mirror of
https://github.com/MariaDB/server.git
synced 2025-01-19 13:32:33 +01:00
259 lines
8.5 KiB
C
259 lines
8.5 KiB
C
|
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Library General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Library General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Library General Public
|
||
|
License along with this library; if not, write to the Free
|
||
|
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||
|
MA 02111-1307, USA */
|
||
|
|
||
|
/* Plug-compatible replacement for UNIX qsort.
|
||
|
Copyright (C) 1989 Free Software Foundation, Inc.
|
||
|
Written by Douglas C. Schmidt (schmidt@ics.uci.edu)
|
||
|
Optimized and modyfied for mysys by monty.
|
||
|
|
||
|
This file is part of GNU CC.
|
||
|
|
||
|
GNU QSORT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 1, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
GNU QSORT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GNU QSORT; see the file COPYING. If not, write to
|
||
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
|
||
|
#include "mysys_priv.h"
|
||
|
#if !defined(HAVE_purify) || defined(QSORT_EXTRA_CMP_ARGUMENT)
|
||
|
|
||
|
/* Envoke the comparison function, returns either 0, < 0, or > 0. */
|
||
|
#ifdef QSORT_EXTRA_CMP_ARGUMENT
|
||
|
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
|
||
|
#else
|
||
|
#define CMP(A,B) ((*cmp)((A),(B)))
|
||
|
#endif
|
||
|
|
||
|
/* Byte-wise swap two items of size SIZE. */
|
||
|
#define SWAP(A,B,SIZE) do {int sz=(int)(SIZE); char *a = (A); char *b = (B); \
|
||
|
do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0)
|
||
|
|
||
|
/* Copy SIZE bytes from item B to item A. */
|
||
|
#define COPY(A,B,SIZE) {int sz = (int) (SIZE); do { *(A)++ = *(B)++; } while (--sz); }
|
||
|
|
||
|
/* This should be replaced by a standard ANSI macro. */
|
||
|
#define BYTES_PER_WORD 8
|
||
|
|
||
|
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
||
|
#define STACK_SIZE (BYTES_PER_WORD * sizeof (long))
|
||
|
#define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
|
||
|
#define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
|
||
|
#define STACK_NOT_EMPTY (stack < top)
|
||
|
|
||
|
/* Discontinue quicksort algorithm when partition gets below this size.
|
||
|
This particular magic number was chosen to work best on a Sparc SLC. */
|
||
|
#define MAX_THRESH 12
|
||
|
|
||
|
/* Stack node declarations used to store unfulfilled partition obligations. */
|
||
|
typedef struct
|
||
|
{
|
||
|
char *lo;
|
||
|
char *hi;
|
||
|
} stack_node;
|
||
|
|
||
|
/* Order size using quicksort. This implementation incorporates
|
||
|
four optimizations discussed in Sedgewick:
|
||
|
|
||
|
1. Non-recursive, using an explicit stack of pointer that store the
|
||
|
next array partition to sort. To save time, this maximum amount
|
||
|
of space required to store an array of MAX_INT is allocated on the
|
||
|
stack. Assuming a 32-bit integer, this needs only 32 *
|
||
|
sizeof (stack_node) == 136 bits. Pretty cheap, actually.
|
||
|
|
||
|
2. Chose the pivot element using a median-of-three decision tree.
|
||
|
This reduces the probability of selecting a bad pivot value and
|
||
|
eliminates certain extraneous comparisons.
|
||
|
|
||
|
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
||
|
insertion sort to order the MAX_THRESH items within each partition.
|
||
|
This is a big win, since insertion sort is faster for small, mostly
|
||
|
sorted array segements.
|
||
|
|
||
|
4. The larger of the two sub-partitions is always pushed onto the
|
||
|
stack first, with the algorithm then concentrating on the
|
||
|
smaller partition. This *guarantees* no more than log (n)
|
||
|
stack size is needed (actually O(1) in this case)! */
|
||
|
|
||
|
#if defined(QSORT_TYPE_IS_VOID)
|
||
|
#define SORT_RETURN return
|
||
|
#else
|
||
|
#define SORT_RETURN return 0
|
||
|
#endif
|
||
|
|
||
|
#ifdef QSORT_EXTRA_CMP_ARGUMENT
|
||
|
qsort_t qsort2(void *base_ptr, size_t total_elems, size_t size, qsort2_cmp cmp,
|
||
|
void *cmp_argument)
|
||
|
#else
|
||
|
qsort_t qsort(void *base_ptr, size_t total_elems, size_t size, qsort_cmp cmp)
|
||
|
#endif
|
||
|
{
|
||
|
/* Allocating SIZE bytes for a pivot buffer facilitates a better
|
||
|
algorithm below since we can do comparisons directly on the pivot.
|
||
|
*/
|
||
|
int max_thresh = (int) (MAX_THRESH * size);
|
||
|
if (total_elems <= 1)
|
||
|
SORT_RETURN; /* Crashes on MSDOS if continues */
|
||
|
|
||
|
if (total_elems > MAX_THRESH)
|
||
|
{
|
||
|
char *lo = base_ptr;
|
||
|
char *hi = lo + size * (total_elems - 1);
|
||
|
stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
|
||
|
stack_node *top = stack + 1;
|
||
|
char *pivot_buffer = (char *) my_alloca ((int) size);
|
||
|
|
||
|
while (STACK_NOT_EMPTY)
|
||
|
{
|
||
|
char *left_ptr;
|
||
|
char *right_ptr;
|
||
|
{
|
||
|
char *pivot = pivot_buffer;
|
||
|
{
|
||
|
/* Select median value from among LO, MID, and HI. Rearrange
|
||
|
LO and HI so the three values are sorted. This lowers the
|
||
|
probability of picking a pathological pivot value and
|
||
|
skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
|
||
|
|
||
|
char *mid = lo + size * (((uint) (hi - lo) / (uint) size) >> 1);
|
||
|
|
||
|
if (CMP(hi,lo) < 0)
|
||
|
SWAP (hi, lo, size);
|
||
|
if (CMP (mid, lo) < 0)
|
||
|
SWAP (mid, lo, size);
|
||
|
else if (CMP (hi, mid) < 0)
|
||
|
SWAP (mid, hi, size);
|
||
|
COPY (pivot, mid, size);
|
||
|
pivot = pivot_buffer;
|
||
|
}
|
||
|
left_ptr = lo + size;
|
||
|
right_ptr = hi - size;
|
||
|
|
||
|
/* Here's the famous ``collapse the walls'' section of quicksort.
|
||
|
Gotta like those tight inner loops! They are the main reason
|
||
|
that this algorithm runs much faster than others. */
|
||
|
do
|
||
|
{
|
||
|
while (CMP (left_ptr, pivot) < 0)
|
||
|
left_ptr += size;
|
||
|
|
||
|
while (CMP (pivot, right_ptr) < 0)
|
||
|
right_ptr -= size;
|
||
|
|
||
|
if (left_ptr < right_ptr)
|
||
|
{
|
||
|
SWAP (left_ptr, right_ptr, size);
|
||
|
left_ptr += size;
|
||
|
right_ptr -= size;
|
||
|
}
|
||
|
else if (left_ptr == right_ptr)
|
||
|
{
|
||
|
left_ptr += size;
|
||
|
right_ptr -= size;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
while (left_ptr <= right_ptr);
|
||
|
}
|
||
|
|
||
|
/* Set up pointers for next iteration. First determine whether
|
||
|
left and right partitions are below the threshold size. If so,
|
||
|
ignore one or both. Otherwise, push the larger partition's
|
||
|
bounds on the stack and continue sorting the smaller one. */
|
||
|
|
||
|
if ((right_ptr - lo) <= max_thresh)
|
||
|
{
|
||
|
if ((hi - left_ptr) <= max_thresh) /* Ignore both small parts. */
|
||
|
POP (lo, hi);
|
||
|
else /* Ignore small left part. */
|
||
|
lo = left_ptr;
|
||
|
}
|
||
|
else if ((hi - left_ptr) <= max_thresh) /* Ignore small right part. */
|
||
|
hi = right_ptr;
|
||
|
else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left part */
|
||
|
{
|
||
|
PUSH (lo, right_ptr);
|
||
|
lo = left_ptr;
|
||
|
}
|
||
|
else /* Push larger right part */
|
||
|
{
|
||
|
PUSH (left_ptr, hi);
|
||
|
hi = right_ptr;
|
||
|
}
|
||
|
}
|
||
|
my_afree(pivot_buffer);
|
||
|
}
|
||
|
|
||
|
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
||
|
is completely sorted using insertion sort, since this is efficient
|
||
|
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
||
|
of the array to sort, and END_PTR points at the very last element in
|
||
|
the array (*not* one beyond it!). */
|
||
|
|
||
|
{
|
||
|
char *end_ptr = (char*) base_ptr + size * (total_elems - 1);
|
||
|
char *run_ptr;
|
||
|
char *tmp_ptr = (char*) base_ptr;
|
||
|
char *thresh = min (end_ptr, (char*) base_ptr + max_thresh);
|
||
|
|
||
|
/* Find smallest element in first threshold and place it at the
|
||
|
array's beginning. This is the smallest array element,
|
||
|
and the operation speeds up insertion sort's inner loop. */
|
||
|
|
||
|
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
||
|
if (CMP (run_ptr, tmp_ptr) < 0)
|
||
|
tmp_ptr = run_ptr;
|
||
|
|
||
|
if (tmp_ptr != (char*) base_ptr)
|
||
|
SWAP (tmp_ptr, (char*) base_ptr, size);
|
||
|
|
||
|
/* Insertion sort, running from left-hand-side up to `right-hand-side.'
|
||
|
Pretty much straight out of the original GNU qsort routine. */
|
||
|
|
||
|
for (run_ptr = (char*) base_ptr + size;
|
||
|
(tmp_ptr = run_ptr += size) <= end_ptr; )
|
||
|
{
|
||
|
while (CMP (run_ptr, tmp_ptr -= size) < 0) ;
|
||
|
|
||
|
if ((tmp_ptr += size) != run_ptr)
|
||
|
{
|
||
|
char *trav;
|
||
|
|
||
|
for (trav = run_ptr + size; --trav >= run_ptr;)
|
||
|
{
|
||
|
char c = *trav;
|
||
|
char *hi, *lo;
|
||
|
|
||
|
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
||
|
*hi = *lo;
|
||
|
*hi = c;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
SORT_RETURN;
|
||
|
}
|
||
|
#endif /* HAVE_purify */
|