2009-10-16 17:08:34 +02:00
|
|
|
/* Copyright 2005-2008 MySQL AB, 2008-2009 Sun Microsystems, Inc.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2006-12-27 02:23:51 +01:00
|
|
|
the Free Software Foundation; version 2 of the License.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
|
|
/*
|
2006-02-21 17:40:07 -06:00
|
|
|
This file is a container for general functionality related
|
2005-07-18 13:31:02 +02:00
|
|
|
to partitioning introduced in MySQL version 5.1. It contains functionality
|
2006-02-21 17:40:07 -06:00
|
|
|
used by all handlers that support partitioning, such as
|
|
|
|
the partitioning handler itself and the NDB handler.
|
2009-09-15 17:07:52 +02:00
|
|
|
(Much of the code in this file has been split into partition_info.cc and
|
|
|
|
the header files partition_info.h + partition_element.h + sql_partition.h)
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
The first version was written by Mikael Ronstrom 2004-2006.
|
|
|
|
Various parts of the optimizer code was written by Sergey Petrunia.
|
|
|
|
Code have been maintained by Mattias Jonsson.
|
|
|
|
The second version was written by Mikael Ronstrom 2006-2007 with some
|
|
|
|
final fixes for partition pruning in 2008-2009 with assistance from Sergey
|
|
|
|
Petrunia and Mattias Jonsson.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
The first version supports RANGE partitioning, LIST partitioning, HASH
|
2005-07-18 13:31:02 +02:00
|
|
|
partitioning and composite partitioning (hereafter called subpartitioning)
|
|
|
|
where each RANGE/LIST partitioning is HASH partitioned. The hash function
|
|
|
|
can either be supplied by the user or by only a list of fields (also
|
2006-02-21 17:40:07 -06:00
|
|
|
called KEY partitioning), where the MySQL server will use an internal
|
2005-07-18 13:31:02 +02:00
|
|
|
hash function.
|
|
|
|
There are quite a few defaults that can be used as well.
|
2009-09-15 17:07:52 +02:00
|
|
|
|
|
|
|
The second version introduces a new variant of RANGE and LIST partitioning
|
|
|
|
which is often referred to as column lists in the code variables. This
|
|
|
|
enables a user to specify a set of columns and their concatenated value
|
|
|
|
as the partition value. By comparing the concatenation of these values
|
|
|
|
the proper partition can be choosen.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* Some general useful functions */
|
|
|
|
|
2006-03-09 17:37:59 -08:00
|
|
|
#define MYSQL_LEX 1
|
2005-07-18 13:31:02 +02:00
|
|
|
#include "mysql_priv.h"
|
|
|
|
#include <errno.h>
|
|
|
|
#include <m_ctype.h>
|
2007-07-19 18:05:55 +02:00
|
|
|
#include "my_md5.h"
|
2009-12-03 21:37:38 +03:00
|
|
|
#include "transaction.h"
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2005-11-07 16:25:06 +01:00
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
2005-11-26 05:35:37 +01:00
|
|
|
#include "ha_partition.h"
|
WL#4828 and BUG#45747
NOTE: Backporting the patch to next-mr.
WL#4828 Augment DBUG_ENTER/DBUG_EXIT to crash MySQL in different functions
-------
The assessment of the replication code in the presence of faults is extremely
import to increase reliability. In particular, one needs to know if servers
will either correctly recovery or print out appropriate error messages thus
avoiding unexpected problems in a production environment.
In order to accomplish this, the current patch refactories the debug macros
already provided in the source code and introduces three new macros that
allows to inject faults, specifically crashes, while entering or exiting a
function or method. For instance, to crash a server while returning from
the init_slave function (see module sql/slave.cc), one needs to do what
follows:
1 - Modify the source replacing DBUG_RETURN by DBUG_CRASH_RETURN;
DBUG_CRASH_RETURN(0);
2 - Use the debug variable to activate dbug instructions:
SET SESSION debug="+d,init_slave_crash_return";
The new macros are briefly described below:
DBUG_CRASH_ENTER (function) is equivalent to DBUG_ENTER which registers the
beginning of a function but in addition to it allows for crashing the server
while entering the function if the appropriate dbug instruction is activate.
In this case, the dbug instruction should be "+d,function_crash_enter".
DBUG_CRASH_RETURN (value) is equivalent to DBUG_RETURN which notifies the
end of a function but in addition to it allows for crashing the server
while returning from the function if the appropriate dbug instruction is
activate. In this case, the dbug instruction should be
"+d,function_crash_return". Note that "function" should be the same string
used by either the DBUG_ENTER or DBUG_CRASH_ENTER.
DBUG_CRASH_VOID_RETURN (value) is equivalent to DBUG_VOID_RETURN which
notifies the end of a function but in addition to it allows for crashing
the server while returning from the function if the appropriate dbug
instruction is activate. In this case, the dbug instruction should be
"+d,function_crash_return". Note that "function" should be the same string
used by either the DBUG_ENTER or DBUG_CRASH_ENTER.
To inject other faults, for instance, wrong return values, one should rely
on the macros already available. The current patch also removes a set of
macros that were either not being used or were redundant as other macros
could be used to provide the same feature. In the future, we also consider
dynamic instrumentation of the code.
BUG#45747 DBUG_CRASH_* is not setting the strict option
---------
When combining DBUG_CRASH_* with "--debug=d:t:i:A,file" the server crashes
due to a call to the abort function in the DBUG_CRASH_* macro althought the
appropriate keyword has not been set.
2009-09-29 14:55:36 +01:00
|
|
|
|
|
|
|
#define ERROR_INJECT_CRASH(code) \
|
|
|
|
DBUG_EVALUATE_IF(code, (abort(), 0), 0)
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
Partition related functions declarations and some static constants;
|
|
|
|
*/
|
2006-01-10 19:44:04 +04:00
|
|
|
const LEX_STRING partition_keywords[]=
|
|
|
|
{
|
2006-08-17 18:13:45 +02:00
|
|
|
{ C_STRING_WITH_LEN("HASH") },
|
|
|
|
{ C_STRING_WITH_LEN("RANGE") },
|
|
|
|
{ C_STRING_WITH_LEN("LIST") },
|
|
|
|
{ C_STRING_WITH_LEN("KEY") },
|
|
|
|
{ C_STRING_WITH_LEN("MAXVALUE") },
|
2009-09-15 17:07:52 +02:00
|
|
|
{ C_STRING_WITH_LEN("LINEAR ") },
|
2009-10-29 18:04:23 +01:00
|
|
|
{ C_STRING_WITH_LEN(" COLUMNS") }
|
2006-01-10 19:44:04 +04:00
|
|
|
};
|
2005-11-05 13:20:35 +02:00
|
|
|
static const char *part_str= "PARTITION";
|
2009-09-15 17:07:52 +02:00
|
|
|
static const char *subpart_str= "SUBPARTITION";
|
2005-11-05 13:20:35 +02:00
|
|
|
static const char *sub_str= "SUB";
|
|
|
|
static const char *by_str= "BY";
|
|
|
|
static const char *space_str= " ";
|
|
|
|
static const char *equal_str= "=";
|
|
|
|
static const char *end_paren_str= ")";
|
|
|
|
static const char *begin_paren_str= "(";
|
|
|
|
static const char *comma_str= ",";
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_list_col(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2006-01-17 08:40:00 +01:00
|
|
|
int get_partition_id_list(partition_info *part_info,
|
2006-08-02 06:40:25 -04:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_range_col(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2006-08-02 06:40:25 -04:00
|
|
|
int get_partition_id_range(partition_info *part_info,
|
2006-01-17 09:25:12 +01:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2009-09-15 17:07:52 +02:00
|
|
|
static int get_part_id_charset_func_part(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
|
|
|
static int get_part_id_charset_func_subpart(partition_info *part_info,
|
|
|
|
uint32 *part_id);
|
2006-01-17 08:40:00 +01:00
|
|
|
int get_partition_id_hash_nosub(partition_info *part_info,
|
2006-01-17 09:25:12 +01:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2006-08-02 06:40:25 -04:00
|
|
|
int get_partition_id_key_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2006-01-17 08:40:00 +01:00
|
|
|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
|
2006-01-17 09:25:12 +01:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2006-08-02 06:40:25 -04:00
|
|
|
int get_partition_id_linear_key_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_with_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value);
|
2008-10-06 17:22:38 +05:00
|
|
|
int get_partition_id_hash_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id);
|
|
|
|
int get_partition_id_key_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id);
|
|
|
|
int get_partition_id_linear_hash_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id);
|
|
|
|
int get_partition_id_linear_key_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id);
|
2006-01-04 11:09:01 +03:00
|
|
|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
static void set_up_range_analysis_info(partition_info *part_info);
|
2006-01-04 11:09:01 +03:00
|
|
|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
#endif
|
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
|
|
|
|
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
|
|
|
|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
|
|
|
bool is_subpart,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 *store_length_array,
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *min_value, uchar *max_value,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint min_len, uint max_len,
|
2006-01-04 11:09:01 +03:00
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter);
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_part_iter_for_interval_cols_via_map(partition_info *part_info,
|
|
|
|
bool is_subpart,
|
|
|
|
uint32 *store_length_array,
|
|
|
|
uchar *min_value, uchar *max_value,
|
|
|
|
uint min_len, uint max_len,
|
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter);
|
2006-01-04 11:09:01 +03:00
|
|
|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
|
|
|
bool is_subpart,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 *store_length_array,
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *min_value, uchar *max_value,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint min_len, uint max_len,
|
2006-01-04 11:09:01 +03:00
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter);
|
2009-09-15 17:07:52 +02:00
|
|
|
static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec);
|
|
|
|
static int cmp_rec_and_tuple_prune(part_column_list_val *val,
|
|
|
|
uint32 n_vals_in_rec,
|
|
|
|
bool tail_is_min);
|
2005-08-19 10:26:05 -04:00
|
|
|
|
2005-11-07 16:25:06 +01:00
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
2009-10-22 16:15:06 +02:00
|
|
|
/*
|
|
|
|
Convert constants in VALUES definition to the character set the
|
|
|
|
corresponding field uses.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
convert_charset_partition_constant()
|
|
|
|
item Item to convert
|
|
|
|
cs Character set to convert to
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NULL Error
|
|
|
|
item New converted item
|
|
|
|
*/
|
|
|
|
|
|
|
|
Item* convert_charset_partition_constant(Item *item, CHARSET_INFO *cs)
|
|
|
|
{
|
|
|
|
THD *thd= current_thd;
|
|
|
|
Name_resolution_context *context= &thd->lex->current_select->context;
|
|
|
|
TABLE_LIST *save_list= context->table_list;
|
|
|
|
const char *save_where= thd->where;
|
|
|
|
|
|
|
|
item= item->safe_charset_converter(cs);
|
|
|
|
context->table_list= NULL;
|
|
|
|
thd->where= "convert character set partition constant";
|
|
|
|
if (!item || item->fix_fields(thd, (Item**)NULL))
|
|
|
|
item= NULL;
|
|
|
|
thd->where= save_where;
|
|
|
|
context->table_list= save_list;
|
|
|
|
return item;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-08-19 10:26:05 -04:00
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
A support function to check if a name is in a list of strings
|
|
|
|
|
2005-08-19 10:26:05 -04:00
|
|
|
SYNOPSIS
|
2006-01-17 08:40:00 +01:00
|
|
|
is_name_in_list()
|
|
|
|
name String searched for
|
|
|
|
list_names A list of names searched in
|
|
|
|
|
2005-08-19 10:26:05 -04:00
|
|
|
RETURN VALUES
|
|
|
|
TRUE String found
|
|
|
|
FALSE String not found
|
|
|
|
*/
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
bool is_name_in_list(char *name,
|
|
|
|
List<char> list_names)
|
2005-08-19 10:26:05 -04:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
List_iterator<char> names_it(list_names);
|
2009-09-15 17:07:52 +02:00
|
|
|
uint num_names= list_names.elements;
|
2005-08-19 10:26:05 -04:00
|
|
|
uint i= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-08-19 10:26:05 -04:00
|
|
|
do
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
char *list_name= names_it++;
|
|
|
|
if (!(my_strcasecmp(system_charset_info, name, list_name)))
|
2005-08-19 10:26:05 -04:00
|
|
|
return TRUE;
|
2009-09-15 17:07:52 +02:00
|
|
|
} while (++i < num_names);
|
2005-08-19 10:26:05 -04:00
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Set-up defaults for partitions.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
partition_default_handling()
|
|
|
|
table Table object
|
|
|
|
part_info Partition info to set up
|
2006-04-17 22:51:34 -04:00
|
|
|
is_create_table_ind Is this part of a table creation
|
|
|
|
normalized_path Normalized path name of table and database
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
*/
|
|
|
|
|
2006-02-07 16:31:20 +01:00
|
|
|
bool partition_default_handling(TABLE *table, partition_info *part_info,
|
2006-03-23 16:00:58 -05:00
|
|
|
bool is_create_table_ind,
|
2006-02-07 16:31:20 +01:00
|
|
|
const char *normalized_path)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_ENTER("partition_default_handling");
|
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
if (part_info->use_default_num_partitions)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-03-23 16:00:58 -05:00
|
|
|
if (!is_create_table_ind &&
|
2009-10-01 15:04:42 +02:00
|
|
|
table->file->get_no_parts(normalized_path, &part_info->num_parts))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
else if (part_info->is_sub_partitioned() &&
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->use_default_num_subpartitions)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts;
|
2006-03-23 16:00:58 -05:00
|
|
|
if (!is_create_table_ind &&
|
2009-10-01 15:04:42 +02:00
|
|
|
(table->file->get_no_parts(normalized_path, &num_parts)))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_ASSERT(part_info->num_parts > 0);
|
|
|
|
part_info->num_subparts= num_parts / part_info->num_parts;
|
|
|
|
DBUG_ASSERT((num_parts % part_info->num_parts) == 0);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
part_info->set_up_defaults_for_partitioning(table->file,
|
|
|
|
(ulonglong)0, (uint)0);
|
2005-08-19 10:26:05 -04:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-12-15 15:24:35 +04:00
|
|
|
/*
|
|
|
|
Check that the reorganized table will not have duplicate partitions.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
check_reorganise_list()
|
|
|
|
new_part_info New partition info
|
|
|
|
old_part_info Old partition info
|
2006-06-13 14:36:23 -04:00
|
|
|
list_part_names The list of partition names that will go away and
|
|
|
|
can be reused in the new table.
|
2005-12-15 15:24:35 +04:00
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Inacceptable name conflict detected.
|
|
|
|
FALSE New names are OK.
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Can handle that the 'new_part_info' and 'old_part_info' the same
|
|
|
|
in which case it checks that the list of names in the partitions
|
|
|
|
doesn't contain any duplicated names.
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool check_reorganise_list(partition_info *new_part_info,
|
|
|
|
partition_info *old_part_info,
|
|
|
|
List<char> list_part_names)
|
|
|
|
{
|
|
|
|
uint new_count, old_count;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_new_parts= new_part_info->partitions.elements;
|
|
|
|
uint num_old_parts= old_part_info->partitions.elements;
|
2005-12-15 15:24:35 +04:00
|
|
|
List_iterator<partition_element> new_parts_it(new_part_info->partitions);
|
|
|
|
bool same_part_info= (new_part_info == old_part_info);
|
|
|
|
DBUG_ENTER("check_reorganise_list");
|
|
|
|
|
|
|
|
new_count= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> old_parts_it(old_part_info->partitions);
|
|
|
|
char *new_name= (new_parts_it++)->partition_name;
|
|
|
|
new_count++;
|
|
|
|
old_count= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
char *old_name= (old_parts_it++)->partition_name;
|
|
|
|
old_count++;
|
|
|
|
if (same_part_info && old_count == new_count)
|
|
|
|
break;
|
|
|
|
if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!is_name_in_list(old_name, list_part_names))
|
2005-12-15 15:24:35 +04:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (old_count < num_old_parts);
|
|
|
|
} while (new_count < num_new_parts);
|
2005-12-15 15:24:35 +04:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
A useful routine used by update_row for partition handlers to calculate
|
|
|
|
the partition ids of the old and the new record.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_for_update()
|
|
|
|
old_data Buffer of old record
|
|
|
|
new_data Buffer of new record
|
|
|
|
rec0 Reference to table->record[0]
|
|
|
|
part_info Reference to partition information
|
2006-01-17 08:40:00 +01:00
|
|
|
out:old_part_id The returned partition id of old record
|
|
|
|
out:new_part_id The returned partition id of new record
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
0 Success
|
|
|
|
> 0 Error code
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
int get_parts_for_update(const uchar *old_data, uchar *new_data,
|
|
|
|
const uchar *rec0, partition_info *part_info,
|
2006-01-17 09:25:12 +01:00
|
|
|
uint32 *old_part_id, uint32 *new_part_id,
|
|
|
|
longlong *new_func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
|
|
int error;
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong old_func_value;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_parts_for_update");
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ASSERT(new_data == rec0);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, old_data, rec0);
|
2006-01-17 09:25:12 +01:00
|
|
|
error= part_info->get_partition_id(part_info, old_part_id,
|
|
|
|
&old_func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, old_data);
|
|
|
|
if (unlikely(error)) // Should never happen
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(0);
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
#ifdef NOT_NEEDED
|
|
|
|
if (new_data == rec0)
|
|
|
|
#endif
|
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
if (unlikely(error= part_info->get_partition_id(part_info,
|
|
|
|
new_part_id,
|
|
|
|
new_func_value)))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef NOT_NEEDED
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
This branch should never execute but it is written anyways for
|
|
|
|
future use. It will be tested by ensuring that the above
|
|
|
|
condition is false in one test situation before pushing the code.
|
|
|
|
*/
|
|
|
|
set_field_ptr(part_field_array, new_data, rec0);
|
2006-01-17 09:25:12 +01:00
|
|
|
error= part_info->get_partition_id(part_info, new_part_id,
|
|
|
|
new_func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, new_data);
|
|
|
|
if (unlikely(error))
|
|
|
|
{
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
A useful routine used by delete_row for partition handlers to calculate
|
|
|
|
the partition id.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_for_delete()
|
|
|
|
buf Buffer of old record
|
|
|
|
rec0 Reference to table->record[0]
|
|
|
|
part_info Reference to partition information
|
2006-01-17 08:40:00 +01:00
|
|
|
out:part_id The returned partition id to delete from
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
0 Success
|
|
|
|
> 0 Error code
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Dependent on whether buf is not record[0] we need to prepare the
|
|
|
|
fields. Then we call the function pointer get_partition_id to
|
|
|
|
calculate the partition id.
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
int get_part_for_delete(const uchar *buf, const uchar *rec0,
|
2005-07-18 13:31:02 +02:00
|
|
|
partition_info *part_info, uint32 *part_id)
|
|
|
|
{
|
|
|
|
int error;
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_part_for_delete");
|
|
|
|
|
|
|
|
if (likely(buf == rec0))
|
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
if (unlikely((error= part_info->get_partition_id(part_info, part_id,
|
|
|
|
&func_value))))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
DBUG_PRINT("info", ("Delete from partition %d", *part_id));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
|
|
set_field_ptr(part_field_array, buf, rec0);
|
2006-01-17 09:25:12 +01:00
|
|
|
error= part_info->get_partition_id(part_info, part_id, &func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
|
|
if (unlikely(error))
|
|
|
|
{
|
|
|
|
DBUG_RETURN(error);
|
|
|
|
}
|
|
|
|
DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
|
|
|
|
}
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
This method is used to set-up both partition and subpartitioning
|
|
|
|
field array and used for all types of partitioning.
|
|
|
|
It is part of the logic around fix_partition_func.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
set_up_field_array()
|
|
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
sub_part Is the table subpartitioned as well
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE Error, some field didn't meet requirements
|
|
|
|
FALSE Ok, partition field array set-up
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
A great number of functions below here is part of the fix_partition_func
|
|
|
|
method. It is used to set up the partition structures for execution from
|
|
|
|
openfrm. It is called at the end of the openfrm when the table struct has
|
|
|
|
been set-up apart from the partition information.
|
|
|
|
It involves:
|
|
|
|
1) Setting arrays of fields for the partition functions.
|
|
|
|
2) Setting up binary search array for LIST partitioning
|
|
|
|
3) Setting up array for binary search for RANGE partitioning
|
|
|
|
4) Setting up key_map's to assist in quick evaluation whether one
|
|
|
|
can deduce anything from a given index of what partition to use
|
|
|
|
5) Checking whether a set of partitions can be derived from a range on
|
|
|
|
a field in the partition function.
|
|
|
|
As part of doing this there is also a great number of error controls.
|
|
|
|
This is actually the place where most of the things are checked for
|
|
|
|
partition information when creating a table.
|
|
|
|
Things that are checked includes
|
|
|
|
1) All fields of partition function in Primary keys and unique indexes
|
|
|
|
(if not supported)
|
|
|
|
|
|
|
|
|
|
|
|
Create an array of partition fields (NULL terminated). Before this method
|
|
|
|
is called fix_fields or find_table_in_sef has been called to set
|
|
|
|
GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
|
|
|
|
function.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
static bool set_up_field_array(TABLE *table,
|
2006-01-17 08:40:00 +01:00
|
|
|
bool is_sub_part)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
Field **ptr, *field, **field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_fields= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
uint size_field_array;
|
|
|
|
uint i= 0;
|
2009-09-15 17:07:52 +02:00
|
|
|
uint inx;
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
2005-07-18 13:31:02 +02:00
|
|
|
int result= FALSE;
|
|
|
|
DBUG_ENTER("set_up_field_array");
|
|
|
|
|
|
|
|
ptr= table->field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
if (field->flags & GET_FIXED_FIELDS_FLAG)
|
2009-10-01 15:04:42 +02:00
|
|
|
num_fields++;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_fields > MAX_REF_PARTS)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
char *ptr;
|
|
|
|
if (is_sub_part)
|
|
|
|
ptr= (char*)"subpartition function";
|
|
|
|
else
|
|
|
|
ptr= (char*)"partition function";
|
|
|
|
my_error(ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR, MYF(0), ptr);
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_fields == 0)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
We are using hidden key as partitioning field
|
|
|
|
*/
|
|
|
|
DBUG_ASSERT(!is_sub_part);
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
size_field_array= (num_fields+1)*sizeof(Field*);
|
2009-09-15 17:07:52 +02:00
|
|
|
field_array= (Field**)sql_calloc(size_field_array);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (unlikely(!field_array))
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
mem_alloc_error(size_field_array);
|
2005-07-18 13:31:02 +02:00
|
|
|
result= TRUE;
|
|
|
|
}
|
|
|
|
ptr= table->field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
if (field->flags & GET_FIXED_FIELDS_FLAG)
|
|
|
|
{
|
|
|
|
field->flags&= ~GET_FIXED_FIELDS_FLAG;
|
|
|
|
field->flags|= FIELD_IN_PART_FUNC_FLAG;
|
|
|
|
if (likely(!result))
|
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
if (!is_sub_part && part_info->column_list)
|
|
|
|
{
|
|
|
|
List_iterator<char> it(part_info->part_field_list);
|
|
|
|
char *field_name;
|
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_ASSERT(num_fields == part_info->part_field_list.elements);
|
2009-09-15 17:07:52 +02:00
|
|
|
inx= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
field_name= it++;
|
2009-10-22 16:15:06 +02:00
|
|
|
if (!my_strcasecmp(system_charset_info,
|
|
|
|
field_name,
|
|
|
|
field->field_name))
|
2009-09-15 17:07:52 +02:00
|
|
|
break;
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++inx < num_fields);
|
|
|
|
if (inx == num_fields)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
mem_alloc_error(1);
|
|
|
|
result= TRUE;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
inx= i;
|
|
|
|
field_array[inx]= field;
|
|
|
|
i++;
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
We check that the fields are proper. It is required for each
|
|
|
|
field in a partition function to:
|
|
|
|
1) Not be a BLOB of any type
|
|
|
|
A BLOB takes too long time to evaluate so we don't want it for
|
|
|
|
performance reasons.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (unlikely(field->flags & BLOB_FLAG))
|
|
|
|
{
|
|
|
|
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
|
|
|
|
result= TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
field_array[num_fields]= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!is_sub_part)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
part_info->part_field_array= field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_part_fields= num_fields;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
part_info->subpart_field_array= field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_subpart_fields= num_fields;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-06-23 01:21:26 -04:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
Create a field array including all fields of both the partitioning and the
|
|
|
|
subpartitioning functions.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
create_full_part_field_array()
|
2007-07-04 21:55:26 +02:00
|
|
|
thd Thread handle
|
2005-07-18 13:31:02 +02:00
|
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
part_info Reference to partitioning data structure
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE Memory allocation of field array failed
|
|
|
|
FALSE Ok
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
If there is no subpartitioning then the same array is used as for the
|
|
|
|
partitioning. Otherwise a new array is built up using the flag
|
|
|
|
FIELD_IN_PART_FUNC in the field object.
|
|
|
|
This function is called from fix_partition_func
|
|
|
|
*/
|
|
|
|
|
2007-07-04 21:55:26 +02:00
|
|
|
static bool create_full_part_field_array(THD *thd, TABLE *table,
|
2005-07-18 13:31:02 +02:00
|
|
|
partition_info *part_info)
|
|
|
|
{
|
|
|
|
bool result= FALSE;
|
2006-06-23 01:21:26 -04:00
|
|
|
Field **ptr;
|
2007-07-04 21:55:26 +02:00
|
|
|
my_bitmap_map *bitmap_buf;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("create_full_part_field_array");
|
|
|
|
|
2006-02-16 10:38:33 -06:00
|
|
|
if (!part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
part_info->full_part_field_array= part_info->part_field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_full_part_fields= part_info->num_part_fields;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-06-23 01:21:26 -04:00
|
|
|
Field *field, **field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_part_fields=0, size_field_array;
|
2005-07-18 13:31:02 +02:00
|
|
|
ptr= table->field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
|
2009-10-01 15:04:42 +02:00
|
|
|
num_part_fields++;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
size_field_array= (num_part_fields+1)*sizeof(Field*);
|
2009-09-15 17:07:52 +02:00
|
|
|
field_array= (Field**)sql_calloc(size_field_array);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (unlikely(!field_array))
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
mem_alloc_error(size_field_array);
|
2005-07-18 13:31:02 +02:00
|
|
|
result= TRUE;
|
|
|
|
goto end;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
num_part_fields= 0;
|
2005-07-18 13:31:02 +02:00
|
|
|
ptr= table->field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
if (field->flags & FIELD_IN_PART_FUNC_FLAG)
|
2009-10-01 15:04:42 +02:00
|
|
|
field_array[num_part_fields++]= field;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
field_array[num_part_fields]=0;
|
2005-07-18 13:31:02 +02:00
|
|
|
part_info->full_part_field_array= field_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_full_part_fields= num_part_fields;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2007-07-04 21:55:26 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
Initialize the set of all fields used in partition and subpartition
|
|
|
|
expression. Required for testing of partition fields in write_set
|
|
|
|
when updating. We need to set all bits in read_set because the row
|
|
|
|
may need to be inserted in a different [sub]partition.
|
|
|
|
*/
|
|
|
|
if (!(bitmap_buf= (my_bitmap_map*)
|
|
|
|
thd->alloc(bitmap_buffer_size(table->s->fields))))
|
|
|
|
{
|
|
|
|
mem_alloc_error(bitmap_buffer_size(table->s->fields));
|
|
|
|
result= TRUE;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
if (bitmap_init(&part_info->full_part_field_set, bitmap_buf,
|
|
|
|
table->s->fields, FALSE))
|
|
|
|
{
|
|
|
|
mem_alloc_error(table->s->fields);
|
|
|
|
result= TRUE;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
full_part_field_array may be NULL if storage engine supports native
|
|
|
|
partitioning.
|
|
|
|
*/
|
|
|
|
if ((ptr= part_info->full_part_field_array))
|
2007-07-05 11:31:03 +02:00
|
|
|
for (; *ptr; ptr++)
|
|
|
|
bitmap_set_bit(&part_info->full_part_field_set, (*ptr)->field_index);
|
2007-07-04 21:55:26 +02:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
end:
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
|
|
Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
|
|
|
|
set_indicator_in_key_fields (always used in pairs).
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
clear_indicator_in_key_fields()
|
|
|
|
key_info Reference to find the key fields
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
These support routines is used to set/reset an indicator of all fields
|
|
|
|
in a certain key. It is used in conjunction with another support routine
|
|
|
|
that traverse all fields in the PF to find if all or some fields in the
|
|
|
|
PF is part of the key. This is used to check primary keys and unique
|
|
|
|
keys involve all fields in PF (unless supported) and to derive the
|
|
|
|
key_map's used to quickly decide whether the index can be used to
|
|
|
|
derive which partitions are needed to scan.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void clear_indicator_in_key_fields(KEY *key_info)
|
|
|
|
{
|
|
|
|
KEY_PART_INFO *key_part;
|
|
|
|
uint key_parts= key_info->key_parts, i;
|
|
|
|
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
|
|
|
|
key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
set_indicator_in_key_fields
|
|
|
|
key_info Reference to find the key fields
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void set_indicator_in_key_fields(KEY *key_info)
|
|
|
|
{
|
|
|
|
KEY_PART_INFO *key_part;
|
|
|
|
uint key_parts= key_info->key_parts, i;
|
|
|
|
for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
|
|
|
|
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Check if all or some fields in partition field array is part of a key
|
|
|
|
previously used to tag key fields.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
check_fields_in_PF()
|
|
|
|
ptr Partition field array
|
2006-01-17 08:40:00 +01:00
|
|
|
out:all_fields Is all fields of partition field array used in key
|
|
|
|
out:some_fields Is some fields of partition field array used in key
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
all_fields, some_fields
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void check_fields_in_PF(Field **ptr, bool *all_fields,
|
|
|
|
bool *some_fields)
|
|
|
|
{
|
|
|
|
DBUG_ENTER("check_fields_in_PF");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
*all_fields= TRUE;
|
|
|
|
*some_fields= FALSE;
|
2006-01-17 11:19:48 -05:00
|
|
|
if ((!ptr) || !(*ptr))
|
|
|
|
{
|
|
|
|
*all_fields= FALSE;
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
do
|
|
|
|
{
|
|
|
|
/* Check if the field of the PF is part of the current key investigated */
|
|
|
|
if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
|
|
|
|
*some_fields= TRUE;
|
|
|
|
else
|
|
|
|
*all_fields= FALSE;
|
|
|
|
} while (*(++ptr));
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
|
|
|
|
This routine is used for error handling purposes.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
clear_field_flag()
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void clear_field_flag(TABLE *table)
|
|
|
|
{
|
|
|
|
Field **ptr;
|
|
|
|
DBUG_ENTER("clear_field_flag");
|
|
|
|
|
|
|
|
for (ptr= table->field; *ptr; ptr++)
|
|
|
|
(*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
find_field_in_table_sef finds the field given its name. All fields get
|
|
|
|
GET_FIXED_FIELDS_FLAG set.
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
handle_list_of_fields()
|
|
|
|
it A list of field names for the partition function
|
|
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
part_info Reference to partitioning data structure
|
|
|
|
sub_part Is the table subpartitioned as well
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE Fields in list of fields not part of table
|
|
|
|
FALSE All fields ok and array created
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
2006-01-17 08:40:00 +01:00
|
|
|
This routine sets-up the partition field array for KEY partitioning, it
|
|
|
|
also verifies that all fields in the list of fields is actually a part of
|
|
|
|
the table.
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
static bool handle_list_of_fields(List_iterator<char> it,
|
|
|
|
TABLE *table,
|
|
|
|
partition_info *part_info,
|
2006-01-17 08:40:00 +01:00
|
|
|
bool is_sub_part)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
Field *field;
|
|
|
|
bool result;
|
|
|
|
char *field_name;
|
2006-01-17 08:40:00 +01:00
|
|
|
bool is_list_empty= TRUE;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("handle_list_of_fields");
|
|
|
|
|
|
|
|
while ((field_name= it++))
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
is_list_empty= FALSE;
|
2005-07-18 13:31:02 +02:00
|
|
|
field= find_field_in_table_sef(table, field_name);
|
|
|
|
if (likely(field != 0))
|
|
|
|
field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
|
|
|
|
clear_field_flag(table);
|
|
|
|
result= TRUE;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
if (is_list_empty && part_info->part_type == HASH_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
uint primary_key= table->s->primary_key;
|
|
|
|
if (primary_key != MAX_KEY)
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_key_parts= table->key_info[primary_key].key_parts, i;
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
In the case of an empty list we use primary key as partition key.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
for (i= 0; i < num_key_parts; i++)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
Field *field= table->key_info[primary_key].key_part[i].field;
|
|
|
|
field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2007-03-02 08:43:45 -08:00
|
|
|
if (table->s->db_type()->partition_flags &&
|
|
|
|
(table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) &&
|
|
|
|
(table->s->db_type()->partition_flags() & HA_CAN_PARTITION))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
This engine can handle automatic partitioning and there is no
|
|
|
|
primary key. In this case we rely on that the engine handles
|
|
|
|
partitioning based on a hidden key. Thus we allocate no
|
|
|
|
array for partitioning fields.
|
|
|
|
*/
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result= set_up_field_array(table, is_sub_part);
|
2005-07-18 13:31:02 +02:00
|
|
|
end:
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-04-17 22:51:34 -04:00
|
|
|
/*
|
|
|
|
Support function to check if all VALUES * (expression) is of the
|
|
|
|
right sign (no signed constants when unsigned partition function)
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
check_signed_flag()
|
|
|
|
part_info Partition info object
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
0 No errors due to sign errors
|
|
|
|
>0 Sign error
|
|
|
|
*/
|
|
|
|
|
|
|
|
int check_signed_flag(partition_info *part_info)
|
|
|
|
{
|
|
|
|
int error= 0;
|
|
|
|
uint i= 0;
|
|
|
|
if (part_info->part_type != HASH_PARTITION &&
|
|
|
|
part_info->part_expr->unsigned_flag)
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
|
|
|
|
if (part_elem->signed_flag)
|
|
|
|
{
|
2006-06-05 14:55:22 -04:00
|
|
|
my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
|
|
|
|
error= ER_PARTITION_CONST_DOMAIN_ERROR;
|
2006-04-17 22:51:34 -04:00
|
|
|
break;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < part_info->num_parts);
|
2006-04-17 22:51:34 -04:00
|
|
|
}
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
The function uses a new feature in fix_fields where the flag
|
|
|
|
GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
|
|
|
|
This field must always be reset before returning from the function
|
|
|
|
since it is used for other purposes as well.
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
fix_fields_part_func()
|
|
|
|
thd The thread object
|
|
|
|
func_expr The item tree reference of the partition function
|
2006-04-17 22:51:34 -04:00
|
|
|
table The table object
|
2005-07-18 13:31:02 +02:00
|
|
|
part_info Reference to partitioning data structure
|
2006-06-05 14:55:22 -04:00
|
|
|
is_sub_part Is the table subpartitioned as well
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE An error occurred, something was wrong with the
|
|
|
|
partition function.
|
|
|
|
FALSE Ok, a partition field array was created
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
2006-01-17 08:40:00 +01:00
|
|
|
This function is used to build an array of partition fields for the
|
|
|
|
partitioning function and subpartitioning function. The partitioning
|
|
|
|
function is an item tree that must reference at least one field in the
|
|
|
|
table. This is checked first in the parser that the function doesn't
|
|
|
|
contain non-cacheable parts (like a random function) and by checking
|
|
|
|
here that the function isn't a constant function.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
Calculate the number of fields in the partition function.
|
|
|
|
Use it allocate memory for array of Field pointers.
|
|
|
|
Initialise array of field pointers. Use information set when
|
|
|
|
calling fix_fields and reset it immediately after.
|
|
|
|
The get_fields_in_item_tree activates setting of bit in flags
|
|
|
|
on the field object.
|
2006-01-17 08:40:00 +01:00
|
|
|
*/
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
static bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table,
|
|
|
|
bool is_sub_part)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
partition_info *part_info= table->part_info;
|
|
|
|
uint dir_length, home_dir_length;
|
2005-07-18 13:31:02 +02:00
|
|
|
bool result= TRUE;
|
2006-04-17 22:51:34 -04:00
|
|
|
TABLE_LIST tables;
|
2005-08-26 20:56:19 -04:00
|
|
|
TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
|
2005-07-18 13:31:02 +02:00
|
|
|
int error;
|
2005-08-26 20:56:19 -04:00
|
|
|
Name_resolution_context *context;
|
2006-01-17 08:40:00 +01:00
|
|
|
const char *save_where;
|
2006-04-17 22:51:34 -04:00
|
|
|
char* db_name;
|
|
|
|
char db_name_string[FN_REFLEN];
|
2007-10-09 19:16:39 +05:00
|
|
|
bool save_use_only_table_context;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("fix_fields_part_func");
|
|
|
|
|
2006-04-17 22:51:34 -04:00
|
|
|
/*
|
|
|
|
Set-up the TABLE_LIST object to be a list with a single table
|
|
|
|
Set the object to zero to create NULL pointers and set alias
|
|
|
|
and real name to table name and get database name from file name.
|
2009-07-02 17:42:00 +03:00
|
|
|
TODO: Consider generalizing or refactoring Lex::add_table_to_list() so
|
|
|
|
it can be used in all places where we create TABLE_LIST objects.
|
|
|
|
Also consider creating appropriate constructors for TABLE_LIST.
|
2006-04-17 22:51:34 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
bzero((void*)&tables, sizeof(TABLE_LIST));
|
|
|
|
tables.alias= tables.table_name= (char*) table->s->table_name.str;
|
|
|
|
tables.table= table;
|
|
|
|
tables.next_local= 0;
|
|
|
|
tables.next_name_resolution_table= 0;
|
2009-07-02 17:42:00 +03:00
|
|
|
/*
|
|
|
|
Cache the table in Item_fields. All the tables can be cached except
|
|
|
|
the trigger pseudo table.
|
|
|
|
*/
|
|
|
|
tables.cacheable_table= TRUE;
|
|
|
|
context= thd->lex->current_context();
|
|
|
|
tables.select_lex= context->select_lex;
|
2006-04-17 22:51:34 -04:00
|
|
|
strmov(db_name_string, table->s->normalized_path.str);
|
|
|
|
dir_length= dirname_length(db_name_string);
|
|
|
|
db_name_string[dir_length - 1]= 0;
|
|
|
|
home_dir_length= dirname_length(db_name_string);
|
|
|
|
db_name= &db_name_string[home_dir_length];
|
|
|
|
tables.db= db_name;
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
table->map= 1; //To ensure correct calculation of const item
|
|
|
|
table->get_fields_in_item_tree= TRUE;
|
2005-08-26 20:56:19 -04:00
|
|
|
save_table_list= context->table_list;
|
|
|
|
save_first_table= context->first_name_resolution_table;
|
|
|
|
save_last_table= context->last_name_resolution_table;
|
2006-04-17 22:51:34 -04:00
|
|
|
context->table_list= &tables;
|
|
|
|
context->first_name_resolution_table= &tables;
|
2005-08-26 20:56:19 -04:00
|
|
|
context->last_name_resolution_table= NULL;
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
func_expr->walk(&Item::change_context_processor, 0, (uchar*) context);
|
2006-01-17 08:40:00 +01:00
|
|
|
save_where= thd->where;
|
2005-07-18 13:31:02 +02:00
|
|
|
thd->where= "partition function";
|
2006-08-22 16:52:25 -04:00
|
|
|
/*
|
|
|
|
In execution we must avoid the use of thd->change_item_tree since
|
|
|
|
we might release memory before statement is completed. We do this
|
|
|
|
by temporarily setting the stmt_arena->mem_root to be the mem_root
|
|
|
|
of the table object, this also ensures that any memory allocated
|
|
|
|
during fix_fields will not be released at end of execution of this
|
|
|
|
statement. Thus the item tree will remain valid also in subsequent
|
|
|
|
executions of this table object. We do however not at the moment
|
|
|
|
support allocations during execution of val_int so any item class
|
|
|
|
that does this during val_int must be disallowed as partition
|
|
|
|
function.
|
|
|
|
SEE Bug #21658
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
This is a tricky call to prepare for since it can have a large number
|
|
|
|
of interesting side effects, both desirable and undesirable.
|
|
|
|
*/
|
2007-10-09 19:16:39 +05:00
|
|
|
|
|
|
|
save_use_only_table_context= thd->lex->use_only_table_context;
|
|
|
|
thd->lex->use_only_table_context= TRUE;
|
2009-07-08 13:12:27 +03:00
|
|
|
thd->lex->current_select->cur_pos_in_select_list= UNDEF_POS;
|
2007-10-09 19:16:39 +05:00
|
|
|
|
2009-07-02 17:42:00 +03:00
|
|
|
error= func_expr->fix_fields(thd, (Item**)&func_expr);
|
2006-08-22 16:52:25 -04:00
|
|
|
|
2007-10-09 19:16:39 +05:00
|
|
|
thd->lex->use_only_table_context= save_use_only_table_context;
|
|
|
|
|
2005-08-26 20:56:19 -04:00
|
|
|
context->table_list= save_table_list;
|
|
|
|
context->first_name_resolution_table= save_first_table;
|
|
|
|
context->last_name_resolution_table= save_last_table;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (unlikely(error))
|
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("Field in partition function not part of table"));
|
2009-09-15 17:07:52 +02:00
|
|
|
clear_field_flag(table);
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
thd->where= save_where;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (unlikely(func_expr->const_item()))
|
|
|
|
{
|
|
|
|
my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
|
|
|
|
clear_field_flag(table);
|
|
|
|
goto end;
|
|
|
|
}
|
2006-04-17 22:51:34 -04:00
|
|
|
if ((!is_sub_part) && (error= check_signed_flag(part_info)))
|
|
|
|
goto end;
|
2009-09-15 17:07:52 +02:00
|
|
|
result= set_up_field_array(table, is_sub_part);
|
2005-07-18 13:31:02 +02:00
|
|
|
end:
|
|
|
|
table->get_fields_in_item_tree= FALSE;
|
|
|
|
table->map= 0; //Restore old value
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
Check that the primary key contains all partition fields if defined
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
check_primary_key()
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
TRUE Not all fields in partitioning function was part
|
|
|
|
of primary key
|
|
|
|
FALSE Ok, all fields of partitioning function were part
|
|
|
|
of primary key
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This function verifies that if there is a primary key that it contains
|
|
|
|
all the fields of the partition function.
|
|
|
|
This is a temporary limitation that will hopefully be removed after a
|
|
|
|
while.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static bool check_primary_key(TABLE *table)
|
|
|
|
{
|
|
|
|
uint primary_key= table->s->primary_key;
|
2006-01-17 08:40:00 +01:00
|
|
|
bool all_fields, some_fields;
|
|
|
|
bool result= FALSE;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("check_primary_key");
|
|
|
|
|
|
|
|
if (primary_key < MAX_KEY)
|
|
|
|
{
|
|
|
|
set_indicator_in_key_fields(table->key_info+primary_key);
|
2005-11-23 22:45:02 +02:00
|
|
|
check_fields_in_PF(table->part_info->full_part_field_array,
|
2005-07-18 13:31:02 +02:00
|
|
|
&all_fields, &some_fields);
|
|
|
|
clear_indicator_in_key_fields(table->key_info+primary_key);
|
|
|
|
if (unlikely(!all_fields))
|
|
|
|
{
|
|
|
|
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
|
|
|
|
result= TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
Check that unique keys contains all partition fields
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
check_unique_keys()
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
TRUE Not all fields in partitioning function was part
|
|
|
|
of all unique keys
|
|
|
|
FALSE Ok, all fields of partitioning function were part
|
|
|
|
of unique keys
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This function verifies that if there is a unique index that it contains
|
|
|
|
all the fields of the partition function.
|
|
|
|
This is a temporary limitation that will hopefully be removed after a
|
|
|
|
while.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static bool check_unique_keys(TABLE *table)
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
bool all_fields, some_fields;
|
|
|
|
bool result= FALSE;
|
|
|
|
uint keys= table->s->keys;
|
|
|
|
uint i;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("check_unique_keys");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
for (i= 0; i < keys; i++)
|
|
|
|
{
|
|
|
|
if (table->key_info[i].flags & HA_NOSAME) //Unique index
|
|
|
|
{
|
|
|
|
set_indicator_in_key_fields(table->key_info+i);
|
2005-11-23 22:45:02 +02:00
|
|
|
check_fields_in_PF(table->part_info->full_part_field_array,
|
2005-07-18 13:31:02 +02:00
|
|
|
&all_fields, &some_fields);
|
|
|
|
clear_indicator_in_key_fields(table->key_info+i);
|
|
|
|
if (unlikely(!all_fields))
|
|
|
|
{
|
|
|
|
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
|
|
|
|
result= TRUE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
An important optimisation is whether a range on a field can select a subset
|
|
|
|
of the partitions.
|
|
|
|
A prerequisite for this to happen is that the PF is a growing function OR
|
|
|
|
a shrinking function.
|
|
|
|
This can never happen for a multi-dimensional PF. Thus this can only happen
|
|
|
|
with PF with at most one field involved in the PF.
|
|
|
|
The idea is that if the function is a growing function and you know that
|
|
|
|
the field of the PF is 4 <= A <= 6 then we can convert this to a range
|
|
|
|
in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
|
|
|
|
case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
|
|
|
|
calculate a set of partitions rather than scanning all of them.
|
|
|
|
Thus the following prerequisites are there to check if sets of partitions
|
|
|
|
can be found.
|
|
|
|
1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
|
|
|
|
2) Only possible if PF only contains 1 field
|
|
|
|
3) Possible if PF is a growing function of the field
|
|
|
|
4) Possible if PF is a shrinking function of the field
|
|
|
|
OBSERVATION:
|
|
|
|
1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
|
|
|
|
f1(A) + f2(A) is a growing function
|
|
|
|
f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
|
|
|
|
2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
|
|
|
|
f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
|
|
|
|
3) IF A is a growing function then a function f(A) that removes the
|
|
|
|
least significant portion of A is a growing function
|
|
|
|
E.g. DATE(datetime) is a growing function
|
|
|
|
MONTH(datetime) is not a growing/shrinking function
|
|
|
|
4) IF f1(A) is a growing function and f2(A) is a growing function THEN
|
|
|
|
f1(f2(A)) and f2(f1(A)) are also growing functions
|
|
|
|
5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
|
|
|
|
f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
|
|
|
|
6) f1(A) = A is a growing function
|
|
|
|
7) f1(A) = A*a + b (where a and b are constants) is a growing function
|
|
|
|
|
|
|
|
By analysing the item tree of the PF we can use these deducements and
|
|
|
|
derive whether the PF is a growing function or a shrinking function or
|
|
|
|
neither of it.
|
|
|
|
|
|
|
|
If the PF is range capable then a flag is set on the table object
|
|
|
|
indicating this to notify that we can use also ranges on the field
|
|
|
|
of the PF to deduce a set of partitions if the fields of the PF were
|
|
|
|
not all fully bound.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
check_range_capable_PF()
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Support for this is not implemented yet.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void check_range_capable_PF(TABLE *table)
|
|
|
|
{
|
|
|
|
DBUG_ENTER("check_range_capable_PF");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
Set up partition bitmap
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
set_up_partition_bitmap()
|
|
|
|
thd Thread object
|
|
|
|
part_info Reference to partitioning data structure
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
TRUE Memory allocation failure
|
|
|
|
FALSE Success
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Allocate memory for bitmap of the partitioned table
|
|
|
|
and initialise it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
|
|
|
|
{
|
|
|
|
uint32 *bitmap_buf;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint bitmap_bits= part_info->num_subparts?
|
|
|
|
(part_info->num_subparts* part_info->num_parts):
|
|
|
|
part_info->num_parts;
|
2006-01-17 08:40:00 +01:00
|
|
|
uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
|
|
|
|
DBUG_ENTER("set_up_partition_bitmap");
|
|
|
|
|
|
|
|
if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
|
|
|
|
{
|
|
|
|
mem_alloc_error(bitmap_bytes);
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
|
2006-02-28 17:51:27 +01:00
|
|
|
bitmap_set_all(&part_info->used_partitions);
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
Set up partition key maps
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
set_up_partition_key_maps()
|
|
|
|
table TABLE object for which partition fields are set-up
|
|
|
|
part_info Reference to partitioning data structure
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
None
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
2006-01-17 08:40:00 +01:00
|
|
|
This function sets up a couple of key maps to be able to quickly check
|
|
|
|
if an index ever can be used to deduce the partition fields or even
|
|
|
|
a part of the fields of the partition function.
|
|
|
|
We set up the following key_map's.
|
|
|
|
PF = Partition Function
|
|
|
|
1) All fields of the PF is set even by equal on the first fields in the
|
|
|
|
key
|
|
|
|
2) All fields of the PF is set if all fields of the key is set
|
|
|
|
3) At least one field in the PF is set if all fields is set
|
|
|
|
4) At least one field in the PF is part of the key
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void set_up_partition_key_maps(TABLE *table,
|
|
|
|
partition_info *part_info)
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
uint keys= table->s->keys;
|
|
|
|
uint i;
|
2005-07-18 13:31:02 +02:00
|
|
|
bool all_fields, some_fields;
|
|
|
|
DBUG_ENTER("set_up_partition_key_maps");
|
|
|
|
|
|
|
|
part_info->all_fields_in_PF.clear_all();
|
|
|
|
part_info->all_fields_in_PPF.clear_all();
|
|
|
|
part_info->all_fields_in_SPF.clear_all();
|
|
|
|
part_info->some_fields_in_PF.clear_all();
|
|
|
|
for (i= 0; i < keys; i++)
|
|
|
|
{
|
|
|
|
set_indicator_in_key_fields(table->key_info+i);
|
|
|
|
check_fields_in_PF(part_info->full_part_field_array,
|
|
|
|
&all_fields, &some_fields);
|
|
|
|
if (all_fields)
|
|
|
|
part_info->all_fields_in_PF.set_bit(i);
|
|
|
|
if (some_fields)
|
|
|
|
part_info->some_fields_in_PF.set_bit(i);
|
2006-02-16 10:38:33 -06:00
|
|
|
if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
check_fields_in_PF(part_info->part_field_array,
|
|
|
|
&all_fields, &some_fields);
|
|
|
|
if (all_fields)
|
|
|
|
part_info->all_fields_in_PPF.set_bit(i);
|
|
|
|
check_fields_in_PF(part_info->subpart_field_array,
|
|
|
|
&all_fields, &some_fields);
|
|
|
|
if (all_fields)
|
|
|
|
part_info->all_fields_in_SPF.set_bit(i);
|
|
|
|
}
|
|
|
|
clear_indicator_in_key_fields(table->key_info+i);
|
|
|
|
}
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
Set up function pointers for partition function
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
2006-01-17 08:40:00 +01:00
|
|
|
set_up_partition_func_pointers()
|
2005-07-18 13:31:02 +02:00
|
|
|
part_info Reference to partitioning data structure
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Set-up all function pointers for calculation of partition id,
|
|
|
|
subpartition id and the upper part in subpartitioning. This is to speed up
|
|
|
|
execution of get_partition_id which is executed once every record to be
|
|
|
|
written and deleted and twice for updates.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void set_up_partition_func_pointers(partition_info *part_info)
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("set_up_partition_func_pointers");
|
|
|
|
|
2006-02-16 10:38:33 -06:00
|
|
|
if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
part_info->get_partition_id= get_partition_id_with_sub;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->column_list)
|
|
|
|
part_info->get_part_partition_id= get_partition_id_range_col;
|
|
|
|
else
|
|
|
|
part_info->get_part_partition_id= get_partition_id_range;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_subpart_fields)
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
|
|
|
|
else
|
|
|
|
part_info->get_subpartition_id= get_partition_id_key_sub;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
|
|
|
|
else
|
|
|
|
part_info->get_subpartition_id= get_partition_id_hash_sub;
|
|
|
|
}
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
else /* LIST Partitioning */
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->column_list)
|
|
|
|
part_info->get_part_partition_id= get_partition_id_list_col;
|
|
|
|
else
|
|
|
|
part_info->get_part_partition_id= get_partition_id_list;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_subpart_fields)
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_subpartition_id= get_partition_id_linear_key_sub;
|
|
|
|
else
|
|
|
|
part_info->get_subpartition_id= get_partition_id_key_sub;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
|
|
|
|
else
|
|
|
|
part_info->get_subpartition_id= get_partition_id_hash_sub;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
else /* No subpartitioning */
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
part_info->get_part_partition_id= NULL;
|
|
|
|
part_info->get_subpartition_id= NULL;
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
if (part_info->column_list)
|
|
|
|
part_info->get_partition_id= get_partition_id_range_col;
|
|
|
|
else
|
|
|
|
part_info->get_partition_id= get_partition_id_range;
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else if (part_info->part_type == LIST_PARTITION)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
if (part_info->column_list)
|
|
|
|
part_info->get_partition_id= get_partition_id_list_col;
|
|
|
|
else
|
|
|
|
part_info->get_partition_id= get_partition_id_list;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
else /* HASH partitioning */
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
if (part_info->list_of_part_fields)
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_partition_id= get_partition_id_linear_key_nosub;
|
|
|
|
else
|
|
|
|
part_info->get_partition_id= get_partition_id_key_nosub;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
part_info->get_partition_id= get_partition_id_linear_hash_nosub;
|
|
|
|
else
|
|
|
|
part_info->get_partition_id= get_partition_id_hash_nosub;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
/*
|
|
|
|
We need special functions to handle character sets since they require copy
|
|
|
|
of field pointers and restore afterwards. For subpartitioned tables we do
|
|
|
|
the copy and restore individually on the part and subpart parts. For non-
|
|
|
|
subpartitioned tables we use the same functions as used for the parts part
|
|
|
|
of subpartioning.
|
|
|
|
Thus for subpartitioned tables the get_partition_id is always
|
|
|
|
get_partition_id_with_sub, even when character sets exists.
|
|
|
|
*/
|
|
|
|
if (part_info->part_charset_field_array)
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->is_sub_partitioned())
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(part_info->get_part_partition_id);
|
2009-10-05 16:10:18 +02:00
|
|
|
if (!part_info->column_list)
|
|
|
|
{
|
2009-10-16 17:08:34 +02:00
|
|
|
part_info->get_part_partition_id_charset=
|
2006-08-02 06:40:25 -04:00
|
|
|
part_info->get_part_partition_id;
|
2009-10-05 16:10:18 +02:00
|
|
|
part_info->get_part_partition_id= get_part_id_charset_func_part;
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
2006-08-02 06:40:25 -04:00
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
DBUG_ASSERT(part_info->get_partition_id);
|
2009-10-05 16:10:18 +02:00
|
|
|
if (!part_info->column_list)
|
|
|
|
{
|
|
|
|
part_info->get_part_partition_id_charset= part_info->get_partition_id;
|
|
|
|
part_info->get_part_partition_id= get_part_id_charset_func_part;
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
2006-09-26 16:30:39 -04:00
|
|
|
if (part_info->subpart_charset_field_array)
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
DBUG_ASSERT(part_info->get_subpartition_id);
|
|
|
|
part_info->get_subpartition_id_charset=
|
|
|
|
part_info->get_subpartition_id;
|
2009-09-15 17:07:52 +02:00
|
|
|
part_info->get_subpartition_id= get_part_id_charset_func_subpart;
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_VOID_RETURN;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
For linear hashing we need a mask which is on the form 2**n - 1 where
|
2009-10-01 15:04:42 +02:00
|
|
|
2**n >= num_parts. Thus if num_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
set_linear_hash_mask()
|
|
|
|
part_info Reference to partitioning data structure
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of parts in linear hash partitioning
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
void set_linear_hash_mask(partition_info *part_info, uint num_parts)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
uint mask;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
for (mask= 1; mask < num_parts; mask<<=1)
|
2005-07-18 13:31:02 +02:00
|
|
|
;
|
|
|
|
part_info->linear_hash_mask= mask - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
This function calculates the partition id provided the result of the hash
|
|
|
|
function using linear hashing parameters, mask and number of partitions.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_from_linear_hash()
|
|
|
|
hash_value Hash value calculated by HASH function or KEY function
|
|
|
|
mask Mask calculated previously by set_linear_hash_mask
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of partitions in HASH partitioned part
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
part_id The calculated partition identity (starting at 0)
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
The partition is calculated according to the theory of linear hashing.
|
|
|
|
See e.g. Linear hashing: a new tool for file and table addressing,
|
|
|
|
Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
|
|
|
|
(ed.), Morgan Kaufmann 1994.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
uint32 part_id= (uint32)(hash_value & mask);
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
if (part_id >= num_parts)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
uint new_mask= ((mask + 1) >> 1) - 1;
|
2006-01-17 09:25:12 +01:00
|
|
|
part_id= (uint32)(hash_value & new_mask);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
return part_id;
|
|
|
|
}
|
|
|
|
|
2006-06-23 01:21:26 -04:00
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
/*
|
|
|
|
Check if a particular field is in need of character set
|
|
|
|
handling for partition functions.
|
2006-09-30 17:38:15 -04:00
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
SYNOPSIS
|
|
|
|
field_is_partition_charset()
|
|
|
|
field The field to check
|
2006-09-30 17:38:15 -04:00
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
RETURN VALUES
|
|
|
|
FALSE Not in need of character set handling
|
|
|
|
TRUE In need of character set handling
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool field_is_partition_charset(Field *field)
|
|
|
|
{
|
2006-10-02 05:54:30 -04:00
|
|
|
if (!(field->type() == MYSQL_TYPE_STRING) &&
|
|
|
|
!(field->type() == MYSQL_TYPE_VARCHAR))
|
2006-09-26 16:30:39 -04:00
|
|
|
return FALSE;
|
|
|
|
{
|
|
|
|
CHARSET_INFO *cs= ((Field_str*)field)->charset();
|
2006-10-02 05:54:30 -04:00
|
|
|
if (!(field->type() == MYSQL_TYPE_STRING) ||
|
2006-09-26 16:30:39 -04:00
|
|
|
!(cs->state & MY_CS_BINSORT))
|
|
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-06-23 01:21:26 -04:00
|
|
|
/*
|
2006-09-30 17:38:15 -04:00
|
|
|
Check that partition function doesn't contain any forbidden
|
2006-06-23 01:21:26 -04:00
|
|
|
character sets and collations.
|
2006-09-30 17:38:15 -04:00
|
|
|
|
2006-06-23 01:21:26 -04:00
|
|
|
SYNOPSIS
|
2006-07-21 10:23:32 -04:00
|
|
|
check_part_func_fields()
|
2006-06-23 01:21:26 -04:00
|
|
|
ptr Array of Field pointers
|
2006-08-02 06:40:25 -04:00
|
|
|
ok_with_charsets Will we report allowed charset
|
|
|
|
fields as ok
|
2006-06-23 01:21:26 -04:00
|
|
|
RETURN VALUES
|
|
|
|
FALSE Success
|
|
|
|
TRUE Error
|
2006-09-30 17:38:15 -04:00
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
DESCRIPTION
|
|
|
|
We will check in this routine that the fields of the partition functions
|
|
|
|
do not contain unallowed parts. It can also be used to check if there
|
|
|
|
are fields that require special care by calling my_strnxfrm before
|
|
|
|
calling the functions to calculate partition id.
|
2006-06-23 01:21:26 -04:00
|
|
|
*/
|
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
bool check_part_func_fields(Field **ptr, bool ok_with_charsets)
|
2006-06-23 01:21:26 -04:00
|
|
|
{
|
|
|
|
Field *field;
|
2006-10-02 05:54:30 -04:00
|
|
|
DBUG_ENTER("check_part_func_fields");
|
2006-08-02 06:40:25 -04:00
|
|
|
|
2006-06-23 01:21:26 -04:00
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
2006-07-21 10:23:32 -04:00
|
|
|
/*
|
|
|
|
For CHAR/VARCHAR fields we need to take special precautions.
|
|
|
|
Binary collation with CHAR is automatically supported. Other
|
|
|
|
types need some kind of standardisation function handling
|
|
|
|
*/
|
2006-09-26 16:30:39 -04:00
|
|
|
if (field_is_partition_charset(field))
|
2006-06-23 01:21:26 -04:00
|
|
|
{
|
|
|
|
CHARSET_INFO *cs= ((Field_str*)field)->charset();
|
2006-08-02 06:40:25 -04:00
|
|
|
if (!ok_with_charsets ||
|
|
|
|
cs->mbmaxlen > 1 ||
|
|
|
|
cs->strxfrm_multiply > 1)
|
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-06-23 01:21:26 -04:00
|
|
|
}
|
|
|
|
}
|
2006-08-02 06:40:25 -04:00
|
|
|
DBUG_RETURN(FALSE);
|
2006-06-23 01:21:26 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
2005-11-23 22:45:02 +02:00
|
|
|
fix partition functions
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
fix_partition_func()
|
|
|
|
thd The thread object
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-06-05 14:55:22 -04:00
|
|
|
is_create_table_ind Indicator of whether openfrm was called as part of
|
2006-01-17 08:40:00 +01:00
|
|
|
CREATE or ALTER TABLE
|
2005-11-23 22:45:02 +02:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
2006-01-17 08:40:00 +01:00
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
2005-11-23 22:45:02 +02:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
The name parameter contains the full table name and is used to get the
|
|
|
|
database name of the table which is used to set-up a correct
|
|
|
|
TABLE_LIST object for use in fix_fields.
|
2005-11-23 22:45:02 +02:00
|
|
|
|
|
|
|
NOTES
|
|
|
|
This function is called as part of opening the table by opening the .frm
|
|
|
|
file. It is a part of CREATE TABLE to do this so it is quite permissible
|
|
|
|
that errors due to erroneus syntax isn't found until we come here.
|
|
|
|
If the user has used a non-existing field in the table is one such example
|
|
|
|
of an error that is not discovered until here.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2006-04-17 22:51:34 -04:00
|
|
|
bool fix_partition_func(THD *thd, TABLE *table,
|
2006-01-17 08:40:00 +01:00
|
|
|
bool is_create_table_ind)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
bool result= TRUE;
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
|
|
|
enum_mark_columns save_mark_used_columns= thd->mark_used_columns;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("fix_partition_func");
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
if (part_info->fixed)
|
|
|
|
{
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
|
|
|
thd->mark_used_columns= MARK_COLUMNS_NONE;
|
|
|
|
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2006-03-23 16:00:58 -05:00
|
|
|
if (!is_create_table_ind ||
|
2006-03-24 18:21:43 -05:00
|
|
|
thd->lex->sql_command != SQLCOM_CREATE_TABLE)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-07 16:31:20 +01:00
|
|
|
if (partition_default_handling(table, part_info,
|
2006-03-23 16:00:58 -05:00
|
|
|
is_create_table_ind,
|
2006-02-07 16:31:20 +01:00
|
|
|
table->s->normalized_path.str))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
|
|
|
|
/*
|
2005-11-23 22:45:02 +02:00
|
|
|
Subpartition is defined. We need to verify that subpartitioning
|
|
|
|
function is correct.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
if (part_info->linear_hash_ind)
|
2009-10-01 15:04:42 +02:00
|
|
|
set_linear_hash_mask(part_info, part_info->num_subparts);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_subpart_fields)
|
|
|
|
{
|
|
|
|
List_iterator<char> it(part_info->subpart_field_list);
|
|
|
|
if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr,
|
2009-09-15 17:07:52 +02:00
|
|
|
table, TRUE)))
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
|
|
|
|
{
|
2009-10-21 18:27:34 +02:00
|
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0),
|
2009-09-15 17:07:52 +02:00
|
|
|
subpart_str);
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
|
|
|
|
/*
|
2005-11-23 22:45:02 +02:00
|
|
|
Partition is defined. We need to verify that partitioning
|
|
|
|
function is correct.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
if (part_info->part_type == HASH_PARTITION)
|
|
|
|
{
|
|
|
|
if (part_info->linear_hash_ind)
|
2009-10-01 15:04:42 +02:00
|
|
|
set_linear_hash_mask(part_info, part_info->num_parts);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_part_fields)
|
|
|
|
{
|
|
|
|
List_iterator<char> it(part_info->part_field_list);
|
|
|
|
if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
|
2009-09-15 17:07:52 +02:00
|
|
|
table, FALSE)))
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
|
|
|
|
{
|
2009-10-21 18:27:34 +02:00
|
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0), part_str);
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
part_info->part_result_type= INT_RESULT;
|
|
|
|
}
|
2009-10-01 15:09:20 +02:00
|
|
|
part_info->fixed= TRUE;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-11-05 13:20:35 +02:00
|
|
|
const char *error_str;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->column_list)
|
|
|
|
{
|
|
|
|
List_iterator<char> it(part_info->part_field_list);
|
|
|
|
if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
|
|
|
|
table, FALSE)))
|
|
|
|
goto end;
|
|
|
|
}
|
2009-10-01 15:09:20 +02:00
|
|
|
part_info->fixed= TRUE;
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
2006-01-10 19:44:04 +04:00
|
|
|
error_str= partition_keywords[PKW_RANGE].str;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (unlikely(part_info->check_range_constants(thd)))
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
|
|
{
|
2006-01-10 19:44:04 +04:00
|
|
|
error_str= partition_keywords[PKW_LIST].str;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (unlikely(part_info->check_list_constants(thd)))
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(0);
|
|
|
|
my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (unlikely(part_info->num_parts < 1))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
|
|
|
|
goto end;
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
if (unlikely(!part_info->column_list &&
|
|
|
|
part_info->part_expr->result_type() != INT_RESULT))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
2006-07-31 11:38:09 -04:00
|
|
|
if (((part_info->part_type != HASH_PARTITION ||
|
|
|
|
part_info->list_of_part_fields == FALSE) &&
|
2009-10-05 16:10:18 +02:00
|
|
|
(!part_info->column_list &&
|
|
|
|
check_part_func_fields(part_info->part_field_array, TRUE))) ||
|
2006-07-31 11:38:09 -04:00
|
|
|
(part_info->list_of_part_fields == FALSE &&
|
|
|
|
part_info->is_sub_partitioned() &&
|
2006-08-02 06:40:25 -04:00
|
|
|
check_part_func_fields(part_info->subpart_field_array, TRUE)))
|
2006-06-23 01:21:26 -04:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
2007-07-04 21:55:26 +02:00
|
|
|
if (unlikely(create_full_part_field_array(thd, table, part_info)))
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
if (unlikely(check_primary_key(table)))
|
|
|
|
goto end;
|
2007-03-02 08:43:45 -08:00
|
|
|
if (unlikely((!(table->s->db_type()->partition_flags &&
|
|
|
|
(table->s->db_type()->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
|
2005-07-18 13:31:02 +02:00
|
|
|
check_unique_keys(table)))
|
|
|
|
goto end;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (unlikely(set_up_partition_bitmap(thd, part_info)))
|
|
|
|
goto end;
|
2006-09-26 16:30:39 -04:00
|
|
|
if (unlikely(part_info->set_up_charset_field_preps()))
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
2009-10-28 01:11:17 +01:00
|
|
|
if (unlikely(part_info->check_partition_field_length()))
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FIELDS_TOO_LONG, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
check_range_capable_PF(table);
|
|
|
|
set_up_partition_key_maps(table, part_info);
|
|
|
|
set_up_partition_func_pointers(part_info);
|
2006-01-04 11:09:01 +03:00
|
|
|
set_up_range_analysis_info(part_info);
|
2005-07-18 13:31:02 +02:00
|
|
|
result= FALSE;
|
|
|
|
end:
|
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
|
|
|
thd->mark_used_columns= save_mark_used_columns;
|
|
|
|
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
The code below is support routines for the reverse parsing of the
|
|
|
|
partitioning syntax. This feature is very useful to generate syntax for
|
|
|
|
all default values to avoid all default checking when opening the frm
|
|
|
|
file. It is also used when altering the partitioning by use of various
|
|
|
|
ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int add_write(File fptr, const char *buf, uint len)
|
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
uint ret_code= my_write(fptr, (const uchar*)buf, len, MYF(MY_FNABP));
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
if (likely(ret_code == 0))
|
2005-07-18 13:31:02 +02:00
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2006-03-28 17:41:50 -05:00
|
|
|
static int add_string_object(File fptr, String *string)
|
|
|
|
{
|
|
|
|
return add_write(fptr, string->ptr(), string->length());
|
|
|
|
}
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
static int add_string(File fptr, const char *string)
|
|
|
|
{
|
|
|
|
return add_write(fptr, string, strlen(string));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_string_len(File fptr, const char *string, uint len)
|
|
|
|
{
|
|
|
|
return add_write(fptr, string, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_space(File fptr)
|
|
|
|
{
|
|
|
|
return add_string(fptr, space_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_comma(File fptr)
|
|
|
|
{
|
|
|
|
return add_string(fptr, comma_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_equal(File fptr)
|
|
|
|
{
|
|
|
|
return add_string(fptr, equal_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_end_parenthesis(File fptr)
|
|
|
|
{
|
|
|
|
return add_string(fptr, end_paren_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_begin_parenthesis(File fptr)
|
|
|
|
{
|
|
|
|
return add_string(fptr, begin_paren_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_part_key_word(File fptr, const char *key_string)
|
|
|
|
{
|
|
|
|
int err= add_string(fptr, key_string);
|
|
|
|
err+= add_space(fptr);
|
2009-09-15 17:07:52 +02:00
|
|
|
return err;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int add_partition(File fptr)
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
char buff[22];
|
2005-07-18 13:31:02 +02:00
|
|
|
strxmov(buff, part_str, space_str, NullS);
|
|
|
|
return add_string(fptr, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_subpartition(File fptr)
|
|
|
|
{
|
|
|
|
int err= add_string(fptr, sub_str);
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
return err + add_partition(fptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_partition_by(File fptr)
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
char buff[22];
|
2005-07-18 13:31:02 +02:00
|
|
|
strxmov(buff, part_str, space_str, by_str, space_str, NullS);
|
|
|
|
return add_string(fptr, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_subpartition_by(File fptr)
|
|
|
|
{
|
|
|
|
int err= add_string(fptr, sub_str);
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
return err + add_partition_by(fptr);
|
|
|
|
}
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
static int add_part_field_list(File fptr, List<char> field_list)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint i, num_fields;
|
2009-09-15 17:07:52 +02:00
|
|
|
int err= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
List_iterator<char> part_it(field_list);
|
2009-10-01 15:04:42 +02:00
|
|
|
num_fields= field_list.elements;
|
2005-07-18 13:31:02 +02:00
|
|
|
i= 0;
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_begin_parenthesis(fptr);
|
2009-10-01 15:04:42 +02:00
|
|
|
while (i < num_fields)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
const char *field_str= part_it++;
|
2006-03-28 17:41:50 -05:00
|
|
|
String field_string("", 0, system_charset_info);
|
|
|
|
THD *thd= current_thd;
|
|
|
|
ulonglong save_options= thd->options;
|
|
|
|
thd->options= 0;
|
|
|
|
append_identifier(thd, &field_string, field_str,
|
|
|
|
strlen(field_str));
|
|
|
|
thd->options= save_options;
|
|
|
|
err+= add_string_object(fptr, &field_string);
|
2009-10-01 15:04:42 +02:00
|
|
|
if (i != (num_fields-1))
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_comma(fptr);
|
2006-01-17 08:40:00 +01:00
|
|
|
i++;
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_end_parenthesis(fptr);
|
2005-07-18 13:31:02 +02:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2006-04-10 13:48:58 -04:00
|
|
|
static int add_name_string(File fptr, const char *name)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
String name_string("", 0, system_charset_info);
|
|
|
|
THD *thd= current_thd;
|
|
|
|
ulonglong save_options= thd->options;
|
|
|
|
|
|
|
|
thd->options= 0;
|
|
|
|
append_identifier(thd, &name_string, name,
|
|
|
|
strlen(name));
|
|
|
|
thd->options= save_options;
|
|
|
|
err= add_string_object(fptr, &name_string);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
static int add_int(File fptr, longlong number)
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
char buff[32];
|
2005-07-18 13:31:02 +02:00
|
|
|
llstr(number, buff);
|
|
|
|
return add_string(fptr, buff);
|
|
|
|
}
|
|
|
|
|
2006-04-17 22:51:34 -04:00
|
|
|
static int add_uint(File fptr, ulonglong number)
|
|
|
|
{
|
|
|
|
char buff[32];
|
|
|
|
longlong2str(number, buff, 10);
|
|
|
|
return add_string(fptr, buff);
|
|
|
|
}
|
|
|
|
|
2007-10-23 22:04:09 +02:00
|
|
|
/*
|
|
|
|
Must escape strings in partitioned tables frm-files,
|
|
|
|
parsing it later with mysql_unpack_partition will fail otherwise.
|
|
|
|
*/
|
|
|
|
static int add_quoted_string(File fptr, const char *quotestr)
|
|
|
|
{
|
|
|
|
String orgstr(quotestr, system_charset_info);
|
|
|
|
String escapedstr;
|
|
|
|
int err= add_string(fptr, "'");
|
|
|
|
err+= append_escaped(&escapedstr, &orgstr);
|
2007-11-11 22:30:01 +01:00
|
|
|
err+= add_string(fptr, escapedstr.c_ptr_safe());
|
2007-10-23 22:04:09 +02:00
|
|
|
return err + add_string(fptr, "'");
|
|
|
|
}
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
static int add_keyword_string(File fptr, const char *keyword,
|
2006-01-23 23:20:23 -06:00
|
|
|
bool should_use_quotes,
|
2005-07-18 13:31:02 +02:00
|
|
|
const char *keystr)
|
|
|
|
{
|
|
|
|
int err= add_string(fptr, keyword);
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_space(fptr);
|
|
|
|
err+= add_equal(fptr);
|
|
|
|
err+= add_space(fptr);
|
2006-01-23 23:20:23 -06:00
|
|
|
if (should_use_quotes)
|
2007-10-23 22:04:09 +02:00
|
|
|
err+= add_quoted_string(fptr, keystr);
|
|
|
|
else
|
|
|
|
err+= add_string(fptr, keystr);
|
2005-07-18 13:31:02 +02:00
|
|
|
return err + add_space(fptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_keyword_int(File fptr, const char *keyword, longlong num)
|
|
|
|
{
|
|
|
|
int err= add_string(fptr, keyword);
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_space(fptr);
|
|
|
|
err+= add_equal(fptr);
|
|
|
|
err+= add_space(fptr);
|
|
|
|
err+= add_int(fptr, num);
|
|
|
|
return err + add_space(fptr);
|
|
|
|
}
|
|
|
|
|
2005-12-21 10:18:40 -08:00
|
|
|
static int add_engine(File fptr, handlerton *engine_type)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2007-03-02 08:43:45 -08:00
|
|
|
const char *engine_str= ha_resolve_storage_engine_name(engine_type);
|
2006-05-31 18:07:32 +02:00
|
|
|
DBUG_PRINT("info", ("ENGINE: %s", engine_str));
|
2005-07-18 13:31:02 +02:00
|
|
|
int err= add_string(fptr, "ENGINE = ");
|
|
|
|
return err + add_string(fptr, engine_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_partition_options(File fptr, partition_element *p_elem)
|
|
|
|
{
|
|
|
|
int err= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2006-05-27 17:36:45 -04:00
|
|
|
err+= add_space(fptr);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (p_elem->tablespace_name)
|
2006-05-31 18:07:32 +02:00
|
|
|
err+= add_keyword_string(fptr,"TABLESPACE", FALSE,
|
2006-01-23 23:20:23 -06:00
|
|
|
p_elem->tablespace_name);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
|
|
|
|
err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
|
|
|
|
if (p_elem->part_max_rows)
|
|
|
|
err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
|
|
|
|
if (p_elem->part_min_rows)
|
|
|
|
err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
|
2007-03-29 18:42:27 +05:00
|
|
|
if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE))
|
|
|
|
{
|
|
|
|
if (p_elem->data_file_name)
|
|
|
|
err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE,
|
|
|
|
p_elem->data_file_name);
|
|
|
|
if (p_elem->index_file_name)
|
|
|
|
err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE,
|
|
|
|
p_elem->index_file_name);
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
if (p_elem->part_comment)
|
2006-03-28 17:41:50 -05:00
|
|
|
err+= add_keyword_string(fptr, "COMMENT", TRUE, p_elem->part_comment);
|
2005-07-18 13:31:02 +02:00
|
|
|
return err + add_engine(fptr,p_elem->engine_type);
|
|
|
|
}
|
|
|
|
|
2009-10-30 22:35:20 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Check partition fields for result type and if they need
|
|
|
|
to check the character set.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
check_part_field()
|
|
|
|
sql_type Type provided by user
|
|
|
|
field_name Name of field, used for error handling
|
|
|
|
result_type Out value: Result type of field
|
|
|
|
need_cs_check Out value: Do we need character set check
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Ok
|
|
|
|
*/
|
|
|
|
|
2009-10-28 19:20:32 +01:00
|
|
|
static int check_part_field(enum_field_types sql_type,
|
|
|
|
const char *field_name,
|
|
|
|
Item_result *result_type,
|
2009-10-22 16:15:06 +02:00
|
|
|
bool *need_cs_check)
|
|
|
|
{
|
2009-10-28 19:20:32 +01:00
|
|
|
if (sql_type >= MYSQL_TYPE_TINY_BLOB &&
|
|
|
|
sql_type <= MYSQL_TYPE_BLOB)
|
2009-10-22 16:15:06 +02:00
|
|
|
{
|
|
|
|
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
|
|
|
|
return TRUE;
|
|
|
|
}
|
2009-10-28 19:20:32 +01:00
|
|
|
switch (sql_type)
|
2009-10-22 16:15:06 +02:00
|
|
|
{
|
2009-10-28 19:20:32 +01:00
|
|
|
case MYSQL_TYPE_NEWDECIMAL:
|
|
|
|
case MYSQL_TYPE_DECIMAL:
|
|
|
|
case MYSQL_TYPE_TINY:
|
|
|
|
case MYSQL_TYPE_SHORT:
|
|
|
|
case MYSQL_TYPE_LONG:
|
|
|
|
case MYSQL_TYPE_LONGLONG:
|
|
|
|
case MYSQL_TYPE_INT24:
|
|
|
|
*result_type= INT_RESULT;
|
|
|
|
*need_cs_check= FALSE;
|
|
|
|
return FALSE;
|
|
|
|
case MYSQL_TYPE_NEWDATE:
|
|
|
|
case MYSQL_TYPE_DATE:
|
|
|
|
case MYSQL_TYPE_TIME:
|
|
|
|
case MYSQL_TYPE_DATETIME:
|
|
|
|
*result_type= STRING_RESULT;
|
2009-10-30 21:08:34 +01:00
|
|
|
*need_cs_check= TRUE;
|
2009-10-28 19:20:32 +01:00
|
|
|
return FALSE;
|
2009-10-22 16:15:06 +02:00
|
|
|
case MYSQL_TYPE_VARCHAR:
|
|
|
|
case MYSQL_TYPE_STRING:
|
|
|
|
case MYSQL_TYPE_VAR_STRING:
|
2009-10-28 19:20:32 +01:00
|
|
|
*result_type= STRING_RESULT;
|
2009-10-22 16:15:06 +02:00
|
|
|
*need_cs_check= TRUE;
|
|
|
|
return FALSE;
|
2009-10-28 19:20:32 +01:00
|
|
|
case MYSQL_TYPE_TIMESTAMP:
|
|
|
|
case MYSQL_TYPE_NULL:
|
|
|
|
case MYSQL_TYPE_FLOAT:
|
|
|
|
case MYSQL_TYPE_DOUBLE:
|
|
|
|
case MYSQL_TYPE_BIT:
|
|
|
|
case MYSQL_TYPE_ENUM:
|
|
|
|
case MYSQL_TYPE_SET:
|
|
|
|
case MYSQL_TYPE_GEOMETRY:
|
|
|
|
goto error;
|
2009-10-22 16:15:06 +02:00
|
|
|
default:
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
error:
|
|
|
|
my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0),
|
2009-10-28 19:20:32 +01:00
|
|
|
field_name);
|
2009-10-22 16:15:06 +02:00
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
2009-10-30 22:35:20 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Find the given field's Create_field object using name of field
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_sql_field()
|
|
|
|
field_name Field name
|
|
|
|
alter_info Info from ALTER TABLE/CREATE TABLE
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
sql_field Object filled in by parser about field
|
|
|
|
NULL No field found
|
|
|
|
*/
|
|
|
|
|
2009-10-22 16:15:06 +02:00
|
|
|
static Create_field* get_sql_field(char *field_name,
|
|
|
|
Alter_info *alter_info)
|
|
|
|
{
|
|
|
|
List_iterator<Create_field> it(alter_info->create_list);
|
|
|
|
Create_field *sql_field;
|
|
|
|
DBUG_ENTER("get_sql_field");
|
|
|
|
|
|
|
|
while ((sql_field= it++))
|
|
|
|
{
|
|
|
|
if (!(my_strcasecmp(system_charset_info,
|
|
|
|
sql_field->field_name,
|
|
|
|
field_name)))
|
|
|
|
{
|
|
|
|
DBUG_RETURN(sql_field);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(NULL);
|
|
|
|
}
|
|
|
|
|
2009-10-30 22:35:20 +01:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
static int add_column_list_values(File fptr, partition_info *part_info,
|
2009-10-22 16:15:06 +02:00
|
|
|
part_elem_value *list_value,
|
|
|
|
HA_CREATE_INFO *create_info,
|
|
|
|
Alter_info *alter_info)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
int err= 0;
|
|
|
|
uint i;
|
2009-10-22 16:15:06 +02:00
|
|
|
List_iterator<char> it(part_info->part_field_list);
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_elements= part_info->part_field_list.elements;
|
2009-10-16 16:16:06 +02:00
|
|
|
bool use_parenthesis= (part_info->part_type == LIST_PARTITION &&
|
|
|
|
part_info->num_columns > 1U);
|
|
|
|
|
|
|
|
if (use_parenthesis)
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
2009-10-01 15:04:42 +02:00
|
|
|
for (i= 0; i < num_elements; i++)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
part_column_list_val *col_val= &list_value->col_val_array[i];
|
2009-10-22 16:15:06 +02:00
|
|
|
char *field_name= it++;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (col_val->max_value)
|
|
|
|
err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
|
|
|
|
else if (col_val->null_value)
|
|
|
|
err+= add_string(fptr, "NULL");
|
|
|
|
else
|
|
|
|
{
|
2009-10-28 01:11:17 +01:00
|
|
|
char buffer[MAX_KEY_LENGTH];
|
2009-09-15 17:07:52 +02:00
|
|
|
String str(buffer, sizeof(buffer), &my_charset_bin);
|
|
|
|
Item *item_expr= col_val->item_expression;
|
|
|
|
if (item_expr->null_value)
|
|
|
|
err+= add_string(fptr, "NULL");
|
|
|
|
else
|
|
|
|
{
|
2009-10-22 16:15:06 +02:00
|
|
|
String *res;
|
|
|
|
CHARSET_INFO *field_cs;
|
2009-10-28 19:20:32 +01:00
|
|
|
bool need_cs_check= FALSE;
|
|
|
|
Item_result result_type= STRING_RESULT;
|
2009-10-22 16:15:06 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
This function is called at a very early stage, even before
|
|
|
|
we have prepared the sql_field objects. Thus we have to
|
|
|
|
find the proper sql_field object and get the character set
|
|
|
|
from that object.
|
|
|
|
*/
|
|
|
|
if (create_info)
|
|
|
|
{
|
|
|
|
Create_field *sql_field;
|
|
|
|
|
|
|
|
if (!(sql_field= get_sql_field(field_name,
|
|
|
|
alter_info)))
|
|
|
|
{
|
|
|
|
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
2009-10-28 19:20:32 +01:00
|
|
|
if (check_part_field(sql_field->sql_type,
|
|
|
|
sql_field->field_name,
|
|
|
|
&result_type,
|
|
|
|
&need_cs_check))
|
2009-10-22 16:15:06 +02:00
|
|
|
return 1;
|
|
|
|
if (need_cs_check)
|
|
|
|
field_cs= get_sql_field_charset(sql_field, create_info);
|
|
|
|
else
|
|
|
|
field_cs= NULL;
|
|
|
|
}
|
|
|
|
else
|
2009-10-28 19:20:32 +01:00
|
|
|
{
|
|
|
|
Field *field= part_info->part_field_array[i];
|
|
|
|
result_type= field->result_type();
|
|
|
|
if (check_part_field(field->real_type(),
|
|
|
|
field->field_name,
|
|
|
|
&result_type,
|
|
|
|
&need_cs_check))
|
|
|
|
return 1;
|
|
|
|
DBUG_ASSERT(result_type == field->result_type());
|
|
|
|
if (need_cs_check)
|
|
|
|
field_cs= field->charset();
|
|
|
|
else
|
|
|
|
field_cs= NULL;
|
|
|
|
}
|
2009-10-30 21:44:41 +01:00
|
|
|
if (result_type != item_expr->result_type())
|
|
|
|
{
|
|
|
|
my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
2009-10-22 16:15:06 +02:00
|
|
|
if (field_cs && field_cs != item_expr->collation.collation)
|
|
|
|
{
|
|
|
|
if (!(item_expr= convert_charset_partition_constant(item_expr,
|
|
|
|
field_cs)))
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
2009-10-28 19:20:32 +01:00
|
|
|
{
|
2009-10-30 21:08:34 +01:00
|
|
|
String val_conv;
|
2009-11-02 14:49:26 +01:00
|
|
|
val_conv.set_charset(system_charset_info);
|
2009-10-28 19:20:32 +01:00
|
|
|
res= item_expr->val_str(&str);
|
2009-11-02 14:49:26 +01:00
|
|
|
if (get_cs_converted_part_value_from_string(current_thd,
|
|
|
|
item_expr, res,
|
|
|
|
&val_conv, field_cs,
|
2009-10-30 21:08:34 +01:00
|
|
|
(bool)(alter_info != NULL)))
|
2009-10-28 19:20:32 +01:00
|
|
|
return 1;
|
2009-10-30 21:08:34 +01:00
|
|
|
err+= add_string_object(fptr, &val_conv);
|
2009-10-28 19:20:32 +01:00
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (i != (num_elements - 1))
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_string(fptr, comma_str);
|
|
|
|
}
|
2009-10-16 16:16:06 +02:00
|
|
|
if (use_parenthesis)
|
|
|
|
err+= add_end_parenthesis(fptr);
|
2009-09-15 17:07:52 +02:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_partition_values(File fptr, partition_info *part_info,
|
2009-10-22 16:15:06 +02:00
|
|
|
partition_element *p_elem,
|
|
|
|
HA_CREATE_INFO *create_info,
|
|
|
|
Alter_info *alter_info)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
int err= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
2006-05-27 17:36:45 -04:00
|
|
|
err+= add_string(fptr, " VALUES LESS THAN ");
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->column_list)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
|
|
|
|
part_elem_value *list_value= list_val_it++;
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_begin_parenthesis(fptr);
|
2009-10-22 16:15:06 +02:00
|
|
|
err+= add_column_list_values(fptr, part_info, list_value,
|
|
|
|
create_info, alter_info);
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
}
|
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
if (!p_elem->max_value)
|
|
|
|
{
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
|
|
|
if (p_elem->signed_flag)
|
|
|
|
err+= add_int(fptr, p_elem->range_value);
|
|
|
|
else
|
|
|
|
err+= add_uint(fptr, p_elem->range_value);
|
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
|
|
{
|
|
|
|
uint i;
|
2006-04-17 22:51:34 -04:00
|
|
|
List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
|
2006-05-27 17:36:45 -04:00
|
|
|
err+= add_string(fptr, " VALUES IN ");
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_items= p_elem->list_val_list.elements;
|
2006-04-17 22:51:34 -04:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_begin_parenthesis(fptr);
|
2006-03-07 15:25:08 +04:00
|
|
|
if (p_elem->has_null_value)
|
|
|
|
{
|
|
|
|
err+= add_string(fptr, "NULL");
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_items == 0)
|
2006-03-07 15:25:08 +04:00
|
|
|
{
|
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
err+= add_comma(fptr);
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
i= 0;
|
|
|
|
do
|
|
|
|
{
|
2006-04-17 22:51:34 -04:00
|
|
|
part_elem_value *list_value= list_val_it++;
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
if (part_info->column_list)
|
2009-10-22 16:15:06 +02:00
|
|
|
err+= add_column_list_values(fptr, part_info, list_value,
|
|
|
|
create_info, alter_info);
|
2006-04-17 22:51:34 -04:00
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
if (!list_value->unsigned_flag)
|
|
|
|
err+= add_int(fptr, list_value->value);
|
|
|
|
else
|
|
|
|
err+= add_uint(fptr, list_value->value);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (i != (num_items-1))
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_comma(fptr);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < num_items);
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
}
|
2006-03-07 15:25:08 +04:00
|
|
|
end:
|
2006-05-27 17:36:45 -04:00
|
|
|
return err;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Generate the partition syntax from the partition data structure.
|
|
|
|
Useful for support of generating defaults, SHOW CREATE TABLES
|
|
|
|
and easy partition management.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
generate_partition_syntax()
|
|
|
|
part_info The partitioning data structure
|
|
|
|
buf_length A pointer to the returned buffer length
|
|
|
|
use_sql_alloc Allocate buffer from sql_alloc if true
|
|
|
|
otherwise use my_malloc
|
2006-05-27 17:36:45 -04:00
|
|
|
show_partition_options Should we display partition options
|
2009-10-22 16:15:06 +02:00
|
|
|
create_info Info generated by parser
|
|
|
|
alter_info Info generated by parser
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
NULL error
|
|
|
|
buf, buf_length Buffer and its length
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Here we will generate the full syntax for the given command where all
|
|
|
|
defaults have been expanded. By so doing the it is also possible to
|
|
|
|
make lots of checks of correctness while at it.
|
|
|
|
This could will also be reused for SHOW CREATE TABLES and also for all
|
|
|
|
type ALTER TABLE commands focusing on changing the PARTITION structure
|
|
|
|
in any fashion.
|
|
|
|
|
|
|
|
The implementation writes the syntax to a temporary file (essentially
|
|
|
|
an abstraction of a dynamic array) and if all writes goes well it
|
|
|
|
allocates a buffer and writes the syntax into this one and returns it.
|
|
|
|
|
|
|
|
As a security precaution the file is deleted before writing into it. This
|
|
|
|
means that no other processes on the machine can open and read the file
|
|
|
|
while this processing is ongoing.
|
|
|
|
|
|
|
|
The code is optimised for minimal code size since it is not used in any
|
|
|
|
common queries.
|
|
|
|
*/
|
|
|
|
|
|
|
|
char *generate_partition_syntax(partition_info *part_info,
|
|
|
|
uint *buf_length,
|
2005-09-14 17:30:23 +02:00
|
|
|
bool use_sql_alloc,
|
2009-10-22 16:15:06 +02:00
|
|
|
bool show_partition_options,
|
|
|
|
HA_CREATE_INFO *create_info,
|
|
|
|
Alter_info *alter_info)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint i,j, tot_num_parts, num_subparts;
|
2005-07-18 13:31:02 +02:00
|
|
|
partition_element *part_elem;
|
|
|
|
ulonglong buffer_length;
|
|
|
|
char path[FN_REFLEN];
|
|
|
|
int err= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
2005-07-18 13:31:02 +02:00
|
|
|
File fptr;
|
|
|
|
char *buf= NULL; //Return buffer
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("generate_partition_syntax");
|
|
|
|
|
2006-02-08 04:05:18 -06:00
|
|
|
if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy",
|
|
|
|
O_RDWR | O_BINARY | O_TRUNC |
|
|
|
|
O_TEMPORARY, MYF(MY_WME)))) < 0))
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(NULL);
|
2006-01-17 08:40:00 +01:00
|
|
|
#ifndef __WIN__
|
|
|
|
unlink(path);
|
2005-07-18 13:31:02 +02:00
|
|
|
#endif
|
|
|
|
err+= add_space(fptr);
|
|
|
|
err+= add_partition_by(fptr);
|
|
|
|
switch (part_info->part_type)
|
|
|
|
{
|
|
|
|
case RANGE_PARTITION:
|
2006-01-10 19:44:04 +04:00
|
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
break;
|
|
|
|
case LIST_PARTITION:
|
2006-01-10 19:44:04 +04:00
|
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
break;
|
|
|
|
case HASH_PARTITION:
|
|
|
|
if (part_info->linear_hash_ind)
|
2006-01-10 19:44:04 +04:00
|
|
|
err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_part_fields)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
|
|
|
|
err+= add_part_field_list(fptr, part_info->part_field_list);
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DBUG_ASSERT(0);
|
|
|
|
/* We really shouldn't get here, no use in continuing from here */
|
2009-11-10 18:31:28 -02:00
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(NULL);
|
|
|
|
}
|
|
|
|
if (part_info->part_expr)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_string_len(fptr, part_info->part_func_string,
|
|
|
|
part_info->part_func_len);
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
}
|
|
|
|
else if (part_info->column_list)
|
|
|
|
{
|
|
|
|
err+= add_string(fptr, partition_keywords[PKW_COLUMNS].str);
|
|
|
|
err+= add_part_field_list(fptr, part_info->part_field_list);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if ((!part_info->use_default_num_partitions) &&
|
2006-01-17 08:40:00 +01:00
|
|
|
part_info->use_default_partitions)
|
|
|
|
{
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_string(fptr, "PARTITIONS ");
|
2009-10-01 15:04:42 +02:00
|
|
|
err+= add_int(fptr, part_info->num_parts);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_subpartition_by(fptr);
|
|
|
|
/* Must be hash partitioning for subpartitioning */
|
2006-05-31 09:33:10 -04:00
|
|
|
if (part_info->linear_hash_ind)
|
|
|
|
err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->list_of_subpart_fields)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
|
|
|
|
add_part_field_list(fptr, part_info->subpart_field_list);
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (part_info->subpart_expr)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
2005-07-18 13:31:02 +02:00
|
|
|
err+= add_string_len(fptr, part_info->subpart_func_string,
|
|
|
|
part_info->subpart_func_len);
|
2009-09-15 17:07:52 +02:00
|
|
|
err+= add_end_parenthesis(fptr);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if ((!part_info->use_default_num_subpartitions) &&
|
2006-01-17 08:40:00 +01:00
|
|
|
part_info->use_default_subpartitions)
|
|
|
|
{
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_string(fptr, "SUBPARTITIONS ");
|
2009-10-01 15:04:42 +02:00
|
|
|
err+= add_int(fptr, part_info->num_subparts);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
tot_num_parts= part_info->partitions.elements;
|
|
|
|
num_subparts= part_info->num_subparts;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2006-04-21 08:43:07 -04:00
|
|
|
if (!part_info->use_default_partitions)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-02-03 12:05:29 -05:00
|
|
|
bool first= TRUE;
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_begin_parenthesis(fptr);
|
|
|
|
i= 0;
|
|
|
|
do
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-02-01 16:38:08 +01:00
|
|
|
part_elem= part_it++;
|
|
|
|
if (part_elem->part_state != PART_TO_BE_DROPPED &&
|
|
|
|
part_elem->part_state != PART_REORGED_DROPPED)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-03 12:05:29 -05:00
|
|
|
if (!first)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-03 12:05:29 -05:00
|
|
|
err+= add_comma(fptr);
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2006-02-03 12:05:29 -05:00
|
|
|
err+= add_space(fptr);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2006-02-03 12:05:29 -05:00
|
|
|
first= FALSE;
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_partition(fptr);
|
2006-04-10 13:48:58 -04:00
|
|
|
err+= add_name_string(fptr, part_elem->partition_name);
|
2009-10-22 16:15:06 +02:00
|
|
|
err+= add_partition_values(fptr, part_info, part_elem,
|
|
|
|
create_info, alter_info);
|
2006-04-21 08:43:07 -04:00
|
|
|
if (!part_info->is_sub_partitioned() ||
|
|
|
|
part_info->use_default_subpartitions)
|
2006-06-03 18:37:31 -04:00
|
|
|
{
|
2006-06-12 14:42:07 -04:00
|
|
|
if (show_partition_options)
|
|
|
|
err+= add_partition_options(fptr, part_elem);
|
2006-06-03 18:37:31 -04:00
|
|
|
}
|
|
|
|
else
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_space(fptr);
|
|
|
|
err+= add_begin_parenthesis(fptr);
|
|
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
|
|
j= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
part_elem= sub_it++;
|
|
|
|
err+= add_subpartition(fptr);
|
2006-04-10 13:48:58 -04:00
|
|
|
err+= add_name_string(fptr, part_elem->partition_name);
|
2006-05-27 17:36:45 -04:00
|
|
|
if (show_partition_options)
|
|
|
|
err+= add_partition_options(fptr, part_elem);
|
2009-10-01 15:04:42 +02:00
|
|
|
if (j != (num_subparts-1))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
err+= add_comma(fptr);
|
2008-11-04 08:43:21 +01:00
|
|
|
err+= add_string(fptr, "\n");
|
|
|
|
err+= add_space(fptr);
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_space(fptr);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
err+= add_end_parenthesis(fptr);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++j < num_subparts);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (i == (tot_num_parts-1))
|
2006-01-17 08:40:00 +01:00
|
|
|
err+= add_end_parenthesis(fptr);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < tot_num_parts);
|
2005-09-14 17:30:23 +02:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
if (err)
|
|
|
|
goto close_file;
|
|
|
|
buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
|
|
|
|
if (unlikely(buffer_length == MY_FILEPOS_ERROR))
|
|
|
|
goto close_file;
|
|
|
|
if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
|
|
|
|
goto close_file;
|
|
|
|
*buf_length= (uint)buffer_length;
|
|
|
|
if (use_sql_alloc)
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
buf= (char*) sql_alloc(*buf_length+1);
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
buf= (char*) my_malloc(*buf_length+1, MYF(MY_WME));
|
2005-07-18 13:31:02 +02:00
|
|
|
if (!buf)
|
|
|
|
goto close_file;
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
if (unlikely(my_read(fptr, (uchar*)buf, *buf_length, MYF(MY_FNABP))))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
if (!use_sql_alloc)
|
|
|
|
my_free(buf, MYF(0));
|
|
|
|
else
|
|
|
|
buf= NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
buf[*buf_length]= 0;
|
|
|
|
|
|
|
|
close_file:
|
|
|
|
my_close(fptr, MYF(0));
|
|
|
|
DBUG_RETURN(buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Check if partition key fields are modified and if it can be handled by the
|
|
|
|
underlying storage engine.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
partition_key_modified
|
|
|
|
table TABLE object for which partition fields are set-up
|
2006-09-21 13:39:29 +04:00
|
|
|
fields Bitmap representing fields to be modified
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
TRUE Need special handling of UPDATE
|
|
|
|
FALSE Normal UPDATE handling is ok
|
|
|
|
*/
|
|
|
|
|
2006-09-21 13:39:29 +04:00
|
|
|
bool partition_key_modified(TABLE *table, const MY_BITMAP *fields)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-09-21 13:39:29 +04:00
|
|
|
Field **fld;
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("partition_key_modified");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
if (!part_info)
|
|
|
|
DBUG_RETURN(FALSE);
|
2007-03-02 08:43:45 -08:00
|
|
|
if (table->s->db_type()->partition_flags &&
|
|
|
|
(table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(FALSE);
|
2006-09-21 13:39:29 +04:00
|
|
|
for (fld= part_info->full_part_field_array; *fld; fld++)
|
|
|
|
if (bitmap_is_set(fields, (*fld)->field_index))
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-24 10:10:41 -06:00
|
|
|
/*
|
|
|
|
A function to handle correct handling of NULL values in partition
|
|
|
|
functions.
|
|
|
|
SYNOPSIS
|
|
|
|
part_val_int()
|
|
|
|
item_expr The item expression to evaluate
|
2008-10-06 17:22:38 +05:00
|
|
|
out:result The value of the partition function,
|
|
|
|
LONGLONG_MIN if any null value in function
|
2006-02-24 10:10:41 -06:00
|
|
|
RETURN VALUES
|
2008-10-06 17:22:38 +05:00
|
|
|
TRUE Error in val_int()
|
|
|
|
FALSE ok
|
2006-02-24 10:10:41 -06:00
|
|
|
*/
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
static inline int part_val_int(Item *item_expr, longlong *result)
|
2006-02-24 10:10:41 -06:00
|
|
|
{
|
2008-10-06 17:22:38 +05:00
|
|
|
*result= item_expr->val_int();
|
2006-02-24 10:10:41 -06:00
|
|
|
if (item_expr->null_value)
|
2008-10-06 17:22:38 +05:00
|
|
|
{
|
|
|
|
if (current_thd->is_error())
|
|
|
|
return TRUE;
|
|
|
|
else
|
|
|
|
*result= LONGLONG_MIN;
|
|
|
|
}
|
|
|
|
return FALSE;
|
2006-02-24 10:10:41 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
The next set of functions are used to calculate the partition identity.
|
|
|
|
A handler sets up a variable that corresponds to one of these functions
|
|
|
|
to be able to quickly call it whenever the partition id needs to calculated
|
|
|
|
based on the record in table->record[0] (or set up to fake that).
|
|
|
|
There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
|
|
|
|
In addition there are 4 variants for RANGE subpartitioning and 4 variants
|
|
|
|
for LIST subpartitioning thus in total there are 14 variants of this
|
|
|
|
function.
|
|
|
|
|
|
|
|
We have a set of support functions for these 14 variants. There are 4
|
|
|
|
variants of hash functions and there is a function for each. The KEY
|
|
|
|
partitioning uses the function calculate_key_value to calculate the hash
|
|
|
|
value based on an array of fields. The linear hash variants uses the
|
|
|
|
method get_part_id_from_linear_hash to get the partition id using the
|
|
|
|
hash value and some parameters calculated from the number of partitions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate hash value for KEY partitioning using an array of fields.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
calculate_key_value()
|
|
|
|
field_array An array of the fields in KEY partitioning
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
hash_value calculated
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Uses the hash function on the character set of the field. Integer and
|
|
|
|
floating point fields use the binary character set by default.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static uint32 calculate_key_value(Field **field_array)
|
|
|
|
{
|
2006-06-21 13:00:19 +05:00
|
|
|
ulong nr1= 1;
|
2005-07-18 13:31:02 +02:00
|
|
|
ulong nr2= 4;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
do
|
|
|
|
{
|
|
|
|
Field *field= *field_array;
|
2006-06-21 13:00:19 +05:00
|
|
|
field->hash(&nr1, &nr2);
|
2005-07-18 13:31:02 +02:00
|
|
|
} while (*(++field_array));
|
2006-06-21 13:00:19 +05:00
|
|
|
return (uint32) nr1;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
A simple support function to calculate part_id given local part and
|
|
|
|
sub part.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_for_sub()
|
|
|
|
loc_part_id Local partition id
|
|
|
|
sub_part_id Subpartition id
|
2009-10-01 15:04:42 +02:00
|
|
|
num_subparts Number of subparts
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
inline
|
|
|
|
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_subparts)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
return (uint32)((loc_part_id * num_subparts) + sub_part_id);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate part_id for (SUB)PARTITION BY HASH
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_hash()
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of hash partitions
|
2005-07-18 13:31:02 +02:00
|
|
|
part_expr Item tree of hash function
|
2008-10-06 17:22:38 +05:00
|
|
|
out:part_id The returned partition id
|
|
|
|
out:func_value Value of hash function
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
2008-10-06 17:22:38 +05:00
|
|
|
!= 0 Error code
|
|
|
|
FALSE Success
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
static int get_part_id_hash(uint num_parts,
|
2008-10-06 17:22:38 +05:00
|
|
|
Item *part_expr,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-11-30 03:40:42 +02:00
|
|
|
longlong int_hash_id;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_part_id_hash");
|
2006-11-30 03:40:42 +02:00
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
if (part_val_int(part_expr, func_value))
|
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
|
2009-10-01 15:04:42 +02:00
|
|
|
int_hash_id= *func_value % num_parts;
|
2006-11-30 03:40:42 +02:00
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
*part_id= int_hash_id < 0 ? (uint32) -int_hash_id : (uint32) int_hash_id;
|
|
|
|
DBUG_RETURN(FALSE);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate part_id for (SUB)PARTITION BY LINEAR HASH
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_linear_hash()
|
|
|
|
part_info A reference to the partition_info struct where all the
|
|
|
|
desired information is given
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of hash partitions
|
2005-07-18 13:31:02 +02:00
|
|
|
part_expr Item tree of hash function
|
2008-10-06 17:22:38 +05:00
|
|
|
out:part_id The returned partition id
|
2006-01-17 09:25:12 +01:00
|
|
|
out:func_value Value of hash function
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
2008-10-06 17:22:38 +05:00
|
|
|
!= 0 Error code
|
|
|
|
0 OK
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
static int get_part_id_linear_hash(partition_info *part_info,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts,
|
2008-10-06 17:22:38 +05:00
|
|
|
Item *part_expr,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
DBUG_ENTER("get_part_id_linear_hash");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
if (part_val_int(part_expr, func_value))
|
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
|
|
|
|
*part_id= get_part_id_from_linear_hash(*func_value,
|
|
|
|
part_info->linear_hash_mask,
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts);
|
2008-10-06 17:22:38 +05:00
|
|
|
DBUG_RETURN(FALSE);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate part_id for (SUB)PARTITION BY KEY
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_key()
|
|
|
|
field_array Array of fields for PARTTION KEY
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of KEY partitions
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
Calculated partition id
|
|
|
|
*/
|
|
|
|
|
|
|
|
inline
|
|
|
|
static uint32 get_part_id_key(Field **field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts,
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
DBUG_ENTER("get_part_id_key");
|
2006-01-17 09:25:12 +01:00
|
|
|
*func_value= calculate_key_value(field_array);
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_RETURN((uint32) (*func_value % num_parts));
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Calculate part_id for (SUB)PARTITION BY LINEAR KEY
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_linear_key()
|
|
|
|
part_info A reference to the partition_info struct where all the
|
|
|
|
desired information is given
|
|
|
|
field_array Array of fields for PARTTION KEY
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts Number of KEY partitions
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
Calculated partition id
|
|
|
|
*/
|
|
|
|
|
|
|
|
inline
|
|
|
|
static uint32 get_part_id_linear_key(partition_info *part_info,
|
|
|
|
Field **field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts,
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_part_id_linear_key");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2006-01-17 09:25:12 +01:00
|
|
|
*func_value= calculate_key_value(field_array);
|
|
|
|
DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
|
2005-07-18 13:31:02 +02:00
|
|
|
part_info->linear_hash_mask,
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts));
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
/*
|
|
|
|
Copy to field buffers and set up field pointers
|
2006-09-30 17:38:15 -04:00
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
SYNOPSIS
|
|
|
|
copy_to_part_field_buffers()
|
|
|
|
ptr Array of fields to copy
|
2006-09-30 17:38:15 -04:00
|
|
|
field_bufs Array of field buffers to copy to
|
|
|
|
restore_ptr Array of pointers to restore to
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
DESCRIPTION
|
|
|
|
This routine is used to take the data from field pointer, convert
|
|
|
|
it to a standard format and store this format in a field buffer
|
|
|
|
allocated for this purpose. Next the field pointers are moved to
|
|
|
|
point to the field buffers. There is a separate to restore the
|
|
|
|
field pointers after this call.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void copy_to_part_field_buffers(Field **ptr,
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar **field_bufs,
|
|
|
|
uchar **restore_ptr)
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
Field *field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
*restore_ptr= field->ptr;
|
|
|
|
restore_ptr++;
|
2006-09-26 16:30:39 -04:00
|
|
|
if (!field->maybe_null() || !field->is_null())
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
CHARSET_INFO *cs= ((Field_str*)field)->charset();
|
2009-10-05 16:10:18 +02:00
|
|
|
uint max_len= field->pack_length();
|
|
|
|
uint data_len= field->data_length();
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *field_buf= *field_bufs;
|
2006-08-02 06:40:25 -04:00
|
|
|
/*
|
|
|
|
We only use the field buffer for VARCHAR and CHAR strings
|
|
|
|
which isn't of a binary collation. We also only use the
|
|
|
|
field buffer for fields which are not currently NULL.
|
|
|
|
The field buffer will store a normalised string. We use
|
|
|
|
the strnxfrm method to normalise the string.
|
|
|
|
*/
|
|
|
|
if (field->type() == MYSQL_TYPE_VARCHAR)
|
|
|
|
{
|
|
|
|
uint len_bytes= ((Field_varstring*)field)->length_bytes;
|
2009-10-05 16:10:18 +02:00
|
|
|
my_strnxfrm(cs, field_buf + len_bytes, max_len,
|
|
|
|
field->ptr + len_bytes, data_len);
|
2006-08-02 06:40:25 -04:00
|
|
|
if (len_bytes == 1)
|
2009-10-05 16:10:18 +02:00
|
|
|
*field_buf= (uchar) data_len;
|
2006-08-02 06:40:25 -04:00
|
|
|
else
|
2009-10-05 16:10:18 +02:00
|
|
|
int2store(field_buf, data_len);
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2009-10-05 16:10:18 +02:00
|
|
|
my_strnxfrm(cs, field_buf, max_len,
|
|
|
|
field->ptr, max_len);
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
|
|
|
field->ptr= field_buf;
|
|
|
|
}
|
|
|
|
field_bufs++;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Restore field pointers
|
|
|
|
SYNOPSIS
|
|
|
|
restore_part_field_pointers()
|
|
|
|
ptr Array of fields to restore
|
2006-09-30 17:38:15 -04:00
|
|
|
restore_ptr Array of field pointers to restore to
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
RETURN VALUES
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr)
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
Field *field;
|
|
|
|
while ((field= *(ptr++)))
|
|
|
|
{
|
|
|
|
field->ptr= *restore_ptr;
|
|
|
|
restore_ptr++;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
/*
|
|
|
|
This function is used to calculate the partition id where all partition
|
|
|
|
fields have been prepared to point to a record where the partition field
|
|
|
|
values are bound.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_partition_id()
|
|
|
|
part_info A reference to the partition_info struct where all the
|
|
|
|
desired information is given
|
|
|
|
out:part_id The partition id is returned through this pointer
|
2009-10-16 17:08:34 +02:00
|
|
|
out:func_value Value of partition function (longlong)
|
2009-09-15 17:07:52 +02:00
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
part_id Partition id of partition that would contain
|
|
|
|
row with given values of PF-fields
|
|
|
|
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
|
|
|
|
fit into any partition and thus the values of
|
|
|
|
the PF-fields are not allowed.
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
A routine used from write_row, update_row and delete_row from any
|
|
|
|
handler supporting partitioning. It is also a support routine for
|
|
|
|
get_partition_set used to find the set of partitions needed to scan
|
|
|
|
for a certain index scan or full table scan.
|
|
|
|
|
|
|
|
It is actually 9 different variants of this function which are called
|
|
|
|
through a function pointer.
|
|
|
|
|
|
|
|
get_partition_id_list
|
|
|
|
get_partition_id_list_col
|
|
|
|
get_partition_id_range
|
|
|
|
get_partition_id_range_col
|
|
|
|
get_partition_id_hash_nosub
|
|
|
|
get_partition_id_key_nosub
|
|
|
|
get_partition_id_linear_hash_nosub
|
|
|
|
get_partition_id_linear_key_nosub
|
|
|
|
get_partition_id_with_sub
|
|
|
|
*/
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
This function is used to calculate the main partition to use in the case of
|
|
|
|
subpartitioning and we don't know enough to get the partition identity in
|
|
|
|
total.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_partition_id()
|
|
|
|
part_info A reference to the partition_info struct where all the
|
|
|
|
desired information is given
|
2006-01-17 08:40:00 +01:00
|
|
|
out:part_id The partition id is returned through this pointer
|
2008-10-06 17:22:38 +05:00
|
|
|
out:func_value The value calculated by partition function
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
2006-06-03 04:03:26 +04:00
|
|
|
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
|
|
|
|
fit into any partition and thus the values of
|
|
|
|
the PF-fields are not allowed.
|
2008-10-06 17:22:38 +05:00
|
|
|
0 OK
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
It is actually 8 different variants of this function which are called
|
2005-07-18 13:31:02 +02:00
|
|
|
through a function pointer.
|
|
|
|
|
|
|
|
get_partition_id_list
|
2009-09-15 17:07:52 +02:00
|
|
|
get_partition_id_list_col
|
2005-07-18 13:31:02 +02:00
|
|
|
get_partition_id_range
|
2009-09-15 17:07:52 +02:00
|
|
|
get_partition_id_range_col
|
2005-07-18 13:31:02 +02:00
|
|
|
get_partition_id_hash_nosub
|
|
|
|
get_partition_id_key_nosub
|
|
|
|
get_partition_id_linear_hash_nosub
|
|
|
|
get_partition_id_linear_key_nosub
|
|
|
|
*/
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
static int get_part_id_charset_func_part(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
|
|
|
{
|
|
|
|
int res;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_part_id_charset_func_part");
|
2006-08-02 06:40:25 -04:00
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
copy_to_part_field_buffers(part_info->part_charset_field_array,
|
2006-08-02 06:40:25 -04:00
|
|
|
part_info->part_field_buffers,
|
|
|
|
part_info->restore_part_field_ptrs);
|
|
|
|
res= part_info->get_part_partition_id_charset(part_info,
|
|
|
|
part_id, func_value);
|
2006-09-26 16:30:39 -04:00
|
|
|
restore_part_field_pointers(part_info->part_charset_field_array,
|
2006-08-02 06:40:25 -04:00
|
|
|
part_info->restore_part_field_ptrs);
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(res);
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
static int get_part_id_charset_func_subpart(partition_info *part_info,
|
|
|
|
uint32 *part_id)
|
2006-08-02 06:40:25 -04:00
|
|
|
{
|
|
|
|
int res;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_part_id_charset_func_subpart");
|
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
copy_to_part_field_buffers(part_info->subpart_charset_field_array,
|
2006-08-02 06:40:25 -04:00
|
|
|
part_info->subpart_field_buffers,
|
|
|
|
part_info->restore_subpart_field_ptrs);
|
2008-10-06 17:22:38 +05:00
|
|
|
res= part_info->get_subpartition_id_charset(part_info, part_id);
|
2006-09-26 16:30:39 -04:00
|
|
|
restore_part_field_pointers(part_info->subpart_charset_field_array,
|
2006-08-02 06:40:25 -04:00
|
|
|
part_info->restore_subpart_field_ptrs);
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(res);
|
|
|
|
}
|
|
|
|
|
|
|
|
int get_partition_id_list_col(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
|
|
|
{
|
|
|
|
part_column_list_val *list_col_array= part_info->list_col_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_columns= part_info->part_field_list.elements;
|
2009-09-15 17:07:52 +02:00
|
|
|
int list_index, cmp;
|
|
|
|
int min_list_index= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
int max_list_index= part_info->num_list_values - 1;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_partition_id_list_col");
|
|
|
|
|
|
|
|
while (max_list_index >= min_list_index)
|
|
|
|
{
|
|
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
2009-10-01 15:04:42 +02:00
|
|
|
cmp= cmp_rec_and_tuple(list_col_array + list_index*num_columns,
|
|
|
|
num_columns);
|
2009-09-15 17:07:52 +02:00
|
|
|
if (cmp > 0)
|
|
|
|
min_list_index= list_index + 1;
|
|
|
|
else if (cmp < 0)
|
|
|
|
{
|
|
|
|
if (!list_index)
|
|
|
|
goto notfound;
|
|
|
|
max_list_index= list_index - 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*part_id= (uint32)list_col_array[list_index].partition_id;
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
notfound:
|
|
|
|
*part_id= 0;
|
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
2006-08-02 06:40:25 -04:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
int get_partition_id_list(partition_info *part_info,
|
2006-05-30 00:08:48 -04:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
LIST_PART_ENTRY *list_array= part_info->list_array;
|
2006-01-17 08:40:00 +01:00
|
|
|
int list_index;
|
|
|
|
int min_list_index= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
int max_list_index= part_info->num_list_values - 1;
|
2008-10-06 17:22:38 +05:00
|
|
|
longlong part_func_value;
|
|
|
|
int error= part_val_int(part_info->part_expr, &part_func_value);
|
2006-06-06 11:54:21 -04:00
|
|
|
longlong list_value;
|
2006-04-17 22:51:34 -04:00
|
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("get_partition_id_list");
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
if (error)
|
|
|
|
goto notfound;
|
|
|
|
|
2006-03-07 15:25:08 +04:00
|
|
|
if (part_info->part_expr->null_value)
|
|
|
|
{
|
|
|
|
if (part_info->has_null_value)
|
|
|
|
{
|
|
|
|
*part_id= part_info->has_null_part_id;
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
goto notfound;
|
|
|
|
}
|
2006-01-17 09:25:12 +01:00
|
|
|
*func_value= part_func_value;
|
2006-06-06 11:54:21 -04:00
|
|
|
if (unsigned_flag)
|
|
|
|
part_func_value-= 0x8000000000000000ULL;
|
2005-07-18 13:31:02 +02:00
|
|
|
while (max_list_index >= min_list_index)
|
|
|
|
{
|
|
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
|
|
|
list_value= list_array[list_index].list_value;
|
|
|
|
if (list_value < part_func_value)
|
|
|
|
min_list_index= list_index + 1;
|
|
|
|
else if (list_value > part_func_value)
|
2005-12-22 12:29:00 +03:00
|
|
|
{
|
|
|
|
if (!list_index)
|
|
|
|
goto notfound;
|
2005-07-18 13:31:02 +02:00
|
|
|
max_list_index= list_index - 1;
|
2005-12-22 12:29:00 +03:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-07-18 13:31:02 +02:00
|
|
|
*part_id= (uint32)list_array[list_index].partition_id;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(0);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
}
|
2005-12-22 12:29:00 +03:00
|
|
|
notfound:
|
2005-07-18 13:31:02 +02:00
|
|
|
*part_id= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
/*
|
2005-12-26 08:40:09 +03:00
|
|
|
Find the sub-array part_info->list_array that corresponds to given interval
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
SYNOPSIS
|
|
|
|
get_list_array_idx_for_endpoint()
|
|
|
|
part_info Partitioning info (partitioning type must be LIST)
|
|
|
|
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
|
|
|
|
FALSE - the interval is (-inf; a] or (-inf; a)
|
|
|
|
include_endpoint TRUE iff the interval includes the endpoint
|
|
|
|
|
|
|
|
DESCRIPTION
|
2005-12-26 08:40:09 +03:00
|
|
|
This function finds the sub-array of part_info->list_array where values of
|
2005-12-22 12:29:00 +03:00
|
|
|
list_array[idx].list_value are contained within the specifed interval.
|
|
|
|
list_array is ordered by list_value, so
|
|
|
|
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
|
2005-12-26 08:40:09 +03:00
|
|
|
sought sub-array starts at some index idx and continues till array end.
|
2005-12-22 12:29:00 +03:00
|
|
|
The function returns first number idx, such that
|
|
|
|
list_array[idx].list_value is contained within the passed interval.
|
|
|
|
|
|
|
|
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
|
2005-12-26 08:40:09 +03:00
|
|
|
sought sub-array starts at array start and continues till some last
|
2005-12-22 12:29:00 +03:00
|
|
|
index idx.
|
|
|
|
The function returns first number idx, such that
|
|
|
|
list_array[idx].list_value is NOT contained within the passed interval.
|
2009-10-01 15:04:42 +02:00
|
|
|
If all array elements are contained, part_info->num_list_values is
|
2005-12-22 12:29:00 +03:00
|
|
|
returned.
|
|
|
|
|
|
|
|
NOTE
|
2005-12-26 08:40:09 +03:00
|
|
|
The caller will call this function and then will run along the sub-array of
|
2005-12-22 12:29:00 +03:00
|
|
|
list_array to collect partition ids. If the number of list values is
|
|
|
|
significantly higher then number of partitions, this could be slow and
|
|
|
|
we could invent some other approach. The "run over list array" part is
|
|
|
|
already wrapped in a get_next()-like function.
|
|
|
|
|
|
|
|
RETURN
|
2005-12-26 08:40:09 +03:00
|
|
|
The edge of corresponding sub-array of part_info->list_array
|
2005-12-22 12:29:00 +03:00
|
|
|
*/
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 get_partition_id_cols_list_for_endpoint(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint,
|
|
|
|
uint32 nparts)
|
|
|
|
{
|
|
|
|
part_column_list_val *list_col_array= part_info->list_col_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_columns= part_info->part_field_list.elements;
|
2009-09-15 17:07:52 +02:00
|
|
|
int list_index, cmp;
|
|
|
|
uint min_list_index= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint max_list_index= part_info->num_list_values - 1;
|
2009-09-15 17:07:52 +02:00
|
|
|
bool tailf= !(left_endpoint ^ include_endpoint);
|
|
|
|
DBUG_ENTER("get_partition_id_cols_list_for_endpoint");
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
2009-10-01 15:04:42 +02:00
|
|
|
cmp= cmp_rec_and_tuple_prune(list_col_array + list_index*num_columns,
|
2009-09-15 17:07:52 +02:00
|
|
|
nparts, tailf);
|
|
|
|
if (cmp > 0)
|
|
|
|
min_list_index= list_index + 1;
|
|
|
|
else if (cmp < 0)
|
|
|
|
{
|
|
|
|
if (!list_index)
|
|
|
|
goto notfound;
|
|
|
|
max_list_index= list_index - 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2009-10-16 17:08:34 +02:00
|
|
|
DBUG_RETURN(list_index + test(!tailf));
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
|
|
|
} while (max_list_index >= min_list_index);
|
|
|
|
if (cmp > 0)
|
|
|
|
list_index++;
|
2009-10-16 17:08:34 +02:00
|
|
|
notfound:
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(list_index);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint)
|
|
|
|
{
|
|
|
|
uint32 res;
|
|
|
|
copy_to_part_field_buffers(part_info->part_field_array,
|
|
|
|
part_info->part_field_buffers,
|
|
|
|
part_info->restore_part_field_ptrs);
|
|
|
|
res= get_list_array_idx_for_endpoint(part_info, left_endpoint,
|
|
|
|
include_endpoint);
|
|
|
|
restore_part_field_pointers(part_info->part_field_array,
|
|
|
|
part_info->restore_part_field_ptrs);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint)
|
|
|
|
{
|
|
|
|
LIST_PART_ENTRY *list_array= part_info->list_array;
|
|
|
|
uint list_index;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint min_list_index= 0, max_list_index= part_info->num_list_values - 1;
|
2006-06-14 09:22:27 -04:00
|
|
|
longlong list_value;
|
2005-12-26 08:40:09 +03:00
|
|
|
/* Get the partitioning function value for the endpoint */
|
2007-09-14 14:18:42 +04:00
|
|
|
longlong part_func_value=
|
|
|
|
part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
|
2006-04-17 22:51:34 -04:00
|
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
|
|
DBUG_ENTER("get_list_array_idx_for_endpoint");
|
|
|
|
|
2006-07-20 05:28:16 -04:00
|
|
|
if (part_info->part_expr->null_value)
|
|
|
|
{
|
2009-08-26 12:59:49 +02:00
|
|
|
/*
|
|
|
|
Special handling for MONOTONIC functions that can return NULL for
|
|
|
|
values that are comparable. I.e.
|
|
|
|
'2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
|
|
|
|
returns NULL which cannot be compared used <, >, <=, >= etc.
|
|
|
|
|
|
|
|
Otherwise, just return the the first index (lowest value).
|
|
|
|
*/
|
|
|
|
enum_monotonicity_info monotonic;
|
|
|
|
monotonic= part_info->part_expr->get_monotonicity_info();
|
|
|
|
if (monotonic != MONOTONIC_INCREASING_NOT_NULL &&
|
|
|
|
monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL)
|
|
|
|
{
|
|
|
|
/* F(col) can not return NULL, return index with lowest value */
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
2006-07-20 05:28:16 -04:00
|
|
|
}
|
2009-08-26 12:59:49 +02:00
|
|
|
|
2006-06-06 11:54:21 -04:00
|
|
|
if (unsigned_flag)
|
|
|
|
part_func_value-= 0x8000000000000000ULL;
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_ASSERT(part_info->num_list_values);
|
2006-05-30 00:08:48 -04:00
|
|
|
do
|
2005-12-22 12:29:00 +03:00
|
|
|
{
|
|
|
|
list_index= (max_list_index + min_list_index) >> 1;
|
|
|
|
list_value= list_array[list_index].list_value;
|
|
|
|
if (list_value < part_func_value)
|
|
|
|
min_list_index= list_index + 1;
|
|
|
|
else if (list_value > part_func_value)
|
|
|
|
{
|
|
|
|
if (!list_index)
|
|
|
|
goto notfound;
|
|
|
|
max_list_index= list_index - 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
|
|
|
|
}
|
2006-05-30 00:08:48 -04:00
|
|
|
} while (max_list_index >= min_list_index);
|
2005-12-22 12:29:00 +03:00
|
|
|
notfound:
|
|
|
|
if (list_value < part_func_value)
|
|
|
|
list_index++;
|
|
|
|
DBUG_RETURN(list_index);
|
|
|
|
}
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_range_col(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
|
|
|
{
|
|
|
|
part_column_list_val *range_col_array= part_info->range_col_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_columns= part_info->part_field_list.elements;
|
|
|
|
uint max_partition= part_info->num_parts - 1;
|
2009-09-15 17:07:52 +02:00
|
|
|
uint min_part_id= 0;
|
|
|
|
uint max_part_id= max_partition;
|
|
|
|
uint loc_part_id;
|
|
|
|
DBUG_ENTER("get_partition_id_range_col");
|
|
|
|
|
|
|
|
while (max_part_id > min_part_id)
|
|
|
|
{
|
|
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns,
|
2009-10-21 17:45:34 +02:00
|
|
|
num_columns) >= 0)
|
2009-09-15 17:07:52 +02:00
|
|
|
min_part_id= loc_part_id + 1;
|
|
|
|
else
|
|
|
|
max_part_id= loc_part_id - 1;
|
|
|
|
}
|
|
|
|
loc_part_id= max_part_id;
|
|
|
|
if (loc_part_id != max_partition)
|
2009-10-01 15:04:42 +02:00
|
|
|
if (cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns,
|
|
|
|
num_columns) >= 0)
|
2009-09-15 17:07:52 +02:00
|
|
|
loc_part_id++;
|
|
|
|
*part_id= (uint32)loc_part_id;
|
|
|
|
if (loc_part_id == max_partition &&
|
2009-10-01 15:04:42 +02:00
|
|
|
(cmp_rec_and_tuple(range_col_array + loc_part_id*num_columns,
|
|
|
|
num_columns) >= 0))
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
|
|
|
|
DBUG_PRINT("exit",("partition: %d", *part_id));
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
int get_partition_id_range(partition_info *part_info,
|
2006-10-02 15:52:29 -04:00
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
longlong *range_array= part_info->range_int_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint max_partition= part_info->num_parts - 1;
|
2006-01-17 08:40:00 +01:00
|
|
|
uint min_part_id= 0;
|
|
|
|
uint max_part_id= max_partition;
|
|
|
|
uint loc_part_id;
|
2008-10-06 17:22:38 +05:00
|
|
|
longlong part_func_value;
|
|
|
|
int error= part_val_int(part_info->part_expr, &part_func_value);
|
2006-04-17 22:51:34 -04:00
|
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
2006-06-06 13:19:46 -04:00
|
|
|
DBUG_ENTER("get_partition_id_range");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
if (error)
|
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
|
2006-03-07 15:25:08 +04:00
|
|
|
if (part_info->part_expr->null_value)
|
|
|
|
{
|
|
|
|
*part_id= 0;
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
2006-06-06 13:19:46 -04:00
|
|
|
*func_value= part_func_value;
|
2006-06-06 11:54:21 -04:00
|
|
|
if (unsigned_flag)
|
|
|
|
part_func_value-= 0x8000000000000000ULL;
|
2005-07-18 13:31:02 +02:00
|
|
|
while (max_part_id > min_part_id)
|
|
|
|
{
|
|
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
2006-01-28 16:22:32 -08:00
|
|
|
if (range_array[loc_part_id] <= part_func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
min_part_id= loc_part_id + 1;
|
|
|
|
else
|
|
|
|
max_part_id= loc_part_id - 1;
|
|
|
|
}
|
|
|
|
loc_part_id= max_part_id;
|
|
|
|
if (part_func_value >= range_array[loc_part_id])
|
|
|
|
if (loc_part_id != max_partition)
|
|
|
|
loc_part_id++;
|
|
|
|
*part_id= (uint32)loc_part_id;
|
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
|
|
|
if (loc_part_id == max_partition &&
|
2007-11-26 10:28:25 +04:00
|
|
|
part_func_value >= range_array[loc_part_id] &&
|
|
|
|
!part_info->defined_max_value)
|
This changeset is largely a handler cleanup changeset (WL#3281), but includes fixes and cleanups that was found necessary while testing the handler changes
Changes that requires code changes in other code of other storage engines.
(Note that all changes are very straightforward and one should find all issues
by compiling a --debug build and fixing all compiler errors and all
asserts in field.cc while running the test suite),
- New optional handler function introduced: reset()
This is called after every DML statement to make it easy for a handler to
statement specific cleanups.
(The only case it's not called is if force the file to be closed)
- handler::extra(HA_EXTRA_RESET) is removed. Code that was there before
should be moved to handler::reset()
- table->read_set contains a bitmap over all columns that are needed
in the query. read_row() and similar functions only needs to read these
columns
- table->write_set contains a bitmap over all columns that will be updated
in the query. write_row() and update_row() only needs to update these
columns.
The above bitmaps should now be up to date in all context
(including ALTER TABLE, filesort()).
The handler is informed of any changes to the bitmap after
fix_fields() by calling the virtual function
handler::column_bitmaps_signal(). If the handler does caching of
these bitmaps (instead of using table->read_set, table->write_set),
it should redo the caching in this code. as the signal() may be sent
several times, it's probably best to set a variable in the signal
and redo the caching on read_row() / write_row() if the variable was
set.
- Removed the read_set and write_set bitmap objects from the handler class
- Removed all column bit handling functions from the handler class.
(Now one instead uses the normal bitmap functions in my_bitmap.c instead
of handler dedicated bitmap functions)
- field->query_id is removed. One should instead instead check
table->read_set and table->write_set if a field is used in the query.
- handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and
handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now
instead use table->read_set to check for which columns to retrieve.
- If a handler needs to call Field->val() or Field->store() on columns
that are not used in the query, one should install a temporary
all-columns-used map while doing so. For this, we provide the following
functions:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
field->val();
dbug_tmp_restore_column_map(table->read_set, old_map);
and similar for the write map:
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set);
field->val();
dbug_tmp_restore_column_map(table->write_set, old_map);
If this is not done, you will sooner or later hit a DBUG_ASSERT
in the field store() / val() functions.
(For not DBUG binaries, the dbug_tmp_restore_column_map() and
dbug_tmp_restore_column_map() are inline dummy functions and should
be optimized away be the compiler).
- If one needs to temporary set the column map for all binaries (and not
just to avoid the DBUG_ASSERT() in the Field::store() / Field::val()
methods) one should use the functions tmp_use_all_columns() and
tmp_restore_column_map() instead of the above dbug_ variants.
- All 'status' fields in the handler base class (like records,
data_file_length etc) are now stored in a 'stats' struct. This makes
it easier to know what status variables are provided by the base
handler. This requires some trivial variable names in the extra()
function.
- New virtual function handler::records(). This is called to optimize
COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true.
(stats.records is not supposed to be an exact value. It's only has to
be 'reasonable enough' for the optimizer to be able to choose a good
optimization path).
- Non virtual handler::init() function added for caching of virtual
constants from engine.
- Removed has_transactions() virtual method. Now one should instead return
HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support
transactions.
- The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument
that is to be used with 'new handler_name()' to allocate the handler
in the right area. The xxxx_create_handler() function is also
responsible for any initialization of the object before returning.
For example, one should change:
static handler *myisam_create_handler(TABLE_SHARE *table)
{
return new ha_myisam(table);
}
->
static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root)
{
return new (mem_root) ha_myisam(table);
}
- New optional virtual function: use_hidden_primary_key().
This is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key. This allows the handler to take precisions
in remembering any hidden primary key to able to update/delete any
found row. The default handler marks all columns to be read.
- handler::table_flags() now returns a ulonglong (to allow for more flags).
- New/changed table_flags()
- HA_HAS_RECORDS Set if ::records() is supported
- HA_NO_TRANSACTIONS Set if engine doesn't support transactions
- HA_PRIMARY_KEY_REQUIRED_FOR_DELETE
Set if we should mark all primary key columns for
read when reading rows as part of a DELETE
statement. If there is no primary key,
all columns are marked for read.
- HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some
cases (based on table->read_set)
- HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS
Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION.
- HA_DUPP_POS Renamed to HA_DUPLICATE_POS
- HA_REQUIRES_KEY_COLUMNS_FOR_DELETE
Set this if we should mark ALL key columns for
read when when reading rows as part of a DELETE
statement. In case of an update we will mark
all keys for read for which key part changed
value.
- HA_STATS_RECORDS_IS_EXACT
Set this if stats.records is exact.
(This saves us some extra records() calls
when optimizing COUNT(*))
- Removed table_flags()
- HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if
handler::records() gives an exact count() and
HA_STATS_RECORDS_IS_EXACT if stats.records is exact.
- HA_READ_RND_SAME Removed (no one supported this one)
- Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk()
- Renamed handler::dupp_pos to handler::dup_pos
- Removed not used variable handler::sortkey
Upper level handler changes:
- ha_reset() now does some overall checks and calls ::reset()
- ha_table_flags() added. This is a cached version of table_flags(). The
cache is updated on engine creation time and updated on open.
MySQL level changes (not obvious from the above):
- DBUG_ASSERT() added to check that column usage matches what is set
in the column usage bit maps. (This found a LOT of bugs in current
column marking code).
- In 5.1 before, all used columns was marked in read_set and only updated
columns was marked in write_set. Now we only mark columns for which we
need a value in read_set.
- Column bitmaps are created in open_binary_frm() and open_table_from_share().
(Before this was in table.cc)
- handler::table_flags() calls are replaced with handler::ha_table_flags()
- For calling field->val() you must have the corresponding bit set in
table->read_set. For calling field->store() you must have the
corresponding bit set in table->write_set. (There are asserts in
all store()/val() functions to catch wrong usage)
- thd->set_query_id is renamed to thd->mark_used_columns and instead
of setting this to an integer value, this has now the values:
MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE
Changed also all variables named 'set_query_id' to mark_used_columns.
- In filesort() we now inform the handler of exactly which columns are needed
doing the sort and choosing the rows.
- The TABLE_SHARE object has a 'all_set' column bitmap one can use
when one needs a column bitmap with all columns set.
(This is used for table->use_all_columns() and other places)
- The TABLE object has 3 column bitmaps:
- def_read_set Default bitmap for columns to be read
- def_write_set Default bitmap for columns to be written
- tmp_set Can be used as a temporary bitmap when needed.
The table object has also two pointer to bitmaps read_set and write_set
that the handler should use to find out which columns are used in which way.
- count() optimization now calls handler::records() instead of using
handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true).
- Added extra argument to Item::walk() to indicate if we should also
traverse sub queries.
- Added TABLE parameter to cp_buffer_from_ref()
- Don't close tables created with CREATE ... SELECT but keep them in
the table cache. (Faster usage of newly created tables).
New interfaces:
- table->clear_column_bitmaps() to initialize the bitmaps for tables
at start of new statements.
- table->column_bitmaps_set() to set up new column bitmaps and signal
the handler about this.
- table->column_bitmaps_set_no_signal() for some few cases where we need
to setup new column bitmaps but don't signal the handler (as the handler
has already been signaled about these before). Used for the momement
only in opt_range.cc when doing ROR scans.
- table->use_all_columns() to install a bitmap where all columns are marked
as use in the read and the write set.
- table->default_column_bitmaps() to install the normal read and write
column bitmaps, but not signaling the handler about this.
This is mainly used when creating TABLE instances.
- table->mark_columns_needed_for_delete(),
table->mark_columns_needed_for_delete() and
table->mark_columns_needed_for_insert() to allow us to put additional
columns in column usage maps if handler so requires.
(The handler indicates what it neads in handler->table_flags())
- table->prepare_for_position() to allow us to tell handler that it
needs to read primary key parts to be able to store them in
future table->position() calls.
(This replaces the table->file->ha_retrieve_all_pk function)
- table->mark_auto_increment_column() to tell handler are going to update
columns part of any auto_increment key.
- table->mark_columns_used_by_index() to mark all columns that is part of
an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow
it to quickly know that it only needs to read colums that are part
of the key. (The handler can also use the column map for detecting this,
but simpler/faster handler can just monitor the extra() call).
- table->mark_columns_used_by_index_no_reset() to in addition to other columns,
also mark all columns that is used by the given key.
- table->restore_column_maps_after_mark_index() to restore to default
column maps after a call to table->mark_columns_used_by_index().
- New item function register_field_in_read_map(), for marking used columns
in table->read_map. Used by filesort() to mark all used columns
- Maintain in TABLE->merge_keys set of all keys that are used in query.
(Simplices some optimization loops)
- Maintain Field->part_of_key_not_clustered which is like Field->part_of_key
but the field in the clustered key is not assumed to be part of all index.
(used in opt_range.cc for faster loops)
- dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map()
tmp_use_all_columns() and tmp_restore_column_map() functions to temporally
mark all columns as usable. The 'dbug_' version is primarily intended
inside a handler when it wants to just call Field:store() & Field::val()
functions, but don't need the column maps set for any other usage.
(ie:: bitmap_is_set() is never called)
- We can't use compare_records() to skip updates for handlers that returns
a partial column set and the read_set doesn't cover all columns in the
write set. The reason for this is that if we have a column marked only for
write we can't in the MySQL level know if the value changed or not.
The reason this worked before was that MySQL marked all to be written
columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden
bug'.
- open_table_from_share() does not anymore setup temporary MEM_ROOT
object as a thread specific variable for the handler. Instead we
send the to-be-used MEMROOT to get_new_handler().
(Simpler, faster code)
Bugs fixed:
- Column marking was not done correctly in a lot of cases.
(ALTER TABLE, when using triggers, auto_increment fields etc)
(Could potentially result in wrong values inserted in table handlers
relying on that the old column maps or field->set_query_id was correct)
Especially when it comes to triggers, there may be cases where the
old code would cause lost/wrong values for NDB and/or InnoDB tables.
- Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags:
OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG.
This allowed me to remove some wrong warnings about:
"Some non-transactional changed tables couldn't be rolled back"
- Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset
(thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose
some warnings about
"Some non-transactional changed tables couldn't be rolled back")
- Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table()
which could cause delete_table to report random failures.
- Fixed core dumps for some tests when running with --debug
- Added missing FN_LIBCHAR in mysql_rm_tmp_tables()
(This has probably caused us to not properly remove temporary files after
crash)
- slow_logs was not properly initialized, which could maybe cause
extra/lost entries in slow log.
- If we get an duplicate row on insert, change column map to read and
write all columns while retrying the operation. This is required by
the definition of REPLACE and also ensures that fields that are only
part of UPDATE are properly handled. This fixed a bug in NDB and
REPLACE where REPLACE wrongly copied some column values from the replaced
row.
- For table handler that doesn't support NULL in keys, we would give an error
when creating a primary key with NULL fields, even after the fields has been
automaticly converted to NOT NULL.
- Creating a primary key on a SPATIAL key, would fail if field was not
declared as NOT NULL.
Cleanups:
- Removed not used condition argument to setup_tables
- Removed not needed item function reset_query_id_processor().
- Field->add_index is removed. Now this is instead maintained in
(field->flags & FIELD_IN_ADD_INDEX)
- Field->fieldnr is removed (use field->field_index instead)
- New argument to filesort() to indicate that it should return a set of
row pointers (not used columns). This allowed me to remove some references
to sql_command in filesort and should also enable us to return column
results in some cases where we couldn't before.
- Changed column bitmap handling in opt_range.cc to be aligned with TABLE
bitmap, which allowed me to use bitmap functions instead of looping over
all fields to create some needed bitmaps. (Faster and smaller code)
- Broke up found too long lines
- Moved some variable declaration at start of function for better code
readability.
- Removed some not used arguments from functions.
(setup_fields(), mysql_prepare_insert_check_table())
- setup_fields() now takes an enum instead of an int for marking columns
usage.
- For internal temporary tables, use handler::write_row(),
handler::delete_row() and handler::update_row() instead of
handler::ha_xxxx() for faster execution.
- Changed some constants to enum's and define's.
- Using separate column read and write sets allows for easier checking
of timestamp field was set by statement.
- Remove calls to free_io_cache() as this is now done automaticly in ha_reset()
- Don't build table->normalized_path as this is now identical to table->path
(after bar's fixes to convert filenames)
- Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to
do comparision with the 'convert-dbug-for-diff' tool.
Things left to do in 5.1:
- We wrongly log failed CREATE TABLE ... SELECT in some cases when using
row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result)
Mats has promised to look into this.
- Test that my fix for CREATE TABLE ... SELECT is indeed correct.
(I added several test cases for this, but in this case it's better that
someone else also tests this throughly).
Lars has promosed to do this.
2006-06-04 18:52:22 +03:00
|
|
|
DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
|
|
|
|
|
|
|
|
DBUG_PRINT("exit",("partition: %d", *part_id));
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(0);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
|
|
|
|
/*
|
2005-12-26 08:40:09 +03:00
|
|
|
Find the sub-array of part_info->range_int_array that covers given interval
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
SYNOPSIS
|
|
|
|
get_partition_id_range_for_endpoint()
|
|
|
|
part_info Partitioning info (partitioning type must be RANGE)
|
|
|
|
left_endpoint TRUE - the interval is [a; +inf) or (a; +inf)
|
|
|
|
FALSE - the interval is (-inf; a] or (-inf; a).
|
|
|
|
include_endpoint TRUE <=> the endpoint itself is included in the
|
|
|
|
interval
|
|
|
|
|
|
|
|
DESCRIPTION
|
2005-12-26 08:40:09 +03:00
|
|
|
This function finds the sub-array of part_info->range_int_array where the
|
2005-12-22 12:29:00 +03:00
|
|
|
elements have non-empty intersections with the given interval.
|
2005-12-26 08:40:09 +03:00
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
A range_int_array element at index idx represents the interval
|
|
|
|
|
|
|
|
[range_int_array[idx-1], range_int_array[idx]),
|
|
|
|
|
|
|
|
intervals are disjoint and ordered by their right bound, so
|
|
|
|
|
|
|
|
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
|
2005-12-26 08:40:09 +03:00
|
|
|
sought sub-array starts at some index idx and continues till array end.
|
2005-12-22 12:29:00 +03:00
|
|
|
The function returns first number idx, such that the interval
|
|
|
|
represented by range_int_array[idx] has non empty intersection with
|
|
|
|
the passed interval.
|
|
|
|
|
|
|
|
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
|
2005-12-26 08:40:09 +03:00
|
|
|
sought sub-array starts at array start and continues till some last
|
2005-12-22 12:29:00 +03:00
|
|
|
index idx.
|
|
|
|
The function returns first number idx, such that the interval
|
|
|
|
represented by range_int_array[idx] has EMPTY intersection with the
|
|
|
|
passed interval.
|
|
|
|
If the interval represented by the last array element has non-empty
|
2009-10-01 15:04:42 +02:00
|
|
|
intersection with the passed interval, part_info->num_parts is
|
2005-12-22 12:29:00 +03:00
|
|
|
returned.
|
|
|
|
|
|
|
|
RETURN
|
2005-12-26 08:40:09 +03:00
|
|
|
The edge of corresponding part_info->range_int_array sub-array.
|
2005-12-22 12:29:00 +03:00
|
|
|
*/
|
|
|
|
|
2006-08-02 06:40:25 -04:00
|
|
|
static uint32
|
|
|
|
get_partition_id_range_for_endpoint_charset(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint)
|
|
|
|
{
|
|
|
|
uint32 res;
|
|
|
|
copy_to_part_field_buffers(part_info->part_field_array,
|
|
|
|
part_info->part_field_buffers,
|
|
|
|
part_info->restore_part_field_ptrs);
|
|
|
|
res= get_partition_id_range_for_endpoint(part_info, left_endpoint,
|
|
|
|
include_endpoint);
|
|
|
|
restore_part_field_pointers(part_info->part_field_array,
|
|
|
|
part_info->restore_part_field_ptrs);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint)
|
|
|
|
{
|
|
|
|
longlong *range_array= part_info->range_int_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint max_partition= part_info->num_parts - 1;
|
2005-12-22 12:29:00 +03:00
|
|
|
uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
|
2005-12-26 08:40:09 +03:00
|
|
|
/* Get the partitioning function value for the endpoint */
|
2007-09-14 14:18:42 +04:00
|
|
|
longlong part_func_value=
|
|
|
|
part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
|
|
|
|
|
2006-04-17 22:51:34 -04:00
|
|
|
bool unsigned_flag= part_info->part_expr->unsigned_flag;
|
|
|
|
DBUG_ENTER("get_partition_id_range_for_endpoint");
|
2006-03-07 15:25:08 +04:00
|
|
|
|
2006-07-20 05:28:16 -04:00
|
|
|
if (part_info->part_expr->null_value)
|
|
|
|
{
|
2009-08-26 12:59:49 +02:00
|
|
|
/*
|
|
|
|
Special handling for MONOTONIC functions that can return NULL for
|
|
|
|
values that are comparable. I.e.
|
|
|
|
'2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
|
|
|
|
returns NULL which cannot be compared used <, >, <=, >= etc.
|
|
|
|
|
|
|
|
Otherwise, just return the first partition
|
|
|
|
(may be included if not left endpoint)
|
|
|
|
*/
|
|
|
|
enum_monotonicity_info monotonic;
|
|
|
|
monotonic= part_info->part_expr->get_monotonicity_info();
|
|
|
|
if (monotonic != MONOTONIC_INCREASING_NOT_NULL &&
|
|
|
|
monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL)
|
|
|
|
{
|
|
|
|
/* F(col) can not return NULL, return partition with lowest value */
|
|
|
|
if (!left_endpoint && include_endpoint)
|
|
|
|
DBUG_RETURN(1);
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
|
|
|
|
}
|
2006-07-20 05:28:16 -04:00
|
|
|
}
|
2009-08-26 12:59:49 +02:00
|
|
|
|
|
|
|
|
2006-06-06 11:54:21 -04:00
|
|
|
if (unsigned_flag)
|
|
|
|
part_func_value-= 0x8000000000000000ULL;
|
2007-04-04 16:26:32 +02:00
|
|
|
if (left_endpoint && !include_endpoint)
|
|
|
|
part_func_value++;
|
2005-12-22 12:29:00 +03:00
|
|
|
while (max_part_id > min_part_id)
|
|
|
|
{
|
|
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
2006-01-28 16:22:32 -08:00
|
|
|
if (range_array[loc_part_id] <= part_func_value)
|
2005-12-22 12:29:00 +03:00
|
|
|
min_part_id= loc_part_id + 1;
|
|
|
|
else
|
|
|
|
max_part_id= loc_part_id - 1;
|
|
|
|
}
|
|
|
|
loc_part_id= max_part_id;
|
|
|
|
if (loc_part_id < max_partition &&
|
|
|
|
part_func_value >= range_array[loc_part_id+1])
|
|
|
|
{
|
2006-06-06 11:54:21 -04:00
|
|
|
loc_part_id++;
|
2005-12-22 12:29:00 +03:00
|
|
|
}
|
|
|
|
if (left_endpoint)
|
|
|
|
{
|
2007-11-26 10:28:25 +04:00
|
|
|
longlong bound= range_array[loc_part_id];
|
|
|
|
/*
|
|
|
|
In case of PARTITION p VALUES LESS THAN MAXVALUE
|
|
|
|
the maximum value is in the current partition.
|
|
|
|
*/
|
|
|
|
if (part_func_value > bound ||
|
2009-04-01 10:34:59 +05:00
|
|
|
(part_func_value == bound &&
|
|
|
|
(!part_info->defined_max_value || loc_part_id < max_partition)))
|
2005-12-22 12:29:00 +03:00
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-08-05 16:12:24 -04:00
|
|
|
if (loc_part_id < max_partition)
|
|
|
|
{
|
|
|
|
if (part_func_value == range_array[loc_part_id])
|
|
|
|
loc_part_id += test(include_endpoint);
|
2009-09-15 17:07:52 +02:00
|
|
|
else if (part_func_value > range_array[loc_part_id])
|
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
loc_part_id++;
|
2008-10-06 17:22:38 +05:00
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(loc_part_id);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_hash_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
return get_part_id_hash(part_info->num_parts, part_info->part_expr,
|
2009-09-15 17:07:52 +02:00
|
|
|
part_id, func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_linear_hash_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
return get_part_id_linear_hash(part_info, part_info->num_parts,
|
2009-09-15 17:07:52 +02:00
|
|
|
part_info->part_expr, part_id, func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_key_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
*part_id= get_part_id_key(part_info->part_field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_parts, func_value);
|
2009-09-15 17:07:52 +02:00
|
|
|
return 0;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_linear_key_nosub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
*part_id= get_part_id_linear_key(part_info,
|
|
|
|
part_info->part_field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_parts, func_value);
|
2009-09-15 17:07:52 +02:00
|
|
|
return 0;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
int get_partition_id_with_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id,
|
|
|
|
longlong *func_value)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
uint32 loc_part_id, sub_part_id;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_subparts;
|
2006-01-17 08:40:00 +01:00
|
|
|
int error;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_partition_id_with_sub");
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
if (unlikely((error= part_info->get_part_partition_id(part_info,
|
|
|
|
&loc_part_id,
|
|
|
|
func_value))))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(error);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
num_subparts= part_info->num_subparts;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (unlikely((error= part_info->get_subpartition_id(part_info,
|
|
|
|
&sub_part_id))))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(error);
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
*part_id= get_part_id_for_sub(loc_part_id, sub_part_id, num_subparts);
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(0);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
This function is used to calculate the subpartition id
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_subpartition_id()
|
|
|
|
part_info A reference to the partition_info struct where all the
|
|
|
|
desired information is given
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
2006-01-17 08:40:00 +01:00
|
|
|
part_id The subpartition identity
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
A routine used in some SELECT's when only partial knowledge of the
|
|
|
|
partitions is known.
|
|
|
|
|
|
|
|
It is actually 4 different variants of this function which are called
|
|
|
|
through a function pointer.
|
|
|
|
|
|
|
|
get_partition_id_hash_sub
|
|
|
|
get_partition_id_key_sub
|
|
|
|
get_partition_id_linear_hash_sub
|
|
|
|
get_partition_id_linear_key_sub
|
|
|
|
*/
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
int get_partition_id_hash_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2009-10-01 15:04:42 +02:00
|
|
|
return get_part_id_hash(part_info->num_subparts, part_info->subpart_expr,
|
2008-10-06 17:22:38 +05:00
|
|
|
part_id, &func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
int get_partition_id_linear_hash_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2009-10-01 15:04:42 +02:00
|
|
|
return get_part_id_linear_hash(part_info, part_info->num_subparts,
|
2008-10-06 17:22:38 +05:00
|
|
|
part_info->subpart_expr, part_id,
|
|
|
|
&func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
int get_partition_id_key_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2008-10-06 17:22:38 +05:00
|
|
|
*part_id= get_part_id_key(part_info->subpart_field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_subparts, &func_value);
|
2008-10-06 17:22:38 +05:00
|
|
|
return FALSE;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
int get_partition_id_linear_key_sub(partition_info *part_info,
|
|
|
|
uint32 *part_id)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2008-10-06 17:22:38 +05:00
|
|
|
*part_id= get_part_id_linear_key(part_info,
|
|
|
|
part_info->subpart_field_array,
|
2009-10-01 15:04:42 +02:00
|
|
|
part_info->num_subparts, &func_value);
|
2008-10-06 17:22:38 +05:00
|
|
|
return FALSE;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-17 08:40:00 +01:00
|
|
|
Set an indicator on all partition fields that are set by the key
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
set_PF_fields_in_key()
|
|
|
|
key_info Information about the index
|
|
|
|
key_length Length of key
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE Found partition field set by key
|
|
|
|
FALSE No partition field set by key
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
|
|
|
|
{
|
|
|
|
KEY_PART_INFO *key_part;
|
|
|
|
bool found_part_field= FALSE;
|
|
|
|
DBUG_ENTER("set_PF_fields_in_key");
|
|
|
|
|
|
|
|
for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
|
|
|
|
{
|
|
|
|
if (key_part->null_bit)
|
|
|
|
key_length--;
|
|
|
|
if (key_part->type == HA_KEYTYPE_BIT)
|
|
|
|
{
|
|
|
|
if (((Field_bit*)key_part->field)->bit_len)
|
|
|
|
key_length--;
|
|
|
|
}
|
|
|
|
if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
|
|
|
|
{
|
|
|
|
key_length-= HA_KEY_BLOB_LENGTH;
|
|
|
|
}
|
|
|
|
if (key_length < key_part->length)
|
|
|
|
break;
|
|
|
|
key_length-= key_part->length;
|
|
|
|
if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
|
|
|
|
{
|
|
|
|
found_part_field= TRUE;
|
|
|
|
key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(found_part_field);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
We have found that at least one partition field was set by a key, now
|
|
|
|
check if a partition function has all its fields bound or not.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
check_part_func_bound()
|
|
|
|
ptr Array of fields NULL terminated (partition fields)
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE All fields in partition function are set
|
|
|
|
FALSE Not all fields in partition function are set
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool check_part_func_bound(Field **ptr)
|
|
|
|
{
|
|
|
|
bool result= TRUE;
|
|
|
|
DBUG_ENTER("check_part_func_bound");
|
|
|
|
|
|
|
|
for (; *ptr; ptr++)
|
|
|
|
{
|
|
|
|
if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
|
|
|
|
{
|
|
|
|
result= FALSE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Get the id of the subpartitioning part by using the key buffer of the
|
|
|
|
index scan.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_sub_part_id_from_key()
|
|
|
|
table The table object
|
|
|
|
buf A buffer that can be used to evaluate the partition function
|
|
|
|
key_info The index object
|
|
|
|
key_spec A key_range containing key and key length
|
2008-10-06 17:22:38 +05:00
|
|
|
out:part_id The returned partition id
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
2008-10-06 17:22:38 +05:00
|
|
|
TRUE All fields in partition function are set
|
|
|
|
FALSE Not all fields in partition function are set
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Use key buffer to set-up record in buf, move field pointers and
|
|
|
|
get the partition identity and restore field pointers afterwards.
|
|
|
|
*/
|
|
|
|
|
2008-10-06 17:22:38 +05:00
|
|
|
static int get_sub_part_id_from_key(const TABLE *table,uchar *buf,
|
|
|
|
KEY *key_info,
|
|
|
|
const key_range *key_spec,
|
|
|
|
uint32 *part_id)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *rec0= table->record[0];
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
2008-10-06 17:22:38 +05:00
|
|
|
int res;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_sub_part_id_from_key");
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (likely(rec0 == buf))
|
2007-04-20 18:35:16 +02:00
|
|
|
{
|
2008-10-06 17:22:38 +05:00
|
|
|
res= part_info->get_subpartition_id(part_info, part_id);
|
2007-04-20 18:35:16 +02:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
|
|
|
{
|
|
|
|
Field **part_field_array= part_info->subpart_field_array;
|
|
|
|
set_field_ptr(part_field_array, buf, rec0);
|
2008-10-06 17:22:38 +05:00
|
|
|
res= part_info->get_subpartition_id(part_info, part_id);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
|
|
}
|
2008-10-06 17:22:38 +05:00
|
|
|
DBUG_RETURN(res);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Get the id of the partitioning part by using the key buffer of the
|
|
|
|
index scan.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_part_id_from_key()
|
|
|
|
table The table object
|
|
|
|
buf A buffer that can be used to evaluate the partition function
|
|
|
|
key_info The index object
|
|
|
|
key_spec A key_range containing key and key length
|
2006-01-17 08:40:00 +01:00
|
|
|
out:part_id Partition to use
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
TRUE Partition to use not found
|
|
|
|
FALSE Ok, part_id indicates partition to use
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Use key buffer to set-up record in buf, move field pointers and
|
|
|
|
get the partition identity and restore field pointers afterwards.
|
|
|
|
*/
|
2006-01-17 08:40:00 +01:00
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info,
|
2005-07-18 13:31:02 +02:00
|
|
|
const key_range *key_spec, uint32 *part_id)
|
|
|
|
{
|
|
|
|
bool result;
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *rec0= table->record[0];
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_part_id_from_key");
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (likely(rec0 == buf))
|
2007-04-20 18:35:16 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
result= part_info->get_part_partition_id(part_info, part_id,
|
|
|
|
&func_value);
|
2007-04-20 18:35:16 +02:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
|
|
|
{
|
|
|
|
Field **part_field_array= part_info->part_field_array;
|
|
|
|
set_field_ptr(part_field_array, buf, rec0);
|
2006-01-17 09:25:12 +01:00
|
|
|
result= part_info->get_part_partition_id(part_info, part_id,
|
|
|
|
&func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Get the partitioning id of the full PF by using the key buffer of the
|
|
|
|
index scan.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_full_part_id_from_key()
|
|
|
|
table The table object
|
|
|
|
buf A buffer that is used to evaluate the partition function
|
|
|
|
key_info The index object
|
|
|
|
key_spec A key_range containing key and key length
|
2006-01-17 08:40:00 +01:00
|
|
|
out:part_spec A partition id containing start part and end part
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUES
|
|
|
|
part_spec
|
|
|
|
No partitions to scan is indicated by end_part > start_part when returning
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Use key buffer to set-up record in buf, move field pointers if needed and
|
|
|
|
get the partition identity and restore field pointers afterwards.
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
void get_full_part_id_from_key(const TABLE *table, uchar *buf,
|
2005-07-18 13:31:02 +02:00
|
|
|
KEY *key_info,
|
|
|
|
const key_range *key_spec,
|
|
|
|
part_id_range *part_spec)
|
|
|
|
{
|
|
|
|
bool result;
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *rec0= table->record[0];
|
2006-01-17 09:25:12 +01:00
|
|
|
longlong func_value;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("get_full_part_id_from_key");
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
key_restore(buf, (uchar*)key_spec->key, key_info, key_spec->length);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (likely(rec0 == buf))
|
2007-04-20 18:35:16 +02:00
|
|
|
{
|
2006-01-17 09:25:12 +01:00
|
|
|
result= part_info->get_partition_id(part_info, &part_spec->start_part,
|
|
|
|
&func_value);
|
2007-04-20 18:35:16 +02:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else
|
|
|
|
{
|
|
|
|
Field **part_field_array= part_info->full_part_field_array;
|
|
|
|
set_field_ptr(part_field_array, buf, rec0);
|
2006-01-17 09:25:12 +01:00
|
|
|
result= part_info->get_partition_id(part_info, &part_spec->start_part,
|
|
|
|
&func_value);
|
2005-07-18 13:31:02 +02:00
|
|
|
set_field_ptr(part_field_array, rec0, buf);
|
|
|
|
}
|
|
|
|
part_spec->end_part= part_spec->start_part;
|
|
|
|
if (unlikely(result))
|
|
|
|
part_spec->start_part++;
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
2006-02-10 17:06:24 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Prune the set of partitions to use in query
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
prune_partition_set()
|
|
|
|
table The table object
|
|
|
|
out:part_spec Contains start part, end part
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This function is called to prune the range of partitions to scan by
|
|
|
|
checking the used_partitions bitmap.
|
|
|
|
If start_part > end_part at return it means no partition needs to be
|
|
|
|
scanned. If start_part == end_part it always means a single partition
|
|
|
|
needs to be scanned.
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
part_spec
|
|
|
|
*/
|
|
|
|
void prune_partition_set(const TABLE *table, part_id_range *part_spec)
|
|
|
|
{
|
|
|
|
int last_partition= -1;
|
|
|
|
uint i;
|
|
|
|
partition_info *part_info= table->part_info;
|
|
|
|
|
|
|
|
DBUG_ENTER("prune_partition_set");
|
|
|
|
for (i= part_spec->start_part; i <= part_spec->end_part; i++)
|
|
|
|
{
|
|
|
|
if (bitmap_is_set(&(part_info->used_partitions), i))
|
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("Partition %d is set", i));
|
|
|
|
if (last_partition == -1)
|
|
|
|
/* First partition found in set and pruned bitmap */
|
|
|
|
part_spec->start_part= i;
|
|
|
|
last_partition= i;
|
|
|
|
}
|
|
|
|
}
|
2006-02-14 16:50:51 +01:00
|
|
|
if (last_partition == -1)
|
|
|
|
/* No partition found in pruned bitmap */
|
|
|
|
part_spec->start_part= part_spec->end_part + 1;
|
|
|
|
else //if (last_partition != -1)
|
2006-02-10 17:06:24 +01:00
|
|
|
part_spec->end_part= last_partition;
|
|
|
|
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
Get the set of partitions to use in query.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
get_partition_set()
|
|
|
|
table The table object
|
|
|
|
buf A buffer that can be used to evaluate the partition function
|
|
|
|
index The index of the key used, if MAX_KEY no index used
|
|
|
|
key_spec A key_range containing key and key length
|
2006-01-17 08:40:00 +01:00
|
|
|
out:part_spec Contains start part, end part and indicator if bitmap is
|
2005-07-18 13:31:02 +02:00
|
|
|
used for which partitions to scan
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
This function is called to discover which partitions to use in an index
|
|
|
|
scan or a full table scan.
|
|
|
|
It returns a range of partitions to scan. If there are holes in this
|
|
|
|
range with partitions that are not needed to scan a bit array is used
|
|
|
|
to signal which partitions to use and which not to use.
|
|
|
|
If start_part > end_part at return it means no partition needs to be
|
|
|
|
scanned. If start_part == end_part it always means a single partition
|
|
|
|
needs to be scanned.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
part_spec
|
|
|
|
*/
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
void get_partition_set(const TABLE *table, uchar *buf, const uint index,
|
2005-07-18 13:31:02 +02:00
|
|
|
const key_range *key_spec, part_id_range *part_spec)
|
|
|
|
{
|
2005-11-23 22:45:02 +02:00
|
|
|
partition_info *part_info= table->part_info;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts= part_info->get_tot_partitions();
|
2006-01-17 08:40:00 +01:00
|
|
|
uint i, part_id;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint sub_part= num_parts;
|
|
|
|
uint32 part_part= num_parts;
|
2005-07-18 13:31:02 +02:00
|
|
|
KEY *key_info= NULL;
|
|
|
|
bool found_part_field= FALSE;
|
|
|
|
DBUG_ENTER("get_partition_set");
|
|
|
|
|
|
|
|
part_spec->start_part= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
part_spec->end_part= num_parts - 1;
|
2005-07-18 13:31:02 +02:00
|
|
|
if ((index < MAX_KEY) &&
|
|
|
|
key_spec->flag == (uint)HA_READ_KEY_EXACT &&
|
|
|
|
part_info->some_fields_in_PF.is_set(index))
|
|
|
|
{
|
|
|
|
key_info= table->key_info+index;
|
|
|
|
/*
|
|
|
|
The index can potentially provide at least one PF-field (field in the
|
|
|
|
partition function). Thus it is interesting to continue our probe.
|
|
|
|
*/
|
|
|
|
if (key_spec->length == key_info->key_length)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The entire key is set so we can check whether we can immediately
|
|
|
|
derive either the complete PF or if we can derive either
|
|
|
|
the top PF or the subpartitioning PF. This can be established by
|
|
|
|
checking precalculated bits on each index.
|
|
|
|
*/
|
|
|
|
if (part_info->all_fields_in_PF.is_set(index))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We can derive the exact partition to use, no more than this one
|
|
|
|
is needed.
|
|
|
|
*/
|
|
|
|
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
|
2006-02-10 17:06:24 +01:00
|
|
|
/*
|
|
|
|
Check if range can be adjusted by looking in used_partitions
|
|
|
|
*/
|
|
|
|
prune_partition_set(table, part_spec);
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
else if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
if (part_info->all_fields_in_SPF.is_set(index))
|
2008-10-06 17:22:38 +05:00
|
|
|
{
|
|
|
|
if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part))
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
part_spec->start_part= num_parts;
|
2008-10-06 17:22:38 +05:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
else if (part_info->all_fields_in_PPF.is_set(index))
|
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
if (get_part_id_from_key(table,buf,key_info,
|
|
|
|
key_spec,(uint32*)&part_part))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
The value of the RANGE or LIST partitioning was outside of
|
|
|
|
allowed values. Thus it is certain that the result of this
|
|
|
|
scan will be empty.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
part_spec->start_part= num_parts;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Set an indicator on all partition fields that are bound.
|
|
|
|
If at least one PF-field was bound it pays off to check whether
|
|
|
|
the PF or PPF or SPF has been bound.
|
|
|
|
(PF = Partition Function, SPF = Subpartition Function and
|
|
|
|
PPF = Partition Function part of subpartitioning)
|
|
|
|
*/
|
|
|
|
if ((found_part_field= set_PF_fields_in_key(key_info,
|
|
|
|
key_spec->length)))
|
|
|
|
{
|
|
|
|
if (check_part_func_bound(part_info->full_part_field_array))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We were able to bind all fields in the partition function even
|
|
|
|
by using only a part of the key. Calculate the partition to use.
|
|
|
|
*/
|
|
|
|
get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
|
|
|
|
clear_indicator_in_key_fields(key_info);
|
2006-02-10 17:06:24 +01:00
|
|
|
/*
|
|
|
|
Check if range can be adjusted by looking in used_partitions
|
|
|
|
*/
|
|
|
|
prune_partition_set(table, part_spec);
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
else if (part_info->is_sub_partitioned())
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
if (check_part_func_bound(part_info->subpart_field_array))
|
2008-10-06 17:22:38 +05:00
|
|
|
{
|
|
|
|
if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part))
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
part_spec->start_part= num_parts;
|
2008-10-06 17:22:38 +05:00
|
|
|
clear_indicator_in_key_fields(key_info);
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
else if (check_part_func_bound(part_info->part_field_array))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
part_spec->start_part= num_parts;
|
2006-01-17 08:40:00 +01:00
|
|
|
clear_indicator_in_key_fields(key_info);
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The next step is to analyse the table condition to see whether any
|
|
|
|
information about which partitions to scan can be derived from there.
|
|
|
|
Currently not implemented.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
If we come here we have found a range of sorts we have either discovered
|
|
|
|
nothing or we have discovered a range of partitions with possible holes
|
|
|
|
in it. We need a bitvector to further the work here.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
if (!(part_part == num_parts && sub_part == num_parts))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
We can only arrive here if we are using subpartitioning.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
if (part_part != num_parts)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
We know the top partition and need to scan all underlying
|
|
|
|
subpartitions. This is a range without holes.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_ASSERT(sub_part == num_parts);
|
|
|
|
part_spec->start_part= part_part * part_info->num_subparts;
|
|
|
|
part_spec->end_part= part_spec->start_part+part_info->num_subparts - 1;
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
DBUG_ASSERT(sub_part != num_parts);
|
2005-07-18 13:31:02 +02:00
|
|
|
part_spec->start_part= sub_part;
|
|
|
|
part_spec->end_part=sub_part+
|
2009-10-01 15:04:42 +02:00
|
|
|
(part_info->num_subparts*(part_info->num_parts-1));
|
|
|
|
for (i= 0, part_id= sub_part; i < part_info->num_parts;
|
|
|
|
i++, part_id+= part_info->num_subparts)
|
2005-07-18 13:31:02 +02:00
|
|
|
; //Set bit part_id in bit array
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (found_part_field)
|
|
|
|
clear_indicator_in_key_fields(key_info);
|
2006-02-10 17:06:24 +01:00
|
|
|
/*
|
|
|
|
Check if range can be adjusted by looking in used_partitions
|
|
|
|
*/
|
|
|
|
prune_partition_set(table, part_spec);
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
If the table is partitioned we will read the partition info into the
|
|
|
|
.frm file here.
|
|
|
|
-------------------------------
|
|
|
|
| Fileinfo 64 bytes |
|
|
|
|
-------------------------------
|
|
|
|
| Formnames 7 bytes |
|
|
|
|
-------------------------------
|
|
|
|
| Not used 4021 bytes |
|
|
|
|
-------------------------------
|
|
|
|
| Keyinfo + record |
|
|
|
|
-------------------------------
|
|
|
|
| Padded to next multiple |
|
|
|
|
| of IO_SIZE |
|
|
|
|
-------------------------------
|
|
|
|
| Forminfo 288 bytes |
|
|
|
|
-------------------------------
|
|
|
|
| Screen buffer, to make |
|
2006-03-31 11:39:44 -06:00
|
|
|
|field names readable |
|
2005-07-18 13:31:02 +02:00
|
|
|
-------------------------------
|
|
|
|
| Packed field info |
|
2006-03-31 11:39:44 -06:00
|
|
|
|17 + 1 + strlen(field_name) |
|
2005-07-18 13:31:02 +02:00
|
|
|
| + 1 end of file character |
|
|
|
|
-------------------------------
|
|
|
|
| Partition info |
|
|
|
|
-------------------------------
|
|
|
|
We provide the length of partition length in Fileinfo[55-58].
|
|
|
|
|
|
|
|
Read the partition syntax from the frm file and parse it to get the
|
|
|
|
data structures of the partitioning.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
SYNOPSIS
|
|
|
|
mysql_unpack_partition()
|
|
|
|
thd Thread object
|
2006-01-17 08:40:00 +01:00
|
|
|
part_buf Partition info from frm file
|
2005-07-18 13:31:02 +02:00
|
|
|
part_info_len Length of partition syntax
|
|
|
|
table Table object of partitioned table
|
2006-01-17 08:40:00 +01:00
|
|
|
create_table_ind Is it called from CREATE TABLE
|
|
|
|
default_db_type What is the default engine of the table
|
2007-03-27 16:15:38 +05:00
|
|
|
work_part_info_used Flag is raised if we don't create new
|
|
|
|
part_info, but used thd->work_part_info
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
RETURN VALUE
|
|
|
|
TRUE Error
|
|
|
|
FALSE Sucess
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
|
|
|
Read the partition syntax from the current position in the frm file.
|
|
|
|
Initiate a LEX object, save the list of item tree objects to free after
|
|
|
|
the query is done. Set-up partition info object such that parser knows
|
|
|
|
it is called from internally. Call parser to create data structures
|
|
|
|
(best possible recreation of item trees and so forth since there is no
|
|
|
|
serialisation of these objects other than in parseable text format).
|
|
|
|
We need to save the text of the partition functions since it is not
|
|
|
|
possible to retrace this given an item tree.
|
|
|
|
*/
|
|
|
|
|
2007-03-27 21:09:56 +04:00
|
|
|
bool mysql_unpack_partition(THD *thd,
|
|
|
|
const char *part_buf, uint part_info_len,
|
|
|
|
const char *part_state, uint part_state_len,
|
2006-01-17 08:40:00 +01:00
|
|
|
TABLE* table, bool is_create_table_ind,
|
2007-03-27 16:15:38 +05:00
|
|
|
handlerton *default_db_type,
|
|
|
|
bool *work_part_info_used)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
|
|
|
bool result= TRUE;
|
|
|
|
partition_info *part_info;
|
2006-03-02 12:25:02 +04:00
|
|
|
CHARSET_INFO *old_character_set_client= thd->variables.character_set_client;
|
2006-01-17 08:40:00 +01:00
|
|
|
LEX *old_lex= thd->lex;
|
|
|
|
LEX lex;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_ENTER("mysql_unpack_partition");
|
2005-11-23 22:45:02 +02:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
thd->lex= &lex;
|
2006-03-02 12:25:02 +04:00
|
|
|
thd->variables.character_set_client= system_charset_info;
|
2007-04-25 21:38:12 -06:00
|
|
|
|
2008-07-14 19:43:12 -06:00
|
|
|
Parser_state parser_state(thd, part_buf, part_info_len);
|
2007-04-25 21:38:12 -06:00
|
|
|
|
|
|
|
lex_start(thd);
|
2007-03-27 16:15:38 +05:00
|
|
|
*work_part_info_used= false;
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
We need to use the current SELECT_LEX since I need to keep the
|
|
|
|
Name_resolution_context object which is referenced from the
|
|
|
|
Item_field objects.
|
|
|
|
This is not a nice solution since if the parser uses current_select
|
|
|
|
for anything else it will corrupt the current LEX object.
|
2009-07-31 14:38:18 +02:00
|
|
|
Also, we need to make sure there even is a select -- if the statement
|
|
|
|
was a "USE ...", current_select will be NULL, but we may still end up
|
|
|
|
here if we try to log to a partitioned table. This is currently
|
|
|
|
unsupported, but should still fail rather than crash!
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
2009-07-31 14:38:18 +02:00
|
|
|
if (!(thd->lex->current_select= old_lex->current_select))
|
|
|
|
goto end;
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
All Items created is put into a free list on the THD object. This list
|
|
|
|
is used to free all Item objects after completing a query. We don't
|
|
|
|
want that to happen with the Item tree created as part of the partition
|
|
|
|
info. This should be attached to the table object and remain so until
|
|
|
|
the table object is released.
|
|
|
|
Thus we move away the current list temporarily and start a new list that
|
|
|
|
we then save in the partition info structure.
|
|
|
|
*/
|
2006-03-09 17:37:59 -08:00
|
|
|
lex.part_info= new partition_info();/* Indicates MYSQLparse from this place */
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!lex.part_info)
|
|
|
|
{
|
|
|
|
mem_alloc_error(sizeof(partition_info));
|
|
|
|
goto end;
|
|
|
|
}
|
2009-10-16 16:16:06 +02:00
|
|
|
part_info= lex.part_info;
|
|
|
|
part_info->part_state= part_state;
|
|
|
|
part_info->part_state_len= part_state_len;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_PRINT("info", ("Parse: %s", part_buf));
|
2009-10-16 16:16:06 +02:00
|
|
|
if (parse_sql(thd, & parser_state, NULL) ||
|
|
|
|
part_info->fix_parser_data(thd))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-08-31 04:16:22 -04:00
|
|
|
thd->free_items();
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
The parsed syntax residing in the frm file can still contain defaults.
|
|
|
|
The reason is that the frm file is sometimes saved outside of this
|
|
|
|
MySQL Server and used in backup and restore of clusters or partitioned
|
|
|
|
tables. It is not certain that the restore will restore exactly the
|
|
|
|
same default partitioning.
|
|
|
|
|
|
|
|
The easiest manner of handling this is to simply continue using the
|
|
|
|
part_info we already built up during mysql_create_table if we are
|
|
|
|
in the process of creating a table. If the table already exists we
|
|
|
|
need to discover the number of partitions for the default parts. Since
|
|
|
|
the handler object hasn't been created here yet we need to postpone this
|
|
|
|
to the fix_partition_func method.
|
|
|
|
*/
|
|
|
|
|
|
|
|
DBUG_PRINT("info", ("Successful parse"));
|
2008-02-25 21:18:50 +01:00
|
|
|
DBUG_PRINT("info", ("default engine = %s, default_db_type = %s",
|
|
|
|
ha_resolve_storage_engine_name(part_info->default_engine_type),
|
|
|
|
ha_resolve_storage_engine_name(default_db_type)));
|
2006-03-23 16:00:58 -05:00
|
|
|
if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2007-05-23 15:26:16 +04:00
|
|
|
if (old_lex->create_info.options & HA_LEX_CREATE_TABLE_LIKE)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
2007-05-23 15:26:16 +04:00
|
|
|
This code is executed when we create table in CREATE TABLE t1 LIKE t2.
|
|
|
|
old_lex->query_tables contains table list element for t2 and the table
|
|
|
|
we are opening has name t1.
|
2006-01-17 08:40:00 +01:00
|
|
|
*/
|
2007-05-23 15:26:16 +04:00
|
|
|
if (partition_default_handling(table, part_info, FALSE,
|
|
|
|
old_lex->query_tables->table->s->path.str))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-07 16:31:20 +01:00
|
|
|
result= TRUE;
|
|
|
|
goto end;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
2006-03-24 18:21:43 -05:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
When we come here we are doing a create table. In this case we
|
|
|
|
have already done some preparatory work on the old part_info
|
|
|
|
object. We don't really need this new partition_info object.
|
|
|
|
Thus we go back to the old partition info object.
|
|
|
|
We need to free any memory objects allocated on item_free_list
|
|
|
|
by the parser since we are keeping the old info from the first
|
|
|
|
parser call in CREATE TABLE.
|
|
|
|
We'll ensure that this object isn't put into table cache also
|
|
|
|
just to ensure we don't get into strange situations with the
|
|
|
|
item objects.
|
|
|
|
*/
|
2006-08-31 04:16:22 -04:00
|
|
|
thd->free_items();
|
2006-03-20 17:30:01 +04:00
|
|
|
part_info= thd->work_part_info;
|
2006-03-24 18:21:43 -05:00
|
|
|
table->s->version= 0UL;
|
2007-03-27 16:15:38 +05:00
|
|
|
*work_part_info_used= true;
|
2006-03-24 18:21:43 -05:00
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2005-11-23 22:45:02 +02:00
|
|
|
table->part_info= part_info;
|
2005-11-25 09:11:52 +01:00
|
|
|
table->file->set_part_info(part_info);
|
2006-08-08 08:52:51 -04:00
|
|
|
if (!part_info->default_engine_type)
|
2005-09-20 10:29:59 -04:00
|
|
|
part_info->default_engine_type= default_db_type;
|
2006-08-08 08:52:51 -04:00
|
|
|
DBUG_ASSERT(part_info->default_engine_type == default_db_type);
|
2008-01-09 13:15:50 +01:00
|
|
|
DBUG_ASSERT(part_info->default_engine_type->db_type != DB_TYPE_UNKNOWN);
|
|
|
|
DBUG_ASSERT(part_info->default_engine_type != partition_hton);
|
2005-07-18 13:31:02 +02:00
|
|
|
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
This code part allocates memory for the serialised item information for
|
|
|
|
the partition functions. In most cases this is not needed but if the
|
|
|
|
table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
|
|
|
|
partition information it is needed and the info is lost if we don't
|
|
|
|
save it here so unfortunately we have to do it here even if in most
|
|
|
|
cases it is not needed. This is a consequence of that item trees are
|
|
|
|
not serialisable.
|
|
|
|
*/
|
|
|
|
uint part_func_len= part_info->part_func_len;
|
|
|
|
uint subpart_func_len= part_info->subpart_func_len;
|
2006-01-17 08:40:00 +01:00
|
|
|
char *part_func_string= NULL;
|
|
|
|
char *subpart_func_string= NULL;
|
|
|
|
if ((part_func_len &&
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
!((part_func_string= (char*) thd->alloc(part_func_len)))) ||
|
2005-07-18 13:31:02 +02:00
|
|
|
(subpart_func_len &&
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
!((subpart_func_string= (char*) thd->alloc(subpart_func_len)))))
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
mem_alloc_error(part_func_len);
|
2006-08-31 04:16:22 -04:00
|
|
|
thd->free_items();
|
2005-07-18 13:31:02 +02:00
|
|
|
goto end;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
if (part_func_len)
|
|
|
|
memcpy(part_func_string, part_info->part_func_string, part_func_len);
|
2005-07-18 13:31:02 +02:00
|
|
|
if (subpart_func_len)
|
|
|
|
memcpy(subpart_func_string, part_info->subpart_func_string,
|
|
|
|
subpart_func_len);
|
|
|
|
part_info->part_func_string= part_func_string;
|
|
|
|
part_info->subpart_func_string= subpart_func_string;
|
|
|
|
}
|
|
|
|
|
|
|
|
result= FALSE;
|
|
|
|
end:
|
2006-05-04 19:39:47 +03:00
|
|
|
lex_end(thd->lex);
|
2005-07-18 13:31:02 +02:00
|
|
|
thd->lex= old_lex;
|
2006-03-02 12:25:02 +04:00
|
|
|
thd->variables.character_set_client= old_character_set_client;
|
2005-07-18 13:31:02 +02:00
|
|
|
DBUG_RETURN(result);
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2006-03-20 14:36:21 -05:00
|
|
|
/*
|
|
|
|
Set engine type on all partition element objects
|
|
|
|
SYNOPSIS
|
|
|
|
set_engine_all_partitions()
|
|
|
|
part_info Partition info
|
|
|
|
engine_type Handlerton reference of engine
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
|
|
|
static
|
|
|
|
void
|
|
|
|
set_engine_all_partitions(partition_info *part_info,
|
|
|
|
handlerton *engine_type)
|
|
|
|
{
|
|
|
|
uint i= 0;
|
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
|
|
|
|
part_elem->engine_type= engine_type;
|
|
|
|
if (part_info->is_sub_partitioned())
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
|
|
uint j= 0;
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *sub_elem= sub_it++;
|
|
|
|
|
|
|
|
sub_elem->engine_type= engine_type;
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++j < part_info->num_subparts);
|
2006-03-20 14:36:21 -05:00
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < part_info->num_parts);
|
2006-03-20 14:36:21 -05:00
|
|
|
}
|
2005-07-18 13:31:02 +02:00
|
|
|
/*
|
|
|
|
SYNOPSIS
|
2006-01-17 08:40:00 +01:00
|
|
|
fast_end_partition()
|
|
|
|
thd Thread object
|
|
|
|
out:copied Number of records copied
|
|
|
|
out:deleted Number of records deleted
|
|
|
|
table_list Table list with the one table in it
|
|
|
|
empty Has nothing been done
|
|
|
|
lpt Struct to be used by error handler
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
FALSE Success
|
|
|
|
TRUE Failure
|
|
|
|
|
2005-07-18 13:31:02 +02:00
|
|
|
DESCRIPTION
|
2006-01-17 08:40:00 +01:00
|
|
|
Support routine to handle the successful cases for partition
|
|
|
|
management.
|
2005-07-18 13:31:02 +02:00
|
|
|
*/
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
static int fast_end_partition(THD *thd, ulonglong copied,
|
|
|
|
ulonglong deleted,
|
|
|
|
TABLE_LIST *table_list, bool is_empty,
|
|
|
|
ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
bool written_bin_log)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2006-01-17 08:40:00 +01:00
|
|
|
int error;
|
2008-02-19 14:43:01 +03:00
|
|
|
char tmp_name[80];
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("fast_end_partition");
|
|
|
|
|
|
|
|
thd->proc_info="end";
|
2008-02-19 14:43:01 +03:00
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!is_empty)
|
|
|
|
query_cache_invalidate3(thd, table_list, 0);
|
2008-02-19 14:43:01 +03:00
|
|
|
|
2009-12-03 21:37:38 +03:00
|
|
|
error= trans_commit_stmt(thd);
|
|
|
|
if (trans_commit_implicit(thd))
|
2006-01-17 08:40:00 +01:00
|
|
|
error= 1;
|
2008-02-19 14:43:01 +03:00
|
|
|
|
|
|
|
if (error)
|
2009-12-02 18:22:15 +03:00
|
|
|
DBUG_RETURN(TRUE); /* The error has been reported */
|
2008-02-19 14:43:01 +03:00
|
|
|
|
|
|
|
if ((!is_empty) && (!written_bin_log) &&
|
|
|
|
(!thd->lex->no_write_to_binlog))
|
2009-10-16 13:29:42 +03:00
|
|
|
write_bin_log(thd, FALSE, thd->query(), thd->query_length());
|
2008-02-19 14:43:01 +03:00
|
|
|
|
|
|
|
my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
|
|
|
|
(ulong) (copied + deleted),
|
|
|
|
(ulong) deleted,
|
|
|
|
(ulong) 0);
|
2008-02-19 15:45:21 +03:00
|
|
|
my_ok(thd, (ha_rows) (copied+deleted),0L, tmp_name);
|
2008-02-19 14:43:01 +03:00
|
|
|
DBUG_RETURN(FALSE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
We need to check if engine used by all partitions can handle
|
|
|
|
partitioning natively.
|
2005-07-18 13:31:02 +02:00
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
SYNOPSIS
|
|
|
|
check_native_partitioned()
|
|
|
|
create_info Create info in CREATE TABLE
|
|
|
|
out:ret_val Return value
|
|
|
|
part_info Partition info
|
|
|
|
thd Thread object
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
Value returned in bool ret_value
|
|
|
|
TRUE Native partitioning supported by engine
|
|
|
|
FALSE Need to use partition handler
|
|
|
|
|
|
|
|
Return value from function
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
|
|
|
|
partition_info *part_info, THD *thd)
|
|
|
|
{
|
2008-01-09 13:15:50 +01:00
|
|
|
bool table_engine_set;
|
|
|
|
handlerton *engine_type= part_info->default_engine_type;
|
2006-01-17 09:25:12 +01:00
|
|
|
handlerton *old_engine_type= engine_type;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("check_native_partitioned");
|
|
|
|
|
2008-01-09 13:15:50 +01:00
|
|
|
if (create_info->used_fields & HA_CREATE_USED_ENGINE)
|
2005-07-18 13:31:02 +02:00
|
|
|
{
|
2008-01-09 13:15:50 +01:00
|
|
|
table_engine_set= TRUE;
|
|
|
|
engine_type= create_info->db_type;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
table_engine_set= FALSE;
|
|
|
|
if (thd->lex->sql_command != SQLCOM_CREATE_TABLE)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2008-01-09 13:15:50 +01:00
|
|
|
table_engine_set= TRUE;
|
|
|
|
DBUG_ASSERT(engine_type && engine_type != partition_hton);
|
|
|
|
}
|
2006-01-17 09:25:12 +01:00
|
|
|
}
|
2008-02-25 21:18:50 +01:00
|
|
|
DBUG_PRINT("info", ("engine_type = %s, table_engine_set = %u",
|
|
|
|
ha_resolve_storage_engine_name(engine_type),
|
2008-01-09 13:15:50 +01:00
|
|
|
table_engine_set));
|
|
|
|
if (part_info->check_engine_mix(engine_type, table_engine_set))
|
|
|
|
goto error;
|
2006-01-17 09:25:12 +01:00
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
All engines are of the same type. Check if this engine supports
|
|
|
|
native partitioning.
|
|
|
|
*/
|
2006-01-17 09:25:12 +01:00
|
|
|
|
|
|
|
if (!engine_type)
|
|
|
|
engine_type= old_engine_type;
|
|
|
|
DBUG_PRINT("info", ("engine_type = %s",
|
|
|
|
ha_resolve_storage_engine_name(engine_type)));
|
2006-01-17 08:40:00 +01:00
|
|
|
if (engine_type->partition_flags &&
|
|
|
|
(engine_type->partition_flags() & HA_CAN_PARTITION))
|
|
|
|
{
|
|
|
|
create_info->db_type= engine_type;
|
|
|
|
DBUG_PRINT("info", ("Changed to native partitioning"));
|
|
|
|
*ret_val= TRUE;
|
|
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
2006-01-17 09:25:12 +01:00
|
|
|
error:
|
|
|
|
/*
|
|
|
|
Mixed engines not yet supported but when supported it will need
|
|
|
|
the partition handler
|
|
|
|
*/
|
2006-03-20 14:36:21 -05:00
|
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
2006-01-17 09:25:12 +01:00
|
|
|
*ret_val= FALSE;
|
|
|
|
DBUG_RETURN(TRUE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-08-11 20:02:03 +02:00
|
|
|
/*
|
|
|
|
Sets which partitions to be used in the command
|
|
|
|
*/
|
|
|
|
uint set_part_state(Alter_info *alter_info, partition_info *tab_part_info,
|
|
|
|
enum partition_state part_state)
|
|
|
|
{
|
|
|
|
uint part_count= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts_found= 0;
|
2008-08-11 20:02:03 +02:00
|
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
if ((alter_info->flags & ALTER_ALL_PARTITION) ||
|
|
|
|
(is_name_in_list(part_elem->partition_name,
|
|
|
|
alter_info->partition_names)))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Mark the partition.
|
|
|
|
I.e mark the partition as a partition to be "changed" by
|
2009-09-10 11:14:23 +02:00
|
|
|
analyzing/optimizing/rebuilding/checking/repairing/...
|
2008-08-11 20:02:03 +02:00
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts_found++;
|
2008-08-11 20:02:03 +02:00
|
|
|
part_elem->part_state= part_state;
|
|
|
|
DBUG_PRINT("info", ("Setting part_state to %u for partition %s",
|
|
|
|
part_state, part_elem->partition_name));
|
|
|
|
}
|
2009-09-10 11:15:39 +02:00
|
|
|
else
|
|
|
|
part_elem->part_state= PART_NORMAL;
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++part_count < tab_part_info->num_parts);
|
|
|
|
return num_parts_found;
|
2008-08-11 20:02:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
Prepare for ALTER TABLE of partition structure
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
prep_alter_part_table()
|
|
|
|
thd Thread object
|
|
|
|
table Table object
|
|
|
|
inout:alter_info Alter information
|
|
|
|
inout:create_info Create info for CREATE TABLE
|
|
|
|
old_db_type Old engine type
|
|
|
|
out:partition_changed Boolean indicating whether partition changed
|
|
|
|
out:fast_alter_partition Boolean indicating whether fast partition
|
|
|
|
change is requested
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
partition_changed
|
|
|
|
fast_alter_partition
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This method handles all preparations for ALTER TABLE for partitioned
|
|
|
|
tables
|
|
|
|
We need to handle both partition management command such as Add Partition
|
|
|
|
and others here as well as an ALTER TABLE that completely changes the
|
|
|
|
partitioning and yet others that don't change anything at all. We start
|
|
|
|
by checking the partition management variants and then check the general
|
|
|
|
change patterns.
|
|
|
|
*/
|
|
|
|
|
5.1 version of a fix and test cases for bugs:
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
2007-05-28 15:30:01 +04:00
|
|
|
uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info,
|
2006-01-17 08:40:00 +01:00
|
|
|
HA_CREATE_INFO *create_info,
|
|
|
|
handlerton *old_db_type,
|
|
|
|
bool *partition_changed,
|
|
|
|
uint *fast_alter_partition)
|
|
|
|
{
|
|
|
|
DBUG_ENTER("prep_alter_part_table");
|
|
|
|
|
2006-03-13 05:01:11 -08:00
|
|
|
/*
|
|
|
|
We are going to manipulate the partition info on the table object
|
|
|
|
so we need to ensure that the data structure of the table object
|
|
|
|
is freed by setting version to 0. table->s->version= 0 forces a
|
|
|
|
flush of the table object in close_thread_tables().
|
|
|
|
*/
|
|
|
|
if (table->part_info)
|
|
|
|
table->s->version= 0L;
|
|
|
|
|
2006-03-20 17:30:01 +04:00
|
|
|
thd->work_part_info= thd->lex->part_info;
|
|
|
|
if (thd->work_part_info &&
|
|
|
|
!(thd->work_part_info= thd->lex->part_info->get_clone()))
|
2006-03-18 18:48:21 +04:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
|
2008-10-10 20:12:38 +02:00
|
|
|
/* ALTER_ADMIN_PARTITION is handled in mysql_admin_table */
|
|
|
|
DBUG_ASSERT(!(alter_info->flags & ALTER_ADMIN_PARTITION));
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
if (alter_info->flags &
|
|
|
|
(ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
|
|
|
|
ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
|
2008-10-10 20:12:38 +02:00
|
|
|
ALTER_TABLE_REORG | ALTER_REBUILD_PARTITION))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
partition_info *tab_part_info= table->part_info;
|
2006-03-18 18:48:21 +04:00
|
|
|
partition_info *alt_part_info= thd->work_part_info;
|
2006-03-13 05:01:11 -08:00
|
|
|
uint flags= 0;
|
2009-09-15 17:07:52 +02:00
|
|
|
bool is_last_partition_reorged;
|
|
|
|
part_elem_value *tab_max_elem_val= NULL;
|
|
|
|
part_elem_value *alt_max_elem_val= NULL;
|
|
|
|
longlong tab_max_range= 0, alt_max_range= 0;
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!tab_part_info)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
if (alter_info->flags & ALTER_TABLE_REORG)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
uint new_part_no, curr_part_no;
|
|
|
|
if (tab_part_info->part_type != HASH_PARTITION ||
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->use_default_num_partitions)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-06-27 22:19:27 +02:00
|
|
|
new_part_no= table->file->get_default_no_partitions(create_info);
|
2009-10-01 15:04:42 +02:00
|
|
|
curr_part_no= tab_part_info->num_parts;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (new_part_no == curr_part_no)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
No change is needed, we will have the same number of partitions
|
|
|
|
after the change as before. Thus we can reply ok immediately
|
|
|
|
without any changes at all.
|
|
|
|
*/
|
2008-12-02 11:18:01 +01:00
|
|
|
*fast_alter_partition= TRUE;
|
|
|
|
DBUG_RETURN(FALSE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else if (new_part_no > curr_part_no)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We will add more partitions, we use the ADD PARTITION without
|
|
|
|
setting the flag for no default number of partitions
|
|
|
|
*/
|
|
|
|
alter_info->flags|= ALTER_ADD_PARTITION;
|
2009-10-01 15:04:42 +02:00
|
|
|
thd->work_part_info->num_parts= new_part_no - curr_part_no;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We will remove hash partitions, we use the COALESCE PARTITION
|
|
|
|
without setting the flag for no default number of partitions
|
|
|
|
*/
|
|
|
|
alter_info->flags|= ALTER_COALESCE_PARTITION;
|
2009-10-01 15:04:42 +02:00
|
|
|
alter_info->num_parts= curr_part_no - new_part_no;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
2008-10-05 00:40:30 +02:00
|
|
|
if (!(flags= table->file->alter_table_flags(alter_info->flags)))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
|
|
|
|
DBUG_RETURN(1);
|
|
|
|
}
|
2006-02-28 12:29:50 +01:00
|
|
|
*fast_alter_partition=
|
|
|
|
((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0);
|
|
|
|
DBUG_PRINT("info", ("*fast_alter_partition: %d flags: 0x%x",
|
|
|
|
*fast_alter_partition, flags));
|
2009-09-15 17:07:52 +02:00
|
|
|
if ((alter_info->flags & ALTER_ADD_PARTITION) ||
|
|
|
|
(alter_info->flags & ALTER_REORGANIZE_PARTITION))
|
2006-03-09 18:19:34 +01:00
|
|
|
{
|
2009-10-21 12:40:21 +02:00
|
|
|
if (thd->work_part_info->part_type != tab_part_info->part_type)
|
2006-03-09 18:19:34 +01:00
|
|
|
{
|
2009-10-21 12:40:21 +02:00
|
|
|
if (thd->work_part_info->part_type == NOT_A_PARTITION)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
2009-10-21 12:40:21 +02:00
|
|
|
if (tab_part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "RANGE");
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
else if (tab_part_info->part_type == LIST_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "LIST");
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Hash partitions can be altered without parser finds out about
|
|
|
|
that it is HASH partitioned. So no error here.
|
|
|
|
*/
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2009-10-21 12:40:21 +02:00
|
|
|
if (thd->work_part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
|
|
|
|
"RANGE", "LESS THAN");
|
|
|
|
}
|
|
|
|
else if (thd->work_part_info->part_type == LIST_PARTITION)
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION);
|
|
|
|
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
|
|
|
|
"LIST", "IN");
|
|
|
|
}
|
|
|
|
else if (tab_part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
|
|
|
|
"RANGE", "LESS THAN");
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(tab_part_info->part_type == LIST_PARTITION);
|
|
|
|
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
|
|
|
|
"LIST", "IN");
|
|
|
|
}
|
|
|
|
DBUG_RETURN(TRUE);
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
2006-03-09 18:19:34 +01:00
|
|
|
}
|
2009-10-21 12:40:21 +02:00
|
|
|
if ((tab_part_info->column_list &&
|
|
|
|
alt_part_info->num_columns != tab_part_info->num_columns) ||
|
|
|
|
(!tab_part_info->column_list &&
|
|
|
|
(tab_part_info->part_type == RANGE_PARTITION ||
|
|
|
|
tab_part_info->part_type == LIST_PARTITION) &&
|
|
|
|
alt_part_info->num_columns != 1U) ||
|
|
|
|
(!tab_part_info->column_list &&
|
|
|
|
tab_part_info->part_type == HASH_PARTITION &&
|
|
|
|
alt_part_info->num_columns != 0))
|
2006-03-09 18:19:34 +01:00
|
|
|
{
|
2009-10-21 12:40:21 +02:00
|
|
|
my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0));
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-03-09 18:19:34 +01:00
|
|
|
}
|
2009-10-16 16:16:06 +02:00
|
|
|
alt_part_info->column_list= tab_part_info->column_list;
|
|
|
|
if (alt_part_info->fix_parser_data(thd))
|
2006-03-09 18:19:34 +01:00
|
|
|
{
|
2009-10-16 16:16:06 +02:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-03-09 18:19:34 +01:00
|
|
|
}
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
if (alter_info->flags & ALTER_ADD_PARTITION)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We start by moving the new partitions to the list of temporary
|
|
|
|
partitions. We will then check that the new partitions fit in the
|
|
|
|
partitioning scheme as currently set-up.
|
|
|
|
Partitions are always added at the end in ADD PARTITION.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_new_partitions= alt_part_info->num_parts;
|
|
|
|
uint num_orig_partitions= tab_part_info->num_parts;
|
|
|
|
uint check_total_partitions= num_new_partitions + num_orig_partitions;
|
2006-01-17 08:40:00 +01:00
|
|
|
uint new_total_partitions= check_total_partitions;
|
|
|
|
/*
|
|
|
|
We allow quite a lot of values to be supplied by defaults, however we
|
|
|
|
must know the number of new partitions in this case.
|
|
|
|
*/
|
|
|
|
if (thd->lex->no_write_to_binlog &&
|
|
|
|
tab_part_info->part_type != HASH_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_NO_BINLOG_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
2008-01-28 16:11:43 +01:00
|
|
|
}
|
|
|
|
if (tab_part_info->defined_max_value)
|
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_new_partitions == 0)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-02-16 10:38:33 -06:00
|
|
|
if (tab_part_info->is_sub_partitioned())
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
if (alt_part_info->num_subparts == 0)
|
|
|
|
alt_part_info->num_subparts= tab_part_info->num_subparts;
|
|
|
|
else if (alt_part_info->num_subparts != tab_part_info->num_subparts)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
check_total_partitions= new_total_partitions*
|
2009-10-01 15:04:42 +02:00
|
|
|
alt_part_info->num_subparts;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
if (check_total_partitions > MAX_PARTITIONS)
|
|
|
|
{
|
|
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
alt_part_info->part_type= tab_part_info->part_type;
|
2006-04-20 14:11:54 -04:00
|
|
|
alt_part_info->subpart_type= tab_part_info->subpart_type;
|
2006-02-16 10:38:33 -06:00
|
|
|
if (alt_part_info->set_up_defaults_for_partitioning(table->file,
|
2009-10-01 15:04:42 +02:00
|
|
|
ULL(0),
|
|
|
|
tab_part_info->num_parts))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Handling of on-line cases:
|
|
|
|
|
|
|
|
ADD PARTITION for RANGE/LIST PARTITIONING:
|
|
|
|
------------------------------------------
|
|
|
|
For range and list partitions add partition is simply adding a
|
|
|
|
new empty partition to the table. If the handler support this we
|
|
|
|
will use the simple method of doing this. The figure below shows
|
|
|
|
an example of this and the states involved in making this change.
|
|
|
|
|
|
|
|
Existing partitions New added partitions
|
|
|
|
------ ------ ------ ------ | ------ ------
|
|
|
|
| | | | | | | | | | | | |
|
|
|
|
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
|
|
|
|
------ ------ ------ ------ | ------ ------
|
|
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2
|
|
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2
|
|
|
|
|
|
|
|
The first line is the states before adding the new partitions and the
|
|
|
|
second line is after the new partitions are added. All the partitions are
|
|
|
|
in the partitions list, no partitions are placed in the temp_partitions
|
|
|
|
list.
|
|
|
|
|
|
|
|
ADD PARTITION for HASH PARTITIONING
|
|
|
|
-----------------------------------
|
|
|
|
This little figure tries to show the various partitions involved when
|
|
|
|
adding two new partitions to a linear hash based partitioned table with
|
|
|
|
four partitions to start with, which lists are used and the states they
|
|
|
|
pass through. Adding partitions to a normal hash based is similar except
|
|
|
|
that it is always all the existing partitions that are reorganised not
|
|
|
|
only a subset of them.
|
|
|
|
|
|
|
|
Existing partitions New added partitions
|
|
|
|
------ ------ ------ ------ | ------ ------
|
|
|
|
| | | | | | | | | | | | |
|
|
|
|
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
|
|
|
|
------ ------ ------ ------ | ------ ------
|
|
|
|
PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED
|
|
|
|
PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED
|
|
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED
|
|
|
|
|
|
|
|
Reorganised existing partitions
|
|
|
|
------ ------
|
|
|
|
| | | |
|
|
|
|
| p0'| | p1'|
|
|
|
|
------ ------
|
|
|
|
|
|
|
|
p0 - p5 will be in the partitions list of partitions.
|
|
|
|
p0' and p1' will actually not exist as separate objects, there presence can
|
|
|
|
be deduced from the state of the partition and also the names of those
|
|
|
|
partitions can be deduced this way.
|
|
|
|
|
|
|
|
After adding the partitions and copying the partition data to p0', p1',
|
|
|
|
p4 and p5 from p0 and p1 the states change to adapt for the new situation
|
|
|
|
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
|
|
|
|
p5 are in the table again.
|
|
|
|
|
|
|
|
The first line above shows the states of the partitions before we start
|
|
|
|
adding and copying partitions, the second after completing the adding
|
|
|
|
and copying and finally the third line after also dropping the partitions
|
|
|
|
that are reorganised.
|
|
|
|
*/
|
|
|
|
if (*fast_alter_partition &&
|
|
|
|
tab_part_info->part_type == HASH_PARTITION)
|
|
|
|
{
|
|
|
|
uint part_no= 0, start_part= 1, start_sec_part= 1;
|
|
|
|
uint end_part= 0, end_sec_part= 0;
|
|
|
|
uint upper_2n= tab_part_info->linear_hash_mask + 1;
|
|
|
|
uint lower_2n= upper_2n >> 1;
|
|
|
|
bool all_parts= TRUE;
|
|
|
|
if (tab_part_info->linear_hash_ind &&
|
2009-10-01 15:04:42 +02:00
|
|
|
num_new_partitions < upper_2n)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
An analysis of which parts needs reorganisation shows that it is
|
|
|
|
divided into two intervals. The first interval is those parts
|
|
|
|
that are reorganised up until upper_2n - 1. From upper_2n and
|
|
|
|
onwards it starts again from partition 0 and goes on until
|
|
|
|
it reaches p(upper_2n - 1). If the last new partition reaches
|
|
|
|
beyond upper_2n - 1 then the first interval will end with
|
2009-10-01 15:04:42 +02:00
|
|
|
p(lower_2n - 1) and start with p(num_orig_partitions - lower_2n).
|
2006-01-17 08:40:00 +01:00
|
|
|
If lower_2n partitions are added then p0 to p(lower_2n - 1) will
|
|
|
|
be reorganised which means that the two interval becomes one
|
|
|
|
interval at this point. Thus only when adding less than
|
|
|
|
lower_2n partitions and going beyond a total of upper_2n we
|
|
|
|
actually get two intervals.
|
|
|
|
|
|
|
|
To exemplify this assume we have 6 partitions to start with and
|
|
|
|
add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
|
|
|
|
The first to add after p5 is p6 = 110 in bit numbers. Thus we
|
|
|
|
can see that 10 = p2 will be partition to reorganise if only one
|
|
|
|
partition.
|
|
|
|
If 2 partitions are added we reorganise [p2, p3]. Those two
|
|
|
|
cases are covered by the second if part below.
|
|
|
|
If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
|
|
|
|
part is covered by the else part below.
|
|
|
|
If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
|
|
|
|
This is covered by the first if part where we need the max check
|
|
|
|
to here use lower_2n - 1.
|
|
|
|
If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
|
|
|
|
This is covered by the first if part but here we use the first
|
|
|
|
calculated end_part.
|
|
|
|
Finally with 9 new partitions we would also reorganise p6 if we
|
|
|
|
used the method below but we cannot reorganise more partitions
|
|
|
|
than what we had from the start and thus we simply set all_parts
|
|
|
|
to TRUE. In this case we don't get into this if-part at all.
|
|
|
|
*/
|
|
|
|
all_parts= FALSE;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_new_partitions >= lower_2n)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
In this case there is only one interval since the two intervals
|
|
|
|
overlap and this starts from zero to last_part_no - upper_2n
|
|
|
|
*/
|
|
|
|
start_part= 0;
|
|
|
|
end_part= new_total_partitions - (upper_2n + 1);
|
|
|
|
end_part= max(lower_2n - 1, end_part);
|
|
|
|
}
|
|
|
|
else if (new_total_partitions <= upper_2n)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Also in this case there is only one interval since we are not
|
|
|
|
going over a 2**n boundary
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
start_part= num_orig_partitions - lower_2n;
|
|
|
|
end_part= start_part + (num_new_partitions - 1);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* We have two non-overlapping intervals since we are not
|
|
|
|
passing a 2**n border and we have not at least lower_2n
|
|
|
|
new parts that would ensure that the intervals become
|
|
|
|
overlapping.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
start_part= num_orig_partitions - lower_2n;
|
2006-01-17 08:40:00 +01:00
|
|
|
end_part= upper_2n - 1;
|
|
|
|
start_sec_part= 0;
|
|
|
|
end_sec_part= new_total_partitions - (upper_2n + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
List_iterator<partition_element> tab_it(tab_part_info->partitions);
|
|
|
|
part_no= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *p_elem= tab_it++;
|
|
|
|
if (all_parts ||
|
|
|
|
(part_no >= start_part && part_no <= end_part) ||
|
|
|
|
(part_no >= start_sec_part && part_no <= end_sec_part))
|
|
|
|
{
|
|
|
|
p_elem->part_state= PART_CHANGED;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++part_no < num_orig_partitions);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
Need to concatenate the lists here to make it possible to check the
|
|
|
|
partition info for correctness using check_partition_info.
|
|
|
|
For on-line add partition we set the state of this partition to
|
|
|
|
PART_TO_BE_ADDED to ensure that it is known that it is not yet
|
|
|
|
usable (becomes usable when partition is created and the switch of
|
|
|
|
partition configuration is made.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> alt_it(alt_part_info->partitions);
|
|
|
|
uint part_count= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= alt_it++;
|
|
|
|
if (*fast_alter_partition)
|
|
|
|
part_elem->part_state= PART_TO_BE_ADDED;
|
|
|
|
if (tab_part_info->partitions.push_back(part_elem))
|
|
|
|
{
|
|
|
|
mem_alloc_error(1);
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++part_count < num_new_partitions);
|
|
|
|
tab_part_info->num_parts+= num_new_partitions;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
If we specify partitions explicitly we don't use defaults anymore.
|
|
|
|
Using ADD PARTITION also means that we don't have the default number
|
|
|
|
of partitions anymore. We use this code also for Table reorganisations
|
|
|
|
and here we don't set any default flags to FALSE.
|
|
|
|
*/
|
|
|
|
if (!(alter_info->flags & ALTER_TABLE_REORG))
|
|
|
|
{
|
|
|
|
if (!alt_part_info->use_default_partitions)
|
|
|
|
{
|
2006-11-27 01:47:38 +02:00
|
|
|
DBUG_PRINT("info", ("part_info: 0x%lx", (long) tab_part_info));
|
2006-01-17 08:40:00 +01:00
|
|
|
tab_part_info->use_default_partitions= FALSE;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->use_default_num_partitions= FALSE;
|
2006-05-10 12:53:40 -04:00
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
else if (alter_info->flags & ALTER_DROP_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Drop a partition from a range partition and list partitioning is
|
|
|
|
always safe and can be made more or less immediate. It is necessary
|
|
|
|
however to ensure that the partition to be removed is safely removed
|
|
|
|
and that REPAIR TABLE can remove the partition if for some reason the
|
|
|
|
command to drop the partition failed in the middle.
|
|
|
|
*/
|
|
|
|
uint part_count= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts_dropped= alter_info->partition_names.elements;
|
|
|
|
uint num_parts_found= 0;
|
2006-01-17 08:40:00 +01:00
|
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
2006-05-10 12:53:40 -04:00
|
|
|
|
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (!(tab_part_info->part_type == RANGE_PARTITION ||
|
|
|
|
tab_part_info->part_type == LIST_PARTITION))
|
|
|
|
{
|
|
|
|
my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_parts_dropped >= tab_part_info->num_parts)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_DROP_LAST_PARTITION, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
if (is_name_in_list(part_elem->partition_name,
|
|
|
|
alter_info->partition_names))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Set state to indicate that the partition is to be dropped.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
num_parts_found++;
|
2006-01-17 08:40:00 +01:00
|
|
|
part_elem->part_state= PART_TO_BE_DROPPED;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++part_count < tab_part_info->num_parts);
|
|
|
|
if (num_parts_found != num_parts_dropped)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
|
|
|
|
{
|
|
|
|
my_error(ER_ROW_IS_REFERENCED, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->num_parts-= num_parts_dropped;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2008-10-10 20:12:38 +02:00
|
|
|
else if (alter_info->flags & ALTER_REBUILD_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts_found;
|
|
|
|
uint num_parts_opt= alter_info->partition_names.elements;
|
|
|
|
num_parts_found= set_part_state(alter_info, tab_part_info, PART_CHANGED);
|
|
|
|
if (num_parts_found != num_parts_opt &&
|
2006-01-17 08:40:00 +01:00
|
|
|
(!(alter_info->flags & ALTER_ALL_PARTITION)))
|
|
|
|
{
|
2008-10-10 20:12:38 +02:00
|
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REBUILD");
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-03-22 10:52:12 -05:00
|
|
|
if (!(*fast_alter_partition))
|
|
|
|
{
|
|
|
|
table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else if (alter_info->flags & ALTER_COALESCE_PARTITION)
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts_coalesced= alter_info->num_parts;
|
|
|
|
uint num_parts_remain= tab_part_info->num_parts - num_parts_coalesced;
|
2006-01-17 08:40:00 +01:00
|
|
|
List_iterator<partition_element> part_it(tab_part_info->partitions);
|
|
|
|
if (tab_part_info->part_type != HASH_PARTITION)
|
|
|
|
{
|
|
|
|
my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_parts_coalesced == 0)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_parts_coalesced >= tab_part_info->num_parts)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_DROP_LAST_PARTITION, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Online handling:
|
|
|
|
COALESCE PARTITION:
|
|
|
|
-------------------
|
|
|
|
The figure below shows the manner in which partitions are handled when
|
|
|
|
performing an on-line coalesce partition and which states they go through
|
|
|
|
at start, after adding and copying partitions and finally after dropping
|
|
|
|
the partitions to drop. The figure shows an example using four partitions
|
|
|
|
to start with, using linear hash and coalescing one partition (always the
|
|
|
|
last partition).
|
|
|
|
|
|
|
|
Using linear hash then all remaining partitions will have a new reorganised
|
|
|
|
part.
|
|
|
|
|
|
|
|
Existing partitions Coalesced partition
|
|
|
|
------ ------ ------ | ------
|
|
|
|
| | | | | | | | |
|
|
|
|
| p0 | | p1 | | p2 | | | p3 |
|
|
|
|
------ ------ ------ | ------
|
|
|
|
PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED
|
|
|
|
PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED
|
|
|
|
PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED
|
|
|
|
|
|
|
|
Reorganised existing partitions
|
|
|
|
------
|
|
|
|
| |
|
|
|
|
| p1'|
|
|
|
|
------
|
|
|
|
|
|
|
|
p0 - p3 is in the partitions list.
|
|
|
|
The p1' partition will actually not be in any list it is deduced from the
|
|
|
|
state of p1.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
uint part_count= 0, start_part= 1, start_sec_part= 1;
|
|
|
|
uint end_part= 0, end_sec_part= 0;
|
|
|
|
bool all_parts= TRUE;
|
|
|
|
if (*fast_alter_partition &&
|
|
|
|
tab_part_info->linear_hash_ind)
|
|
|
|
{
|
|
|
|
uint upper_2n= tab_part_info->linear_hash_mask + 1;
|
|
|
|
uint lower_2n= upper_2n >> 1;
|
|
|
|
all_parts= FALSE;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_parts_coalesced >= lower_2n)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
all_parts= TRUE;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
else if (num_parts_remain >= lower_2n)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
end_part= tab_part_info->num_parts - (lower_2n + 1);
|
|
|
|
start_part= num_parts_remain - lower_2n;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
start_part= 0;
|
2009-10-01 15:04:42 +02:00
|
|
|
end_part= tab_part_info->num_parts - (lower_2n + 1);
|
2006-01-17 08:40:00 +01:00
|
|
|
end_sec_part= (lower_2n >> 1) - 1;
|
2009-10-01 15:04:42 +02:00
|
|
|
start_sec_part= end_sec_part - (lower_2n - (num_parts_remain + 1));
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *p_elem= part_it++;
|
|
|
|
if (*fast_alter_partition &&
|
|
|
|
(all_parts ||
|
|
|
|
(part_count >= start_part && part_count <= end_part) ||
|
|
|
|
(part_count >= start_sec_part && part_count <= end_sec_part)))
|
|
|
|
p_elem->part_state= PART_CHANGED;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (++part_count > num_parts_remain)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
if (*fast_alter_partition)
|
|
|
|
p_elem->part_state= PART_REORGED_DROPPED;
|
|
|
|
else
|
|
|
|
part_it.remove();
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (part_count < tab_part_info->num_parts);
|
|
|
|
tab_part_info->num_parts= num_parts_remain;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
if (!(alter_info->flags & ALTER_TABLE_REORG))
|
2006-05-10 12:53:40 -04:00
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->use_default_num_partitions= FALSE;
|
2006-05-10 12:53:40 -04:00
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
else if (alter_info->flags & ALTER_REORGANIZE_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Reorganise partitions takes a number of partitions that are next
|
|
|
|
to each other (at least for RANGE PARTITIONS) and then uses those
|
|
|
|
to create a set of new partitions. So data is copied from those
|
|
|
|
partitions into the new set of partitions. Those new partitions
|
|
|
|
can have more values in the LIST value specifications or less both
|
|
|
|
are allowed. The ranges can be different but since they are
|
|
|
|
changing a set of consecutive partitions they must cover the same
|
|
|
|
range as those changed from.
|
|
|
|
This command can be used on RANGE and LIST partitions.
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_parts_reorged= alter_info->partition_names.elements;
|
|
|
|
uint num_parts_new= thd->work_part_info->partitions.elements;
|
2006-01-17 08:40:00 +01:00
|
|
|
uint check_total_partitions;
|
2006-05-10 12:53:40 -04:00
|
|
|
|
|
|
|
tab_part_info->is_auto_partitioned= FALSE;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (num_parts_reorged > tab_part_info->num_parts)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
if (!(tab_part_info->part_type == RANGE_PARTITION ||
|
|
|
|
tab_part_info->part_type == LIST_PARTITION) &&
|
2009-10-01 15:04:42 +02:00
|
|
|
(num_parts_new != num_parts_reorged))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-08-08 08:52:51 -04:00
|
|
|
if (tab_part_info->is_sub_partitioned() &&
|
2009-10-01 15:04:42 +02:00
|
|
|
alt_part_info->num_subparts &&
|
|
|
|
alt_part_info->num_subparts != tab_part_info->num_subparts)
|
2006-08-08 08:52:51 -04:00
|
|
|
{
|
|
|
|
my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
check_total_partitions= tab_part_info->num_parts + num_parts_new;
|
|
|
|
check_total_partitions-= num_parts_reorged;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (check_total_partitions > MAX_PARTITIONS)
|
|
|
|
{
|
|
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-04-21 08:43:07 -04:00
|
|
|
alt_part_info->part_type= tab_part_info->part_type;
|
|
|
|
alt_part_info->subpart_type= tab_part_info->subpart_type;
|
2009-10-01 15:04:42 +02:00
|
|
|
alt_part_info->num_subparts= tab_part_info->num_subparts;
|
2006-04-21 08:43:07 -04:00
|
|
|
DBUG_ASSERT(!alt_part_info->use_default_partitions);
|
|
|
|
if (alt_part_info->set_up_defaults_for_partitioning(table->file,
|
|
|
|
ULL(0),
|
|
|
|
0))
|
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
Online handling:
|
|
|
|
REORGANIZE PARTITION:
|
|
|
|
---------------------
|
|
|
|
The figure exemplifies the handling of partitions, their state changes and
|
|
|
|
how they are organised. It exemplifies four partitions where two of the
|
|
|
|
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
|
|
|
|
The reason of this change could be to change range limits, change list
|
|
|
|
values or for hash partitions simply reorganise the partition which could
|
|
|
|
also involve moving them to new disks or new node groups (MySQL Cluster).
|
|
|
|
|
|
|
|
Existing partitions
|
|
|
|
------ ------ ------ ------
|
|
|
|
| | | | | | | |
|
|
|
|
| p0 | | p1 | | p2 | | p3 |
|
|
|
|
------ ------ ------ ------
|
|
|
|
PART_NORMAL PART_TO_BE_REORGED PART_NORMAL
|
|
|
|
PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL
|
|
|
|
PART_NORMAL PART_IS_DROPPED PART_NORMAL
|
|
|
|
|
|
|
|
Reorganised new partitions (replacing p1 and p2)
|
|
|
|
------ ------
|
|
|
|
| | | |
|
|
|
|
| p4 | | p5 |
|
|
|
|
------ ------
|
|
|
|
PART_TO_BE_ADDED
|
|
|
|
PART_IS_ADDED
|
|
|
|
PART_IS_ADDED
|
|
|
|
|
|
|
|
All unchanged partitions and the new partitions are in the partitions list
|
|
|
|
in the order they will have when the change is completed. The reorganised
|
|
|
|
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
|
|
|
|
temporary state not written in the frm file. It is used to ensure we write
|
|
|
|
the generated partition syntax in a correct manner.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> tab_it(tab_part_info->partitions);
|
|
|
|
uint part_count= 0;
|
|
|
|
bool found_first= FALSE;
|
|
|
|
bool found_last= FALSE;
|
|
|
|
uint drop_count= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= tab_it++;
|
|
|
|
is_last_partition_reorged= FALSE;
|
|
|
|
if (is_name_in_list(part_elem->partition_name,
|
|
|
|
alter_info->partition_names))
|
|
|
|
{
|
|
|
|
is_last_partition_reorged= TRUE;
|
|
|
|
drop_count++;
|
2009-09-15 17:07:52 +02:00
|
|
|
if (tab_part_info->column_list)
|
|
|
|
{
|
|
|
|
List_iterator<part_elem_value> p(part_elem->list_val_list);
|
|
|
|
tab_max_elem_val= p++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
tab_max_range= part_elem->range_value;
|
2006-01-17 08:40:00 +01:00
|
|
|
if (*fast_alter_partition &&
|
|
|
|
tab_part_info->temp_partitions.push_back(part_elem))
|
|
|
|
{
|
|
|
|
mem_alloc_error(1);
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
if (*fast_alter_partition)
|
|
|
|
part_elem->part_state= PART_TO_BE_REORGED;
|
|
|
|
if (!found_first)
|
|
|
|
{
|
|
|
|
uint alt_part_count= 0;
|
2009-09-15 17:07:52 +02:00
|
|
|
partition_element *alt_part_elem;
|
2006-01-17 08:40:00 +01:00
|
|
|
List_iterator<partition_element>
|
|
|
|
alt_it(alt_part_info->partitions);
|
2009-09-15 17:07:52 +02:00
|
|
|
found_first= TRUE;
|
2006-01-17 08:40:00 +01:00
|
|
|
do
|
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
alt_part_elem= alt_it++;
|
|
|
|
if (tab_part_info->column_list)
|
|
|
|
{
|
|
|
|
List_iterator<part_elem_value> p(alt_part_elem->list_val_list);
|
|
|
|
alt_max_elem_val= p++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
alt_max_range= alt_part_elem->range_value;
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
if (*fast_alter_partition)
|
|
|
|
alt_part_elem->part_state= PART_TO_BE_ADDED;
|
|
|
|
if (alt_part_count == 0)
|
|
|
|
tab_it.replace(alt_part_elem);
|
|
|
|
else
|
|
|
|
tab_it.after(alt_part_elem);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++alt_part_count < num_parts_new);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
else if (found_last)
|
|
|
|
{
|
|
|
|
my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
tab_it.remove();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (found_first)
|
|
|
|
found_last= TRUE;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++part_count < tab_part_info->num_parts);
|
|
|
|
if (drop_count != num_parts_reorged)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->num_parts= check_total_partitions;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(FALSE);
|
|
|
|
}
|
|
|
|
*partition_changed= TRUE;
|
2006-03-18 18:48:21 +04:00
|
|
|
thd->work_part_info= tab_part_info;
|
2008-01-09 13:15:50 +01:00
|
|
|
if (alter_info->flags & ALTER_ADD_PARTITION ||
|
|
|
|
alter_info->flags & ALTER_REORGANIZE_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-03-11 06:32:24 -08:00
|
|
|
if (tab_part_info->use_default_subpartitions &&
|
2006-03-11 05:56:06 -08:00
|
|
|
!alt_part_info->use_default_subpartitions)
|
|
|
|
{
|
|
|
|
tab_part_info->use_default_subpartitions= FALSE;
|
2009-10-01 15:04:42 +02:00
|
|
|
tab_part_info->use_default_num_subpartitions= FALSE;
|
2006-03-11 05:56:06 -08:00
|
|
|
}
|
2006-04-17 22:51:34 -04:00
|
|
|
if (tab_part_info->check_partition_info(thd, (handlerton**)NULL,
|
2009-09-15 17:07:52 +02:00
|
|
|
table->file, ULL(0), TRUE))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
/*
|
|
|
|
The check below needs to be performed after check_partition_info
|
|
|
|
since this function "fixes" the item trees of the new partitions
|
|
|
|
to reorganize into
|
|
|
|
*/
|
|
|
|
if (alter_info->flags == ALTER_REORGANIZE_PARTITION &&
|
|
|
|
tab_part_info->part_type == RANGE_PARTITION &&
|
|
|
|
((is_last_partition_reorged &&
|
|
|
|
(tab_part_info->column_list ?
|
|
|
|
(tab_part_info->compare_column_values(
|
|
|
|
alt_max_elem_val->col_val_array,
|
|
|
|
tab_max_elem_val->col_val_array) < 0) :
|
|
|
|
alt_max_range < tab_max_range)) ||
|
|
|
|
(!is_last_partition_reorged &&
|
|
|
|
(tab_part_info->column_list ?
|
|
|
|
(tab_part_info->compare_column_values(
|
|
|
|
alt_max_elem_val->col_val_array,
|
|
|
|
tab_max_elem_val->col_val_array) != 0) :
|
|
|
|
alt_max_range != tab_max_range))))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
/*
|
|
|
|
For range partitioning the total resulting range before and
|
|
|
|
after the change must be the same except in one case. This is
|
|
|
|
when the last partition is reorganised, in this case it is
|
|
|
|
acceptable to increase the total range.
|
|
|
|
The reason is that it is not allowed to have "holes" in the
|
|
|
|
middle of the ranges and thus we should not allow to reorganise
|
|
|
|
to create "holes".
|
|
|
|
*/
|
|
|
|
my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
When thd->lex->part_info has a reference to a partition_info the
|
|
|
|
ALTER TABLE contained a definition of a partitioning.
|
|
|
|
|
|
|
|
Case I:
|
|
|
|
If there was a partition before and there is a new one defined.
|
|
|
|
We use the new partitioning. The new partitioning is already
|
|
|
|
defined in the correct variable so no work is needed to
|
|
|
|
accomplish this.
|
|
|
|
We do however need to update partition_changed to ensure that not
|
|
|
|
only the frm file is changed in the ALTER TABLE command.
|
|
|
|
|
|
|
|
Case IIa:
|
|
|
|
There was a partitioning before and there is no new one defined.
|
2006-03-20 14:36:21 -05:00
|
|
|
Also the user has not specified to remove partitioning explicitly.
|
2006-01-17 08:40:00 +01:00
|
|
|
|
|
|
|
We use the old partitioning also for the new table. We do this
|
|
|
|
by assigning the partition_info from the table loaded in
|
Bug#26379 - Combination of FLUSH TABLE and REPAIR TABLE
corrupts a MERGE table
Bug 26867 - LOCK TABLES + REPAIR + merge table result in
memory/cpu hogging
Bug 26377 - Deadlock with MERGE and FLUSH TABLE
Bug 25038 - Waiting TRUNCATE
Bug 25700 - merge base tables get corrupted by
optimize/analyze/repair table
Bug 30275 - Merge tables: flush tables or unlock tables
causes server to crash
Bug 19627 - temporary merge table locking
Bug 27660 - Falcon: merge table possible
Bug 30273 - merge tables: Can't lock file (errno: 155)
The problems were:
Bug 26379 - Combination of FLUSH TABLE and REPAIR TABLE
corrupts a MERGE table
1. A thread trying to lock a MERGE table performs busy waiting while
REPAIR TABLE or a similar table administration task is ongoing on
one or more of its MyISAM tables.
2. A thread trying to lock a MERGE table performs busy waiting until all
threads that did REPAIR TABLE or similar table administration tasks
on one or more of its MyISAM tables in LOCK TABLES segments do UNLOCK
TABLES. The difference against problem #1 is that the busy waiting
takes place *after* the administration task. It is terminated by
UNLOCK TABLES only.
3. Two FLUSH TABLES within a LOCK TABLES segment can invalidate the
lock. This does *not* require a MERGE table. The first FLUSH TABLES
can be replaced by any statement that requires other threads to
reopen the table. In 5.0 and 5.1 a single FLUSH TABLES can provoke
the problem.
Bug 26867 - LOCK TABLES + REPAIR + merge table result in
memory/cpu hogging
Trying DML on a MERGE table, which has a child locked and
repaired by another thread, made an infinite loop in the server.
Bug 26377 - Deadlock with MERGE and FLUSH TABLE
Locking a MERGE table and its children in parent-child order
and flushing the child deadlocked the server.
Bug 25038 - Waiting TRUNCATE
Truncating a MERGE child, while the MERGE table was in use,
let the truncate fail instead of waiting for the table to
become free.
Bug 25700 - merge base tables get corrupted by
optimize/analyze/repair table
Repairing a child of an open MERGE table corrupted the child.
It was necessary to FLUSH the child first.
Bug 30275 - Merge tables: flush tables or unlock tables
causes server to crash
Flushing and optimizing locked MERGE children crashed the server.
Bug 19627 - temporary merge table locking
Use of a temporary MERGE table with non-temporary children
could corrupt the children.
Temporary tables are never locked. So we do now prohibit
non-temporary chidlren of a temporary MERGE table.
Bug 27660 - Falcon: merge table possible
It was possible to create a MERGE table with non-MyISAM children.
Bug 30273 - merge tables: Can't lock file (errno: 155)
This was a Windows-only bug. Table administration statements
sometimes failed with "Can't lock file (errno: 155)".
These bugs are fixed by a new implementation of MERGE table open.
When opening a MERGE table in open_tables() we do now add the
child tables to the list of tables to be opened by open_tables()
(the "query_list"). The children are not opened in the handler at
this stage.
After opening the parent, open_tables() opens each child from the
now extended query_list. When the last child is opened, we remove
the children from the query_list again and attach the children to
the parent. This behaves similar to the old open. However it does
not open the MyISAM tables directly, but grabs them from the already
open children.
When closing a MERGE table in close_thread_table() we detach the
children only. Closing of the children is done implicitly because
they are in thd->open_tables.
For more detail see the comment at the top of ha_myisammrg.cc.
Changed from open_ltable() to open_and_lock_tables() in all places
that can be relevant for MERGE tables. The latter can handle tables
added to the list on the fly. When open_ltable() was used in a loop
over a list of tables, the list must be temporarily terminated
after every table for open_and_lock_tables().
table_list->required_type is set to FRMTYPE_TABLE to avoid open of
special tables. Handling of derived tables is suppressed.
These details are handled by the new function
open_n_lock_single_table(), which has nearly the same signature as
open_ltable() and can replace it in most cases.
In reopen_tables() some of the tables open by a thread can be
closed and reopened. When a MERGE child is affected, the parent
must be closed and reopened too. Closing of the parent is forced
before the first child is closed. Reopen happens in the order of
thd->open_tables. MERGE parents do not attach their children
automatically at open. This is done after all tables are reopened.
So all children are open when attaching them.
Special lock handling like mysql_lock_abort() or mysql_lock_remove()
needs to be suppressed for MERGE children or forwarded to the parent.
This depends on the situation. In loops over all open tables one
suppresses child lock handling. When a single table is touched,
forwarding is done.
Behavioral changes:
===================
This patch changes the behavior of temporary MERGE tables.
Temporary MERGE must have temporary children.
The old behavior was wrong. A temporary table is not locked. Hence
even non-temporary children were not locked. See
Bug 19627 - temporary merge table locking.
You cannot change the union list of a non-temporary MERGE table
when LOCK TABLES is in effect. The following does *not* work:
CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;
However, you can do this with a temporary MERGE table.
You cannot create a MERGE table with CREATE ... SELECT, neither
as a temporary MERGE table, nor as a non-temporary MERGE table.
CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;
Gives error message: table is not BASE TABLE.
2007-11-15 20:25:43 +01:00
|
|
|
open_table to the partition_info struct used by mysql_create_table
|
2006-01-17 08:40:00 +01:00
|
|
|
later in this method.
|
|
|
|
|
|
|
|
Case IIb:
|
|
|
|
There was a partitioning before and there is no new one defined.
|
2006-03-20 14:36:21 -05:00
|
|
|
The user has specified explicitly to remove partitioning
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2006-03-20 14:36:21 -05:00
|
|
|
Since the user has specified explicitly to remove partitioning
|
|
|
|
we override the old partitioning info and create a new table using
|
|
|
|
the specified engine.
|
2006-01-17 08:40:00 +01:00
|
|
|
In this case the partition also is changed.
|
|
|
|
|
|
|
|
Case III:
|
|
|
|
There was no partitioning before altering the table, there is
|
|
|
|
partitioning defined in the altered table. Use the new partitioning.
|
|
|
|
No work needed since the partitioning info is already in the
|
|
|
|
correct variable.
|
|
|
|
|
|
|
|
In this case we discover one case where the new partitioning is using
|
|
|
|
the same partition function as the default (PARTITION BY KEY or
|
|
|
|
PARTITION BY LINEAR KEY with the list of fields equal to the primary
|
|
|
|
key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
|
|
|
|
key)
|
|
|
|
Also here partition has changed and thus a new table must be
|
|
|
|
created.
|
|
|
|
|
|
|
|
Case IV:
|
|
|
|
There was no partitioning before and no partitioning defined.
|
|
|
|
Obviously no work needed.
|
|
|
|
*/
|
|
|
|
if (table->part_info)
|
|
|
|
{
|
2006-03-29 14:27:36 +03:00
|
|
|
if (alter_info->flags & ALTER_REMOVE_PARTITIONING)
|
2006-03-20 14:36:21 -05:00
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("Remove partitioning"));
|
2006-05-08 21:41:10 -04:00
|
|
|
if (!(create_info->used_fields & HA_CREATE_USED_ENGINE))
|
2006-03-20 14:36:21 -05:00
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("No explicit engine used"));
|
|
|
|
create_info->db_type= table->part_info->default_engine_type;
|
|
|
|
}
|
2006-05-31 18:07:32 +02:00
|
|
|
DBUG_PRINT("info", ("New engine type: %s",
|
2007-03-02 08:43:45 -08:00
|
|
|
ha_resolve_storage_engine_name(create_info->db_type)));
|
2006-03-20 22:47:48 -05:00
|
|
|
thd->work_part_info= NULL;
|
2006-03-20 14:36:21 -05:00
|
|
|
*partition_changed= TRUE;
|
|
|
|
}
|
2006-03-20 22:47:48 -05:00
|
|
|
else if (!thd->work_part_info)
|
2006-03-20 14:36:21 -05:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Retain partitioning but possibly with a new storage engine
|
|
|
|
beneath.
|
|
|
|
*/
|
2006-03-18 18:48:21 +04:00
|
|
|
thd->work_part_info= table->part_info;
|
2006-05-08 21:41:10 -04:00
|
|
|
if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
|
2006-03-20 14:36:21 -05:00
|
|
|
create_info->db_type != table->part_info->default_engine_type)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Make sure change of engine happens to all partitions.
|
|
|
|
*/
|
2006-04-22 04:38:19 -04:00
|
|
|
DBUG_PRINT("info", ("partition changed"));
|
2006-05-10 12:53:40 -04:00
|
|
|
if (table->part_info->is_auto_partitioned)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
If the user originally didn't specify partitioning to be
|
|
|
|
used we can remove it now.
|
|
|
|
*/
|
|
|
|
thd->work_part_info= NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Ensure that all partitions have the proper engine set-up
|
|
|
|
*/
|
|
|
|
set_engine_all_partitions(thd->work_part_info,
|
|
|
|
create_info->db_type);
|
|
|
|
}
|
2006-03-20 14:36:21 -05:00
|
|
|
*partition_changed= TRUE;
|
|
|
|
}
|
|
|
|
}
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2006-03-18 18:48:21 +04:00
|
|
|
if (thd->work_part_info)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-03-20 23:55:10 -05:00
|
|
|
partition_info *part_info= thd->work_part_info;
|
2006-03-20 14:36:21 -05:00
|
|
|
bool is_native_partitioned= FALSE;
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
Need to cater for engine types that can handle partition without
|
|
|
|
using the partition handler.
|
|
|
|
*/
|
2006-03-18 18:48:21 +04:00
|
|
|
if (thd->work_part_info != table->part_info)
|
2006-04-22 04:38:19 -04:00
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("partition changed"));
|
2006-01-17 08:40:00 +01:00
|
|
|
*partition_changed= TRUE;
|
2009-10-16 16:16:06 +02:00
|
|
|
if (thd->work_part_info->fix_parser_data(thd))
|
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-04-22 04:38:19 -04:00
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
/*
|
|
|
|
Set up partition default_engine_type either from the create_info
|
|
|
|
or from the previus table
|
|
|
|
*/
|
|
|
|
if (create_info->used_fields & HA_CREATE_USED_ENGINE)
|
|
|
|
part_info->default_engine_type= create_info->db_type;
|
|
|
|
else
|
2007-10-31 16:01:29 +04:00
|
|
|
{
|
2008-01-09 13:15:50 +01:00
|
|
|
if (table->part_info)
|
2007-10-31 16:01:29 +04:00
|
|
|
part_info->default_engine_type= table->part_info->default_engine_type;
|
2008-01-09 13:15:50 +01:00
|
|
|
else
|
|
|
|
part_info->default_engine_type= create_info->db_type;
|
2007-10-31 16:01:29 +04:00
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
DBUG_ASSERT(part_info->default_engine_type &&
|
|
|
|
part_info->default_engine_type != partition_hton);
|
2006-03-20 14:36:21 -05:00
|
|
|
if (check_native_partitioned(create_info, &is_native_partitioned,
|
|
|
|
part_info, thd))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-03-20 14:36:21 -05:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
2006-03-20 14:36:21 -05:00
|
|
|
if (!is_native_partitioned)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-05-28 14:51:01 +02:00
|
|
|
DBUG_ASSERT(create_info->db_type);
|
2006-09-15 10:28:00 -07:00
|
|
|
create_info->db_type= partition_hton;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
|
|
|
|
partitions. This method is used to implement both single-phase and multi-
|
|
|
|
phase implementations of ADD/REORGANIZE/COALESCE partitions.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
mysql_change_partitions()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Failure
|
|
|
|
FALSE Success
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Request handler to add partitions as set in states of the partition
|
|
|
|
|
|
|
|
Elements of the lpt parameters used:
|
|
|
|
create_info Create information used to create partitions
|
|
|
|
db Database name
|
|
|
|
table_name Table name
|
|
|
|
copied Output parameter where number of copied
|
|
|
|
records are added
|
|
|
|
deleted Output parameter where number of deleted
|
|
|
|
records are added
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
|
|
{
|
|
|
|
char path[FN_REFLEN+1];
|
2006-02-14 14:22:21 +01:00
|
|
|
int error;
|
|
|
|
handler *file= lpt->table->file;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("mysql_change_partitions");
|
|
|
|
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
|
2007-12-20 21:16:55 +03:00
|
|
|
if ((error= file->ha_change_partitions(lpt->create_info, path, &lpt->copied,
|
|
|
|
&lpt->deleted, lpt->pack_frm_data,
|
|
|
|
lpt->pack_frm_len)))
|
2006-04-15 21:49:13 -04:00
|
|
|
{
|
2009-11-10 18:31:28 -02:00
|
|
|
file->print_error(error, MYF(error != ER_OUTOFMEMORY ? 0 : ME_FATALERROR));
|
2006-04-15 21:49:13 -04:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Rename partitions in an ALTER TABLE of partitions
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
mysql_rename_partitions()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Failure
|
|
|
|
FALSE Success
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Request handler to rename partitions as set in states of the partition
|
|
|
|
|
|
|
|
Parameters used:
|
|
|
|
db Database name
|
|
|
|
table_name Table name
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
|
|
{
|
|
|
|
char path[FN_REFLEN+1];
|
2006-02-14 14:22:21 +01:00
|
|
|
int error;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("mysql_rename_partitions");
|
|
|
|
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
|
2007-12-20 21:16:55 +03:00
|
|
|
if ((error= lpt->table->file->ha_rename_partitions(path)))
|
2006-02-14 14:22:21 +01:00
|
|
|
{
|
|
|
|
if (error != 1)
|
|
|
|
lpt->table->file->print_error(error, MYF(0));
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Drop partitions in an ALTER TABLE of partitions
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
mysql_drop_partitions()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Failure
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
|
|
Drop the partitions marked with PART_TO_BE_DROPPED state and remove
|
|
|
|
those partitions from the list.
|
|
|
|
|
|
|
|
Parameters used:
|
|
|
|
table Table object
|
|
|
|
db Database name
|
|
|
|
table_name Table name
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
|
|
{
|
|
|
|
char path[FN_REFLEN+1];
|
|
|
|
partition_info *part_info= lpt->table->part_info;
|
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
|
|
uint i= 0;
|
|
|
|
uint remove_count= 0;
|
2006-02-14 14:22:21 +01:00
|
|
|
int error;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("mysql_drop_partitions");
|
|
|
|
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db, lpt->table_name, "", 0);
|
2007-12-20 21:16:55 +03:00
|
|
|
if ((error= lpt->table->file->ha_drop_partitions(path)))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-14 14:22:21 +01:00
|
|
|
lpt->table->file->print_error(error, MYF(0));
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
if (part_elem->part_state == PART_IS_DROPPED)
|
|
|
|
{
|
|
|
|
part_it.remove();
|
|
|
|
remove_count++;
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < part_info->num_parts);
|
|
|
|
part_info->num_parts-= remove_count;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-09 11:05:05 +01:00
|
|
|
/*
|
|
|
|
Insert log entry into list
|
|
|
|
SYNOPSIS
|
|
|
|
insert_part_info_log_entry_list()
|
|
|
|
log_entry
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static void insert_part_info_log_entry_list(partition_info *part_info,
|
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
log_entry->next_active_log_entry= part_info->first_log_entry;
|
|
|
|
part_info->first_log_entry= log_entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Release all log entries for this partition info struct
|
|
|
|
SYNOPSIS
|
|
|
|
release_part_info_log_entries()
|
|
|
|
first_log_entry First log entry in list to release
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
DBUG_ENTER("release_part_info_log_entries");
|
|
|
|
|
|
|
|
while (log_entry)
|
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
release_ddl_log_memory_entry(log_entry);
|
2006-02-09 20:20:21 +01:00
|
|
|
log_entry= log_entry->next_active_log_entry;
|
2006-02-09 11:05:05 +01:00
|
|
|
}
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-01 14:00:00 +01:00
|
|
|
/*
|
2006-02-09 20:20:22 +01:00
|
|
|
Log an delete/rename frm file
|
2006-02-01 14:00:00 +01:00
|
|
|
SYNOPSIS
|
2006-02-13 13:52:23 +01:00
|
|
|
write_log_replace_delete_frm()
|
2006-02-09 20:20:22 +01:00
|
|
|
lpt Struct for parameters
|
|
|
|
next_entry Next reference to use in log record
|
2006-04-19 20:04:00 -04:00
|
|
|
from_path Name to rename from
|
|
|
|
to_path Name to rename to
|
|
|
|
replace_flag TRUE if replace, else delete
|
2006-02-01 14:00:00 +01:00
|
|
|
RETURN VALUES
|
2006-02-09 20:20:22 +01:00
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
2006-02-01 14:00:00 +01:00
|
|
|
DESCRIPTION
|
2006-02-13 13:52:23 +01:00
|
|
|
Support routine that writes a replace or delete of an frm file into the
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl log. It also inserts an entry that keeps track of used space into
|
2006-02-09 20:20:22 +01:00
|
|
|
the partition info object
|
2006-02-01 14:00:00 +01:00
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
uint next_entry,
|
|
|
|
const char *from_path,
|
|
|
|
const char *to_path,
|
|
|
|
bool replace_flag)
|
2006-02-01 14:00:00 +01:00
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
2006-02-14 11:08:58 +01:00
|
|
|
DBUG_ENTER("write_log_replace_delete_frm");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2006-02-13 13:52:23 +01:00
|
|
|
if (replace_flag)
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
2006-02-09 20:20:22 +01:00
|
|
|
else
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
|
|
|
|
ddl_log_entry.next_entry= next_entry;
|
2006-04-19 20:04:00 -04:00
|
|
|
ddl_log_entry.handler_name= reg_ext;
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.name= to_path;
|
2006-02-13 13:52:23 +01:00
|
|
|
if (replace_flag)
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.from_name= from_path;
|
|
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
2006-02-09 20:20:22 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
2006-02-09 21:23:45 -05:00
|
|
|
insert_part_info_log_entry_list(lpt->part_info, log_entry);
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Log final partition changes in change partition
|
|
|
|
SYNOPSIS
|
|
|
|
write_log_changed_partitions()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
2006-02-10 22:36:01 +01:00
|
|
|
DESCRIPTION
|
|
|
|
This code is used to perform safe ADD PARTITION for HASH partitions
|
|
|
|
and COALESCE for HASH partitions and REORGANIZE for any type of
|
|
|
|
partitions.
|
|
|
|
We prepare entries for all partitions except the reorganised partitions
|
|
|
|
in REORGANIZE partition, those are handled by
|
|
|
|
write_log_dropped_partitions. For those partitions that are replaced
|
|
|
|
special care is needed to ensure that this is performed correctly and
|
|
|
|
this requires a two-phased approach with this log as a helper for this.
|
|
|
|
|
|
|
|
This code is closely intertwined with the code in rename_partitions in
|
|
|
|
the partition handler.
|
2006-02-09 21:23:45 -05:00
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
uint *next_entry, const char *path)
|
2006-02-09 21:23:45 -05:00
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
2006-02-10 22:36:01 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
2008-11-12 13:36:53 +01:00
|
|
|
char tmp_path[FN_REFLEN];
|
|
|
|
char normal_path[FN_REFLEN];
|
2006-02-10 22:36:01 +01:00
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
|
|
uint temp_partitions= part_info->temp_partitions.elements;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_elements= part_info->partitions.elements;
|
2006-02-10 22:36:01 +01:00
|
|
|
uint i= 0;
|
2006-02-09 21:23:45 -05:00
|
|
|
DBUG_ENTER("write_log_changed_partitions");
|
2006-02-10 22:36:01 +01:00
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *part_elem= part_it++;
|
|
|
|
if (part_elem->part_state == PART_IS_CHANGED ||
|
|
|
|
(part_elem->part_state == PART_IS_ADDED && temp_partitions))
|
|
|
|
{
|
2006-03-22 00:17:22 -05:00
|
|
|
if (part_info->is_sub_partitioned())
|
2006-02-10 22:36:01 +01:00
|
|
|
{
|
|
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_subparts= part_info->num_subparts;
|
2006-02-10 22:36:01 +01:00
|
|
|
uint j= 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *sub_elem= sub_it++;
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
|
|
ddl_log_entry.handler_name=
|
2006-02-10 22:36:01 +01:00
|
|
|
ha_resolve_storage_engine_name(sub_elem->engine_type);
|
|
|
|
create_subpartition_name(tmp_path, path,
|
|
|
|
part_elem->partition_name,
|
|
|
|
sub_elem->partition_name,
|
|
|
|
TEMP_PART_NAME);
|
|
|
|
create_subpartition_name(normal_path, path,
|
|
|
|
part_elem->partition_name,
|
|
|
|
sub_elem->partition_name,
|
|
|
|
NORMAL_PART_NAME);
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.name= normal_path;
|
|
|
|
ddl_log_entry.from_name= tmp_path;
|
2006-02-10 22:36:01 +01:00
|
|
|
if (part_elem->part_state == PART_IS_CHANGED)
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
2006-02-10 22:36:01 +01:00
|
|
|
else
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
|
|
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
2006-02-10 22:36:01 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
*next_entry= log_entry->entry_pos;
|
|
|
|
sub_elem->log_entry= log_entry;
|
|
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++j < num_subparts);
|
2006-02-10 22:36:01 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
|
|
ddl_log_entry.handler_name=
|
2006-02-10 22:36:01 +01:00
|
|
|
ha_resolve_storage_engine_name(part_elem->engine_type);
|
|
|
|
create_partition_name(tmp_path, path,
|
|
|
|
part_elem->partition_name,
|
|
|
|
TEMP_PART_NAME, TRUE);
|
|
|
|
create_partition_name(normal_path, path,
|
|
|
|
part_elem->partition_name,
|
|
|
|
NORMAL_PART_NAME, TRUE);
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.name= normal_path;
|
|
|
|
ddl_log_entry.from_name= tmp_path;
|
2006-02-10 22:36:01 +01:00
|
|
|
if (part_elem->part_state == PART_IS_CHANGED)
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
|
2006-02-10 22:36:01 +01:00
|
|
|
else
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
|
|
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
2006-02-10 22:36:01 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
*next_entry= log_entry->entry_pos;
|
2006-02-11 00:41:52 -05:00
|
|
|
part_elem->log_entry= log_entry;
|
2006-02-10 22:36:01 +01:00
|
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
|
|
}
|
|
|
|
}
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++i < num_elements);
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_RETURN(FALSE);
|
2006-02-09 11:05:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Log dropped partitions
|
|
|
|
SYNOPSIS
|
|
|
|
write_log_dropped_partitions()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
uint *next_entry,
|
|
|
|
const char *path,
|
|
|
|
bool temp_list)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_ENTRY ddl_log_entry;
|
2006-02-09 11:05:05 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
2006-02-09 11:05:05 +01:00
|
|
|
char tmp_path[FN_LEN];
|
|
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
2006-02-09 20:20:22 +01:00
|
|
|
List_iterator<partition_element> temp_it(part_info->temp_partitions);
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_temp_partitions= part_info->temp_partitions.elements;
|
|
|
|
uint num_elements= part_info->partitions.elements;
|
2006-02-09 11:05:05 +01:00
|
|
|
DBUG_ENTER("write_log_dropped_partitions");
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
|
2006-02-09 20:20:22 +01:00
|
|
|
if (temp_list)
|
2009-10-01 15:04:42 +02:00
|
|
|
num_elements= num_temp_partitions;
|
|
|
|
while (num_elements--)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
2006-02-09 20:20:22 +01:00
|
|
|
partition_element *part_elem;
|
|
|
|
if (temp_list)
|
|
|
|
part_elem= temp_it++;
|
|
|
|
else
|
|
|
|
part_elem= part_it++;
|
2006-02-09 11:05:05 +01:00
|
|
|
if (part_elem->part_state == PART_TO_BE_DROPPED ||
|
2006-02-09 20:20:22 +01:00
|
|
|
part_elem->part_state == PART_TO_BE_ADDED ||
|
|
|
|
part_elem->part_state == PART_CHANGED)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
2006-02-09 20:20:22 +01:00
|
|
|
uint name_variant;
|
|
|
|
if (part_elem->part_state == PART_CHANGED ||
|
|
|
|
(part_elem->part_state == PART_TO_BE_ADDED &&
|
2009-10-01 15:04:42 +02:00
|
|
|
num_temp_partitions))
|
2006-02-09 20:20:22 +01:00
|
|
|
name_variant= TEMP_PART_NAME;
|
|
|
|
else
|
|
|
|
name_variant= NORMAL_PART_NAME;
|
2006-03-22 00:17:22 -05:00
|
|
|
if (part_info->is_sub_partitioned())
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_subparts= part_info->num_subparts;
|
2006-02-09 14:20:20 -05:00
|
|
|
uint j= 0;
|
2006-02-09 11:05:05 +01:00
|
|
|
do
|
|
|
|
{
|
|
|
|
partition_element *sub_elem= sub_it++;
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
|
|
ddl_log_entry.handler_name=
|
2006-02-09 20:20:22 +01:00
|
|
|
ha_resolve_storage_engine_name(sub_elem->engine_type);
|
2006-02-09 11:05:05 +01:00
|
|
|
create_subpartition_name(tmp_path, path,
|
|
|
|
part_elem->partition_name,
|
|
|
|
sub_elem->partition_name,
|
2006-02-09 20:20:22 +01:00
|
|
|
name_variant);
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.name= tmp_path;
|
|
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
*next_entry= log_entry->entry_pos;
|
2006-05-27 16:34:13 -04:00
|
|
|
sub_elem->log_entry= log_entry;
|
2006-02-09 11:05:05 +01:00
|
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
2009-10-01 15:04:42 +02:00
|
|
|
} while (++j < num_subparts);
|
2006-02-09 11:05:05 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.next_entry= *next_entry;
|
|
|
|
ddl_log_entry.handler_name=
|
2006-02-09 11:05:05 +01:00
|
|
|
ha_resolve_storage_engine_name(part_elem->engine_type);
|
|
|
|
create_partition_name(tmp_path, path,
|
|
|
|
part_elem->partition_name,
|
2006-02-09 20:20:22 +01:00
|
|
|
name_variant, TRUE);
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl_log_entry.name= tmp_path;
|
|
|
|
if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
*next_entry= log_entry->entry_pos;
|
2006-05-27 16:34:13 -04:00
|
|
|
part_elem->log_entry= log_entry;
|
2006-02-09 11:05:05 +01:00
|
|
|
insert_part_info_log_entry_list(part_info, log_entry);
|
|
|
|
}
|
|
|
|
}
|
2006-02-09 20:20:22 +01:00
|
|
|
}
|
2006-02-01 14:00:00 +01:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-10 12:30:51 +01:00
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
Set execute log entry in ddl log for this partitioned table
|
2006-02-10 12:30:51 +01:00
|
|
|
SYNOPSIS
|
|
|
|
set_part_info_exec_log_entry()
|
|
|
|
part_info Partition info object
|
|
|
|
exec_log_entry Log entry
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static void set_part_info_exec_log_entry(partition_info *part_info,
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry)
|
2006-02-10 12:30:51 +01:00
|
|
|
{
|
|
|
|
part_info->exec_log_entry= exec_log_entry;
|
|
|
|
exec_log_entry->next_active_log_entry= NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-01 14:00:00 +01:00
|
|
|
/*
|
2006-02-09 20:20:22 +01:00
|
|
|
Write the log entry to ensure that the shadow frm file is removed at
|
|
|
|
crash.
|
|
|
|
SYNOPSIS
|
|
|
|
write_log_drop_shadow_frm()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
install_frm Should we log action to install shadow frm or should
|
|
|
|
the action be to remove the shadow frm file.
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
2006-03-24 18:19:13 -05:00
|
|
|
Prepare an entry to the ddl log indicating a drop/install of the shadow frm
|
2006-02-09 20:20:22 +01:00
|
|
|
file and its corresponding handler file.
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-02-09 20:20:22 +01:00
|
|
|
{
|
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
|
2009-06-19 13:24:43 +05:00
|
|
|
char shadow_path[FN_REFLEN + 1];
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_ENTER("write_log_drop_shadow_frm");
|
2006-02-01 14:00:00 +01:00
|
|
|
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
if (write_log_replace_delete_frm(lpt, 0UL, NULL,
|
|
|
|
(const char*)shadow_path, FALSE))
|
|
|
|
goto error;
|
|
|
|
log_entry= part_info->first_log_entry;
|
|
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
|
|
FALSE, &exec_log_entry))
|
|
|
|
goto error;
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
set_part_info_exec_log_entry(part_info, exec_log_entry);
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
|
|
|
|
error:
|
2006-02-09 20:20:22 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
2006-03-24 18:19:13 -05:00
|
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Log renaming of shadow frm to real frm name and dropping of old frm
|
2006-02-01 14:00:00 +01:00
|
|
|
SYNOPSIS
|
2006-02-09 20:20:22 +01:00
|
|
|
write_log_rename_frm()
|
2006-02-01 14:00:00 +01:00
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
2006-02-09 20:20:22 +01:00
|
|
|
Prepare an entry to ensure that we complete the renaming of the frm
|
|
|
|
file if failure occurs in the middle of the rename process.
|
2006-02-01 14:00:00 +01:00
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-02-01 14:00:00 +01:00
|
|
|
{
|
2006-02-09 11:05:05 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
2009-06-19 13:24:43 +05:00
|
|
|
char path[FN_REFLEN + 1];
|
|
|
|
char shadow_path[FN_REFLEN + 1];
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
2006-02-10 12:30:51 +01:00
|
|
|
DBUG_ENTER("write_log_rename_frm");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "", 0);
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-04-19 20:04:00 -04:00
|
|
|
if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
|
2006-03-24 18:19:13 -05:00
|
|
|
goto error;
|
|
|
|
log_entry= part_info->first_log_entry;
|
|
|
|
part_info->frm_log_entry= log_entry;
|
|
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
|
|
FALSE, &exec_log_entry))
|
|
|
|
goto error;
|
|
|
|
release_part_info_log_entries(old_first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
|
|
|
|
error:
|
2006-02-09 11:05:05 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= old_first_log_entry;
|
2006-02-13 13:52:23 +01:00
|
|
|
part_info->frm_log_entry= NULL;
|
2006-03-24 18:19:13 -05:00
|
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
2006-02-09 11:05:05 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-02-01 14:00:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-02-09 20:20:22 +01:00
|
|
|
Write the log entries to ensure that the drop partition command is completed
|
|
|
|
even in the presence of a crash.
|
2006-02-01 14:00:00 +01:00
|
|
|
|
|
|
|
SYNOPSIS
|
2006-02-09 20:20:22 +01:00
|
|
|
write_log_drop_partition()
|
2006-02-01 14:00:00 +01:00
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
2006-03-24 18:19:13 -05:00
|
|
|
Prepare entries to the ddl log indicating all partitions to drop and to
|
2006-02-09 20:20:22 +01:00
|
|
|
install the shadow frm file and remove the old frm file.
|
2006-02-01 14:00:00 +01:00
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-02-01 14:00:00 +01:00
|
|
|
{
|
2006-02-09 11:05:05 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
2009-06-19 13:24:43 +05:00
|
|
|
char tmp_path[FN_REFLEN + 1];
|
|
|
|
char path[FN_REFLEN + 1];
|
2006-02-09 20:20:22 +01:00
|
|
|
uint next_entry= 0;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_ENTER("write_log_drop_partition");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2006-02-09 11:05:05 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "", 0);
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(tmp_path, sizeof(tmp_path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "#", 0);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
|
|
|
FALSE))
|
|
|
|
goto error;
|
2006-04-19 20:04:00 -04:00
|
|
|
if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path,
|
|
|
|
(const char*)path, TRUE))
|
2006-03-24 18:19:13 -05:00
|
|
|
goto error;
|
|
|
|
log_entry= part_info->first_log_entry;
|
|
|
|
part_info->frm_log_entry= log_entry;
|
|
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
|
|
FALSE, &exec_log_entry))
|
|
|
|
goto error;
|
|
|
|
release_part_info_log_entries(old_first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
|
|
|
|
error:
|
2006-02-09 11:05:05 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= old_first_log_entry;
|
2006-02-13 13:52:23 +01:00
|
|
|
part_info->frm_log_entry= NULL;
|
2006-03-24 18:19:13 -05:00
|
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
2006-02-09 11:05:05 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-02-01 14:00:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-02-09 20:20:22 +01:00
|
|
|
Write the log entries to ensure that the add partition command is not
|
|
|
|
executed at all if a crash before it has completed
|
|
|
|
|
2006-02-01 14:00:00 +01:00
|
|
|
SYNOPSIS
|
2006-02-09 20:20:22 +01:00
|
|
|
write_log_add_change_partition()
|
2006-02-01 14:00:00 +01:00
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
2006-03-24 18:19:13 -05:00
|
|
|
Prepare entries to the ddl log indicating all partitions to drop and to
|
2006-02-09 20:20:22 +01:00
|
|
|
remove the shadow frm file.
|
2006-03-24 18:19:13 -05:00
|
|
|
We always inject entries backwards in the list in the ddl log since we
|
2006-02-09 20:20:22 +01:00
|
|
|
don't know the entry position until we have written it.
|
2006-02-01 14:00:00 +01:00
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-02-01 14:00:00 +01:00
|
|
|
{
|
2006-02-09 20:20:22 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
|
2009-06-19 13:24:43 +05:00
|
|
|
char tmp_path[FN_REFLEN + 1];
|
|
|
|
char path[FN_REFLEN + 1];
|
2006-02-09 20:20:22 +01:00
|
|
|
uint next_entry= 0;
|
|
|
|
DBUG_ENTER("write_log_add_change_partition");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "", 0);
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(tmp_path, sizeof(tmp_path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "#", 0);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
|
|
|
FALSE))
|
|
|
|
goto error;
|
|
|
|
if (write_log_replace_delete_frm(lpt, next_entry, NULL, tmp_path,
|
|
|
|
FALSE))
|
|
|
|
goto error;
|
|
|
|
log_entry= part_info->first_log_entry;
|
|
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
|
|
FALSE, &exec_log_entry))
|
|
|
|
goto error;
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
set_part_info_exec_log_entry(part_info, exec_log_entry);
|
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
|
|
|
|
error:
|
2006-02-09 20:20:22 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
2006-03-24 18:19:13 -05:00
|
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-02-01 14:00:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Write description of how to complete the operation after first phase of
|
|
|
|
change partitions.
|
|
|
|
|
|
|
|
SYNOPSIS
|
2006-02-09 20:20:22 +01:00
|
|
|
write_log_final_change_partition()
|
2006-02-01 14:00:00 +01:00
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
|
|
We will write log entries that specify to remove all partitions reorganised,
|
|
|
|
to rename others to reflect the new naming scheme and to install the shadow
|
|
|
|
frm file.
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-02-01 14:00:00 +01:00
|
|
|
{
|
2006-02-09 20:20:22 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry;
|
|
|
|
DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
|
2009-06-19 13:24:43 +05:00
|
|
|
char path[FN_REFLEN + 1];
|
|
|
|
char shadow_path[FN_REFLEN + 1];
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
|
2006-02-09 20:20:22 +01:00
|
|
|
uint next_entry= 0;
|
|
|
|
DBUG_ENTER("write_log_final_change_partition");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_filename(path, sizeof(path) - 1, lpt->db,
|
2006-08-02 17:57:06 +02:00
|
|
|
lpt->table_name, "", 0);
|
2009-06-19 13:24:43 +05:00
|
|
|
build_table_shadow_filename(shadow_path, sizeof(shadow_path) - 1, lpt);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
|
2006-05-27 16:34:13 -04:00
|
|
|
lpt->alter_info->flags & ALTER_REORGANIZE_PARTITION))
|
2006-03-24 18:19:13 -05:00
|
|
|
goto error;
|
|
|
|
if (write_log_changed_partitions(lpt, &next_entry, (const char*)path))
|
|
|
|
goto error;
|
2006-04-19 20:04:00 -04:00
|
|
|
if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
|
2006-03-24 18:19:13 -05:00
|
|
|
goto error;
|
|
|
|
log_entry= part_info->first_log_entry;
|
|
|
|
part_info->frm_log_entry= log_entry;
|
|
|
|
if (write_execute_ddl_log_entry(log_entry->entry_pos,
|
|
|
|
FALSE, &exec_log_entry))
|
|
|
|
goto error;
|
|
|
|
release_part_info_log_entries(old_first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
DBUG_RETURN(FALSE);
|
|
|
|
|
|
|
|
error:
|
2006-02-09 20:20:22 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->first_log_entry= old_first_log_entry;
|
2006-02-13 13:52:23 +01:00
|
|
|
part_info->frm_log_entry= NULL;
|
2006-03-24 18:19:13 -05:00
|
|
|
my_error(ER_DDL_LOG_ERROR, MYF(0));
|
2006-02-09 20:20:22 +01:00
|
|
|
DBUG_RETURN(TRUE);
|
2006-02-01 14:00:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-03 12:05:29 -05:00
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
Remove entry from ddl log and release resources for others to use
|
2006-02-03 12:05:29 -05:00
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
write_log_completed()
|
|
|
|
lpt Struct containing parameters
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
*/
|
2006-02-09 20:20:22 +01:00
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
bool dont_crash)
|
2006-02-03 12:05:29 -05:00
|
|
|
{
|
2006-02-09 20:20:21 +01:00
|
|
|
partition_info *part_info= lpt->part_info;
|
2006-03-24 18:19:13 -05:00
|
|
|
DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry;
|
2006-02-09 20:20:21 +01:00
|
|
|
DBUG_ENTER("write_log_completed");
|
2006-02-07 10:45:07 +01:00
|
|
|
|
2006-02-10 12:30:51 +01:00
|
|
|
DBUG_ASSERT(log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-03-24 18:19:13 -05:00
|
|
|
if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry))
|
2006-02-15 11:08:08 +01:00
|
|
|
{
|
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
Failed to write, Bad...
|
2006-02-15 11:08:08 +01:00
|
|
|
We have completed the operation but have log records to REMOVE
|
|
|
|
stuff that shouldn't be removed. What clever things could one do
|
2006-04-01 16:37:36 +02:00
|
|
|
here? An error output was written to the error output by the
|
|
|
|
above method so we don't do anything here.
|
2006-02-15 11:08:08 +01:00
|
|
|
*/
|
2006-03-24 18:19:13 -05:00
|
|
|
;
|
2006-02-09 20:20:21 +01:00
|
|
|
}
|
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
|
|
release_part_info_log_entries(part_info->exec_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-10 12:30:51 +01:00
|
|
|
part_info->exec_log_entry= NULL;
|
|
|
|
part_info->first_log_entry= NULL;
|
2006-02-15 11:08:08 +01:00
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Release all log entries
|
|
|
|
SYNOPSIS
|
|
|
|
release_log_entries()
|
|
|
|
part_info Partition info struct
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
static void release_log_entries(partition_info *part_info)
|
2006-02-15 11:08:08 +01:00
|
|
|
{
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_lock(&LOCK_gdl);
|
2006-02-15 11:08:08 +01:00
|
|
|
release_part_info_log_entries(part_info->first_log_entry);
|
|
|
|
release_part_info_log_entries(part_info->exec_log_entry);
|
2006-04-15 21:49:13 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_gdl);
|
2006-02-15 11:08:08 +01:00
|
|
|
part_info->first_log_entry= NULL;
|
|
|
|
part_info->exec_log_entry= NULL;
|
2006-02-03 12:05:29 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-05-26 18:44:52 -04:00
|
|
|
/*
|
2008-01-28 15:20:55 +01:00
|
|
|
Final part of partition changes to handle things when under
|
|
|
|
LOCK TABLES.
|
|
|
|
SYNPOSIS
|
|
|
|
alter_partition_lock_handling()
|
2006-05-26 18:44:52 -04:00
|
|
|
lpt Struct carrying parameters
|
|
|
|
RETURN VALUES
|
2008-01-28 15:20:55 +01:00
|
|
|
NONE
|
2006-05-26 18:44:52 -04:00
|
|
|
*/
|
2008-02-13 11:26:24 +01:00
|
|
|
static void alter_partition_lock_handling(ALTER_PARTITION_PARAM_TYPE *lpt)
|
2006-05-26 18:44:52 -04:00
|
|
|
{
|
2009-12-02 18:22:15 +03:00
|
|
|
THD *thd= lpt->thd;
|
|
|
|
|
|
|
|
close_all_tables_for_name(thd, lpt->table->s, FALSE);
|
|
|
|
lpt->table= 0;
|
|
|
|
lpt->table_list->table= 0;
|
|
|
|
if (thd->locked_tables_list.reopen_tables(thd))
|
|
|
|
sql_print_warning("We failed to reacquire LOCKs in ALTER TABLE");
|
2006-05-26 18:44:52 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Unlock and close table before renaming and dropping partitions
|
|
|
|
SYNOPSIS
|
|
|
|
alter_close_tables()
|
|
|
|
lpt Struct carrying parameters
|
|
|
|
RETURN VALUES
|
|
|
|
0
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int alter_close_tables(ALTER_PARTITION_PARAM_TYPE *lpt)
|
|
|
|
{
|
2009-12-02 18:22:15 +03:00
|
|
|
TABLE_SHARE *share= lpt->table->s;
|
2006-05-26 18:44:52 -04:00
|
|
|
THD *thd= lpt->thd;
|
2009-12-02 18:22:15 +03:00
|
|
|
TABLE *table;
|
2006-05-26 18:44:52 -04:00
|
|
|
DBUG_ENTER("alter_close_tables");
|
|
|
|
/*
|
2009-12-02 18:22:15 +03:00
|
|
|
We must keep LOCK_open while manipulating with thd->open_tables.
|
|
|
|
Another thread may be working on it.
|
2006-05-26 18:44:52 -04:00
|
|
|
*/
|
|
|
|
pthread_mutex_lock(&LOCK_open);
|
2009-12-02 18:22:15 +03:00
|
|
|
/*
|
|
|
|
We can safely remove locks for all tables with the same name:
|
|
|
|
later they will all be closed anyway in
|
|
|
|
alter_partition_lock_handling().
|
|
|
|
*/
|
|
|
|
for (table= thd->open_tables; table ; table= table->next)
|
|
|
|
{
|
|
|
|
if (!strcmp(table->s->table_name.str, share->table_name.str) &&
|
|
|
|
!strcmp(table->s->db.str, share->db.str))
|
|
|
|
{
|
|
|
|
mysql_lock_remove(thd, thd->lock, table);
|
|
|
|
table->file->close();
|
|
|
|
table->db_stat= 0; // Mark file closed
|
|
|
|
/*
|
|
|
|
Ensure that we won't end up with a crippled table instance
|
|
|
|
in the table cache if an error occurs before we reach
|
|
|
|
alter_partition_lock_handling() and the table is closed
|
|
|
|
by close_thread_tables() instead.
|
|
|
|
*/
|
|
|
|
table->s->version= 0;
|
|
|
|
}
|
|
|
|
}
|
2006-05-26 18:44:52 -04:00
|
|
|
pthread_mutex_unlock(&LOCK_open);
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-02-14 17:03:47 +01:00
|
|
|
/*
|
|
|
|
Handle errors for ALTER TABLE for partitioning
|
|
|
|
SYNOPSIS
|
|
|
|
handle_alter_part_error()
|
|
|
|
lpt Struct carrying parameters
|
|
|
|
not_completed Was request in complete phase when error occurred
|
|
|
|
RETURN VALUES
|
|
|
|
NONE
|
|
|
|
*/
|
|
|
|
|
2006-03-24 18:19:13 -05:00
|
|
|
void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt,
|
|
|
|
bool not_completed,
|
|
|
|
bool drop_partition,
|
|
|
|
bool frm_install)
|
2006-02-14 17:03:47 +01:00
|
|
|
{
|
|
|
|
partition_info *part_info= lpt->part_info;
|
|
|
|
DBUG_ENTER("handle_alter_part_error");
|
|
|
|
|
|
|
|
if (!part_info->first_log_entry &&
|
2006-04-03 12:26:35 -04:00
|
|
|
execute_ddl_log_entry(current_thd,
|
|
|
|
part_info->first_log_entry->entry_pos))
|
2006-02-14 17:03:47 +01:00
|
|
|
{
|
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
We couldn't recover from error, most likely manual interaction
|
|
|
|
is required.
|
2006-02-14 17:03:47 +01:00
|
|
|
*/
|
2006-02-15 14:05:15 +01:00
|
|
|
write_log_completed(lpt, FALSE);
|
|
|
|
release_log_entries(part_info);
|
2006-02-15 11:08:08 +01:00
|
|
|
if (not_completed)
|
|
|
|
{
|
|
|
|
if (drop_partition)
|
|
|
|
{
|
|
|
|
/* Table is still ok, but we left a shadow frm file behind. */
|
2006-02-15 14:05:15 +01:00
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
2006-03-24 18:19:13 -05:00
|
|
|
"%s %s",
|
|
|
|
"Operation was unsuccessful, table is still intact,",
|
|
|
|
"but it is possible that a shadow frm file was left behind");
|
2006-02-15 14:05:15 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
2006-03-24 18:19:13 -05:00
|
|
|
"%s %s %s %s",
|
|
|
|
"Operation was unsuccessful, table is still intact,",
|
|
|
|
"but it is possible that a shadow frm file was left behind.",
|
|
|
|
"It is also possible that temporary partitions are left behind,",
|
|
|
|
"these could be empty or more or less filled with records");
|
2006-02-15 11:08:08 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-02-15 14:05:15 +01:00
|
|
|
if (frm_install)
|
2006-02-15 11:08:08 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Failed during install of shadow frm file, table isn't intact
|
|
|
|
and dropped partitions are still there
|
|
|
|
*/
|
2006-02-20 15:07:03 -05:00
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
2006-03-24 18:19:13 -05:00
|
|
|
"%s %s %s",
|
|
|
|
"Failed during alter of partitions, table is no longer intact.",
|
|
|
|
"The frm file is in an unknown state, and a backup",
|
|
|
|
"is required.");
|
2006-02-15 11:08:08 +01:00
|
|
|
}
|
|
|
|
else if (drop_partition)
|
|
|
|
{
|
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
Table is ok, we have switched to new table but left dropped
|
|
|
|
partitions still in their places. We remove the log records and
|
|
|
|
ask the user to perform the action manually. We remove the log
|
|
|
|
records and ask the user to perform the action manually.
|
2006-02-15 11:08:08 +01:00
|
|
|
*/
|
2006-02-20 15:07:03 -05:00
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
2006-03-24 18:19:13 -05:00
|
|
|
"%s %s",
|
|
|
|
"Failed during drop of partitions, table is intact.",
|
|
|
|
"Manual drop of remaining partitions is required");
|
2006-02-15 11:08:08 +01:00
|
|
|
}
|
2006-02-15 14:05:15 +01:00
|
|
|
else
|
2006-02-15 11:08:08 +01:00
|
|
|
{
|
2006-02-15 14:05:15 +01:00
|
|
|
/*
|
2006-03-24 18:19:13 -05:00
|
|
|
We failed during renaming of partitions. The table is most
|
|
|
|
certainly in a very bad state so we give user warning and disable
|
|
|
|
the table by writing an ancient frm version into it.
|
2006-02-15 14:05:15 +01:00
|
|
|
*/
|
2006-02-20 15:07:03 -05:00
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
|
2006-03-24 18:19:13 -05:00
|
|
|
"%s %s %s",
|
|
|
|
"Failed during renaming of partitions. We are now in a position",
|
|
|
|
"where table is not reusable",
|
|
|
|
"Table is disabled by writing ancient frm file version into it");
|
2006-02-15 11:08:08 +01:00
|
|
|
}
|
|
|
|
}
|
2006-02-14 17:03:47 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-02-15 11:08:08 +01:00
|
|
|
release_log_entries(part_info);
|
2006-02-14 17:03:47 +01:00
|
|
|
if (not_completed)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We hit an error before things were completed but managed
|
2006-02-15 11:08:08 +01:00
|
|
|
to recover from the error. An error occurred and we have
|
|
|
|
restored things to original so no need for further action.
|
2006-02-14 17:03:47 +01:00
|
|
|
*/
|
2006-02-15 11:08:08 +01:00
|
|
|
;
|
2006-02-14 17:03:47 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We hit an error after we had completed most of the operation
|
|
|
|
and were successful in a second attempt so the operation
|
2006-02-15 11:08:08 +01:00
|
|
|
actually is successful now. We need to issue a warning that
|
|
|
|
even though we reported an error the operation was successfully
|
|
|
|
completed.
|
2006-02-14 17:03:47 +01:00
|
|
|
*/
|
2006-03-24 18:19:13 -05:00
|
|
|
push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,"%s %s",
|
|
|
|
"Operation was successfully completed by failure handling,",
|
|
|
|
"after failure of normal operation");
|
2006-02-14 17:03:47 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-17 08:40:00 +01:00
|
|
|
/*
|
|
|
|
Actually perform the change requested by ALTER TABLE of partitions
|
|
|
|
previously prepared.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
fast_alter_partition_table()
|
|
|
|
thd Thread object
|
|
|
|
table Table object
|
|
|
|
alter_info ALTER TABLE info
|
|
|
|
create_info Create info for CREATE TABLE
|
|
|
|
table_list List of the table involved
|
|
|
|
db Database name of new table
|
|
|
|
table_name Table name of new table
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
TRUE Error
|
|
|
|
FALSE Success
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Perform all ALTER TABLE operations for partitioned tables that can be
|
|
|
|
performed fast without a full copy of the original table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
uint fast_alter_partition_table(THD *thd, TABLE *table,
|
5.1 version of a fix and test cases for bugs:
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
2007-05-28 15:30:01 +04:00
|
|
|
Alter_info *alter_info,
|
2006-01-17 08:40:00 +01:00
|
|
|
HA_CREATE_INFO *create_info,
|
|
|
|
TABLE_LIST *table_list,
|
5.1 version of a fix and test cases for bugs:
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
2007-05-28 15:30:01 +04:00
|
|
|
char *db,
|
2006-01-17 08:40:00 +01:00
|
|
|
const char *table_name,
|
|
|
|
uint fast_alter_partition)
|
|
|
|
{
|
|
|
|
/* Set-up struct used to write frm files */
|
|
|
|
partition_info *part_info= table->part_info;
|
|
|
|
ALTER_PARTITION_PARAM_TYPE lpt_obj;
|
|
|
|
ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
|
|
|
|
bool written_bin_log= TRUE;
|
2006-02-15 11:08:08 +01:00
|
|
|
bool not_completed= TRUE;
|
|
|
|
bool frm_install= FALSE;
|
2006-01-17 08:40:00 +01:00
|
|
|
DBUG_ENTER("fast_alter_partition_table");
|
|
|
|
|
|
|
|
lpt->thd= thd;
|
2009-12-02 18:22:15 +03:00
|
|
|
lpt->table_list= table_list;
|
2006-02-09 14:13:22 -05:00
|
|
|
lpt->part_info= part_info;
|
2006-05-27 16:34:13 -04:00
|
|
|
lpt->alter_info= alter_info;
|
2006-01-17 08:40:00 +01:00
|
|
|
lpt->create_info= create_info;
|
|
|
|
lpt->db_options= create_info->table_options;
|
|
|
|
if (create_info->row_type == ROW_TYPE_DYNAMIC)
|
|
|
|
lpt->db_options|= HA_OPTION_PACK_RECORD;
|
|
|
|
lpt->table= table;
|
|
|
|
lpt->key_info_buffer= 0;
|
|
|
|
lpt->key_count= 0;
|
|
|
|
lpt->db= db;
|
|
|
|
lpt->table_name= table_name;
|
|
|
|
lpt->copied= 0;
|
|
|
|
lpt->deleted= 0;
|
|
|
|
lpt->pack_frm_data= NULL;
|
|
|
|
lpt->pack_frm_len= 0;
|
2006-03-18 18:48:21 +04:00
|
|
|
thd->work_part_info= part_info;
|
2006-01-17 08:40:00 +01:00
|
|
|
|
2009-08-06 14:28:39 +02:00
|
|
|
/* Never update timestamp columns when alter */
|
|
|
|
table->timestamp_field_type= TIMESTAMP_NO_AUTO_SET;
|
|
|
|
|
2008-08-11 20:02:03 +02:00
|
|
|
if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
In the case where the engine supports one phase online partition
|
|
|
|
changes it is not necessary to have any exclusive locks. The
|
|
|
|
correctness is upheld instead by transactions being aborted if they
|
|
|
|
access the table after its partition definition has changed (if they
|
|
|
|
are still using the old partition definition).
|
|
|
|
|
|
|
|
The handler is in this case responsible to ensure that all users
|
|
|
|
start using the new frm file after it has changed. To implement
|
|
|
|
one phase it is necessary for the handler to have the master copy
|
|
|
|
of the frm file and use discovery mechanisms to renew it. Thus
|
|
|
|
write frm will write the frm, pack the new frm and finally
|
|
|
|
the frm is deleted and the discovery mechanisms will either restore
|
|
|
|
back to the old or installing the new after the change is activated.
|
|
|
|
|
|
|
|
Thus all open tables will be discovered that they are old, if not
|
|
|
|
earlier as soon as they try an operation using the old table. One
|
|
|
|
should ensure that this is checked already when opening a table,
|
|
|
|
even if it is found in the cache of open tables.
|
|
|
|
|
|
|
|
change_partitions will perform all operations and it is the duty of
|
|
|
|
the handler to ensure that the frm files in the system gets updated
|
|
|
|
in synch with the changes made and if an error occurs that a proper
|
|
|
|
error handling is done.
|
|
|
|
|
|
|
|
If the MySQL Server crashes at this moment but the handler succeeds
|
|
|
|
in performing the change then the binlog is not written for the
|
|
|
|
change. There is no way to solve this as long as the binlog is not
|
|
|
|
transactional and even then it is hard to solve it completely.
|
|
|
|
|
|
|
|
The first approach here was to downgrade locks. Now a different approach
|
|
|
|
is decided upon. The idea is that the handler will have access to the
|
5.1 version of a fix and test cases for bugs:
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
2007-05-28 15:30:01 +04:00
|
|
|
Alter_info when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
|
2006-01-17 08:40:00 +01:00
|
|
|
handler knows that this functionality can be handled with a lower lock
|
|
|
|
level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
|
|
|
|
Thus the need to downgrade the lock disappears.
|
|
|
|
1) Write the new frm, pack it and then delete it
|
|
|
|
2) Perform the change within the handler
|
|
|
|
*/
|
2006-02-03 12:05:29 -05:00
|
|
|
if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW | WFRM_PACK_FRM) ||
|
|
|
|
mysql_change_partitions(lpt))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2007-11-23 16:27:05 +04:00
|
|
|
goto err;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
2008-01-09 13:15:50 +01:00
|
|
|
else if (alter_info->flags & ALTER_DROP_PARTITION)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Now after all checks and setting state on dropped partitions we can
|
|
|
|
start the actual dropping of the partitions.
|
|
|
|
|
|
|
|
Drop partition is actually two things happening. The first is that
|
|
|
|
a lot of records are deleted. The second is that the behaviour of
|
|
|
|
subsequent updates and writes and deletes will change. The delete
|
|
|
|
part can be handled without any particular high lock level by
|
|
|
|
transactional engines whereas non-transactional engines need to
|
|
|
|
ensure that this change is done with an exclusive lock on the table.
|
|
|
|
The second part, the change of partitioning does however require
|
|
|
|
an exclusive lock to install the new partitioning as one atomic
|
|
|
|
operation. If this is not the case, it is possible for two
|
|
|
|
transactions to see the change in a different order than their
|
|
|
|
serialisation order. Thus we need an exclusive lock for both
|
|
|
|
transactional and non-transactional engines.
|
|
|
|
|
|
|
|
For LIST partitions it could be possible to avoid the exclusive lock
|
|
|
|
(and for RANGE partitions if they didn't rearrange range definitions
|
|
|
|
after a DROP PARTITION) if one ensured that failed accesses to the
|
|
|
|
dropped partitions was aborted for sure (thus only possible for
|
|
|
|
transactional engines).
|
2006-02-01 10:06:07 +01:00
|
|
|
|
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
|
|
1) Write the new frm file as a shadow frm
|
2006-03-24 18:19:13 -05:00
|
|
|
2) Write the ddl log to ensure that the operation is completed
|
2006-02-01 10:06:07 +01:00
|
|
|
even in the presence of a MySQL Server crash
|
|
|
|
3) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
|
2006-05-26 18:44:52 -04:00
|
|
|
the table have completed. This ensures that other threads can not
|
|
|
|
execute on the table in parallel.
|
2009-12-01 16:51:50 +03:00
|
|
|
4) Get an exclusive metadata lock on the table. This ensures that we
|
|
|
|
can release all other locks on the table and since no one can open
|
|
|
|
the table, there can be no new threads accessing the table. They
|
|
|
|
will be hanging on this exclusive lock.
|
2006-05-26 18:44:52 -04:00
|
|
|
5) Close all tables that have already been opened but didn't stumble on
|
2006-06-12 17:37:32 -04:00
|
|
|
the abort locked previously. This is done as part of the
|
2008-01-28 15:20:55 +01:00
|
|
|
close_data_files_and_morph_locks call.
|
2006-05-26 18:44:52 -04:00
|
|
|
6) We are now ready to release all locks we got in this thread.
|
|
|
|
7) Write the bin log
|
2006-02-01 10:06:07 +01:00
|
|
|
Unfortunately the writing of the binlog is not synchronised with
|
|
|
|
other logging activities. So no matter in which order the binlog
|
|
|
|
is written compared to other activities there will always be cases
|
|
|
|
where crashes make strange things occur. In this placement it can
|
|
|
|
happen that the ALTER TABLE DROP PARTITION gets performed in the
|
|
|
|
master but not in the slaves if we have a crash, after writing the
|
2006-03-24 18:19:13 -05:00
|
|
|
ddl log but before writing the binlog. A solution to this would
|
|
|
|
require writing the statement first in the ddl log and then
|
2006-02-01 10:06:07 +01:00
|
|
|
when recovering from the crash read the binlog and insert it into
|
|
|
|
the binlog if not written already.
|
2006-05-26 18:44:52 -04:00
|
|
|
8) Install the previously written shadow frm file
|
|
|
|
9) Prepare handlers for drop of partitions
|
|
|
|
10) Drop the partitions
|
|
|
|
11) Remove entries from ddl log
|
2008-01-28 15:20:55 +01:00
|
|
|
12) Reopen table if under lock tables
|
2006-05-26 18:44:52 -04:00
|
|
|
13) Complete query
|
2006-02-01 10:06:07 +01:00
|
|
|
|
|
|
|
We insert Error injections at all places where it could be interesting
|
|
|
|
to test if recovery is properly done.
|
2006-01-17 08:40:00 +01:00
|
|
|
*/
|
2006-02-09 20:20:22 +01:00
|
|
|
if (write_log_drop_shadow_frm(lpt) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_1") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_2") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
write_log_drop_partition(lpt) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_3") ||
|
2006-04-15 21:49:13 -04:00
|
|
|
(not_completed= FALSE) ||
|
2009-11-30 18:55:03 +03:00
|
|
|
abort_and_upgrade_lock(lpt) ||
|
2006-05-26 18:44:52 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_4") ||
|
2006-06-12 17:30:32 -04:00
|
|
|
alter_close_tables(lpt) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_5") ||
|
2006-01-17 08:40:00 +01:00
|
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
|
|
(write_bin_log(thd, FALSE,
|
2009-10-16 13:29:42 +03:00
|
|
|
thd->query(), thd->query_length()), FALSE)) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_6") ||
|
2006-02-15 11:08:08 +01:00
|
|
|
((frm_install= TRUE), FALSE) ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
2006-02-15 11:08:08 +01:00
|
|
|
((frm_install= FALSE), FALSE) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_7") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_drop_partitions(lpt) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_8") ||
|
2006-02-15 11:08:08 +01:00
|
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_drop_partition_9") ||
|
|
|
|
(alter_partition_lock_handling(lpt), FALSE))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-15 11:08:08 +01:00
|
|
|
handle_alter_part_error(lpt, not_completed, TRUE, frm_install);
|
2007-11-23 16:27:05 +04:00
|
|
|
goto err;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
|
|
|
|
(part_info->part_type == RANGE_PARTITION ||
|
|
|
|
part_info->part_type == LIST_PARTITION))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
ADD RANGE/LIST PARTITIONS
|
|
|
|
In this case there are no tuples removed and no tuples are added.
|
|
|
|
Thus the operation is merely adding a new partition. Thus it is
|
|
|
|
necessary to perform the change as an atomic operation. Otherwise
|
|
|
|
someone reading without seeing the new partition could potentially
|
|
|
|
miss updates made by a transaction serialised before it that are
|
|
|
|
inserted into the new partition.
|
|
|
|
|
2006-02-01 10:06:07 +01:00
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
|
|
1) Write the new frm file as a shadow frm file
|
2006-03-24 18:19:13 -05:00
|
|
|
2) Log the changes to happen in ddl log
|
2006-01-17 08:40:00 +01:00
|
|
|
2) Add the new partitions
|
|
|
|
3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
|
|
|
|
are still using the old partitioning scheme. Wait until all
|
|
|
|
ongoing users have completed before progressing.
|
2009-12-01 16:51:50 +03:00
|
|
|
4) Get an exclusive metadata lock on the table. This ensures that we
|
|
|
|
can release all other locks on the table and since no one can open
|
|
|
|
the table, there can be no new threads accessing the table. They
|
|
|
|
will be hanging on this exclusive lock.
|
2006-06-12 17:37:32 -04:00
|
|
|
5) Close all tables that have already been opened but didn't stumble on
|
|
|
|
the abort locked previously. This is done as part of the
|
2008-01-28 15:20:55 +01:00
|
|
|
close_data_files_and_morph_locks call.
|
2009-12-01 16:51:50 +03:00
|
|
|
6) Close all table handlers and unlock all handlers but retain
|
|
|
|
metadata lock.
|
2006-06-12 17:37:32 -04:00
|
|
|
7) Write binlog
|
|
|
|
8) Now the change is completed except for the installation of the
|
2006-02-01 14:00:00 +01:00
|
|
|
new frm file. We thus write an action in the log to change to
|
|
|
|
the shadow frm file
|
2006-06-12 17:37:32 -04:00
|
|
|
9) Install the new frm file of the table where the partitions are
|
2006-02-01 10:06:07 +01:00
|
|
|
added to the table.
|
2006-06-12 17:37:32 -04:00
|
|
|
10)Wait until all accesses using the old frm file has completed
|
|
|
|
11)Remove entries from ddl log
|
2008-01-28 15:20:55 +01:00
|
|
|
12)Reopen tables if under lock tables
|
2006-06-12 17:37:32 -04:00
|
|
|
13)Complete query
|
2006-01-17 08:40:00 +01:00
|
|
|
*/
|
2006-02-09 20:20:22 +01:00
|
|
|
if (write_log_add_change_partition(lpt) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_1") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_2") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_change_partitions(lpt) ||
|
2006-02-09 20:20:22 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_3") ||
|
2009-11-30 18:55:03 +03:00
|
|
|
abort_and_upgrade_lock(lpt) ||
|
2006-06-12 17:30:32 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_4") ||
|
|
|
|
alter_close_tables(lpt) ||
|
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_5") ||
|
2006-01-17 08:40:00 +01:00
|
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
|
|
(write_bin_log(thd, FALSE,
|
2009-10-16 13:29:42 +03:00
|
|
|
thd->query(), thd->query_length()), FALSE)) ||
|
2006-06-12 17:30:32 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_6") ||
|
2006-02-09 20:20:22 +01:00
|
|
|
write_log_rename_frm(lpt) ||
|
2006-04-15 21:49:13 -04:00
|
|
|
(not_completed= FALSE) ||
|
2006-06-12 17:30:32 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_7") ||
|
2006-02-15 11:08:08 +01:00
|
|
|
((frm_install= TRUE), FALSE) ||
|
2006-02-01 14:00:00 +01:00
|
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
2006-06-12 17:30:32 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_8") ||
|
2006-02-15 11:08:08 +01:00
|
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
2006-06-12 17:30:32 -04:00
|
|
|
ERROR_INJECT_CRASH("crash_add_partition_9") ||
|
2009-11-30 18:55:03 +03:00
|
|
|
(alter_partition_lock_handling(lpt), FALSE))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-15 11:08:08 +01:00
|
|
|
handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
|
2007-11-23 16:27:05 +04:00
|
|
|
goto err;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
ADD HASH PARTITION/
|
|
|
|
COALESCE PARTITION/
|
|
|
|
REBUILD PARTITION/
|
|
|
|
REORGANIZE PARTITION
|
|
|
|
|
|
|
|
In this case all records are still around after the change although
|
|
|
|
possibly organised into new partitions, thus by ensuring that all
|
|
|
|
updates go to both the old and the new partitioning scheme we can
|
|
|
|
actually perform this operation lock-free. The only exception to
|
|
|
|
this is when REORGANIZE PARTITION adds/drops ranges. In this case
|
|
|
|
there needs to be an exclusive lock during the time when the range
|
|
|
|
changes occur.
|
|
|
|
This is only possible if the handler can ensure double-write for a
|
|
|
|
period. The double write will ensure that it doesn't matter where the
|
|
|
|
data is read from since both places are updated for writes. If such
|
|
|
|
double writing is not performed then it is necessary to perform the
|
|
|
|
change with the usual exclusive lock. With double writes it is even
|
|
|
|
possible to perform writes in parallel with the reorganisation of
|
|
|
|
partitions.
|
|
|
|
|
|
|
|
Without double write procedure we get the following procedure.
|
|
|
|
The only difference with using double write is that we can downgrade
|
|
|
|
the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
|
|
|
|
double writes from old to new. If we had double writing in both
|
|
|
|
directions we could perform the change completely without exclusive
|
|
|
|
lock for HASH partitions.
|
|
|
|
Handlers that perform double writing during the copy phase can actually
|
|
|
|
use a lower lock level. This can be handled inside store_lock in the
|
|
|
|
respective handler.
|
|
|
|
|
2006-02-01 10:06:07 +01:00
|
|
|
0) Write an entry that removes the shadow frm file if crash occurs
|
|
|
|
1) Write the shadow frm file of new partitioning
|
|
|
|
2) Log such that temporary partitions added in change phase are
|
|
|
|
removed in a crash situation
|
|
|
|
3) Add the new partitions
|
2006-01-17 08:40:00 +01:00
|
|
|
Copy from the reorganised partitions to the new partitions
|
2006-02-01 10:06:07 +01:00
|
|
|
4) Log that operation is completed and log all complete actions
|
|
|
|
needed to complete operation from here
|
2009-12-01 16:51:50 +03:00
|
|
|
5) Upgrade shared metadata lock on the table to an exclusive one.
|
|
|
|
After this we can be sure that there is no other connection
|
|
|
|
using this table (they will be waiting for metadata lock).
|
|
|
|
6) Close all table instances opened by this thread, but retain
|
|
|
|
exclusive metadata lock.
|
|
|
|
7) Write bin log
|
|
|
|
8) Prepare handlers for rename and delete of partitions
|
|
|
|
9) Rename and drop the reorged partitions such that they are no
|
|
|
|
longer used and rename those added to their real new names.
|
|
|
|
10) Install the shadow frm file
|
|
|
|
11) Reopen the table if under lock tables
|
|
|
|
12) Complete query
|
2006-01-17 08:40:00 +01:00
|
|
|
*/
|
2006-02-09 20:20:22 +01:00
|
|
|
if (write_log_add_change_partition(lpt) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_1") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_2") ||
|
2006-02-01 10:06:07 +01:00
|
|
|
mysql_change_partitions(lpt) ||
|
2006-02-09 20:20:22 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_3") ||
|
|
|
|
write_log_final_change_partition(lpt) ||
|
2006-02-08 18:04:58 -05:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_4") ||
|
2006-04-15 21:49:13 -04:00
|
|
|
(not_completed= FALSE) ||
|
2009-11-30 18:55:03 +03:00
|
|
|
abort_and_upgrade_lock(lpt) ||
|
2006-02-09 20:25:10 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_5") ||
|
2006-06-12 17:30:32 -04:00
|
|
|
alter_close_tables(lpt) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_6") ||
|
2006-01-17 08:40:00 +01:00
|
|
|
((!thd->lex->no_write_to_binlog) &&
|
|
|
|
(write_bin_log(thd, FALSE,
|
2009-10-16 13:29:42 +03:00
|
|
|
thd->query(), thd->query_length()), FALSE)) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_7") ||
|
2006-06-12 17:30:32 -04:00
|
|
|
mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_8") ||
|
2006-05-27 16:34:13 -04:00
|
|
|
mysql_drop_partitions(lpt) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_9") ||
|
2006-02-09 20:25:10 +01:00
|
|
|
mysql_rename_partitions(lpt) ||
|
2006-02-15 11:08:08 +01:00
|
|
|
((frm_install= TRUE), FALSE) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_10") ||
|
2006-02-15 11:08:08 +01:00
|
|
|
(write_log_completed(lpt, FALSE), FALSE) ||
|
2008-01-28 15:20:55 +01:00
|
|
|
ERROR_INJECT_CRASH("crash_change_partition_11") ||
|
|
|
|
(alter_partition_lock_handling(lpt), FALSE))
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
2006-02-15 11:08:08 +01:00
|
|
|
handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
|
2007-11-23 16:27:05 +04:00
|
|
|
goto err;
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
A final step is to write the query to the binlog and send ok to the
|
|
|
|
user
|
|
|
|
*/
|
|
|
|
DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
|
2009-12-02 18:22:15 +03:00
|
|
|
table_list, FALSE, NULL,
|
2006-01-17 08:40:00 +01:00
|
|
|
written_bin_log));
|
2007-11-23 16:27:05 +04:00
|
|
|
err:
|
|
|
|
close_thread_tables(thd);
|
|
|
|
DBUG_RETURN(TRUE);
|
2006-01-17 08:40:00 +01:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Prepare for calling val_int on partition function by setting fields to
|
|
|
|
point to the record where the values of the PF-fields are stored.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
set_field_ptr()
|
|
|
|
ptr Array of fields to change ptr
|
|
|
|
new_buf New record pointer
|
|
|
|
old_buf Old record pointer
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Set ptr in field objects of field array to refer to new_buf record
|
|
|
|
instead of previously old_buf. Used before calling val_int and after
|
|
|
|
it is used to restore pointers to table->record[0].
|
|
|
|
This routine is placed outside of partition code since it can be useful
|
|
|
|
also for other programs.
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
void set_field_ptr(Field **ptr, const uchar *new_buf,
|
|
|
|
const uchar *old_buf)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
my_ptrdiff_t diff= (new_buf - old_buf);
|
|
|
|
DBUG_ENTER("set_field_ptr");
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
(*ptr)->move_field_offset(diff);
|
|
|
|
} while (*(++ptr));
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Prepare for calling val_int on partition function by setting fields to
|
|
|
|
point to the record where the values of the PF-fields are stored.
|
|
|
|
This variant works on a key_part reference.
|
|
|
|
It is not required that all fields are NOT NULL fields.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
set_key_field_ptr()
|
|
|
|
key_info key info with a set of fields to change ptr
|
|
|
|
new_buf New record pointer
|
|
|
|
old_buf Old record pointer
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Set ptr in field objects of field array to refer to new_buf record
|
|
|
|
instead of previously old_buf. Used before calling val_int and after
|
|
|
|
it is used to restore pointers to table->record[0].
|
|
|
|
This routine is placed outside of partition code since it can be useful
|
|
|
|
also for other programs.
|
|
|
|
*/
|
|
|
|
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
void set_key_field_ptr(KEY *key_info, const uchar *new_buf,
|
|
|
|
const uchar *old_buf)
|
2006-01-17 08:40:00 +01:00
|
|
|
{
|
|
|
|
KEY_PART_INFO *key_part= key_info->key_part;
|
|
|
|
uint key_parts= key_info->key_parts;
|
|
|
|
uint i= 0;
|
|
|
|
my_ptrdiff_t diff= (new_buf - old_buf);
|
|
|
|
DBUG_ENTER("set_key_field_ptr");
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
key_part->field->move_field_offset(diff);
|
|
|
|
key_part++;
|
|
|
|
} while (++i < key_parts);
|
|
|
|
DBUG_VOID_RETURN;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
SYNOPSIS
|
|
|
|
mem_alloc_error()
|
|
|
|
size Size of memory attempted to allocate
|
|
|
|
None
|
|
|
|
|
|
|
|
RETURN VALUES
|
|
|
|
None
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
A routine to use for all the many places in the code where memory
|
|
|
|
allocation error can happen, a tremendous amount of them, needs
|
|
|
|
simple routine that signals this error.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void mem_alloc_error(size_t size)
|
|
|
|
{
|
|
|
|
my_error(ER_OUTOFMEMORY, MYF(0), size);
|
2005-07-18 13:31:02 +02:00
|
|
|
}
|
2005-12-22 12:29:00 +03:00
|
|
|
|
2006-01-05 03:12:51 +03:00
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
2005-12-22 12:29:00 +03:00
|
|
|
/*
|
2005-12-27 15:04:35 +03:00
|
|
|
Return comma-separated list of used partitions in the provided given string
|
|
|
|
|
2005-12-22 12:29:00 +03:00
|
|
|
SYNOPSIS
|
|
|
|
make_used_partitions_str()
|
|
|
|
part_info IN Partitioning info
|
|
|
|
parts_str OUT The string to fill
|
2005-12-27 15:04:35 +03:00
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Generate a list of used partitions (from bits in part_info->used_partitions
|
|
|
|
bitmap), asd store it into the provided String object.
|
|
|
|
|
|
|
|
NOTE
|
|
|
|
The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
|
2005-12-22 12:29:00 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
void make_used_partitions_str(partition_info *part_info, String *parts_str)
|
|
|
|
{
|
|
|
|
parts_str->length(0);
|
|
|
|
partition_element *pe;
|
|
|
|
uint partition_id= 0;
|
|
|
|
List_iterator<partition_element> it(part_info->partitions);
|
|
|
|
|
2006-02-16 10:38:33 -06:00
|
|
|
if (part_info->is_sub_partitioned())
|
2005-12-22 12:29:00 +03:00
|
|
|
{
|
|
|
|
partition_element *head_pe;
|
|
|
|
while ((head_pe= it++))
|
|
|
|
{
|
|
|
|
List_iterator<partition_element> it2(head_pe->subpartitions);
|
|
|
|
while ((pe= it2++))
|
|
|
|
{
|
|
|
|
if (bitmap_is_set(&part_info->used_partitions, partition_id))
|
|
|
|
{
|
|
|
|
if (parts_str->length())
|
|
|
|
parts_str->append(',');
|
|
|
|
parts_str->append(head_pe->partition_name,
|
|
|
|
strlen(head_pe->partition_name),
|
|
|
|
system_charset_info);
|
|
|
|
parts_str->append('_');
|
|
|
|
parts_str->append(pe->partition_name,
|
|
|
|
strlen(pe->partition_name),
|
|
|
|
system_charset_info);
|
|
|
|
}
|
|
|
|
partition_id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
while ((pe= it++))
|
|
|
|
{
|
|
|
|
if (bitmap_is_set(&part_info->used_partitions, partition_id))
|
|
|
|
{
|
|
|
|
if (parts_str->length())
|
|
|
|
parts_str->append(',');
|
|
|
|
parts_str->append(pe->partition_name, strlen(pe->partition_name),
|
|
|
|
system_charset_info);
|
|
|
|
}
|
|
|
|
partition_id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-01-05 03:12:51 +03:00
|
|
|
#endif
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
* Partition interval analysis support
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Setup partition_info::* members related to partitioning range analysis
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
set_up_partition_func_pointers()
|
|
|
|
part_info Partitioning info structure
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Assuming that passed partition_info structure already has correct values
|
|
|
|
for members that specify [sub]partitioning type, table fields, and
|
|
|
|
functions, set up partition_info::* members that are related to
|
|
|
|
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
|
|
|
|
definition)
|
|
|
|
|
|
|
|
IMPLEMENTATION
|
|
|
|
There are two available interval analyzer functions:
|
|
|
|
(1) get_part_iter_for_interval_via_mapping
|
2009-09-15 17:07:52 +02:00
|
|
|
(2) get_part_iter_for_interval_cols_via_map
|
|
|
|
(3) get_part_iter_for_interval_via_walking
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
They both have limited applicability:
|
|
|
|
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
|
|
|
|
func is a monotonic function.
|
2009-09-15 17:07:52 +02:00
|
|
|
|
2009-10-29 18:04:23 +01:00
|
|
|
(2) is applicable for "PARTITION BY <RANGE|LIST> COLUMNS (field_list)
|
2009-09-15 17:07:52 +02:00
|
|
|
|
|
|
|
(3) is applicable for
|
2006-01-04 11:09:01 +03:00
|
|
|
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
If both (1) and (3) are applicable, (1) is preferred over (3).
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
This function sets part_info::get_part_iter_for_interval according to
|
|
|
|
this criteria, and also sets some auxilary fields that the function
|
|
|
|
uses.
|
|
|
|
*/
|
2006-01-05 03:12:51 +03:00
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
2006-01-04 11:09:01 +03:00
|
|
|
static void set_up_range_analysis_info(partition_info *part_info)
|
|
|
|
{
|
|
|
|
/* Set the catch-all default */
|
|
|
|
part_info->get_part_iter_for_interval= NULL;
|
|
|
|
part_info->get_subpart_iter_for_interval= NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Check if get_part_iter_for_interval_via_mapping() can be used for
|
|
|
|
partitioning
|
|
|
|
*/
|
|
|
|
switch (part_info->part_type) {
|
|
|
|
case RANGE_PARTITION:
|
|
|
|
case LIST_PARTITION:
|
2009-09-15 17:07:52 +02:00
|
|
|
if (!part_info->column_list)
|
|
|
|
{
|
|
|
|
if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC)
|
|
|
|
{
|
|
|
|
part_info->get_part_iter_for_interval=
|
|
|
|
get_part_iter_for_interval_via_mapping;
|
|
|
|
goto setup_subparts;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
|
|
|
part_info->get_part_iter_for_interval=
|
2009-09-15 17:07:52 +02:00
|
|
|
get_part_iter_for_interval_cols_via_map;
|
2006-01-04 11:09:01 +03:00
|
|
|
goto setup_subparts;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2006-04-06 21:23:33 +04:00
|
|
|
Check if get_part_iter_for_interval_via_walking() can be used for
|
2006-01-04 11:09:01 +03:00
|
|
|
partitioning
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
if (part_info->num_part_fields == 1)
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
|
|
|
Field *field= part_info->part_field_array[0];
|
|
|
|
switch (field->type()) {
|
|
|
|
case MYSQL_TYPE_TINY:
|
|
|
|
case MYSQL_TYPE_SHORT:
|
2006-03-31 15:17:15 +04:00
|
|
|
case MYSQL_TYPE_INT24:
|
2006-01-04 11:09:01 +03:00
|
|
|
case MYSQL_TYPE_LONG:
|
|
|
|
case MYSQL_TYPE_LONGLONG:
|
|
|
|
part_info->get_part_iter_for_interval=
|
|
|
|
get_part_iter_for_interval_via_walking;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
setup_subparts:
|
|
|
|
/*
|
2006-04-06 21:23:33 +04:00
|
|
|
Check if get_part_iter_for_interval_via_walking() can be used for
|
2006-01-04 11:09:01 +03:00
|
|
|
subpartitioning
|
|
|
|
*/
|
2009-10-01 15:04:42 +02:00
|
|
|
if (part_info->num_subpart_fields == 1)
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
|
|
|
Field *field= part_info->subpart_field_array[0];
|
|
|
|
switch (field->type()) {
|
|
|
|
case MYSQL_TYPE_TINY:
|
|
|
|
case MYSQL_TYPE_SHORT:
|
|
|
|
case MYSQL_TYPE_LONG:
|
|
|
|
case MYSQL_TYPE_LONGLONG:
|
|
|
|
part_info->get_subpart_iter_for_interval=
|
|
|
|
get_part_iter_for_interval_via_walking;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-10-16 17:08:34 +02:00
|
|
|
/*
|
|
|
|
This function takes a memory of packed fields in opt-range format
|
|
|
|
and stores it in record format. To avoid having to worry about how
|
|
|
|
the length of fields are calculated in opt-range format we send
|
|
|
|
an array of lengths used for each field in store_length_array.
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
store_tuple_to_record()
|
|
|
|
pfield Field array
|
|
|
|
store_length_array Array of field lengths
|
|
|
|
value Memory where fields are stored
|
|
|
|
value_end End of memory
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
nparts Number of fields assigned
|
|
|
|
*/
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 store_tuple_to_record(Field **pfield,
|
|
|
|
uint32 *store_length_array,
|
|
|
|
uchar *value,
|
|
|
|
uchar *value_end)
|
|
|
|
{
|
2009-10-16 17:08:34 +02:00
|
|
|
/* This function is inspired by store_key_image_rec. */
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 nparts= 0;
|
|
|
|
uchar *loc_value;
|
|
|
|
while (value < value_end)
|
|
|
|
{
|
|
|
|
loc_value= value;
|
|
|
|
if ((*pfield)->real_maybe_null())
|
|
|
|
{
|
|
|
|
if (*loc_value)
|
|
|
|
(*pfield)->set_null();
|
2009-10-06 16:22:15 +02:00
|
|
|
else
|
|
|
|
(*pfield)->set_notnull();
|
2009-09-15 17:07:52 +02:00
|
|
|
loc_value++;
|
|
|
|
}
|
|
|
|
uint len= (*pfield)->pack_length();
|
|
|
|
(*pfield)->set_key_image(loc_value, len);
|
|
|
|
value+= *store_length_array;
|
|
|
|
store_length_array++;
|
|
|
|
nparts++;
|
|
|
|
pfield++;
|
|
|
|
}
|
|
|
|
return nparts;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
RANGE(columns) partitioning: compare value bound and probe tuple.
|
|
|
|
|
2009-10-21 17:45:34 +02:00
|
|
|
The value bound always is a full tuple (but may include the MAXVALUE
|
2009-10-16 17:08:34 +02:00
|
|
|
special value).
|
2009-09-15 17:07:52 +02:00
|
|
|
|
|
|
|
The probe tuple may be a prefix of partitioning tuple. The tail_is_min
|
|
|
|
parameter specifies whether the suffix components should be assumed to
|
2009-10-21 17:45:34 +02:00
|
|
|
hold MAXVALUE
|
2009-09-15 17:07:52 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec)
|
|
|
|
{
|
|
|
|
partition_info *part_info= val->part_info;
|
|
|
|
Field **field= part_info->part_field_array;
|
|
|
|
Field **fields_end= field + nvals_in_rec;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
for (; field != fields_end; field++, val++)
|
|
|
|
{
|
|
|
|
if (val->max_value)
|
|
|
|
return -1;
|
|
|
|
if ((*field)->is_null())
|
|
|
|
{
|
|
|
|
if (val->null_value)
|
|
|
|
continue;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
if (val->null_value)
|
|
|
|
return +1;
|
|
|
|
res= (*field)->cmp((const uchar*)val->column_value);
|
|
|
|
if (res)
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int cmp_rec_and_tuple_prune(part_column_list_val *val,
|
|
|
|
uint32 n_vals_in_rec,
|
|
|
|
bool tail_is_min)
|
|
|
|
{
|
|
|
|
int cmp;
|
|
|
|
Field **field;
|
|
|
|
partition_info *part_info;
|
|
|
|
if ((cmp= cmp_rec_and_tuple(val, n_vals_in_rec)))
|
|
|
|
return cmp;
|
|
|
|
part_info= val->part_info;
|
|
|
|
field= part_info->part_field_array + n_vals_in_rec;
|
|
|
|
for (; *field; field++, val++)
|
|
|
|
{
|
|
|
|
if (tail_is_min)
|
|
|
|
return -1;
|
|
|
|
if (!tail_is_min && !val->max_value)
|
|
|
|
return +1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
|
|
|
bool include_endpoint);
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
typedef uint32 (*get_col_endpoint_func)(partition_info*, bool left_endpoint,
|
|
|
|
bool include_endpoint,
|
2009-10-01 15:04:42 +02:00
|
|
|
uint32 num_parts);
|
2009-09-15 17:07:52 +02:00
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
/*
|
|
|
|
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_part_iter_for_interval_via_mapping()
|
|
|
|
part_info Partition info
|
|
|
|
is_subpart TRUE - act for subpartitioning
|
|
|
|
FALSE - act for partitioning
|
|
|
|
min_value minimum field value, in opt_range key format.
|
|
|
|
max_value minimum field value, in opt_range key format.
|
|
|
|
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
|
|
|
NO_MAX_RANGE.
|
|
|
|
part_iter Iterator structure to be initialized
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Initialize partition set iterator to walk over the interval in
|
2006-01-05 17:47:07 +03:00
|
|
|
ordered-array-of-partitions (for RANGE partitioning) or
|
|
|
|
ordered-array-of-list-constants (for LIST partitioning) space.
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
IMPLEMENTATION
|
2006-01-05 17:47:07 +03:00
|
|
|
This function is used when partitioning is done by
|
2006-01-04 11:09:01 +03:00
|
|
|
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
|
|
|
|
t.field space into a sub-array of partition_info::range_int_array or
|
|
|
|
partition_info::list_array (see get_partition_id_range_for_endpoint,
|
|
|
|
get_list_array_idx_for_endpoint for details).
|
|
|
|
|
|
|
|
The function performs this interval mapping, and sets the iterator to
|
|
|
|
traverse the sub-array and return appropriate partitions.
|
|
|
|
|
2006-01-05 17:47:07 +03:00
|
|
|
RETURN
|
2006-01-04 11:09:01 +03:00
|
|
|
0 - No matching partitions (iterator not initialized)
|
|
|
|
1 - Ok, iterator intialized for traversal of matching partitions.
|
|
|
|
-1 - All partitions would match (iterator not initialized)
|
|
|
|
*/
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 get_partition_id_cols_range_for_endpoint(partition_info *part_info,
|
|
|
|
bool left_endpoint,
|
|
|
|
bool include_endpoint,
|
|
|
|
uint32 nparts)
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
uint max_partition= part_info->num_parts - 1;
|
2009-09-15 17:07:52 +02:00
|
|
|
uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
|
|
|
|
part_column_list_val *range_col_array= part_info->range_col_array;
|
2009-10-01 15:04:42 +02:00
|
|
|
uint num_columns= part_info->part_field_list.elements;
|
2009-09-15 17:07:52 +02:00
|
|
|
bool tailf= !(left_endpoint ^ include_endpoint);
|
|
|
|
DBUG_ENTER("get_partition_id_cols_range_for_endpoint");
|
|
|
|
|
|
|
|
/* Get the partitioning function value for the endpoint */
|
|
|
|
while (max_part_id > min_part_id)
|
|
|
|
{
|
|
|
|
loc_part_id= (max_part_id + min_part_id + 1) >> 1;
|
2009-10-01 15:04:42 +02:00
|
|
|
if (cmp_rec_and_tuple_prune(range_col_array + loc_part_id*num_columns,
|
2009-09-15 17:07:52 +02:00
|
|
|
nparts, tailf) >= 0)
|
|
|
|
min_part_id= loc_part_id + 1;
|
|
|
|
else
|
|
|
|
max_part_id= loc_part_id - 1;
|
|
|
|
}
|
|
|
|
loc_part_id= max_part_id;
|
|
|
|
if (loc_part_id < max_partition &&
|
2009-10-01 15:04:42 +02:00
|
|
|
cmp_rec_and_tuple_prune(range_col_array + (loc_part_id+1)*num_columns,
|
2009-09-15 17:07:52 +02:00
|
|
|
nparts, tailf) >= 0
|
|
|
|
)
|
|
|
|
{
|
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
if (left_endpoint)
|
|
|
|
{
|
2009-10-01 15:04:42 +02:00
|
|
|
if (cmp_rec_and_tuple_prune(range_col_array + loc_part_id*num_columns,
|
2009-09-15 17:07:52 +02:00
|
|
|
nparts, tailf) >= 0)
|
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (loc_part_id < max_partition)
|
|
|
|
{
|
|
|
|
int res= cmp_rec_and_tuple_prune(range_col_array +
|
2009-10-01 15:04:42 +02:00
|
|
|
loc_part_id * num_columns,
|
2009-09-15 17:07:52 +02:00
|
|
|
nparts, tailf);
|
|
|
|
if (!res)
|
|
|
|
loc_part_id += test(include_endpoint);
|
|
|
|
else if (res > 0)
|
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
loc_part_id++;
|
|
|
|
}
|
|
|
|
DBUG_RETURN(loc_part_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int get_part_iter_for_interval_cols_via_map(partition_info *part_info,
|
|
|
|
bool is_subpart,
|
|
|
|
uint32 *store_length_array,
|
|
|
|
uchar *min_value, uchar *max_value,
|
|
|
|
uint min_len, uint max_len,
|
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter)
|
|
|
|
{
|
|
|
|
uint32 nparts;
|
|
|
|
get_col_endpoint_func get_col_endpoint;
|
|
|
|
DBUG_ENTER("get_part_iter_for_interval_cols_via_map");
|
|
|
|
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
|
|
|
get_col_endpoint= get_partition_id_cols_range_for_endpoint;
|
|
|
|
part_iter->get_next= get_next_partition_id_range;
|
|
|
|
}
|
2009-10-06 16:22:15 +02:00
|
|
|
else if (part_info->part_type == LIST_PARTITION)
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
get_col_endpoint= get_partition_id_cols_list_for_endpoint;
|
|
|
|
part_iter->get_next= get_next_partition_id_list;
|
|
|
|
part_iter->part_info= part_info;
|
2009-10-06 16:22:15 +02:00
|
|
|
DBUG_ASSERT(part_info->num_list_values);
|
2009-09-15 17:07:52 +02:00
|
|
|
}
|
2009-10-06 16:22:15 +02:00
|
|
|
else
|
|
|
|
assert(0);
|
|
|
|
|
2009-09-15 17:07:52 +02:00
|
|
|
if (flags & NO_MIN_RANGE)
|
|
|
|
part_iter->part_nums.start= part_iter->part_nums.cur= 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Copy from min_value to record
|
|
|
|
nparts= store_tuple_to_record(part_info->part_field_array,
|
|
|
|
store_length_array,
|
|
|
|
min_value,
|
|
|
|
min_value + min_len);
|
|
|
|
part_iter->part_nums.start= part_iter->part_nums.cur=
|
|
|
|
get_col_endpoint(part_info, TRUE, !(flags & NEAR_MIN),
|
|
|
|
nparts);
|
|
|
|
}
|
|
|
|
if (flags & NO_MAX_RANGE)
|
2009-10-02 11:31:05 +02:00
|
|
|
{
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
part_iter->part_nums.end= part_info->num_parts;
|
|
|
|
else /* LIST_PARTITION */
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(part_info->part_type == LIST_PARTITION);
|
|
|
|
part_iter->part_nums.end= part_info->num_list_values;
|
|
|
|
}
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
else
|
|
|
|
{
|
|
|
|
// Copy from max_value to record
|
|
|
|
nparts= store_tuple_to_record(part_info->part_field_array,
|
|
|
|
store_length_array,
|
|
|
|
max_value,
|
|
|
|
max_value + max_len);
|
|
|
|
part_iter->part_nums.end= get_col_endpoint(part_info, FALSE,
|
|
|
|
!(flags & NEAR_MAX),
|
|
|
|
nparts);
|
|
|
|
}
|
|
|
|
if (part_iter->part_nums.start == part_iter->part_nums.end)
|
|
|
|
DBUG_RETURN(0);
|
|
|
|
DBUG_RETURN(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
|
|
|
|
bool is_subpart,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint32 *store_length_array, /* ignored */
|
WL#3817: Simplify string / memory area types and make things more consistent (first part)
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
2007-05-10 12:59:39 +03:00
|
|
|
uchar *min_value, uchar *max_value,
|
2009-09-15 17:07:52 +02:00
|
|
|
uint min_len, uint max_len, /* ignored */
|
2006-01-04 11:09:01 +03:00
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter)
|
|
|
|
{
|
|
|
|
Field *field= part_info->part_field_array[0];
|
|
|
|
uint32 max_endpoint_val;
|
|
|
|
get_endpoint_func get_endpoint;
|
2009-08-28 12:55:59 +02:00
|
|
|
bool can_match_multiple_values; /* is not '=' */
|
2006-01-04 11:09:01 +03:00
|
|
|
uint field_len= field->pack_length_in_rec();
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_part_iter_for_interval_via_mapping");
|
|
|
|
DBUG_ASSERT(!is_subpart);
|
|
|
|
(void) store_length_array;
|
|
|
|
(void)min_len;
|
|
|
|
(void)max_len;
|
2009-01-09 14:18:08 +01:00
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
if (part_info->part_type == RANGE_PARTITION)
|
|
|
|
{
|
2006-09-26 16:30:39 -04:00
|
|
|
if (part_info->part_charset_field_array)
|
2006-08-02 06:40:25 -04:00
|
|
|
get_endpoint= get_partition_id_range_for_endpoint_charset;
|
|
|
|
else
|
|
|
|
get_endpoint= get_partition_id_range_for_endpoint;
|
2009-10-01 15:04:42 +02:00
|
|
|
max_endpoint_val= part_info->num_parts;
|
2006-01-04 11:09:01 +03:00
|
|
|
part_iter->get_next= get_next_partition_id_range;
|
|
|
|
}
|
|
|
|
else if (part_info->part_type == LIST_PARTITION)
|
|
|
|
{
|
2006-08-02 06:40:25 -04:00
|
|
|
|
2006-09-26 16:30:39 -04:00
|
|
|
if (part_info->part_charset_field_array)
|
2006-08-02 06:40:25 -04:00
|
|
|
get_endpoint= get_list_array_idx_for_endpoint_charset;
|
|
|
|
else
|
|
|
|
get_endpoint= get_list_array_idx_for_endpoint;
|
2009-10-01 15:04:42 +02:00
|
|
|
max_endpoint_val= part_info->num_list_values;
|
2006-01-04 11:09:01 +03:00
|
|
|
part_iter->get_next= get_next_partition_id_list;
|
|
|
|
part_iter->part_info= part_info;
|
2006-05-30 00:08:48 -04:00
|
|
|
if (max_endpoint_val == 0)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We handle this special case without optimisations since it is
|
|
|
|
of little practical value but causes a great number of complex
|
|
|
|
checks later in the code.
|
|
|
|
*/
|
|
|
|
part_iter->part_nums.start= part_iter->part_nums.end= 0;
|
|
|
|
part_iter->part_nums.cur= 0;
|
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(-1);
|
2006-05-30 00:08:48 -04:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
else
|
2007-02-23 13:13:55 +02:00
|
|
|
assert(0);
|
2009-08-26 12:59:49 +02:00
|
|
|
|
2009-08-28 12:55:59 +02:00
|
|
|
can_match_multiple_values= (flags || !min_value || !max_value ||
|
|
|
|
memcmp(min_value, max_value, field_len));
|
|
|
|
if (can_match_multiple_values &&
|
|
|
|
(part_info->part_type == RANGE_PARTITION ||
|
|
|
|
part_info->has_null_value))
|
2009-08-26 12:59:49 +02:00
|
|
|
{
|
2009-08-28 12:55:59 +02:00
|
|
|
/* Range scan on RANGE or LIST partitioned table */
|
2009-08-26 12:59:49 +02:00
|
|
|
enum_monotonicity_info monotonic;
|
|
|
|
monotonic= part_info->part_expr->get_monotonicity_info();
|
|
|
|
if (monotonic == MONOTONIC_INCREASING_NOT_NULL ||
|
|
|
|
monotonic == MONOTONIC_STRICT_INCREASING_NOT_NULL)
|
|
|
|
{
|
|
|
|
/* col is NOT NULL, but F(col) can return NULL, add NULL partition */
|
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
|
|
|
}
|
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
|
2006-04-06 21:23:33 +04:00
|
|
|
/*
|
|
|
|
Find minimum: Do special handling if the interval has left bound in form
|
|
|
|
" NULL <= X ":
|
|
|
|
*/
|
|
|
|
if (field->real_maybe_null() && part_info->has_null_value &&
|
|
|
|
!(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value)
|
2006-03-28 17:25:19 +05:00
|
|
|
{
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
|
|
|
part_iter->part_nums.start= part_iter->part_nums.cur= 0;
|
2009-11-04 09:30:52 +01:00
|
|
|
if (!(flags & NO_MAX_RANGE) && *max_value)
|
2006-03-28 17:25:19 +05:00
|
|
|
{
|
2006-04-06 21:23:33 +04:00
|
|
|
/* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
|
|
|
|
part_iter->part_nums.end= 0;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(1);
|
2006-03-28 17:25:19 +05:00
|
|
|
}
|
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
else
|
|
|
|
{
|
2006-04-06 21:23:33 +04:00
|
|
|
if (flags & NO_MIN_RANGE)
|
|
|
|
part_iter->part_nums.start= part_iter->part_nums.cur= 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Store the interval edge in the record buffer, and call the
|
|
|
|
function that maps the edge in table-field space to an edge
|
|
|
|
in ordered-set-of-partitions (for RANGE partitioning) or
|
|
|
|
index-in-ordered-array-of-list-constants (for LIST) space.
|
|
|
|
*/
|
|
|
|
store_key_image_to_rec(field, min_value, field_len);
|
2007-09-14 14:18:42 +04:00
|
|
|
bool include_endp= !test(flags & NEAR_MIN);
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
|
2009-08-28 12:55:59 +02:00
|
|
|
if (!can_match_multiple_values && part_info->part_expr->null_value)
|
|
|
|
{
|
|
|
|
/* col = x and F(x) = NULL -> only search NULL partition */
|
|
|
|
part_iter->part_nums.cur= part_iter->part_nums.start= 0;
|
|
|
|
part_iter->part_nums.end= 0;
|
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
|
2009-10-19 12:09:52 +02:00
|
|
|
DBUG_RETURN(1);
|
2009-08-28 12:55:59 +02:00
|
|
|
}
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
|
|
|
if (part_iter->part_nums.start == max_endpoint_val)
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(0); /* No partitions */
|
2006-04-06 21:23:33 +04:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Find maximum, do the same as above but for right interval bound */
|
|
|
|
if (flags & NO_MAX_RANGE)
|
2006-01-25 06:01:54 +03:00
|
|
|
part_iter->part_nums.end= max_endpoint_val;
|
2006-01-04 11:09:01 +03:00
|
|
|
else
|
|
|
|
{
|
|
|
|
store_key_image_to_rec(field, max_value, field_len);
|
2007-09-14 14:18:42 +04:00
|
|
|
bool include_endp= !test(flags & NEAR_MAX);
|
2006-01-25 06:01:54 +03:00
|
|
|
part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
|
2008-12-28 12:33:49 +01:00
|
|
|
if (part_iter->part_nums.start >= part_iter->part_nums.end &&
|
2006-04-06 21:23:33 +04:00
|
|
|
!part_iter->ret_null_part)
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(0); /* No partitions */
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(1); /* Ok, iterator initialized */
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* See get_part_iter_for_interval_via_walking for definition of what this is */
|
2009-10-05 22:59:19 +02:00
|
|
|
#define MAX_RANGE_TO_WALK 32
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-05 17:47:07 +03:00
|
|
|
Partitioning Interval Analysis: Initialize iterator to walk field interval
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_part_iter_for_interval_via_walking()
|
|
|
|
part_info Partition info
|
|
|
|
is_subpart TRUE - act for subpartitioning
|
|
|
|
FALSE - act for partitioning
|
|
|
|
min_value minimum field value, in opt_range key format.
|
|
|
|
max_value minimum field value, in opt_range key format.
|
|
|
|
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
|
|
|
|
NO_MAX_RANGE.
|
|
|
|
part_iter Iterator structure to be initialized
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Initialize partition set iterator to walk over interval in integer field
|
|
|
|
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
|
2006-01-05 17:47:07 +03:00
|
|
|
the iterator to return a set of [sub]partitions obtained with the
|
|
|
|
following procedure:
|
2006-01-04 11:09:01 +03:00
|
|
|
get partition id for t.field = const1, return it
|
|
|
|
get partition id for t.field = const1+1, return it
|
|
|
|
... t.field = const1+2, ...
|
|
|
|
... ... ...
|
|
|
|
... t.field = const2 ...
|
|
|
|
|
|
|
|
IMPLEMENTATION
|
|
|
|
See get_partitions_in_range_iter for general description of interval
|
|
|
|
analysis. We support walking over the following intervals:
|
|
|
|
"t.field IS NULL"
|
|
|
|
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
|
|
|
|
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
|
|
|
|
that is more tricky and I don't have time to do it right now.
|
2006-01-05 17:47:07 +03:00
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
RETURN
|
|
|
|
0 - No matching partitions, iterator not initialized
|
|
|
|
1 - Some partitions would match, iterator intialized for traversing them
|
|
|
|
-1 - All partitions would match, iterator not initialized
|
|
|
|
*/
|
|
|
|
|
|
|
|
int get_part_iter_for_interval_via_walking(partition_info *part_info,
|
2009-09-15 17:07:52 +02:00
|
|
|
bool is_subpart,
|
|
|
|
uint32 *store_length_array, /* ignored */
|
|
|
|
uchar *min_value, uchar *max_value,
|
|
|
|
uint min_len, uint max_len, /* ignored */
|
|
|
|
uint flags,
|
|
|
|
PARTITION_ITERATOR *part_iter)
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
|
|
|
Field *field;
|
|
|
|
uint total_parts;
|
|
|
|
partition_iter_func get_next_func;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_ENTER("get_part_iter_for_interval_via_walking");
|
|
|
|
(void)store_length_array;
|
|
|
|
(void)min_len;
|
|
|
|
(void)max_len;
|
|
|
|
|
2009-09-02 15:20:47 +03:00
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
|
2006-01-04 11:09:01 +03:00
|
|
|
if (is_subpart)
|
|
|
|
{
|
|
|
|
field= part_info->subpart_field_array[0];
|
2009-10-01 15:04:42 +02:00
|
|
|
total_parts= part_info->num_subparts;
|
2006-01-04 11:09:01 +03:00
|
|
|
get_next_func= get_next_subpartition_via_walking;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
field= part_info->part_field_array[0];
|
2009-10-01 15:04:42 +02:00
|
|
|
total_parts= part_info->num_parts;
|
2006-01-04 11:09:01 +03:00
|
|
|
get_next_func= get_next_partition_via_walking;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle the "t.field IS NULL" interval, it is a special case */
|
|
|
|
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
|
|
|
|
*min_value && *max_value)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We don't have a part_iter->get_next() function that would find which
|
|
|
|
partition "t.field IS NULL" belongs to, so find partition that contains
|
|
|
|
NULL right here, and return an iterator over singleton set.
|
|
|
|
*/
|
|
|
|
uint32 part_id;
|
|
|
|
field->set_null();
|
|
|
|
if (is_subpart)
|
|
|
|
{
|
2008-10-06 17:22:38 +05:00
|
|
|
if (!part_info->get_subpartition_id(part_info, &part_id))
|
|
|
|
{
|
|
|
|
init_single_partition_iterator(part_id, part_iter);
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(1); /* Ok, iterator initialized */
|
2008-10-06 17:22:38 +05:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2006-01-18 21:29:48 +03:00
|
|
|
longlong dummy;
|
2006-04-04 00:52:14 +04:00
|
|
|
int res= part_info->is_sub_partitioned() ?
|
|
|
|
part_info->get_part_partition_id(part_info, &part_id,
|
|
|
|
&dummy):
|
|
|
|
part_info->get_partition_id(part_info, &part_id, &dummy);
|
|
|
|
if (!res)
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
|
|
|
init_single_partition_iterator(part_id, part_iter);
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(1); /* Ok, iterator initialized */
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
}
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(0); /* No partitions match */
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
2006-04-06 21:23:33 +04:00
|
|
|
if ((field->real_maybe_null() &&
|
|
|
|
((!(flags & NO_MIN_RANGE) && *min_value) || // NULL <? X
|
|
|
|
(!(flags & NO_MAX_RANGE) && *max_value))) || // X <? NULL
|
|
|
|
(flags & (NO_MIN_RANGE | NO_MAX_RANGE))) // -inf at any bound
|
|
|
|
{
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(-1); /* Can't handle this interval, have to use all partitions */
|
2006-04-06 21:23:33 +04:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
/* Get integers for left and right interval bound */
|
|
|
|
longlong a, b;
|
|
|
|
uint len= field->pack_length_in_rec();
|
|
|
|
store_key_image_to_rec(field, min_value, len);
|
|
|
|
a= field->val_int();
|
|
|
|
|
|
|
|
store_key_image_to_rec(field, max_value, len);
|
|
|
|
b= field->val_int();
|
2006-07-24 21:58:11 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
Handle a special case where the distance between interval bounds is
|
|
|
|
exactly 4G-1. This interval is too big for range walking, and if it is an
|
|
|
|
(x,y]-type interval then the following "b +=..." code will convert it to
|
|
|
|
an empty interval by "wrapping around" a + 4G-1 + 1 = a.
|
|
|
|
*/
|
|
|
|
if ((ulonglong)b - (ulonglong)a == ~0ULL)
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(-1);
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
a += test(flags & NEAR_MIN);
|
|
|
|
b += test(!(flags & NEAR_MAX));
|
2006-07-24 21:58:11 +04:00
|
|
|
ulonglong n_values= b - a;
|
2009-10-05 22:59:19 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
Will it pay off to enumerate all values in the [a..b] range and evaluate
|
|
|
|
the partitioning function for every value? It depends on
|
|
|
|
1. whether we'll be able to infer that some partitions are not used
|
|
|
|
2. if time savings from not scanning these partitions will be greater
|
|
|
|
than time spent in enumeration.
|
|
|
|
We will assume that the cost of accessing one extra partition is greater
|
|
|
|
than the cost of evaluating the partitioning function O(#partitions).
|
|
|
|
This means we should jump at any chance to eliminate a partition, which
|
|
|
|
gives us this logic:
|
|
|
|
|
|
|
|
Do the enumeration if
|
|
|
|
- the number of values to enumerate is comparable to the number of
|
|
|
|
partitions, or
|
|
|
|
- there are not many values to enumerate.
|
|
|
|
*/
|
|
|
|
if ((n_values > 2*total_parts) && n_values > MAX_RANGE_TO_WALK)
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(-1);
|
2006-01-04 11:09:01 +03:00
|
|
|
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->field_vals.start= part_iter->field_vals.cur= a;
|
2006-01-25 06:01:54 +03:00
|
|
|
part_iter->field_vals.end= b;
|
2006-01-04 11:09:01 +03:00
|
|
|
part_iter->part_info= part_info;
|
|
|
|
part_iter->get_next= get_next_func;
|
2009-09-15 17:07:52 +02:00
|
|
|
DBUG_RETURN(1);
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
|
|
|
|
|
|
|
|
SYNOPSIS
|
2006-04-06 21:23:33 +04:00
|
|
|
get_next_partition_id_range()
|
2006-01-04 11:09:01 +03:00
|
|
|
part_iter Partition set iterator structure
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This is implementation of PARTITION_ITERATOR::get_next() that returns
|
|
|
|
[sub]partition ids in [min_partition_id, max_partition_id] range.
|
2006-04-06 21:23:33 +04:00
|
|
|
The function conforms to partition_iter_func type.
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
RETURN
|
|
|
|
partition id
|
|
|
|
NOT_A_PARTITION_ID if there are no more partitions
|
|
|
|
*/
|
|
|
|
|
|
|
|
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
|
|
|
|
{
|
2008-12-28 12:33:49 +01:00
|
|
|
if (part_iter->part_nums.cur >= part_iter->part_nums.end)
|
2006-04-06 21:23:33 +04:00
|
|
|
{
|
2009-08-26 12:59:49 +02:00
|
|
|
if (part_iter->ret_null_part)
|
|
|
|
{
|
|
|
|
part_iter->ret_null_part= FALSE;
|
|
|
|
return 0; /* NULL always in first range partition */
|
|
|
|
}
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
2009-08-26 12:59:49 +02:00
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig;
|
2006-01-04 11:09:01 +03:00
|
|
|
return NOT_A_PARTITION_ID;
|
2006-04-06 21:23:33 +04:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
else
|
2006-04-06 21:23:33 +04:00
|
|
|
return part_iter->part_nums.cur++;
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
PARTITION_ITERATOR::get_next implementation for LIST partitioning
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_next_partition_id_list()
|
|
|
|
part_iter Partition set iterator structure
|
|
|
|
|
|
|
|
DESCRIPTION
|
2006-01-05 17:47:07 +03:00
|
|
|
This implementation of PARTITION_ITERATOR::get_next() is special for
|
2009-09-15 17:07:52 +02:00
|
|
|
LIST partitioning: it enumerates partition ids in
|
2009-10-29 18:04:23 +01:00
|
|
|
part_info->list_array[i] (list_col_array[i] for COLUMNS LIST
|
2009-09-15 17:07:52 +02:00
|
|
|
partitioning) where i runs over [min_idx, max_idx] interval.
|
2006-04-06 21:23:33 +04:00
|
|
|
The function conforms to partition_iter_func type.
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
RETURN
|
|
|
|
partition id
|
|
|
|
NOT_A_PARTITION_ID if there are no more partitions
|
|
|
|
*/
|
|
|
|
|
|
|
|
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
|
|
|
|
{
|
2009-08-26 12:59:49 +02:00
|
|
|
if (part_iter->part_nums.cur >= part_iter->part_nums.end)
|
2006-03-28 17:25:19 +05:00
|
|
|
{
|
2006-04-06 21:23:33 +04:00
|
|
|
if (part_iter->ret_null_part)
|
2006-03-28 17:25:19 +05:00
|
|
|
{
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->ret_null_part= FALSE;
|
2006-03-28 17:25:19 +05:00
|
|
|
return part_iter->part_info->has_null_part_id;
|
|
|
|
}
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->part_nums.cur= part_iter->part_nums.start;
|
|
|
|
part_iter->ret_null_part= part_iter->ret_null_part_orig;
|
2006-01-04 11:09:01 +03:00
|
|
|
return NOT_A_PARTITION_ID;
|
2006-03-28 17:25:19 +05:00
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
else
|
2009-09-15 17:07:52 +02:00
|
|
|
{
|
|
|
|
partition_info *part_info= part_iter->part_info;
|
|
|
|
uint32 num_part= part_iter->part_nums.cur++;
|
|
|
|
return part_info->column_list ?
|
|
|
|
part_info->list_col_array[num_part].partition_id :
|
|
|
|
part_info->list_array[num_part].partition_id;
|
|
|
|
}
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-01-05 17:47:07 +03:00
|
|
|
PARTITION_ITERATOR::get_next implementation: walk over field-space interval
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
get_next_partition_via_walking()
|
|
|
|
part_iter Partitioning iterator
|
|
|
|
|
|
|
|
DESCRIPTION
|
2006-01-05 17:47:07 +03:00
|
|
|
This implementation of PARTITION_ITERATOR::get_next() returns ids of
|
|
|
|
partitions that contain records with partitioning field value within
|
|
|
|
[start_val, end_val] interval.
|
2006-04-06 21:23:33 +04:00
|
|
|
The function conforms to partition_iter_func type.
|
2006-01-04 11:09:01 +03:00
|
|
|
|
|
|
|
RETURN
|
|
|
|
partition id
|
|
|
|
NOT_A_PARTITION_ID if there are no more partitioning.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
|
|
|
|
{
|
|
|
|
uint32 part_id;
|
|
|
|
Field *field= part_iter->part_info->part_field_array[0];
|
2006-04-06 21:23:33 +04:00
|
|
|
while (part_iter->field_vals.cur != part_iter->field_vals.end)
|
2006-01-04 11:09:01 +03:00
|
|
|
{
|
2006-01-18 21:29:48 +03:00
|
|
|
longlong dummy;
|
2006-07-24 21:58:11 +04:00
|
|
|
field->store(part_iter->field_vals.cur++,
|
|
|
|
((Field_num*)field)->unsigned_flag);
|
2009-09-23 15:21:29 +02:00
|
|
|
if ((part_iter->part_info->is_sub_partitioned() &&
|
2006-02-15 14:34:51 +04:00
|
|
|
!part_iter->part_info->get_part_partition_id(part_iter->part_info,
|
2009-09-23 15:21:29 +02:00
|
|
|
&part_id, &dummy)) ||
|
2006-02-15 14:34:51 +04:00
|
|
|
!part_iter->part_info->get_partition_id(part_iter->part_info,
|
2006-01-18 21:29:48 +03:00
|
|
|
&part_id, &dummy))
|
2006-01-04 11:09:01 +03:00
|
|
|
return part_id;
|
|
|
|
}
|
2006-04-06 21:23:33 +04:00
|
|
|
part_iter->field_vals.cur= part_iter->field_vals.start;
|
2006-01-04 11:09:01 +03:00
|
|
|
return NOT_A_PARTITION_ID;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Same as get_next_partition_via_walking, but for subpartitions */
|
|
|
|
|
|
|
|
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
|
|
|
|
{
|
|
|
|
Field *field= part_iter->part_info->subpart_field_array[0];
|
2008-10-06 17:22:38 +05:00
|
|
|
uint32 res;
|
2006-04-06 21:23:33 +04:00
|
|
|
if (part_iter->field_vals.cur == part_iter->field_vals.end)
|
|
|
|
{
|
|
|
|
part_iter->field_vals.cur= part_iter->field_vals.start;
|
2006-01-04 11:09:01 +03:00
|
|
|
return NOT_A_PARTITION_ID;
|
2006-04-06 21:23:33 +04:00
|
|
|
}
|
|
|
|
field->store(part_iter->field_vals.cur++, FALSE);
|
2008-10-06 17:22:38 +05:00
|
|
|
if (part_iter->part_info->get_subpartition_id(part_iter->part_info,
|
|
|
|
&res))
|
|
|
|
return NOT_A_PARTITION_ID;
|
|
|
|
return res;
|
|
|
|
|
2006-01-04 11:09:01 +03:00
|
|
|
}
|
2006-02-09 11:05:05 +01:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Create partition names
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
create_partition_name()
|
|
|
|
out:out Created partition name string
|
|
|
|
in1 First part
|
|
|
|
in2 Second part
|
|
|
|
name_variant Normal, temporary or renamed partition name
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This method is used to calculate the partition name, service routine to
|
|
|
|
the del_ren_cre_table method.
|
|
|
|
*/
|
|
|
|
|
2006-04-15 21:49:13 -04:00
|
|
|
void create_partition_name(char *out, const char *in1,
|
|
|
|
const char *in2, uint name_variant,
|
|
|
|
bool translate)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
char transl_part_name[FN_REFLEN];
|
|
|
|
const char *transl_part;
|
|
|
|
|
|
|
|
if (translate)
|
|
|
|
{
|
|
|
|
tablename_to_filename(in2, transl_part_name, FN_REFLEN);
|
|
|
|
transl_part= transl_part_name;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
transl_part= in2;
|
|
|
|
if (name_variant == NORMAL_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part, NullS);
|
|
|
|
else if (name_variant == TEMP_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part, "#TMP#", NullS);
|
|
|
|
else if (name_variant == RENAMED_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part, "#REN#", NullS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Create subpartition name
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
create_subpartition_name()
|
|
|
|
out:out Created partition name string
|
|
|
|
in1 First part
|
|
|
|
in2 Second part
|
|
|
|
in3 Third part
|
|
|
|
name_variant Normal, temporary or renamed partition name
|
|
|
|
|
|
|
|
RETURN VALUE
|
|
|
|
NONE
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
This method is used to calculate the subpartition name, service routine to
|
|
|
|
the del_ren_cre_table method.
|
|
|
|
*/
|
|
|
|
|
2006-04-15 21:49:13 -04:00
|
|
|
void create_subpartition_name(char *out, const char *in1,
|
|
|
|
const char *in2, const char *in3,
|
|
|
|
uint name_variant)
|
2006-02-09 11:05:05 +01:00
|
|
|
{
|
|
|
|
char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN];
|
|
|
|
|
|
|
|
tablename_to_filename(in2, transl_part_name, FN_REFLEN);
|
|
|
|
tablename_to_filename(in3, transl_subpart_name, FN_REFLEN);
|
|
|
|
if (name_variant == NORMAL_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
|
|
"#SP#", transl_subpart_name, NullS);
|
|
|
|
else if (name_variant == TEMP_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
|
|
"#SP#", transl_subpart_name, "#TMP#", NullS);
|
|
|
|
else if (name_variant == RENAMED_PART_NAME)
|
|
|
|
strxmov(out, in1, "#P#", transl_part_name,
|
|
|
|
"#SP#", transl_subpart_name, "#REN#", NullS);
|
|
|
|
}
|
2009-10-28 01:11:17 +01:00
|
|
|
|
|
|
|
uint get_partition_field_store_length(Field *field)
|
|
|
|
{
|
|
|
|
uint store_length;
|
|
|
|
|
|
|
|
store_length= field->key_length();
|
|
|
|
if (field->real_maybe_null())
|
|
|
|
store_length+= HA_KEY_NULL_LENGTH;
|
|
|
|
if (field->real_type() == MYSQL_TYPE_VARCHAR)
|
|
|
|
store_length+= HA_KEY_BLOB_LENGTH;
|
|
|
|
return store_length;
|
|
|
|
}
|
2006-01-05 03:12:51 +03:00
|
|
|
#endif
|
2005-12-22 12:29:00 +03:00
|
|
|
|