mariadb/mysql-test/r/sp-code.result

624 lines
14 KiB
Text
Raw Normal View History

drop procedure if exists empty;
drop procedure if exists code_sample;
create procedure empty()
begin
end;
show procedure code empty;
Pos Instruction
drop procedure empty;
create function almost_empty()
returns int
return 0;
show function code almost_empty;
Pos Instruction
0 freturn 3 0
drop function almost_empty;
create procedure code_sample(x int, out err int, out nulls int)
begin
declare count int default 0;
set nulls = 0;
begin
declare c cursor for select name from t1;
declare exit handler for not found close c;
open c;
loop
begin
declare n varchar(20);
declare continue handler for sqlexception set err=1;
fetch c into n;
if isnull(n) then
set nulls = nulls + 1;
else
set count = count + 1;
update t2 set idx = count where name=n;
end if;
end;
end loop;
end;
select t.name, t.idx from t2 t order by idx asc;
end//
show procedure code code_sample;
Pos Instruction
0 set count@3 0
1 set nulls@2 0
2 cpush c@0
3 hpush_jump 6 4 EXIT
4 cclose c@0
5 hreturn 0 19
6 copen c@0
7 set n@4 NULL
8 hpush_jump 11 5 CONTINUE
9 set err@1 1
10 hreturn 5
11 cfetch c@0 n@4
12 jump_if_not 15(17) isnull(n@4)
13 set nulls@2 (nulls@2 + 1)
14 jump 17
15 set count@3 (count@3 + 1)
16 stmt 4 "update t2 set idx = count where name=n"
17 hpop 1
18 jump 7
19 hpop 1
20 cpop 1
21 stmt 0 "select t.name, t.idx from t2 t order ..."
drop procedure code_sample;
drop procedure if exists sudoku_solve;
create procedure sudoku_solve(p_naive boolean, p_all boolean)
deterministic
modifies sql data
begin
drop temporary table if exists sudoku_work, sudoku_schedule;
create temporary table sudoku_work
(
row smallint not null,
col smallint not null,
dig smallint not null,
cnt smallint,
key using btree (cnt),
key using btree (row),
key using btree (col),
unique key using hash (row,col)
);
create temporary table sudoku_schedule
(
idx int not null auto_increment primary key,
row smallint not null,
col smallint not null
);
call sudoku_init();
if p_naive then
update sudoku_work set cnt = 0 where dig = 0;
else
call sudoku_count();
end if;
insert into sudoku_schedule (row,col)
select row,col from sudoku_work where cnt is not null order by cnt desc;
begin
declare v_scounter bigint default 0;
declare v_i smallint default 1;
declare v_dig smallint;
declare v_schedmax smallint;
select count(*) into v_schedmax from sudoku_schedule;
more:
loop
begin
declare v_tcounter bigint default 0;
sched:
while v_i <= v_schedmax do
begin
declare v_row, v_col smallint;
select row,col into v_row,v_col from sudoku_schedule where v_i = idx;
select dig into v_dig from sudoku_work
where v_row = row and v_col = col;
case v_dig
when 0 then
set v_dig = 1;
update sudoku_work set dig = 1
where v_row = row and v_col = col;
when 9 then
if v_i > 0 then
update sudoku_work set dig = 0
where v_row = row and v_col = col;
set v_i = v_i - 1;
iterate sched;
else
select v_scounter as 'Solutions';
leave more;
end if;
else
set v_dig = v_dig + 1;
update sudoku_work set dig = v_dig
where v_row = row and v_col = col;
end case;
set v_tcounter = v_tcounter + 1;
if not sudoku_digit_ok(v_row, v_col, v_dig) then
iterate sched;
end if;
set v_i = v_i + 1;
end;
end while sched;
select dig from sudoku_work;
select v_tcounter as 'Tests';
set v_scounter = v_scounter + 1;
if p_all and v_i > 0 then
set v_i = v_i - 1;
else
leave more;
end if;
end;
end loop more;
end;
drop temporary table sudoku_work, sudoku_schedule;
end//
show procedure code sudoku_solve;
Pos Instruction
0 stmt 9 "drop temporary table if exists sudoku..."
1 stmt 1 "create temporary table sudoku_work ( ..."
2 stmt 1 "create temporary table sudoku_schedul..."
3 stmt 95 "call sudoku_init()"
4 jump_if_not 7(8) p_naive@0
5 stmt 4 "update sudoku_work set cnt = 0 where ..."
6 jump 8
7 stmt 95 "call sudoku_count()"
8 stmt 6 "insert into sudoku_schedule (row,col)..."
9 set v_scounter@2 0
10 set v_i@3 1
11 set v_dig@4 NULL
12 set v_schedmax@5 NULL
13 stmt 0 "select count(*) into v_schedmax from ..."
14 set v_tcounter@6 0
15 jump_if_not 39(39) (v_i@3 <= v_schedmax@5)
16 set v_row@7 NULL
17 set v_col@8 NULL
18 stmt 0 "select row,col into v_row,v_col from ..."
19 stmt 0 "select dig into v_dig from sudoku_wor..."
20 set_case_expr (34) 0 v_dig@4
21 jump_if_not 25(34) (case_expr@0 = 0)
22 set v_dig@4 1
23 stmt 4 "update sudoku_work set dig = 1 where ..."
24 jump 34
25 jump_if_not 32(34) (case_expr@0 = 9)
26 jump_if_not 30(34) (v_i@3 > 0)
27 stmt 4 "update sudoku_work set dig = 0 where ..."
28 set v_i@3 (v_i@3 - 1)
29 jump 15
30 stmt 0 "select v_scounter as 'Solutions'"
31 jump 45
32 set v_dig@4 (v_dig@4 + 1)
33 stmt 4 "update sudoku_work set dig = v_dig wh..."
34 set v_tcounter@6 (v_tcounter@6 + 1)
Fixed bug #25580: incorrect stored representations of views in cases when they contain the '!' operator. Added an implementation for the method Item_func_not::print. The method encloses any NOT expression into extra parentheses to avoid incorrect stored representations of views that use the '!' operators. Without this change when a view was created that contained the expression !0*5 its stored representation contained not this expression but rather the expression not(0)*5 . The operator '!' is of a higher precedence than '*', while NOT is of a lower precedence than '*'. That's why the expression !0*5 is interpreted as not(0)*5, while the expression not(0)*5 is interpreted as not((0)*5) unless sql_mode is set to HIGH_NOT_PRECEDENCE. Now we translate !0*5 into (not(0))*5. mysql-test/r/sp-code.result: Adjusted results after the fix of bug 25580. mysql-test/r/subselect.result: Adjusted results after the fix of bug 25580. mysql-test/r/view.result: Added a test case for bug #25580. mysql-test/t/view.test: Added a test case for bug #25580. sql/item_cmpfunc.cc: Fixed bug #25580: incorrect stored representations of views in cases when they contain the '!' operator. Added an implementation for the method Item_func_not::print. The method encloses the NOT expression into extra parenthesis to avoid incorrect stored representations of views that use the '!' operators. sql/item_cmpfunc.h: Fixed bug #25580: incorrect stored representations of views in cases when they contain the '!' operator. Added an implementation for the method Item_func_not::print. The method encloses the NOT expression into extra parenthesis to avoid incorrect stored representations of views that use the '!' operators.
2007-01-18 05:13:45 +01:00
35 jump_if_not 37(37) (not(`test`.`sudoku_digit_ok`(v_row@7,v_col@8,v_dig@4)))
36 jump 15
37 set v_i@3 (v_i@3 + 1)
38 jump 15
39 stmt 0 "select dig from sudoku_work"
40 stmt 0 "select v_tcounter as 'Tests'"
41 set v_scounter@2 (v_scounter@2 + 1)
42 jump_if_not 45(14) (p_all@1 and (v_i@3 > 0))
43 set v_i@3 (v_i@3 - 1)
44 jump 14
45 stmt 9 "drop temporary table sudoku_work, sud..."
drop procedure sudoku_solve;
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage, limitation) Note to the reviewer ==================== Warning: reviewing this patch is somewhat involved. Due to the nature of several issues all affecting the same area, fixing separately each issue is not practical, since each fix can not be implemented and tested independently. In particular, the issues with - rule recursion - nested case statements - forward jump resolution (backpatch list) are tightly coupled (see below). Definitions =========== The expression CASE expr WHEN expr THEN expr WHEN expr THEN expr ... END is a "Simple Case Expression". The expression CASE WHEN expr THEN expr WHEN expr THEN expr ... END is a "Searched Case Expression". The statement CASE expr WHEN expr THEN stmts WHEN expr THEN stmts ... END CASE is a "Simple Case Statement". The statement CASE WHEN expr THEN stmts WHEN expr THEN stmts ... END CASE is a "Searched Case Statement". A "Left Recursive" rule is like list: element | list element ; A "Right Recursive" rule is like list: element | element list ; Left and right recursion produces the same language, the difference only affects the *order* in which the text is parsed. In a descendant parser (usually written manually), right recursion works very well, and is typically implemented with a while loop. In an ascendant parser (yacc/bison) left recursion works very well, and is implemented naturally by the parser stack. In both cases, using the wrong type or recursion is very bad and should be avoided, as it causes technical issues with the parser implementation. Before this change ================== The "Simple Case Expression" and "Searched Case Expression" were both implemented by the "when_list" and "when_list2" rules, which are left recursive (ok). These rules, however, used lex->when_list instead of using the parser stack, which is more complex that necessary, and potentially dangerous because of other rules using THD::reset_lex. The "Simple Case Statement" and "Searched Case Statements" were implemented by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules. Both cases were right recursive (bad). The grammar involved was convoluted, and is assumed to be the results of tweaks to get the code generation to work, but is not what someone would naturally write. In addition, using a common rule for both "Simple" and "Searched" case statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE, which is a flag and not a stack, and therefore does not take into account *nested* case statements. This leads to incorrect generated code, and either a server crash or an incorrect result. With regards to the backpatch mechanism, a *different* backpatch list was created for each jump from "WHEN expr THEN stmt" to "END CASE", which relied on the grammar to be right recursive. This is a mis-use of the backpatch list, since this list can resolve multiple references to the same target at once. The optimizer algorithm used to detect dead code in the "assembly" SQL instructions, implemented by sp_head::opt_mark(uint ip), was recursive in some cases (a conditional jump pointing forward to another conditional jump). In case of specially crafted code, like - a long list of "IF expr THEN stmt END IF" - a long CASE statement this would actually cause a server crash with a stack overflow. In general, having a stack that grows proportionally with user data (the SQL code given by the client in a CREATE PROCEDURE) is to be avoided. In debug builds only, creating a SP / SF / Trigger which had a significant amount of code would spend --literally-- several minutes in sp_head::create, because of the debug code involved with DBUG_PRINT("info", ("Code %s ... There are several issues with this code: - in a CASE with 5 000 WHEN, there are 15 000 instructions generated, which create a sting representation of the code which is 500 000 bytes long, - using a String instead of an io stream causes performances to degrade to a total server freeze, as time is spent doing realloc of a buffer always too short, - Printing a 500 000 long string in the debug log is too verbose, - Generating this string even when DBUG_PRINT is off is useless, - Having code that potentially can affect the server behavior, used with #ifdef / #endif is useful in some cases, but is also a bad practice. After this change ================= "Case Expressions" (both simple and searched) have been simplified to not use LEX::when_list, which has been removed. Considering all the issues affecting case statements, the grammar for these has been totally re written. The existing actions, used to generate "assembly" sp_inst* code, have been preserved but moved in the new grammar, with the following changes: a) Bison rules are no longer shared between "Simple" and "Searched" case statements, because a stack instead of a flag is required to handle them. Nested statements are handled naturally by the parser stack, which by definition uses the correct rule in the correct context. Nested statements of the opposite type (simple vs searched) works correctly. The flag sp_head::IN_SIMPLE_CASE is no longer used. This is a step towards resolution of WL#2999, which correctly identified that temporary parsing flags do not belong to sp_head. The code in the action is shared by mean of the case_stmt_action_xxx() helpers. b) The backpatch mechanism, used to resolve forward jumps in the generated code, has been changed to: - create a label for the instruction following 'END CASE', - register each jump at the end of a "WHEN expr THEN stmt" in a *unique* backpatch list associated with the 'END CASE' label - resolve all the forward jumps for this label at once. In addition, the code involving backpatch has been commented, so that a reader can now understand by reading matching "Registering" and "Resolving" comments how the forward jumps are resolved and what target they resolve to, as this is far from evident when reading the code alone. The implementation of sp_head::opt_mark() has been revised to avoid recursive calls from jump instructions, and instead add the jump location to the list of paths to explore during the flow analysis of the instruction graph, with a call to sp_head::add_mark_lead(). In addition, the flow analysis will stop if an instruction has already been marked as reachable, which the previous code failed to do in the recursive case. sp_head::opt_mark() is now private, to prevent new calls to this method from being introduced. The debug code present in sp_head::create() has been removed. Considering that SHOW PROCEDURE CODE is also available in debug builds, and can be used anytime regardless of the trace level, as opposed to "CREATE PROCEDURE" time and only if the trace was on, removing the code actually makes debugging easier (usable trace). Tests have been written to cover the parser overflow (big CASE), and to cover nested CASE statements. mysql-test/r/sp-code.result: Test cases for nested CASE statements. mysql-test/t/sp-code.test: Test cases for nested CASE statements. sql/sp_head.cc: Re factored opt_mark() to avoid recursion, clean up. sql/sp_head.h: Re factored opt_mark() to avoid recursion, clean up. sql/sql_lex.cc: Removed when_list. sql/sql_lex.h: Removed when_list. sql/sql_yacc.yy: Minor clean up for case expressions, Major re write for case statements (Bug#19194). mysql-test/r/sp_stress_case.result: New test for massive CASE statements. mysql-test/t/sp_stress_case.sh: New test for massive CASE statements. mysql-test/t/sp_stress_case.test: New test for massive CASE statements.
2006-11-17 20:14:29 +01:00
DROP PROCEDURE IF EXISTS proc_19194_simple;
DROP PROCEDURE IF EXISTS proc_19194_searched;
DROP PROCEDURE IF EXISTS proc_19194_nested_1;
DROP PROCEDURE IF EXISTS proc_19194_nested_2;
DROP PROCEDURE IF EXISTS proc_19194_nested_3;
DROP PROCEDURE IF EXISTS proc_19194_nested_4;
CREATE PROCEDURE proc_19194_simple(i int)
BEGIN
DECLARE str CHAR(10);
CASE i
WHEN 1 THEN SET str="1";
WHEN 2 THEN SET str="2";
WHEN 3 THEN SET str="3";
ELSE SET str="unknown";
END CASE;
SELECT str;
END|
CREATE PROCEDURE proc_19194_searched(i int)
BEGIN
DECLARE str CHAR(10);
CASE
WHEN i=1 THEN SET str="1";
WHEN i=2 THEN SET str="2";
WHEN i=3 THEN SET str="3";
ELSE SET str="unknown";
END CASE;
SELECT str;
END|
CREATE PROCEDURE proc_19194_nested_1(i int, j int)
BEGIN
DECLARE str_i CHAR(10);
DECLARE str_j CHAR(10);
CASE i
WHEN 10 THEN SET str_i="10";
WHEN 20 THEN
BEGIN
set str_i="20";
CASE
WHEN j=1 THEN SET str_j="1";
WHEN j=2 THEN SET str_j="2";
WHEN j=3 THEN SET str_j="3";
ELSE SET str_j="unknown";
END CASE;
select "i was 20";
END;
WHEN 30 THEN SET str_i="30";
WHEN 40 THEN SET str_i="40";
ELSE SET str_i="unknown";
END CASE;
SELECT str_i, str_j;
END|
CREATE PROCEDURE proc_19194_nested_2(i int, j int)
BEGIN
DECLARE str_i CHAR(10);
DECLARE str_j CHAR(10);
CASE
WHEN i=10 THEN SET str_i="10";
WHEN i=20 THEN
BEGIN
set str_i="20";
CASE j
WHEN 1 THEN SET str_j="1";
WHEN 2 THEN SET str_j="2";
WHEN 3 THEN SET str_j="3";
ELSE SET str_j="unknown";
END CASE;
select "i was 20";
END;
WHEN i=30 THEN SET str_i="30";
WHEN i=40 THEN SET str_i="40";
ELSE SET str_i="unknown";
END CASE;
SELECT str_i, str_j;
END|
CREATE PROCEDURE proc_19194_nested_3(i int, j int)
BEGIN
DECLARE str_i CHAR(10);
DECLARE str_j CHAR(10);
CASE i
WHEN 10 THEN SET str_i="10";
WHEN 20 THEN
BEGIN
set str_i="20";
CASE j
WHEN 1 THEN SET str_j="1";
WHEN 2 THEN SET str_j="2";
WHEN 3 THEN SET str_j="3";
ELSE SET str_j="unknown";
END CASE;
select "i was 20";
END;
WHEN 30 THEN SET str_i="30";
WHEN 40 THEN SET str_i="40";
ELSE SET str_i="unknown";
END CASE;
SELECT str_i, str_j;
END|
CREATE PROCEDURE proc_19194_nested_4(i int, j int)
BEGIN
DECLARE str_i CHAR(10);
DECLARE str_j CHAR(10);
CASE
WHEN i=10 THEN SET str_i="10";
WHEN i=20 THEN
BEGIN
set str_i="20";
CASE
WHEN j=1 THEN SET str_j="1";
WHEN j=2 THEN SET str_j="2";
WHEN j=3 THEN SET str_j="3";
ELSE SET str_j="unknown";
END CASE;
select "i was 20";
END;
WHEN i=30 THEN SET str_i="30";
WHEN i=40 THEN SET str_i="40";
ELSE SET str_i="unknown";
END CASE;
SELECT str_i, str_j;
END|
SHOW PROCEDURE CODE proc_19194_simple;
Pos Instruction
0 set str@1 NULL
1 set_case_expr (12) 0 i@0
2 jump_if_not 5(12) (case_expr@0 = 1)
3 set str@1 _latin1'1'
4 jump 12
5 jump_if_not 8(12) (case_expr@0 = 2)
6 set str@1 _latin1'2'
7 jump 12
8 jump_if_not 11(12) (case_expr@0 = 3)
9 set str@1 _latin1'3'
10 jump 12
11 set str@1 _latin1'unknown'
12 stmt 0 "SELECT str"
SHOW PROCEDURE CODE proc_19194_searched;
Pos Instruction
0 set str@1 NULL
1 jump_if_not 4(11) (i@0 = 1)
2 set str@1 _latin1'1'
3 jump 11
4 jump_if_not 7(11) (i@0 = 2)
5 set str@1 _latin1'2'
6 jump 11
7 jump_if_not 10(11) (i@0 = 3)
8 set str@1 _latin1'3'
9 jump 11
10 set str@1 _latin1'unknown'
11 stmt 0 "SELECT str"
SHOW PROCEDURE CODE proc_19194_nested_1;
Pos Instruction
0 set str_i@2 NULL
1 set str_j@3 NULL
2 set_case_expr (27) 0 i@0
3 jump_if_not 6(27) (case_expr@0 = 10)
4 set str_i@2 _latin1'10'
5 jump 27
6 jump_if_not 20(27) (case_expr@0 = 20)
7 set str_i@2 _latin1'20'
8 jump_if_not 11(18) (j@1 = 1)
9 set str_j@3 _latin1'1'
10 jump 18
11 jump_if_not 14(18) (j@1 = 2)
12 set str_j@3 _latin1'2'
13 jump 18
14 jump_if_not 17(18) (j@1 = 3)
15 set str_j@3 _latin1'3'
16 jump 18
17 set str_j@3 _latin1'unknown'
18 stmt 0 "select "i was 20""
19 jump 27
20 jump_if_not 23(27) (case_expr@0 = 30)
21 set str_i@2 _latin1'30'
22 jump 27
23 jump_if_not 26(27) (case_expr@0 = 40)
24 set str_i@2 _latin1'40'
25 jump 27
26 set str_i@2 _latin1'unknown'
27 stmt 0 "SELECT str_i, str_j"
SHOW PROCEDURE CODE proc_19194_nested_2;
Pos Instruction
0 set str_i@2 NULL
1 set str_j@3 NULL
2 jump_if_not 5(27) (i@0 = 10)
3 set str_i@2 _latin1'10'
4 jump 27
5 jump_if_not 20(27) (i@0 = 20)
6 set str_i@2 _latin1'20'
7 set_case_expr (18) 0 j@1
8 jump_if_not 11(18) (case_expr@0 = 1)
9 set str_j@3 _latin1'1'
10 jump 18
11 jump_if_not 14(18) (case_expr@0 = 2)
12 set str_j@3 _latin1'2'
13 jump 18
14 jump_if_not 17(18) (case_expr@0 = 3)
15 set str_j@3 _latin1'3'
16 jump 18
17 set str_j@3 _latin1'unknown'
18 stmt 0 "select "i was 20""
19 jump 27
20 jump_if_not 23(27) (i@0 = 30)
21 set str_i@2 _latin1'30'
22 jump 27
23 jump_if_not 26(27) (i@0 = 40)
24 set str_i@2 _latin1'40'
25 jump 27
26 set str_i@2 _latin1'unknown'
27 stmt 0 "SELECT str_i, str_j"
SHOW PROCEDURE CODE proc_19194_nested_3;
Pos Instruction
0 set str_i@2 NULL
1 set str_j@3 NULL
2 set_case_expr (28) 0 i@0
3 jump_if_not 6(28) (case_expr@0 = 10)
4 set str_i@2 _latin1'10'
5 jump 28
6 jump_if_not 21(28) (case_expr@0 = 20)
7 set str_i@2 _latin1'20'
8 set_case_expr (19) 1 j@1
9 jump_if_not 12(19) (case_expr@1 = 1)
10 set str_j@3 _latin1'1'
11 jump 19
12 jump_if_not 15(19) (case_expr@1 = 2)
13 set str_j@3 _latin1'2'
14 jump 19
15 jump_if_not 18(19) (case_expr@1 = 3)
16 set str_j@3 _latin1'3'
17 jump 19
18 set str_j@3 _latin1'unknown'
19 stmt 0 "select "i was 20""
20 jump 28
21 jump_if_not 24(28) (case_expr@0 = 30)
22 set str_i@2 _latin1'30'
23 jump 28
24 jump_if_not 27(28) (case_expr@0 = 40)
25 set str_i@2 _latin1'40'
26 jump 28
27 set str_i@2 _latin1'unknown'
28 stmt 0 "SELECT str_i, str_j"
SHOW PROCEDURE CODE proc_19194_nested_4;
Pos Instruction
0 set str_i@2 NULL
1 set str_j@3 NULL
2 jump_if_not 5(26) (i@0 = 10)
3 set str_i@2 _latin1'10'
4 jump 26
5 jump_if_not 19(26) (i@0 = 20)
6 set str_i@2 _latin1'20'
7 jump_if_not 10(17) (j@1 = 1)
8 set str_j@3 _latin1'1'
9 jump 17
10 jump_if_not 13(17) (j@1 = 2)
11 set str_j@3 _latin1'2'
12 jump 17
13 jump_if_not 16(17) (j@1 = 3)
14 set str_j@3 _latin1'3'
15 jump 17
16 set str_j@3 _latin1'unknown'
17 stmt 0 "select "i was 20""
18 jump 26
19 jump_if_not 22(26) (i@0 = 30)
20 set str_i@2 _latin1'30'
21 jump 26
22 jump_if_not 25(26) (i@0 = 40)
23 set str_i@2 _latin1'40'
24 jump 26
25 set str_i@2 _latin1'unknown'
26 stmt 0 "SELECT str_i, str_j"
CALL proc_19194_nested_1(10, 1);
str_i str_j
10 NULL
CALL proc_19194_nested_1(25, 1);
str_i str_j
unknown NULL
CALL proc_19194_nested_1(20, 1);
i was 20
i was 20
str_i str_j
20 1
CALL proc_19194_nested_1(20, 2);
i was 20
i was 20
str_i str_j
20 2
CALL proc_19194_nested_1(20, 3);
i was 20
i was 20
str_i str_j
20 3
CALL proc_19194_nested_1(20, 4);
i was 20
i was 20
str_i str_j
20 unknown
CALL proc_19194_nested_1(30, 1);
str_i str_j
30 NULL
CALL proc_19194_nested_1(40, 1);
str_i str_j
40 NULL
CALL proc_19194_nested_1(0, 0);
str_i str_j
unknown NULL
CALL proc_19194_nested_2(10, 1);
str_i str_j
10 NULL
CALL proc_19194_nested_2(25, 1);
str_i str_j
unknown NULL
CALL proc_19194_nested_2(20, 1);
i was 20
i was 20
str_i str_j
20 1
CALL proc_19194_nested_2(20, 2);
i was 20
i was 20
str_i str_j
20 2
CALL proc_19194_nested_2(20, 3);
i was 20
i was 20
str_i str_j
20 3
CALL proc_19194_nested_2(20, 4);
i was 20
i was 20
str_i str_j
20 unknown
CALL proc_19194_nested_2(30, 1);
str_i str_j
30 NULL
CALL proc_19194_nested_2(40, 1);
str_i str_j
40 NULL
CALL proc_19194_nested_2(0, 0);
str_i str_j
unknown NULL
CALL proc_19194_nested_3(10, 1);
str_i str_j
10 NULL
CALL proc_19194_nested_3(25, 1);
str_i str_j
unknown NULL
CALL proc_19194_nested_3(20, 1);
i was 20
i was 20
str_i str_j
20 1
CALL proc_19194_nested_3(20, 2);
i was 20
i was 20
str_i str_j
20 2
CALL proc_19194_nested_3(20, 3);
i was 20
i was 20
str_i str_j
20 3
CALL proc_19194_nested_3(20, 4);
i was 20
i was 20
str_i str_j
20 unknown
CALL proc_19194_nested_3(30, 1);
str_i str_j
30 NULL
CALL proc_19194_nested_3(40, 1);
str_i str_j
40 NULL
CALL proc_19194_nested_3(0, 0);
str_i str_j
unknown NULL
CALL proc_19194_nested_4(10, 1);
str_i str_j
10 NULL
CALL proc_19194_nested_4(25, 1);
str_i str_j
unknown NULL
CALL proc_19194_nested_4(20, 1);
i was 20
i was 20
str_i str_j
20 1
CALL proc_19194_nested_4(20, 2);
i was 20
i was 20
str_i str_j
20 2
CALL proc_19194_nested_4(20, 3);
i was 20
i was 20
str_i str_j
20 3
CALL proc_19194_nested_4(20, 4);
i was 20
i was 20
str_i str_j
20 unknown
CALL proc_19194_nested_4(30, 1);
str_i str_j
30 NULL
CALL proc_19194_nested_4(40, 1);
str_i str_j
40 NULL
CALL proc_19194_nested_4(0, 0);
str_i str_j
unknown NULL
DROP PROCEDURE proc_19194_simple;
DROP PROCEDURE proc_19194_searched;
DROP PROCEDURE proc_19194_nested_1;
DROP PROCEDURE proc_19194_nested_2;
DROP PROCEDURE proc_19194_nested_3;
DROP PROCEDURE proc_19194_nested_4;
DROP PROCEDURE IF EXISTS p1;
CREATE PROCEDURE p1() CREATE INDEX idx ON t1 (c1);
SHOW PROCEDURE CODE p1;
Pos Instruction
0 stmt 2 "CREATE INDEX idx ON t1 (c1)"
DROP PROCEDURE p1;
End of 5.0 tests.