL && count + evict_count < max
&& free_len < srv_LRU_scan_depth + withdraw_depth
&& lru_len > BUF_LRU_MIN_LEN;
++scanned,
bpage = buf_pool->lru_hp.get()) {
buf_page_t* prev = UT_LIST_GET_PREV(LRU, bpage);
buf_pool->lru_hp.set(prev);
BPageMutex* block_mutex = buf_page_get_mutex(bpage);
mutex_enter(block_mutex);
if (buf_flush_ready_for_replace(bpage)) {
/* block is ready for eviction i.e., it is
clean and is not IO-fixed or buffer fixed. */
mutex_exit(block_mutex);
if (buf_LRU_free_page(bpage, true)) {
++evict_count;
}
} else if (buf_flush_ready_for_flush(bpage, BUF_FLUSH_LRU)) {
/* Block is ready for flush. Dispatch an IO
request. The IO helper thread will put it on
free list in IO completion routine. */
mutex_exit(block_mutex);
buf_flush_page_and_try_neighbors(
bpage, BUF_FLUSH_LRU, max, &count);
} else {
/* Can't evict or dispatch this block. Go to
previous. */
ut_ad(buf_pool->lru_hp.is_hp(prev));
mutex_exit(block_mutex);
}
ut_ad(!mutex_own(block_mutex));
ut_ad(buf_pool_mutex_own(buf_pool));
free_len = UT_LIST_GET_LEN(buf_pool->free);
lru_len = UT_LIST_GET_LEN(buf_pool->LRU);
}
buf_pool->lru_hp.set(NULL);
/* We keep track of all flushes happening as part of LRU
flush. When estimating the desired rate at which flush_list
should be flushed, we factor in this value. */
buf_lru_flush_page_count += n->flushed;
ut_ad(buf_pool_mutex_own(buf_pool));
if (evict_count) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_EVICT_TOTAL_PAGE,
MONITOR_LRU_BATCH_EVICT_COUNT,
MONITOR_LRU_BATCH_EVICT_PAGES,
evict_count);
}
if (scanned) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_SCANNED,
MONITOR_LRU_BATCH_SCANNED_NUM_CALL,
MONITOR_LRU_BATCH_SCANNED_PER_CALL,
scanned);
}
}
/*******************************************************************//**
Flush and move pages from LRU or unzip_LRU list to the free list.
Whether LRU or unzip_LRU is used depends on the state of the system.*/
static
void
buf_do_LRU_batch(
/*=============*/
buf_pool_t* buf_pool, /*!< in: buffer pool instance */
ulint max, /*!< in: desired number of
blocks in the free_list */
flush_counters_t* n) /*!< out: flushed/evicted page
counts */
{
if (buf_LRU_evict_from_unzip_LRU(buf_pool)) {
n->unzip_LRU_evicted = buf_free_from_unzip_LRU_list_batch(buf_pool, max);
} else {
n->unzip_LRU_evicted = 0;
}
if (max > n->unzip_LRU_evicted) {
buf_flush_LRU_list_batch(buf_pool, max - n->unzip_LRU_evicted, n);
} else {
n->evicted = 0;
n->flushed = 0;
}
/* Add evicted pages from unzip_LRU to the evicted pages from
the simple LRU. */
n->evicted += n->unzip_LRU_evicted;
}
/** This utility flushes dirty blocks from the end of the flush_list.
The calling thread is not allowed to own any latches on pages!
@param[in] buf_pool buffer pool instance
@param[in] min_n wished minimum mumber of blocks flushed (it is
not guaranteed that the actual number is that big, though)
@param[in] lsn_limit all blocks whose oldest_modification is smaller
than this should be flushed (if their number does not exceed min_n)
@return number of blocks for which the write request was queued;
ULINT_UNDEFINED if there was a flush of the same type already
running */
static
ulint
buf_do_flush_list_batch(
buf_pool_t* buf_pool,
ulint min_n,
lsn_t lsn_limit)
{
ulint count = 0;
ulint scanned = 0;
ut_ad(buf_pool_mutex_own(buf_pool));
/* Start from the end of the list looking for a suitable
block to be flushed. */
buf_flush_list_mutex_enter(buf_pool);
ulint len = UT_LIST_GET_LEN(buf_pool->flush_list);
/* In order not to degenerate this scan to O(n*n) we attempt
to preserve pointer of previous block in the flush list. To do
so we declare it a hazard pointer. Any thread working on the
flush list must check the hazard pointer and if it is removing
the same block then it must reset it. */
for (buf_page_t* bpage = UT_LIST_GET_LAST(buf_pool->flush_list);
count < min_n && bpage != NULL && len > 0
&& bpage->oldest_modification < lsn_limit;
bpage = buf_pool->flush_hp.get(),
++scanned) {
buf_page_t* prev;
ut_a(bpage->oldest_modification > 0);
ut_ad(bpage->in_flush_list);
prev = UT_LIST_GET_PREV(list, bpage);
buf_pool->flush_hp.set(prev);
buf_flush_list_mutex_exit(buf_pool);
#ifdef UNIV_DEBUG
bool flushed =
#endif /* UNIV_DEBUG */
buf_flush_page_and_try_neighbors(
bpage, BUF_FLUSH_LIST, min_n, &count);
buf_flush_list_mutex_enter(buf_pool);
ut_ad(flushed || buf_pool->flush_hp.is_hp(prev));
--len;
}
buf_pool->flush_hp.set(NULL);
buf_flush_list_mutex_exit(buf_pool);
if (scanned) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_BATCH_SCANNED,
MONITOR_FLUSH_BATCH_SCANNED_NUM_CALL,
MONITOR_FLUSH_BATCH_SCANNED_PER_CALL,
scanned);
}
if (count) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_BATCH_TOTAL_PAGE,
MONITOR_FLUSH_BATCH_COUNT,
MONITOR_FLUSH_BATCH_PAGES,
count);
}
ut_ad(buf_pool_mutex_own(buf_pool));
return(count);
}
/** This utility flushes dirty blocks from the end of the LRU list or
flush_list.
NOTE 1: in the case of an LRU flush the calling thread may own latches to
pages: to avoid deadlocks, this function must be written so that it cannot
end up waiting for these latches! NOTE 2: in the case of a flush list flush,
the calling thread is not allowed to own any latches on pages!
@param[in] buf_pool buffer pool instance
@param[in] flush_type BUF_FLUSH_LRU or BUF_FLUSH_LIST; if
BUF_FLUSH_LIST, then the caller must not own any latches on pages
@param[in] min_n wished minimum mumber of blocks flushed (it is
not guaranteed that the actual number is that big, though)
@param[in] lsn_limit in the case of BUF_FLUSH_LIST all blocks whose
oldest_modification is smaller than this should be flushed (if their number
does not exceed min_n), otherwise ignored */
void
buf_flush_batch(
buf_pool_t* buf_pool,
buf_flush_t flush_type,
ulint min_n,
lsn_t lsn_limit,
flush_counters_t* n) /*!< out: flushed/evicted page
counts */
{
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
ut_ad(flush_type == BUF_FLUSH_LRU
|| !sync_check_iterate(dict_sync_check()));
buf_pool_mutex_enter(buf_pool);
/* Note: The buffer pool mutex is released and reacquired within
the flush functions. */
switch (flush_type) {
case BUF_FLUSH_LRU:
buf_do_LRU_batch(buf_pool, min_n, n);
break;
case BUF_FLUSH_LIST:
n->flushed = buf_do_flush_list_batch(buf_pool, min_n, lsn_limit);
n->evicted = 0;
break;
default:
ut_error;
}
buf_pool_mutex_exit(buf_pool);
DBUG_LOG("ib_buf", "flush " << flush_type << " completed");
}
/******************************************************************//**
Gather the aggregated stats for both flush list and LRU list flushing.
@param page_count_flush number of pages flushed from the end of the flush_list
@param page_count_LRU number of pages flushed from the end of the LRU list
*/
void
buf_flush_stats(
/*============*/
ulint page_count_flush,
ulint page_count_LRU)
{
DBUG_PRINT("ib_buf", ("flush completed, from flush_list %u pages, "
"from LRU_list %u pages",
unsigned(page_count_flush),
unsigned(page_count_LRU)));
srv_stats.buf_pool_flushed.add(page_count_flush + page_count_LRU);
}
/******************************************************************//**
Start a buffer flush batch for LRU or flush list */
ibool
buf_flush_start(
/*============*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
buf_flush_t flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
buf_pool_mutex_enter(buf_pool);
if (buf_pool->n_flush[flush_type] > 0
|| buf_pool->init_flush[flush_type] == TRUE) {
/* There is already a flush batch of the same type running */
buf_pool_mutex_exit(buf_pool);
return(FALSE);
}
buf_pool->init_flush[flush_type] = TRUE;
os_event_reset(buf_pool->no_flush[flush_type]);
buf_pool_mutex_exit(buf_pool);
return(TRUE);
}
/******************************************************************//**
Gather the aggregated stats for both flush list and LRU list flushing */
void
buf_flush_common(
/*=============*/
buf_flush_t flush_type, /*!< in: type of flush */
ulint page_count) /*!< in: number of pages flushed */
{
buf_dblwr_flush_buffered_writes();
ut_a(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST);
srv_stats.buf_pool_flushed.add(page_count);
}
/******************************************************************//**
End a buffer flush batch for LRU or flush list */
void
buf_flush_end(
/*==========*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
buf_flush_t flush_type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
buf_pool_mutex_enter(buf_pool);
buf_pool->init_flush[flush_type] = FALSE;
buf_pool->try_LRU_scan = TRUE;
if (buf_pool->n_flush[flush_type] == 0) {
/* The running flush batch has ended */
os_event_set(buf_pool->no_flush[flush_type]);
}
buf_pool_mutex_exit(buf_pool);
if (!srv_read_only_mode) {
buf_dblwr_flush_buffered_writes();
} else {
os_aio_simulated_wake_handler_threads();
}
}
/******************************************************************//**
Waits until a flush batch of the given type ends */
void
buf_flush_wait_batch_end(
/*=====================*/
buf_pool_t* buf_pool, /*!< buffer pool instance */
buf_flush_t type) /*!< in: BUF_FLUSH_LRU
or BUF_FLUSH_LIST */
{
ut_ad(type == BUF_FLUSH_LRU || type == BUF_FLUSH_LIST);
if (buf_pool == NULL) {
ulint i;
for (i = 0; i < srv_buf_pool_instances; ++i) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
thd_wait_begin(NULL, THD_WAIT_DISKIO);
os_event_wait(buf_pool->no_flush[type]);
thd_wait_end(NULL);
}
} else {
thd_wait_begin(NULL, THD_WAIT_DISKIO);
2014-05-05 18:20:28 +02:00
os_event_wait(buf_pool->no_flush[type]);
thd_wait_end(NULL);
}
}
/** Do flushing batch of a given type.
NOTE: The calling thread is not allowed to own any latches on pages!
@param[in,out] buf_pool buffer pool instance
@param[in] type flush type
@param[in] min_n wished minimum mumber of blocks flushed
(it is not guaranteed that the actual number is that big, though)
@param[in] lsn_limit in the case BUF_FLUSH_LIST all blocks whose
oldest_modification is smaller than this should be flushed (if their number
does not exceed min_n), otherwise ignored
@param[out] n_processed the number of pages which were processed is
passed back to caller. Ignored if NULL
@retval true if a batch was queued successfully.
@retval false if another batch of same type was already running. */
bool
buf_flush_do_batch(
buf_pool_t* buf_pool,
buf_flush_t type,
ulint min_n,
lsn_t lsn_limit,
flush_counters_t* n)
{
ut_ad(type == BUF_FLUSH_LRU || type == BUF_FLUSH_LIST);
if (n != NULL) {
n->flushed = 0;
}
if (!buf_flush_start(buf_pool, type)) {
return(false);
}
buf_flush_batch(buf_pool, type, min_n, lsn_limit, n);
buf_flush_end(buf_pool, type);
return(true);
}
/**
Waits until a flush batch of the given lsn ends
@param[in] new_oldest target oldest_modified_lsn to wait for */
void
buf_flush_wait_flushed(
lsn_t new_oldest)
{
for (ulint i = 0; i < srv_buf_pool_instances; ++i) {
buf_pool_t* buf_pool;
lsn_t oldest;
buf_pool = buf_pool_from_array(i);
for (;;) {
/* We don't need to wait for fsync of the flushed
blocks, because anyway we need fsync to make chekpoint.
So, we don't need to wait for the batch end here. */
buf_flush_list_mutex_enter(buf_pool);
buf_page_t* bpage;
/* We don't need to wait for system temporary pages */
for (bpage = UT_LIST_GET_LAST(buf_pool->flush_list);
bpage != NULL
&& fsp_is_system_temporary(bpage->id.space());
bpage = UT_LIST_GET_PREV(list, bpage)) {
/* Do nothing. */
}
if (bpage != NULL) {
ut_ad(bpage->in_flush_list);
oldest = bpage->oldest_modification;
} else {
oldest = 0;
}
buf_flush_list_mutex_exit(buf_pool);
if (oldest == 0 || oldest >= new_oldest) {
break;
}
/* sleep and retry */
os_thread_sleep(buf_flush_wait_flushed_sleep_time);
MONITOR_INC(MONITOR_FLUSH_SYNC_WAITS);
}
}
}
/** This utility flushes dirty blocks from the end of the flush list of all
buffer pool instances.
NOTE: The calling thread is not allowed to own any latches on pages!
@param[in] min_n wished minimum mumber of blocks flushed (it is
not guaranteed that the actual number is that big, though)
@param[in] lsn_limit in the case BUF_FLUSH_LIST all blocks whose
oldest_modification is smaller than this should be flushed (if their number
does not exceed min_n), otherwise ignored
@param[out] n_processed the number of pages which were processed is
passed back to caller. Ignored if NULL.
@return true if a batch was queued successfully for each buffer pool
instance. false if another batch of same type was already running in
at least one of the buffer pool instance */
bool
buf_flush_lists(
ulint min_n,
lsn_t lsn_limit,
ulint* n_processed)
{
ulint i;
ulint n_flushed = 0;
bool success = true;
if (n_processed) {
*n_processed = 0;
}
if (min_n != ULINT_MAX) {
/* Ensure that flushing is spread evenly amongst the
buffer pool instances. When min_n is ULINT_MAX
we need to flush everything up to the lsn limit
so no limit here. */
min_n = (min_n + srv_buf_pool_instances - 1)
/ srv_buf_pool_instances;
}
/* Flush to lsn_limit in all buffer pool instances */
for (i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
flush_counters_t n;
memset(&n, 0, sizeof(flush_counters_t));
buf_pool = buf_pool_from_array(i);
if (!buf_flush_do_batch(buf_pool,
BUF_FLUSH_LIST,
min_n,
lsn_limit,
&n)) {
/* We have two choices here. If lsn_limit was
specified then skipping an instance of buffer
pool means we cannot guarantee that all pages
up to lsn_limit has been flushed. We can
return right now with failure or we can try
to flush remaining buffer pools up to the
lsn_limit. We attempt to flush other buffer
pools based on the assumption that it will
help in the retry which will follow the
failure. */
success = false;
continue;
}
}
if (n_flushed) {
buf_flush_stats(n_flushed, 0);
}
if (n_processed) {
*n_processed = n_flushed;
}
return(success);
}
/******************************************************************//**
This function picks up a single page from the tail of the LRU
list, flushes it (if it is dirty), removes it from page_hash and LRU
list and puts it on the free list. It is called from user threads when
they are unable to find a replaceable page at the tail of the LRU
list i.e.: when the background LRU flushing in the page_cleaner thread
is not fast enough to keep pace with the workload.
@return true if success. */
bool
buf_flush_single_page_from_LRU(
/*===========================*/
buf_pool_t* buf_pool) /*!< in/out: buffer pool instance */
{
ulint scanned;
buf_page_t* bpage;
ibool freed;
buf_pool_mutex_enter(buf_pool);
for (bpage = buf_pool->single_scan_itr.start(), scanned = 0,
freed = false;
bpage != NULL;
++scanned, bpage = buf_pool->single_scan_itr.get()) {
2014-05-05 18:20:28 +02:00
ut_ad(buf_pool_mutex_own(buf_pool));
2014-05-05 18:20:28 +02:00
buf_page_t* prev = UT_LIST_GET_PREV(LRU, bpage);
buf_pool->single_scan_itr.set(prev);
BPageMutex* block_mutex;
block_mutex = buf_page_get_mutex(bpage);
2014-05-05 18:20:28 +02:00
mutex_enter(block_mutex);
2014-05-05 18:20:28 +02:00
if (buf_flush_ready_for_replace(bpage)) {
/* block is ready for eviction i.e., it is
clean and is not IO-fixed or buffer fixed. */
mutex_exit(block_mutex);
if (buf_LRU_free_page(bpage, true)) {
buf_pool_mutex_exit(buf_pool);
freed = true;
2014-05-05 18:20:28 +02:00
break;
}
} else if (buf_flush_ready_for_flush(
bpage, BUF_FLUSH_SINGLE_PAGE)) {
/* Block is ready for flush. Try and dispatch an IO
request. We'll put it on free list in IO completion
routine if it is not buffer fixed. The following call
will release the buffer pool and block mutex.
Note: There is no guarantee that this page has actually
been freed, only that it has been flushed to disk */
freed = buf_flush_page(
buf_pool, bpage, BUF_FLUSH_SINGLE_PAGE, true);
if (freed) {
break;
}
mutex_exit(block_mutex);
} else {
mutex_exit(block_mutex);
}
ut_ad(!mutex_own(block_mutex));
}
if (!freed) {
/* Can't find a single flushable page. */
ut_ad(!bpage);
buf_pool_mutex_exit(buf_pool);
}
if (scanned) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_SINGLE_FLUSH_SCANNED,
MONITOR_LRU_SINGLE_FLUSH_SCANNED_NUM_CALL,
MONITOR_LRU_SINGLE_FLUSH_SCANNED_PER_CALL,
scanned);
2014-05-05 18:20:28 +02:00
}
ut_ad(!buf_pool_mutex_own(buf_pool));
return(freed);
}
/**
Clears up tail of the LRU list of a given buffer pool instance:
* Put replaceable pages at the tail of LRU to the free list
* Flush dirty pages at the tail of LRU to the disk
The depth to which we scan each buffer pool is controlled by dynamic
config parameter innodb_LRU_scan_depth.
@param buf_pool buffer pool instance
@return total pages flushed */
static
ulint
buf_flush_LRU_list(
buf_pool_t* buf_pool)
{
ulint scan_depth, withdraw_depth;
flush_counters_t n;
memset(&n, 0, sizeof(flush_counters_t));
ut_ad(buf_pool);
/* srv_LRU_scan_depth can be arbitrarily large value.
We cap it with current LRU size. */
buf_pool_mutex_enter(buf_pool);
scan_depth = UT_LIST_GET_LEN(buf_pool->LRU);
if (buf_pool->curr_size < buf_pool->old_size
&& buf_pool->withdraw_target > 0) {
withdraw_depth = buf_pool->withdraw_target
- UT_LIST_GET_LEN(buf_pool->withdraw);
} else {
withdraw_depth = 0;
}
buf_pool_mutex_exit(buf_pool);
if (withdraw_depth > srv_LRU_scan_depth) {
scan_depth = ut_min(withdraw_depth, scan_depth);
} else {
scan_depth = ut_min(static_cast<ulint>(srv_LRU_scan_depth),
scan_depth);
}
/* Currently one of page_cleaners is the only thread
that can trigger an LRU flush at the same time.
So, it is not possible that a batch triggered during
last iteration is still running, */
buf_flush_do_batch(buf_pool, BUF_FLUSH_LRU, scan_depth,
0, &n);
return(n.flushed);
}
/*********************************************************************//**
Wait for any possible LRU flushes that are in progress to end. */
void
buf_flush_wait_LRU_batch_end(void)
/*==============================*/
{
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
buf_pool_mutex_enter(buf_pool);
if (buf_pool->n_flush[BUF_FLUSH_LRU] > 0
|| buf_pool->init_flush[BUF_FLUSH_LRU]) {
buf_pool_mutex_exit(buf_pool);
buf_flush_wait_batch_end(buf_pool, BUF_FLUSH_LRU);
} else {
buf_pool_mutex_exit(buf_pool);
}
}
}
/*********************************************************************//**
Calculates if flushing is required based on number of dirty pages in
the buffer pool.
@return percent of io_capacity to flush to manage dirty page ratio */
static
ulint
af_get_pct_for_dirty()
/*==================*/
{
double dirty_pct = buf_get_modified_ratio_pct();
if (dirty_pct == 0.0) {
/* No pages modified */
return(0);
2014-06-09 18:16:00 +02:00
}
ut_a(srv_max_dirty_pages_pct_lwm
<= srv_max_buf_pool_modified_pct);
if (srv_max_dirty_pages_pct_lwm == 0) {
/* The user has not set the option to preflush dirty
pages as we approach the high water mark. */
if (dirty_pct >= srv_max_buf_pool_modified_pct) {
/* We have crossed the high water mark of dirty
pages In this case we start flushing at 100% of
innodb_io_capacity. */
return(100);
}
} else if (dirty_pct >= srv_max_dirty_pages_pct_lwm) {
/* We should start flushing pages gradually. */
return(static_cast<ulint>((dirty_pct * 100)
/ (srv_max_buf_pool_modified_pct + 1)));
}
return(0);
}
/*********************************************************************//**
Calculates if flushing is required based on redo generation rate.
@return percent of io_capacity to flush to manage redo space */
static
ulint
af_get_pct_for_lsn(
/*===============*/
lsn_t age) /*!< in: current age of LSN. */
{
lsn_t max_async_age;
lsn_t lsn_age_factor;
lsn_t af_lwm = (lsn_t) ((srv_adaptive_flushing_lwm
* log_get_capacity()) / 100);
if (age < af_lwm) {
/* No adaptive flushing. */
return(0);
}
max_async_age = log_get_max_modified_age_async();
if (age < max_async_age && !srv_adaptive_flushing) {
/* We have still not reached the max_async point and
the user has disabled adaptive flushing. */
return(0);
}
/* If we are here then we know that either:
1) User has enabled adaptive flushing
2) User may have disabled adaptive flushing but we have reached
max_async_age. */
lsn_age_factor = (age * 100) / max_async_age;
ut_ad(srv_max_io_capacity >= srv_io_capacity);
return(static_cast<ulint>(
((srv_max_io_capacity / srv_io_capacity)
* (lsn_age_factor * sqrt((double)lsn_age_factor)))
/ 7.5));
}
/*********************************************************************//**
This function is called approximately once every second by the
page_cleaner thread. Based on various factors it decides if there is a
need to do flushing.
@return number of pages recommended to be flushed
@param lsn_limit pointer to return LSN up to which flushing must happen
@param last_pages_in the number of pages flushed by the last flush_list
flushing. */
static
ulint
page_cleaner_flush_pages_recommendation(
/*====================================*/
lsn_t* lsn_limit,
ulint last_pages_in)
{
static lsn_t prev_lsn = 0;
static ulint sum_pages = 0;
static ulint avg_page_rate = 0;
static ulint n_iterations = 0;
static time_t prev_time;
lsn_t oldest_lsn;
lsn_t cur_lsn;
lsn_t age;
lsn_t lsn_rate;
ulint n_pages = 0;
ulint pct_for_dirty = 0;
ulint pct_for_lsn = 0;
ulint pct_total = 0;
cur_lsn = log_get_lsn_nowait();
/* log_get_lsn_nowait tries to get log_sys->mutex with
mutex_enter_nowait, if this does not succeed function
returns 0, do not use that value to update stats. */
if (cur_lsn == 0) {
return(0);
}
if (prev_lsn == 0) {
/* First time around. */
prev_lsn = cur_lsn;
prev_time = ut_time();
return(0);
}
if (prev_lsn == cur_lsn) {
return(0);
}
sum_pages += last_pages_in;
time_t curr_time = ut_time();
double time_elapsed = difftime(curr_time, prev_time);
/* We update our variables every srv_flushing_avg_loops
iterations to smooth out transition in workload. */
if (++n_iterations >= srv_flushing_avg_loops
|| time_elapsed >= srv_flushing_avg_loops) {
if (time_elapsed < 1) {
time_elapsed = 1;
}
avg_page_rate = static_cast<ulint>(
((static_cast<double>(sum_pages)
/ time_elapsed)
+ avg_page_rate) / 2);
/* How much LSN we have generated since last call. */
lsn_rate = static_cast<lsn_t>(
static_cast<double>(cur_lsn - prev_lsn)
/ time_elapsed);
lsn_avg_rate = (lsn_avg_rate + lsn_rate) / 2;
/* aggregate stats of all slots */
mutex_enter(&page_cleaner->mutex);
ulint flush_tm = page_cleaner->flush_time;
ulint flush_pass = page_cleaner->flush_pass;
page_cleaner->flush_time = 0;
page_cleaner->flush_pass = 0;
ulint lru_tm = 0;
ulint list_tm = 0;
ulint lru_pass = 0;
ulint list_pass = 0;
for (ulint i = 0; i < page_cleaner->n_slots; i++) {
page_cleaner_slot_t* slot;
slot = &page_cleaner->slots[i];
lru_tm += slot->flush_lru_time;
lru_pass += slot->flush_lru_pass;
list_tm += slot->flush_list_time;
list_pass += slot->flush_list_pass;
slot->flush_lru_time = 0;
slot->flush_lru_pass = 0;
slot->flush_list_time = 0;
slot->flush_list_pass = 0;
}
mutex_exit(&page_cleaner->mutex);
/* minimum values are 1, to avoid dividing by zero. */
if (lru_tm < 1) {
lru_tm = 1;
}
if (list_tm < 1) {
list_tm = 1;
}
if (flush_tm < 1) {
flush_tm = 1;
}
if (lru_pass < 1) {
lru_pass = 1;
}
if (list_pass < 1) {
list_pass = 1;
}
if (flush_pass < 1) {
flush_pass = 1;
}
MONITOR_SET(MONITOR_FLUSH_ADAPTIVE_AVG_TIME_SLOT,
list_tm / list_pass);
MONITOR_SET(MONITOR_LRU_BATCH_FLUSH_AVG_TIME_SLOT,
lru_tm / lru_pass);
MONITOR_SET(MONITOR_FLUSH_ADAPTIVE_AVG_TIME_THREAD,
list_tm / (srv_n_page_cleaners * flush_pass));
MONITOR_SET(MONITOR_LRU_BATCH_FLUSH_AVG_TIME_THREAD,
lru_tm / (srv_n_page_cleaners * flush_pass));
MONITOR_SET(MONITOR_FLUSH_ADAPTIVE_AVG_TIME_EST,
flush_tm * list_tm / flush_pass
/ (list_tm + lru_tm));
MONITOR_SET(MONITOR_LRU_BATCH_FLUSH_AVG_TIME_EST,
flush_tm * lru_tm / flush_pass
/ (list_tm + lru_tm));
MONITOR_SET(MONITOR_FLUSH_AVG_TIME, flush_tm / flush_pass);
MONITOR_SET(MONITOR_FLUSH_ADAPTIVE_AVG_PASS,
list_pass / page_cleaner->n_slots);
MONITOR_SET(MONITOR_LRU_BATCH_FLUSH_AVG_PASS,
lru_pass / page_cleaner->n_slots);
MONITOR_SET(MONITOR_FLUSH_AVG_PASS, flush_pass);
prev_lsn = cur_lsn;
prev_time = curr_time;
n_iterations = 0;
sum_pages = 0;
}
oldest_lsn = buf_pool_get_oldest_modification();
ut_ad(oldest_lsn <= log_get_lsn());
age = cur_lsn > oldest_lsn ? cur_lsn - oldest_lsn : 0;
pct_for_dirty = af_get_pct_for_dirty();
pct_for_lsn = af_get_pct_for_lsn(age);
pct_total = ut_max(pct_for_dirty, pct_for_lsn);
/* Estimate pages to be flushed for the lsn progress */
ulint sum_pages_for_lsn = 0;
lsn_t target_lsn = oldest_lsn
+ lsn_avg_rate * buf_flush_lsn_scan_factor;
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool = buf_pool_from_array(i);
ulint pages_for_lsn = 0;
buf_flush_list_mutex_enter(buf_pool);
for (buf_page_t* b = UT_LIST_GET_LAST(buf_pool->flush_list);
b != NULL;
b = UT_LIST_GET_PREV(list, b)) {
if (b->oldest_modification > target_lsn) {
break;
}
++pages_for_lsn;
}
buf_flush_list_mutex_exit(buf_pool);
sum_pages_for_lsn += pages_for_lsn;
mutex_enter(&page_cleaner->mutex);
ut_ad(page_cleaner->slots[i].state
== PAGE_CLEANER_STATE_NONE);
page_cleaner->slots[i].n_pages_requested
= pages_for_lsn / buf_flush_lsn_scan_factor + 1;
mutex_exit(&page_cleaner->mutex);
}
sum_pages_for_lsn /= buf_flush_lsn_scan_factor;
if(sum_pages_for_lsn < 1) {
sum_pages_for_lsn = 1;
}
/* Cap the maximum IO capacity that we are going to use by
max_io_capacity. Limit the value to avoid too quick increase */
ulint pages_for_lsn =
std::min<ulint>(sum_pages_for_lsn, srv_max_io_capacity * 2);
n_pages = (PCT_IO(pct_total) + avg_page_rate + pages_for_lsn) / 3;
if (n_pages > srv_max_io_capacity) {
n_pages = srv_max_io_capacity;
}
/* Normalize request for each instance */
mutex_enter(&page_cleaner->mutex);
ut_ad(page_cleaner->n_slots_requested == 0);
ut_ad(page_cleaner->n_slots_flushing == 0);
ut_ad(page_cleaner->n_slots_finished == 0);
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
/* if REDO has enough of free space,
don't care about age distribution of pages */
page_cleaner->slots[i].n_pages_requested = pct_for_lsn > 30 ?
page_cleaner->slots[i].n_pages_requested
* n_pages / sum_pages_for_lsn + 1
: n_pages / srv_buf_pool_instances;
}
mutex_exit(&page_cleaner->mutex);
MONITOR_SET(MONITOR_FLUSH_N_TO_FLUSH_REQUESTED, n_pages);
MONITOR_SET(MONITOR_FLUSH_N_TO_FLUSH_BY_AGE, sum_pages_for_lsn);
MONITOR_SET(MONITOR_FLUSH_AVG_PAGE_RATE, avg_page_rate);
MONITOR_SET(MONITOR_FLUSH_LSN_AVG_RATE, lsn_avg_rate);
MONITOR_SET(MONITOR_FLUSH_PCT_FOR_DIRTY, pct_for_dirty);
MONITOR_SET(MONITOR_FLUSH_PCT_FOR_LSN, pct_for_lsn);
*lsn_limit = LSN_MAX;
return(n_pages);
}
/*********************************************************************//**
Puts the page_cleaner thread to sleep if it has finished work in less
than a second
@retval 0 wake up by event set,
@retval OS_SYNC_TIME_EXCEEDED if timeout was exceeded
@param next_loop_time time when next loop iteration should start
@param sig_count zero or the value returned by previous call of
os_event_reset()
@param cur_time current time as in ut_time_ms() */
static
ulint
pc_sleep_if_needed(
/*===============*/
ulint next_loop_time,
int64_t sig_count,
ulint cur_time)
{
/* No sleep if we are cleaning the buffer pool during the shutdown
with everything else finished */
if (srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE)
2017-05-23 10:09:47 +02:00
return OS_SYNC_TIME_EXCEEDED;
if (next_loop_time > cur_time) {
/* Get sleep interval in micro seconds. We use
ut_min() to avoid long sleep in case of wrap around. */
ulint sleep_us;
sleep_us = ut_min(static_cast<ulint>(1000000),
(next_loop_time - cur_time) * 1000);
return(os_event_wait_time_low(buf_flush_event,
sleep_us, sig_count));
}
return(OS_SYNC_TIME_EXCEEDED);
}
/******************************************************************//**
Initialize page_cleaner. */
void
buf_flush_page_cleaner_init(void)
/*=============================*/
{
ut_ad(page_cleaner == NULL);
page_cleaner = static_cast<page_cleaner_t*>(
ut_zalloc_nokey(sizeof(*page_cleaner)));
mutex_create(LATCH_ID_PAGE_CLEANER, &page_cleaner->mutex);
page_cleaner->is_requested = os_event_create("pc_is_requested");
page_cleaner->is_finished = os_event_create("pc_is_finished");
page_cleaner->is_started = os_event_create("pc_is_started");
page_cleaner->n_slots = static_cast<ulint>(srv_buf_pool_instances);
page_cleaner->slots = static_cast<page_cleaner_slot_t*>(
ut_zalloc_nokey(page_cleaner->n_slots
* sizeof(*page_cleaner->slots)));
ut_d(page_cleaner->n_disabled_debug = 0);
page_cleaner->is_running = true;
}
/**
Close page_cleaner. */
static
void
buf_flush_page_cleaner_close(void)
{
/* waiting for all worker threads exit */
while (page_cleaner->n_workers > 0) {
os_thread_sleep(10000);
}
mutex_destroy(&page_cleaner->mutex);
ut_free(page_cleaner->slots);
os_event_destroy(page_cleaner->is_finished);
os_event_destroy(page_cleaner->is_requested);
os_event_destroy(page_cleaner->is_started);
ut_free(page_cleaner);
page_cleaner = NULL;
}
/**
Requests for all slots to flush all buffer pool instances.
@param min_n wished minimum mumber of blocks flushed
(it is not guaranteed that the actual number is that big)
@param lsn_limit in the case BUF_FLUSH_LIST all blocks whose
oldest_modification is smaller than this should be flushed
(if their number does not exceed min_n), otherwise ignored
*/
static
void
pc_request(
ulint min_n,
lsn_t lsn_limit)
{
if (min_n != ULINT_MAX) {
/* Ensure that flushing is spread evenly amongst the
buffer pool instances. When min_n is ULINT_MAX
we need to flush everything up to the lsn limit
so no limit here. */
min_n = (min_n + srv_buf_pool_instances - 1)
/ srv_buf_pool_instances;
}
mutex_enter(&page_cleaner->mutex);
ut_ad(page_cleaner->n_slots_requested == 0);
ut_ad(page_cleaner->n_slots_flushing == 0);
ut_ad(page_cleaner->n_slots_finished == 0);
page_cleaner->requested = (min_n > 0);
page_cleaner->lsn_limit = lsn_limit;
for (ulint i = 0; i < page_cleaner->n_slots; i++) {
page_cleaner_slot_t* slot = &page_cleaner->slots[i];
ut_ad(slot->state == PAGE_CLEANER_STATE_NONE);
if (min_n == ULINT_MAX) {
slot->n_pages_requested = ULINT_MAX;
} else if (min_n == 0) {
slot->n_pages_requested = 0;
}
/* slot->n_pages_requested was already set by
page_cleaner_flush_pages_recommendation() */
slot->state = PAGE_CLEANER_STATE_REQUESTED;
}
page_cleaner->n_slots_requested = page_cleaner->n_slots;
page_cleaner->n_slots_flushing = 0;
page_cleaner->n_slots_finished = 0;
os_event_set(page_cleaner->is_requested);
mutex_exit(&page_cleaner->mutex);
}
/**
Do flush for one slot.
@return the number of the slots which has not been treated yet. */
static
ulint
pc_flush_slot(void)
{
ulint lru_tm = 0;
ulint list_tm = 0;
int lru_pass = 0;
int list_pass = 0;
mutex_enter(&page_cleaner->mutex);
if (page_cleaner->n_slots_requested > 0) {
page_cleaner_slot_t* slot = NULL;
ulint i;
for (i = 0; i < page_cleaner->n_slots; i++) {
slot = &page_cleaner->slots[i];
if (slot->state == PAGE_CLEANER_STATE_REQUESTED) {
break;
}
}
/* slot should be found because
page_cleaner->n_slots_requested > 0 */
ut_a(i < page_cleaner->n_slots);
buf_pool_t* buf_pool = buf_pool_from_array(i);
page_cleaner->n_slots_requested--;
page_cleaner->n_slots_flushing++;
slot->state = PAGE_CLEANER_STATE_FLUSHING;
if (page_cleaner->n_slots_requested == 0) {
os_event_reset(page_cleaner->is_requested);
}
if (!page_cleaner->is_running) {
slot->n_flushed_lru = 0;
slot->n_flushed_list = 0;
goto finish_mutex;
}
mutex_exit(&page_cleaner->mutex);
lru_tm = ut_time_ms();
/* Flush pages from end of LRU if required */
slot->n_flushed_lru = buf_flush_LRU_list(buf_pool);
lru_tm = ut_time_ms() - lru_tm;
lru_pass++;
if (!page_cleaner->is_running) {
slot->n_flushed_list = 0;
goto finish;
}
/* Flush pages from flush_list if required */
if (page_cleaner->requested) {
flush_counters_t n;
memset(&n, 0, sizeof(flush_counters_t));
list_tm = ut_time_ms();
slot->succeeded_list = buf_flush_do_batch(
buf_pool, BUF_FLUSH_LIST,
slot->n_pages_requested,
page_cleaner->lsn_limit,
&n);
slot->n_flushed_list = n.flushed;
list_tm = ut_time_ms() - list_tm;
list_pass++;
} else {
slot->n_flushed_list = 0;
slot->succeeded_list = true;
}
finish:
mutex_enter(&page_cleaner->mutex);
finish_mutex:
page_cleaner->n_slots_flushing--;
page_cleaner->n_slots_finished++;
slot->state = PAGE_CLEANER_STATE_FINISHED;
slot->flush_lru_time += lru_tm;
slot->flush_list_time += list_tm;
slot->flush_lru_pass += lru_pass;
slot->flush_list_pass += list_pass;
if (page_cleaner->n_slots_requested == 0
&& page_cleaner->n_slots_flushing == 0) {
os_event_set(page_cleaner->is_finished);
}
}
ulint ret = page_cleaner->n_slots_requested;
mutex_exit(&page_cleaner->mutex);
return(ret);
}
/**
Wait until all flush requests are finished.
@param n_flushed_lru number of pages flushed from the end of the LRU list.
@param n_flushed_list number of pages flushed from the end of the
flush_list.
@return true if all flush_list flushing batch were success. */
static
bool
pc_wait_finished(
ulint* n_flushed_lru,
ulint* n_flushed_list)
{
bool all_succeeded = true;
*n_flushed_lru = 0;
*n_flushed_list = 0;
os_event_wait(page_cleaner->is_finished);
mutex_enter(&page_cleaner->mutex);
ut_ad(page_cleaner->n_slots_requested == 0);
ut_ad(page_cleaner->n_slots_flushing == 0);
ut_ad(page_cleaner->n_slots_finished == page_cleaner->n_slots);
for (ulint i = 0; i < page_cleaner->n_slots; i++) {
page_cleaner_slot_t* slot = &page_cleaner->slots[i];
ut_ad(slot->state == PAGE_CLEANER_STATE_FINISHED);
*n_flushed_lru += slot->n_flushed_lru;
*n_flushed_list += slot->n_flushed_list;
all_succeeded &= slot->succeeded_list;
slot->state = PAGE_CLEANER_STATE_NONE;
slot->n_pages_requested = 0;
}
page_cleaner->n_slots_finished = 0;
os_event_reset(page_cleaner->is_finished);
mutex_exit(&page_cleaner->mutex);
return(all_succeeded);
}
#ifdef UNIV_LINUX
/**
Set priority for page_cleaner threads.
@param[in] priority priority intended to set
@return true if set as intended */
static
bool
buf_flush_page_cleaner_set_priority(
int priority)
{
setpriority(PRIO_PROCESS, (pid_t)syscall(SYS_gettid),
priority);
return(getpriority(PRIO_PROCESS, (pid_t)syscall(SYS_gettid))
== priority);
}
#endif /* UNIV_LINUX */
#ifdef UNIV_DEBUG
/** Loop used to disable page cleaner threads. */
static
void
buf_flush_page_cleaner_disabled_loop(void)
{
ut_ad(page_cleaner != NULL);
if (!innodb_page_cleaner_disabled_debug) {
/* We return to avoid entering and exiting mutex. */
return;
}
mutex_enter(&page_cleaner->mutex);
page_cleaner->n_disabled_debug++;
mutex_exit(&page_cleaner->mutex);
while (innodb_page_cleaner_disabled_debug
&& srv_shutdown_state == SRV_SHUTDOWN_NONE
&& page_cleaner->is_running) {
os_thread_sleep(100000); /* [A] */
}
/* We need to wait for threads exiting here, otherwise we would
encounter problem when we quickly perform following steps:
1) SET GLOBAL innodb_page_cleaner_disabled_debug = 1;
2) SET GLOBAL innodb_page_cleaner_disabled_debug = 0;
3) SET GLOBAL innodb_page_cleaner_disabled_debug = 1;
That's because after step 1 this thread could still be sleeping
inside the loop above at [A] and steps 2, 3 could happen before
this thread wakes up from [A]. In such case this thread would
not re-increment n_disabled_debug and we would be waiting for
him forever in buf_flush_page_cleaner_disabled_debug_update(...).
Therefore we are waiting in step 2 for this thread exiting here. */
mutex_enter(&page_cleaner->mutex);
page_cleaner->n_disabled_debug--;
mutex_exit(&page_cleaner->mutex);
}
/** Disables page cleaner threads (coordinator and workers).
It's used by: SET GLOBAL innodb_page_cleaner_disabled_debug = 1 (0).
@param[in] thd thread handle
@param[in] var pointer to system variable
@param[out] var_ptr where the formal string goes
@param[in] save immediate result from check function */
void
buf_flush_page_cleaner_disabled_debug_update(
THD* thd,
struct st_mysql_sys_var* var,
void* var_ptr,
const void* save)
{
if (page_cleaner == NULL) {
return;
}
if (!*static_cast<const my_bool*>(save)) {
if (!innodb_page_cleaner_disabled_debug) {
return;
}
innodb_page_cleaner_disabled_debug = false;
/* Enable page cleaner threads. */
while (srv_shutdown_state == SRV_SHUTDOWN_NONE) {
mutex_enter(&page_cleaner->mutex);
const ulint n = page_cleaner->n_disabled_debug;
mutex_exit(&page_cleaner->mutex);
/* Check if all threads have been enabled, to avoid
problem when we decide to re-disable them soon. */
if (n == 0) {
break;
}
}
return;
}
if (innodb_page_cleaner_disabled_debug) {
return;
}
innodb_page_cleaner_disabled_debug = true;
while (srv_shutdown_state == SRV_SHUTDOWN_NONE) {
/* Workers are possibly sleeping on is_requested.
We have to wake them, otherwise they could possibly
have never noticed, that they should be disabled,
and we would wait for them here forever.
That's why we have sleep-loop instead of simply
waiting on some disabled_debug_event. */
os_event_set(page_cleaner->is_requested);
mutex_enter(&page_cleaner->mutex);
ut_ad(page_cleaner->n_disabled_debug
<= srv_n_page_cleaners);
if (page_cleaner->n_disabled_debug
== srv_n_page_cleaners) {
mutex_exit(&page_cleaner->mutex);
break;
}
mutex_exit(&page_cleaner->mutex);
os_thread_sleep(100000);
}
}
#endif /* UNIV_DEBUG */
/******************************************************************//**
page_cleaner thread tasked with flushing dirty pages from the buffer
pools. As of now we'll have only one coordinator.
@return a dummy parameter */
extern "C"
os_thread_ret_t
DECLARE_THREAD(buf_flush_page_cleaner_coordinator)(void*)
{
2017-05-15 16:17:16 +02:00
my_thread_init();
#ifdef UNIV_PFS_THREAD
pfs_register_thread(page_cleaner_thread_key);
#endif /* UNIV_PFS_THREAD */
ut_ad(!srv_read_only_mode);
#ifdef UNIV_DEBUG_THREAD_CREATION
ib::info() << "page_cleaner thread running, id "
<< os_thread_pf(os_thread_get_curr_id());
#endif /* UNIV_DEBUG_THREAD_CREATION */
#ifdef UNIV_LINUX
/* linux might be able to set different setting for each thread.
worth to try to set high priority for page cleaner threads */
if (buf_flush_page_cleaner_set_priority(
buf_flush_page_cleaner_priority)) {
ib::info() << "page_cleaner coordinator priority: "
<< buf_flush_page_cleaner_priority;
} else {
ib::info() << "If the mysqld execution user is authorized,"
" page cleaner thread priority can be changed."
" See the man page of setpriority().";
}
/* Signal that setpriority() has been attempted. */
os_event_set(recv_sys->flush_end);
#endif /* UNIV_LINUX */
do {
/* treat flushing requests during recovery. */
ulint n_flushed_lru = 0;
ulint n_flushed_list = 0;
os_event_wait(recv_sys->flush_start);
if (!recv_writer_thread_active) {
break;
}
switch (recv_sys->flush_type) {
case BUF_FLUSH_LRU:
/* Flush pages from end of LRU if required */
pc_request(0, LSN_MAX);
while (pc_flush_slot() > 0) {}
pc_wait_finished(&n_flushed_lru, &n_flushed_list);
break;
case BUF_FLUSH_LIST:
/* Flush all pages */
do {
pc_request(ULINT_MAX, LSN_MAX);
while (pc_flush_slot() > 0) {}
} while (!pc_wait_finished(&n_flushed_lru,
&n_flushed_list));
break;
default:
ut_ad(0);
}
os_event_reset(recv_sys->flush_start);
os_event_set(recv_sys->flush_end);
} while (recv_writer_thread_active);
os_event_wait(buf_flush_event);
ulint ret_sleep = 0;
ulint n_evicted = 0;
ulint n_flushed_last = 0;
ulint warn_interval = 1;
ulint warn_count = 0;
int64_t sig_count = os_event_reset(buf_flush_event);
ulint next_loop_time = ut_time_ms() + 1000;
ulint n_flushed = 0;
ulint last_activity = srv_get_activity_count();
ulint last_pages = 0;
while (srv_shutdown_state == SRV_SHUTDOWN_NONE) {
ulint curr_time = ut_time_ms();
/* The page_cleaner skips sleep if the server is
idle and there are no pending IOs in the buffer pool
and there is work to do. */
if (srv_check_activity(last_activity)
|| buf_get_n_pending_read_ios()
|| n_flushed == 0) {
ret_sleep = pc_sleep_if_needed(
next_loop_time, sig_count, curr_time);
} else if (curr_time > next_loop_time) {
ret_sleep = OS_SYNC_TIME_EXCEEDED;
} else {
ret_sleep = 0;
}
if (srv_shutdown_state != SRV_SHUTDOWN_NONE) {
break;
}
sig_count = os_event_reset(buf_flush_event);
if (ret_sleep == OS_SYNC_TIME_EXCEEDED) {
if (global_system_variables.log_warnings > 2
&& curr_time > next_loop_time + 3000
&& !(test_flags & TEST_SIGINT)) {
if (warn_count == 0) {
ib::info() << "page_cleaner: 1000ms"
" intended loop took "
<< 1000 + curr_time
- next_loop_time
<< "ms. The settings might not"
" be optimal. (flushed="
<< n_flushed_last
<< " and evicted="
<< n_evicted
<< ", during the time.)";
if (warn_interval > 300) {
warn_interval = 600;
} else {
warn_interval *= 2;
}
warn_count = warn_interval;
} else {
--warn_count;
}
} else {
/* reset counter */
warn_interval = 1;
warn_count = 0;
}
next_loop_time = curr_time + 1000;
n_flushed_last = n_evicted = 0;
}
if (ret_sleep != OS_SYNC_TIME_EXCEEDED
&& srv_flush_sync
&& buf_flush_sync_lsn > 0) {
/* woke up for flush_sync */
mutex_enter(&page_cleaner->mutex);
lsn_t lsn_limit = buf_flush_sync_lsn;
buf_flush_sync_lsn = 0;
mutex_exit(&page_cleaner->mutex);
/* Request flushing for threads */
pc_request(ULINT_MAX, lsn_limit);
ulint tm = ut_time_ms();
/* Coordinator also treats requests */
while (pc_flush_slot() > 0) {}
/* only coordinator is using these counters,
so no need to protect by lock. */
page_cleaner->flush_time += ut_time_ms() - tm;
page_cleaner->flush_pass++;
/* Wait for all slots to be finished */
ulint n_flushed_lru = 0;
ulint n_flushed_list = 0;
pc_wait_finished(&n_flushed_lru, &n_flushed_list);
if (n_flushed_list > 0 || n_flushed_lru > 0) {
buf_flush_stats(n_flushed_list, n_flushed_lru);
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_SYNC_TOTAL_PAGE,
MONITOR_FLUSH_SYNC_COUNT,
MONITOR_FLUSH_SYNC_PAGES,
n_flushed_lru + n_flushed_list);
}
n_flushed = n_flushed_lru + n_flushed_list;
} else if (srv_check_activity(last_activity)) {
ulint n_to_flush;
lsn_t lsn_limit = 0;
/* Estimate pages from flush_list to be flushed */
if (ret_sleep == OS_SYNC_TIME_EXCEEDED) {
last_activity = srv_get_activity_count();
n_to_flush =
page_cleaner_flush_pages_recommendation(
&lsn_limit, last_pages);
} else {
n_to_flush = 0;
}
/* Request flushing for threads */
pc_request(n_to_flush, lsn_limit);
ulint tm = ut_time_ms();
/* Coordinator also treats requests */
while (pc_flush_slot() > 0) {
/* No op */
}
/* only coordinator is using these counters,
so no need to protect by lock. */
page_cleaner->flush_time += ut_time_ms() - tm;
page_cleaner->flush_pass++ ;
/* Wait for all slots to be finished */
ulint n_flushed_lru = 0;
ulint n_flushed_list = 0;
pc_wait_finished(&n_flushed_lru, &n_flushed_list);
if (n_flushed_list > 0 || n_flushed_lru > 0) {
buf_flush_stats(n_flushed_list, n_flushed_lru);
}
if (ret_sleep == OS_SYNC_TIME_EXCEEDED) {
last_pages = n_flushed_list;
}
n_evicted += n_flushed_lru;
n_flushed_last += n_flushed_list;
n_flushed = n_flushed_lru + n_flushed_list;
if (n_flushed_lru) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_FLUSH_TOTAL_PAGE,
MONITOR_LRU_BATCH_FLUSH_COUNT,
MONITOR_LRU_BATCH_FLUSH_PAGES,
n_flushed_lru);
}
if (n_flushed_list) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_ADAPTIVE_TOTAL_PAGE,
MONITOR_FLUSH_ADAPTIVE_COUNT,
MONITOR_FLUSH_ADAPTIVE_PAGES,
n_flushed_list);
}
} else if (ret_sleep == OS_SYNC_TIME_EXCEEDED) {
/* no activity, slept enough */
buf_flush_lists(PCT_IO(100), LSN_MAX, &n_flushed);
n_flushed_last += n_flushed;
if (n_flushed) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_BACKGROUND_TOTAL_PAGE,
MONITOR_FLUSH_BACKGROUND_COUNT,
MONITOR_FLUSH_BACKGROUND_PAGES,
n_flushed);
}
} else {
/* no activity, but woken up by event */
n_flushed = 0;
}
ut_d(buf_flush_page_cleaner_disabled_loop());
}
ut_ad(srv_shutdown_state > 0);
if (srv_fast_shutdown == 2
|| srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
/* In very fast shutdown or when innodb failed to start, we
simulate a crash of the buffer pool. We are not required to do
any flushing. */
goto thread_exit;
}
/* In case of normal and slow shutdown the page_cleaner thread
must wait for all other activity in the server to die down.
Note that we can start flushing the buffer pool as soon as the
server enters shutdown phase but we must stay alive long enough
to ensure that any work done by the master or purge threads is
also flushed.
During shutdown we pass through two stages. In the first stage,
when SRV_SHUTDOWN_CLEANUP is set other threads like the master
and the purge threads may be working as well. We start flushing
the buffer pool but can't be sure that no new pages are being
dirtied until we enter SRV_SHUTDOWN_FLUSH_PHASE phase. */
do {
pc_request(ULINT_MAX, LSN_MAX);
while (pc_flush_slot() > 0) {}
ulint n_flushed_lru = 0;
ulint n_flushed_list = 0;
pc_wait_finished(&n_flushed_lru, &n_flushed_list);
n_flushed = n_flushed_lru + n_flushed_list;
/* We sleep only if there are no pages to flush */
if (n_flushed == 0) {
os_thread_sleep(100000);
}
} while (srv_shutdown_state == SRV_SHUTDOWN_CLEANUP);
/* At this point all threads including the master and the purge
thread must have been suspended. */
ut_a(srv_get_active_thread_type() == SRV_NONE);
ut_a(srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE);
/* We can now make a final sweep on flushing the buffer pool
and exit after we have cleaned the whole buffer pool.
It is important that we wait for any running batch that has
been triggered by us to finish. Otherwise we can end up
considering end of that batch as a finish of our final
sweep and we'll come out of the loop leaving behind dirty pages
in the flush_list */
buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST);
buf_flush_wait_LRU_batch_end();
bool success;
do {
pc_request(ULINT_MAX, LSN_MAX);
while (pc_flush_slot() > 0) {}
ulint n_flushed_lru = 0;
ulint n_flushed_list = 0;
success = pc_wait_finished(&n_flushed_lru, &n_flushed_list);
n_flushed = n_flushed_lru + n_flushed_list;
buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST);
buf_flush_wait_LRU_batch_end();
} while (!success || n_flushed > 0);
/* Some sanity checks */
ut_a(srv_get_active_thread_type() == SRV_NONE);
ut_a(srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE);
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
buf_pool_t* buf_pool = buf_pool_from_array(i);
ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == 0);
}
/* We have lived our life. Time to die. */
thread_exit:
/* All worker threads are waiting for the event here,
and no more access to page_cleaner structure by them.
Wakes worker threads up just to make them exit. */
page_cleaner->is_running = false;
os_event_set(page_cleaner->is_requested);
buf_flush_page_cleaner_close();
buf_page_cleaner_is_active = false;
2017-05-15 16:17:16 +02:00
my_thread_end();
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit();
OS_THREAD_DUMMY_RETURN;
}
/** Adjust thread count for page cleaner workers.
@param[in] new_cnt Number of threads to be used */
void
buf_flush_set_page_cleaner_thread_cnt(ulong new_cnt)
{
mutex_enter(&page_cleaner->mutex);
srv_n_page_cleaners = new_cnt;
if (new_cnt > page_cleaner->n_workers) {
/* User has increased the number of page
cleaner threads. */
uint add = new_cnt - page_cleaner->n_workers;
for (uint i = 0; i < add; i++) {
os_thread_id_t cleaner_thread_id;
os_thread_create(buf_flush_page_cleaner_worker, NULL, &cleaner_thread_id);
}
}
mutex_exit(&page_cleaner->mutex);
/* Wait until defined number of workers has started. */
while (page_cleaner->is_running &&
page_cleaner->n_workers != (srv_n_page_cleaners - 1)) {
os_event_set(page_cleaner->is_requested);
os_event_reset(page_cleaner->is_started);
os_event_wait_time(page_cleaner->is_started, 1000000);
}
}
/******************************************************************//**
Worker thread of page_cleaner.
@return a dummy parameter */
extern "C"
os_thread_ret_t
DECLARE_THREAD(buf_flush_page_cleaner_worker)(
/*==========================================*/
void* arg MY_ATTRIBUTE((unused)))
/*!< in: a dummy parameter required by
os_thread_create */
{
my_thread_init();
os_thread_id_t cleaner_thread_id = os_thread_get_curr_id();
mutex_enter(&page_cleaner->mutex);
ulint thread_no = page_cleaner->n_workers;
page_cleaner->n_workers++;
DBUG_LOG("ib_buf", "Thread "
<< cleaner_thread_id
<< " started n_workers "
<< page_cleaner->n_workers << ".");
/* Signal that we have started */
os_event_set(page_cleaner->is_started);
mutex_exit(&page_cleaner->mutex);
#ifdef UNIV_LINUX
/* linux might be able to set different setting for each thread
worth to try to set high priority for page cleaner threads */
if (buf_flush_page_cleaner_set_priority(
buf_flush_page_cleaner_priority)) {
ib::info() << "page_cleaner worker priority: "
<< buf_flush_page_cleaner_priority;
}
#endif /* UNIV_LINUX */
while (true) {
os_event_wait(page_cleaner->is_requested);
ut_d(buf_flush_page_cleaner_disabled_loop());
if (!page_cleaner->is_running) {
break;
}
ut_ad(srv_n_page_cleaners >= 1);
/* If number of page cleaner threads is decreased
exit those that are not anymore needed. */
if (srv_shutdown_state == SRV_SHUTDOWN_NONE &&
thread_no >= (srv_n_page_cleaners - 1)) {
DBUG_LOG("ib_buf", "Exiting "
<< thread_no
<< " page cleaner worker thread_id "
<< os_thread_pf(cleaner_thread_id)
<< " total threads " << srv_n_page_cleaners << ".");
break;
}
pc_flush_slot();
}
mutex_enter(&page_cleaner->mutex);
page_cleaner->n_workers--;
DBUG_LOG("ib_buf", "Thread " << cleaner_thread_id
<< " exiting n_workers " << page_cleaner->n_workers<< ".");
/* Signal that we have stopped */
os_event_set(page_cleaner->is_started);
mutex_exit(&page_cleaner->mutex);
my_thread_end();
os_thread_exit();
OS_THREAD_DUMMY_RETURN;
}
/*******************************************************************//**
Synchronously flush dirty blocks from the end of the flush list of all buffer
pool instances.
NOTE: The calling thread is not allowed to own any latches on pages! */
void
buf_flush_sync_all_buf_pools(void)
/*==============================*/
{
bool success;
do {
success = buf_flush_lists(ULINT_MAX, LSN_MAX, NULL);
buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST);
} while (!success);
ut_a(success);
}
/** Request IO burst and wake page_cleaner up.
@param[in] lsn_limit upper limit of LSN to be flushed */
void
buf_flush_request_force(
lsn_t lsn_limit)
{
/* adjust based on lsn_avg_rate not to get old */
lsn_t lsn_target = lsn_limit + lsn_avg_rate * 3;
mutex_enter(&page_cleaner->mutex);
if (lsn_target > buf_flush_sync_lsn) {
buf_flush_sync_lsn = lsn_target;
}
mutex_exit(&page_cleaner->mutex);
os_event_set(buf_flush_event);
}
#if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG
/** Functor to validate the flush list. */
struct Check {
void operator()(const buf_page_t* elem)
{
ut_a(elem->in_flush_list);
}
};
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
static
ibool
buf_flush_validate_low(
/*===================*/
buf_pool_t* buf_pool) /*!< in: Buffer pool instance */
{
buf_page_t* bpage;
const ib_rbt_node_t* rnode = NULL;
Check check;
ut_ad(buf_flush_list_mutex_own(buf_pool));
ut_list_validate(buf_pool->flush_list, check);
bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);
/* If we are in recovery mode i.e.: flush_rbt != NULL
then each block in the flush_list must also be present
in the flush_rbt. */
if (buf_pool->flush_rbt != NULL) {
rnode = rbt_first(buf_pool->flush_rbt);
}
while (bpage != NULL) {
const lsn_t om = bpage->oldest_modification;
ut_ad(buf_pool_from_bpage(bpage) == buf_pool);
ut_ad(bpage->in_flush_list);
/* A page in buf_pool->flush_list can be in
BUF_BLOCK_REMOVE_HASH state. This happens when a page
is in the middle of being relocated. In that case the
original descriptor can have this state and still be
in the flush list waiting to acquire the
buf_pool->flush_list_mutex to complete the relocation. */
ut_a(buf_page_in_file(bpage)
|| buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH);
ut_a(om > 0);
if (buf_pool->flush_rbt != NULL) {
buf_page_t** prpage;
ut_a(rnode != NULL);
prpage = rbt_value(buf_page_t*, rnode);
ut_a(*prpage != NULL);
ut_a(*prpage == bpage);
rnode = rbt_next(buf_pool->flush_rbt, rnode);
}
bpage = UT_LIST_GET_NEXT(list, bpage);
ut_a(bpage == NULL || om >= bpage->oldest_modification);
}
/* By this time we must have exhausted the traversal of
flush_rbt (if active) as well. */
ut_a(rnode == NULL);
return(TRUE);
}
/******************************************************************//**
Validates the flush list.
@return TRUE if ok */
ibool
buf_flush_validate(
/*===============*/
buf_pool_t* buf_pool) /*!< buffer pool instance */
{
ibool ret;
buf_flush_list_mutex_enter(buf_pool);
ret = buf_flush_validate_low(buf_pool);
buf_flush_list_mutex_exit(buf_pool);
return(ret);
}
#endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */
/******************************************************************//**
Check if there are any dirty pages that belong to a space id in the flush
list in a particular buffer pool.
@return number of dirty pages present in a single buffer pool */
ulint
buf_pool_get_dirty_pages_count(
/*===========================*/
buf_pool_t* buf_pool, /*!< in: buffer pool */
ulint id, /*!< in: space id to check */
FlushObserver* observer) /*!< in: flush observer to check */
{
ulint count = 0;
buf_pool_mutex_enter(buf_pool);
buf_flush_list_mutex_enter(buf_pool);
buf_page_t* bpage;
for (bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);
bpage != 0;
bpage = UT_LIST_GET_NEXT(list, bpage)) {
ut_ad(buf_page_in_file(bpage));
ut_ad(bpage->in_flush_list);
ut_ad(bpage->oldest_modification > 0);
if ((observer != NULL
&& observer == bpage->flush_observer)
|| (observer == NULL
&& id == bpage->id.space())) {
++count;
}
}
buf_flush_list_mutex_exit(buf_pool);
buf_pool_mutex_exit(buf_pool);
return(count);
}
/******************************************************************//**
Check if there are any dirty pages that belong to a space id in the flush list.
@return number of dirty pages present in all the buffer pools */
static
ulint
buf_flush_get_dirty_pages_count(
/*============================*/
ulint id, /*!< in: space id to check */
FlushObserver* observer) /*!< in: flush observer to check */
{
ulint count = 0;
for (ulint i = 0; i < srv_buf_pool_instances; ++i) {
buf_pool_t* buf_pool;
buf_pool = buf_pool_from_array(i);
count += buf_pool_get_dirty_pages_count(buf_pool, id, observer);
}
return(count);
}
/** FlushObserver constructor
@param[in] space_id table space id
@param[in] trx trx instance
@param[in] stage performance schema accounting object,
used by ALTER TABLE. It is passed to log_preflush_pool_modified_pages()
for accounting. */
FlushObserver::FlushObserver(
ulint space_id,
trx_t* trx,
ut_stage_alter_t* stage)
:
m_space_id(space_id),
m_trx(trx),
m_stage(stage),
m_interrupted(false)
{
m_flushed = UT_NEW_NOKEY(std::vector<ulint>(srv_buf_pool_instances));
m_removed = UT_NEW_NOKEY(std::vector<ulint>(srv_buf_pool_instances));
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
m_flushed->at(i) = 0;
m_removed->at(i) = 0;
}
DBUG_LOG("flush", "FlushObserver(): trx->id=" << m_trx->id);
}
/** FlushObserver deconstructor */
FlushObserver::~FlushObserver()
{
ut_ad(buf_flush_get_dirty_pages_count(m_space_id, this) == 0);
UT_DELETE(m_flushed);
UT_DELETE(m_removed);
DBUG_LOG("flush", "~FlushObserver(): trx->id=" << m_trx->id);
}
/** Check whether trx is interrupted
@return true if trx is interrupted */
bool
FlushObserver::check_interrupted()
{
if (trx_is_interrupted(m_trx)) {
interrupted();
return(true);
}
return(false);
}
/** Notify observer of a flush
@param[in] buf_pool buffer pool instance
@param[in] bpage buffer page to flush */
void
FlushObserver::notify_flush(
buf_pool_t* buf_pool,
buf_page_t* bpage)
{
ut_ad(buf_pool_mutex_own(buf_pool));
m_flushed->at(buf_pool->instance_no)++;
if (m_stage != NULL) {
m_stage->inc();
}
DBUG_LOG("flush", "Flush " << bpage->id);
}
/** Notify observer of a remove
@param[in] buf_pool buffer pool instance
@param[in] bpage buffer page flushed */
void
FlushObserver::notify_remove(
buf_pool_t* buf_pool,
buf_page_t* bpage)
{
ut_ad(buf_pool_mutex_own(buf_pool));
m_removed->at(buf_pool->instance_no)++;
DBUG_LOG("flush", "Remove " << bpage->id);
}
/** Flush dirty pages and wait. */
void
FlushObserver::flush()
{
ut_ad(m_trx);
if (!m_interrupted && m_stage) {
m_stage->begin_phase_flush(buf_flush_get_dirty_pages_count(
m_space_id, this));
}
buf_LRU_flush_or_remove_pages(m_space_id, this);
/* Wait for all dirty pages were flushed. */
for (ulint i = 0; i < srv_buf_pool_instances; i++) {
while (!is_complete(i)) {
os_thread_sleep(2000);
}
}
}