mariadb/storage/innobase/buf/buf0dblwr.cc

722 lines
24 KiB
C++
Raw Normal View History

/*****************************************************************************
2017-05-15 16:17:16 +02:00
Copyright (c) 1995, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2013, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
2019-05-11 18:25:02 +02:00
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file buf/buf0dblwr.cc
Doublwrite buffer module
Created 2011/12/19
*******************************************************/
#include "buf0dblwr.h"
#include "buf0buf.h"
#include "buf0checksum.h"
#include "srv0start.h"
#include "srv0srv.h"
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
#include "sync0sync.h"
#include "page0zip.h"
#include "trx0sys.h"
#include "fil0crypt.h"
#include "fil0pagecompress.h"
using st_::span;
/** The doublewrite buffer */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
buf_dblwr_t buf_dblwr;
/** @return the TRX_SYS page */
inline buf_block_t *buf_dblwr_trx_sys_get(mtr_t *mtr)
{
buf_block_t *block= buf_page_get(page_id_t(TRX_SYS_SPACE, TRX_SYS_PAGE_NO),
0, RW_X_LATCH, mtr);
buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK);
return block;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Initialize the doublewrite buffer data structure.
@param header doublewrite page header in the TRX_SYS page */
inline void buf_dblwr_t::init(const byte *header)
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(!first_free);
ut_ad(!reserved);
ut_ad(!batch_running);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_init(buf_dblwr_mutex_key, &mutex, nullptr);
mysql_cond_init(0, &cond, nullptr);
block1= page_id_t(0, mach_read_from_4(header + TRX_SYS_DOUBLEWRITE_BLOCK1));
block2= page_id_t(0, mach_read_from_4(header + TRX_SYS_DOUBLEWRITE_BLOCK2));
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
const uint32_t buf_size= 2 * block_size();
write_buf= static_cast<byte*>(aligned_malloc(buf_size << srv_page_size_shift,
srv_page_size));
buf_block_arr= static_cast<element*>
(ut_zalloc_nokey(buf_size * sizeof(element)));
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Create or restore the doublewrite buffer in the TRX_SYS page.
@return whether the operation succeeded */
bool buf_dblwr_t::create()
{
if (is_initialised())
return true;
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mtr_t mtr;
const ulint size= block_size();
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
start_again:
mtr.start();
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
buf_block_t *trx_sys_block= buf_dblwr_trx_sys_get(&mtr);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (mach_read_from_4(TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_MAGIC +
trx_sys_block->frame) == TRX_SYS_DOUBLEWRITE_MAGIC_N)
{
/* The doublewrite buffer has already been created: just read in
some numbers */
init(TRX_SYS_DOUBLEWRITE + trx_sys_block->frame);
mtr.commit();
return true;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (UT_LIST_GET_FIRST(fil_system.sys_space->chain)->size < 3 * size)
{
too_small:
ib::error() << "Cannot create doublewrite buffer: "
"the first file in innodb_data_file_path must be at least "
<< (3 * (size >> (20U - srv_page_size_shift))) << "M.";
mtr.commit();
return false;
}
else
{
buf_block_t *b= fseg_create(fil_system.sys_space,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_FSEG,
&mtr, false, trx_sys_block);
if (!b)
goto too_small;
ib::info() << "Doublewrite buffer not found: creating new";
/* FIXME: After this point, the doublewrite buffer creation
is not atomic. The doublewrite buffer should not exist in
the InnoDB system tablespace file in the first place.
It could be located in separate optional file(s) in a
user-specified location. */
/* fseg_create acquires a second latch on the page,
therefore we must declare it: */
buf_block_dbg_add_level(b, SYNC_NO_ORDER_CHECK);
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
byte *fseg_header= TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_FSEG +
trx_sys_block->frame;
for (ulint prev_page_no= 0, i= 0; i < 2 * size + FSP_EXTENT_SIZE / 2; i++)
{
buf_block_t *new_block= fseg_alloc_free_page(fseg_header, prev_page_no + 1,
FSP_UP, &mtr);
if (!new_block)
{
ib::error() << "Cannot create doublewrite buffer: "
" you must increase your tablespace size."
" Cannot continue operation.";
/* This may essentially corrupt the doublewrite
buffer. However, usually the doublewrite buffer
is created at database initialization, and it
should not matter (just remove all newly created
InnoDB files and restart). */
mtr.commit();
return false;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* We read the allocated pages to the buffer pool; when they are
written to disk in a flush, the space id and page number fields
are also written to the pages. When we at database startup read
pages from the doublewrite buffer, we know that if the space id
and page number in them are the same as the page position in the
tablespace, then the page has not been written to in
doublewrite. */
ut_ad(rw_lock_get_x_lock_count(&new_block->lock) == 1);
const page_id_t id= new_block->page.id();
/* We only do this in the debug build, to ensure that the check in
buf_flush_init_for_writing() will see a valid page type. The
flushes of new_block are actually unnecessary here. */
ut_d(mtr.write<2>(*new_block, FIL_PAGE_TYPE + new_block->frame,
FIL_PAGE_TYPE_SYS));
if (i == size / 2)
{
ut_a(id.page_no() == size);
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_BLOCK1 +
trx_sys_block->frame, id.page_no());
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_REPEAT +
TRX_SYS_DOUBLEWRITE_BLOCK1 + trx_sys_block->frame,
id.page_no());
}
else if (i == size / 2 + size)
{
ut_a(id.page_no() == 2 * size);
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_BLOCK2 +
trx_sys_block->frame, id.page_no());
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_REPEAT +
TRX_SYS_DOUBLEWRITE_BLOCK2 + trx_sys_block->frame,
id.page_no());
}
else if (i > size / 2)
ut_a(id.page_no() == prev_page_no + 1);
if (((i + 1) & 15) == 0) {
/* rw_locks can only be recursively x-locked 2048 times. (on 32
bit platforms, (lint) 0 - (X_LOCK_DECR * 2049) is no longer a
negative number, and thus lock_word becomes like a shared lock).
For 4k page size this loop will lock the fseg header too many
times. Since this code is not done while any other threads are
active, restart the MTR occasionally. */
mtr.commit();
mtr.start();
trx_sys_block= buf_dblwr_trx_sys_get(&mtr);
fseg_header= TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_FSEG +
trx_sys_block->frame;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
prev_page_no= id.page_no();
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_MAGIC +
trx_sys_block->frame, TRX_SYS_DOUBLEWRITE_MAGIC_N);
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_MAGIC +
TRX_SYS_DOUBLEWRITE_REPEAT + trx_sys_block->frame,
TRX_SYS_DOUBLEWRITE_MAGIC_N);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mtr.write<4>(*trx_sys_block,
TRX_SYS_DOUBLEWRITE + TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED +
trx_sys_block->frame, TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N);
mtr.commit();
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* Flush the modified pages to disk and make a checkpoint */
log_make_checkpoint();
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* Remove doublewrite pages from LRU */
buf_pool_invalidate();
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ib::info() << "Doublewrite buffer created";
goto start_again;
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Initialize the doublewrite buffer memory structure on recovery.
If we are upgrading from a version before MySQL 4.1, then this
function performs the necessary update operations to support
innodb_file_per_table. If we are in a crash recovery, this function
loads the pages from double write buffer into memory.
@param file File handle
@param path Path name of file
@return DB_SUCCESS or error code */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
dberr_t buf_dblwr_t::init_or_load_pages(pfs_os_file_t file, const char *path)
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(this == &buf_dblwr);
const uint32_t size= block_size();
/* We do the file i/o past the buffer pool */
byte *read_buf= static_cast<byte*>(aligned_malloc(srv_page_size,
srv_page_size));
/* Read the TRX_SYS header to check if we are using the doublewrite buffer */
dberr_t err= os_file_read(IORequestRead, file, read_buf,
TRX_SYS_PAGE_NO << srv_page_size_shift,
srv_page_size);
if (err != DB_SUCCESS)
{
ib::error() << "Failed to read the system tablespace header page";
func_exit:
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
aligned_free(read_buf);
return err;
}
/* TRX_SYS_PAGE_NO is not encrypted see fil_crypt_rotate_page() */
if (mach_read_from_4(TRX_SYS_DOUBLEWRITE_MAGIC + TRX_SYS_DOUBLEWRITE +
read_buf) != TRX_SYS_DOUBLEWRITE_MAGIC_N)
{
/* There is no doublewrite buffer initialized in the TRX_SYS page.
This should normally not be possible; the doublewrite buffer should
be initialized when creating the database. */
err= DB_SUCCESS;
goto func_exit;
}
init(TRX_SYS_DOUBLEWRITE + read_buf);
const bool upgrade_to_innodb_file_per_table=
mach_read_from_4(TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED +
TRX_SYS_DOUBLEWRITE + read_buf) !=
TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N;
/* Read the pages from the doublewrite buffer to memory */
err= os_file_read(IORequestRead, file, write_buf,
block1.page_no() << srv_page_size_shift,
size << srv_page_size_shift);
if (err != DB_SUCCESS)
{
ib::error() << "Failed to read the first double write buffer extent";
goto func_exit;
}
err= os_file_read(IORequestRead, file,
write_buf + (size << srv_page_size_shift),
block2.page_no() << srv_page_size_shift,
size << srv_page_size_shift);
if (err != DB_SUCCESS)
{
ib::error() << "Failed to read the second double write buffer extent";
goto func_exit;
}
byte *page= write_buf;
if (UNIV_UNLIKELY(upgrade_to_innodb_file_per_table))
{
ib::info() << "Resetting space id's in the doublewrite buffer";
for (ulint i= 0; i < size * 2; i++, page += srv_page_size)
{
memset(page + FIL_PAGE_SPACE_ID, 0, 4);
/* For innodb_checksum_algorithm=innodb, we do not need to
calculate new checksums for the pages because the field
.._SPACE_ID does not affect them. Write the page back to where
we read it from. */
const ulint source_page_no= i < size
? block1.page_no() + i
: block2.page_no() + i - size;
err= os_file_write(IORequestWrite, path, file, page,
source_page_no << srv_page_size_shift, srv_page_size);
if (err != DB_SUCCESS)
{
ib::error() << "Failed to upgrade the double write buffer";
goto func_exit;
}
}
os_file_flush(file);
}
else
for (ulint i= 0; i < size * 2; i++, page += srv_page_size)
if (mach_read_from_8(my_assume_aligned<8>(page + FIL_PAGE_LSN)))
/* Each valid page header must contain a nonzero FIL_PAGE_LSN field. */
recv_sys.dblwr.add(page);
err= DB_SUCCESS;
goto func_exit;
2014-05-05 18:20:28 +02:00
}
/** Process and remove the double write buffer pages for all tablespaces. */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
void buf_dblwr_t::recover()
2014-05-05 18:20:28 +02:00
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(recv_sys.parse_start_lsn);
if (!is_initialised())
return;
ulint page_no_dblwr= 0;
byte *read_buf= static_cast<byte*>(aligned_malloc(3 * srv_page_size,
srv_page_size));
byte *const buf= read_buf + srv_page_size;
for (recv_dblwr_t::list::iterator i= recv_sys.dblwr.pages.begin();
i != recv_sys.dblwr.pages.end(); ++i, ++page_no_dblwr)
{
byte *page= *i;
const ulint page_no= page_get_page_no(page);
if (!page_no) /* recovered via Datafile::restore_from_doublewrite() */
continue;
const lsn_t lsn= mach_read_from_8(page + FIL_PAGE_LSN);
if (recv_sys.parse_start_lsn > lsn)
/* Pages written before the checkpoint are not useful for recovery. */
continue;
const ulint space_id= page_get_space_id(page);
const page_id_t page_id(space_id, page_no);
if (recv_sys.scanned_lsn < lsn)
{
ib::warn() << "Ignoring a doublewrite copy of page " << page_id
<< " with future log sequence number " << lsn;
continue;
}
fil_space_t* space= fil_space_acquire_for_io(space_id);
if (!space)
/* The tablespace that this page once belonged to does not exist */
continue;
fil_space_open_if_needed(space);
if (UNIV_UNLIKELY(page_no >= space->size))
{
/* Do not report the warning for undo tablespaces, because they
can be truncated in place. */
if (!srv_is_undo_tablespace(space_id))
ib::warn() << "A copy of page " << page_no
<< " in the doublewrite buffer slot " << page_no_dblwr
<< " is beyond the end of tablespace " << space->name
<< " (" << space->size << " pages)";
MDEV-11799 Doublewrite recovery can corrupt data pages The purpose of the InnoDB doublewrite buffer is to make InnoDB tolerant against cases where the server was killed in the middle of a page write. (In Linux, killing a process may interrupt a write system call, typically on a 4096-byte boundary.) There may exist multiple copies of a page number in the doublewrite buffer. Recovery should choose the latest valid copy of the page. By design, the FIL_PAGE_LSN must not precede the latest checkpoint LSN nor be later than the end of the recovered log. For page_compressed and encrypted pages, we were missing proper consistency checks. In the 10.4 data set generated for in MDEV-23231, the data file contained a valid page_compressed page, and an identical copy of that page was also present in the doublewrite buffer. But, recovery would incorrectly consider the page invalid and restore an uncompressed copy of the same page that had been written before the log checkpoint. (In fact, no redo log was to be applied to that page.) buf_dblwr_process(): Validate the FIL_PAGE_LSN in the doublewrite buffer pages, and always skip page 0, because those pages should have been recovered by Datafile::restore_from_doublewrite() if necessary. Datafile::restore_from_doublewrite(): Choose the latest applicable page from the doublewrite buffer. recv_dblwr_t::find_page(): Also validate encrypted or page_compressed pages. recv_dblwr_t::validate_page(): New function to validate a page, either a copy in a data file or in the doublewrite buffer. Also validate encrypted or page_compressed pages. This is joint work with Thirunarayanan Balathandayuthapani.
2020-07-31 10:51:44 +02:00
next_page:
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
space->release_for_io();
continue;
}
const ulint physical_size= space->physical_size();
const ulint zip_size= space->zip_size();
ut_ad(!buf_is_zeroes(span<const byte>(page, physical_size)));
/* We want to ensure that for partial reads the unread portion of
the page is NUL. */
memset(read_buf, 0x0, physical_size);
/* Read in the actual page from the file */
fil_io_t fio= fil_io(IORequest(IORequest::READ | IORequest::DBLWR_RECOVER),
true, page_id, zip_size,
0, physical_size, read_buf, nullptr);
if (UNIV_UNLIKELY(fio.err != DB_SUCCESS))
ib::warn() << "Double write buffer recovery: " << page_id
<< " (tablespace '" << space->name
<< "') read failed with error: " << fio.err;
if (fio.node)
fio.node->space->release_for_io();
if (buf_is_zeroes(span<const byte>(read_buf, physical_size)))
{
/* We will check if the copy in the doublewrite buffer is
valid. If not, we will ignore this page (there should be redo
log records to initialize it). */
}
else if (recv_sys.dblwr.validate_page(page_id, read_buf, space, buf))
goto next_page;
else
/* We intentionally skip this message for all-zero pages. */
ib::info() << "Trying to recover page " << page_id
<< " from the doublewrite buffer.";
page= recv_sys.dblwr.find_page(page_id, space, buf);
if (!page)
goto next_page;
/* Write the good page from the doublewrite buffer to the intended
position. */
fio= fil_io(IORequestWrite, true, page_id, zip_size, 0, physical_size,
page, nullptr);
if (fio.node)
{
ut_ad(fio.err == DB_SUCCESS);
ib::info() << "Recovered page " << page_id << " to '" << fio.node->name
<< "' from the doublewrite buffer.";
fio.node->space->release_for_io();
goto next_page;
}
}
recv_sys.dblwr.pages.clear();
fil_flush_file_spaces();
aligned_free(read_buf);
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Free the doublewrite buffer. */
void buf_dblwr_t::close()
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (!is_initialised())
return;
/* Free the double write data structures. */
ut_ad(!reserved);
ut_ad(!first_free);
ut_ad(!batch_running);
mysql_cond_destroy(&cond);
aligned_free(write_buf);
ut_free(buf_block_arr);
mysql_mutex_destroy(&mutex);
memset((void*) this, 0, sizeof *this);
}
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
/** Update the doublewrite buffer on write completion. */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
void buf_dblwr_t::write_completed()
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(this == &buf_dblwr);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
ut_ad(srv_use_doublewrite_buf);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(is_initialised());
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
ut_ad(!srv_read_only_mode);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_lock(&mutex);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(batch_running);
ut_ad(reserved);
ut_ad(reserved <= first_free);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (!--reserved)
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_unlock(&mutex);
/* This will finish the batch. Sync data files to the disk. */
fil_flush_file_spaces();
mysql_mutex_lock(&mutex);
/* We can now reuse the doublewrite memory buffer: */
first_free= 0;
batch_running= false;
mysql_cond_broadcast(&cond);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_unlock(&mutex);
}
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 13:08:43 +01:00
#ifdef UNIV_DEBUG
/** Check the LSN values on the page.
@param[in] page page to check
@param[in] s tablespace */
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 13:08:43 +01:00
static void buf_dblwr_check_page_lsn(const page_t* page, const fil_space_t& s)
{
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
/* Ignore page_compressed or encrypted pages */
if (s.is_compressed() || buf_page_get_key_version(page, s.flags))
return;
const byte* lsn_start= FIL_PAGE_LSN + 4 + page;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
const byte* lsn_end= page + srv_page_size -
(s.full_crc32()
? FIL_PAGE_FCRC32_END_LSN
: FIL_PAGE_END_LSN_OLD_CHKSUM - 4);
static_assert(FIL_PAGE_FCRC32_END_LSN % 4 == 0, "alignment");
static_assert(FIL_PAGE_LSN % 4 == 0, "alignment");
ut_ad(!memcmp_aligned<4>(lsn_start, lsn_end, 4));
}
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
static void buf_dblwr_check_page_lsn(const buf_page_t &b, const byte *page)
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 13:08:43 +01:00
{
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
if (fil_space_t *space= fil_space_acquire_for_io(b.id().space()))
{
buf_dblwr_check_page_lsn(page, *space);
space->release_for_io();
}
MDEV-18644: Support full_crc32 for page_compressed This is a follow-up task to MDEV-12026, which introduced innodb_checksum_algorithm=full_crc32 and a simpler page format. MDEV-12026 did not enable full_crc32 for page_compressed tables, which we will be doing now. This is joint work with Thirunarayanan Balathandayuthapani. For innodb_checksum_algorithm=full_crc32 we change the page_compressed format as follows: FIL_PAGE_TYPE: The most significant bit will be set to indicate page_compressed format. The least significant bits will contain the compressed page size, rounded up to a multiple of 256 bytes. The checksum will be stored in the last 4 bytes of the page (whether it is the full page or a page_compressed page whose size is determined by FIL_PAGE_TYPE), covering all preceding bytes of the page. If encryption is used, then the page will be encrypted between compression and computing the checksum. For page_compressed, FIL_PAGE_LSN will not be repeated at the end of the page. FSP_SPACE_FLAGS (already implemented as part of MDEV-12026): We will store the innodb_compression_algorithm that may be used to compress pages. Previously, the choice of algorithm was written to each compressed data page separately, and one would be unable to know in advance which compression algorithm(s) are used. fil_space_t::full_crc32_page_compressed_len(): Determine if the page_compressed algorithm of the tablespace needs to know the exact length of the compressed data. If yes, we will reserve and write an extra byte for this right before the checksum. buf_page_is_compressed(): Determine if a page uses page_compressed (in any innodb_checksum_algorithm). fil_page_decompress(): Pass also fil_space_t::flags so that the format can be determined. buf_page_is_zeroes(): Check if a page is full of zero bytes. buf_page_full_crc32_is_corrupted(): Renamed from buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32, we always simply validate the checksum to the page contents, while the physical page size is explicitly specified by an unencrypted part of the page header. buf_page_full_crc32_size(): Determine the size of a full_crc32 page. buf_dblwr_check_page_lsn(): Make this a debug-only function, because it involves potentially costly lookups of fil_space_t. create_table_info_t::check_table_options(), ha_innobase::check_if_supported_inplace_alter(): Do allow the creation of SPATIAL INDEX with full_crc32 also when page_compressed is used. commit_cache_norebuild(): Preserve the compression algorithm when updating the page_compression_level. dict_tf_to_fsp_flags(): Set the flags for page compression algorithm. FIXME: Maybe there should be a table option page_compression_algorithm and a session variable to back it?
2019-03-18 13:08:43 +01:00
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Check the LSN values on the page with which this block is associated. */
static void buf_dblwr_check_block(const buf_page_t *bpage)
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(bpage->state() == BUF_BLOCK_FILE_PAGE);
const page_t *page= reinterpret_cast<const buf_block_t*>(bpage)->frame;
switch (fil_page_get_type(page)) {
case FIL_PAGE_INDEX:
case FIL_PAGE_TYPE_INSTANT:
case FIL_PAGE_RTREE:
if (page_is_comp(page))
{
if (page_simple_validate_new(page))
return;
}
else if (page_simple_validate_old(page))
return;
/* While it is possible that this is not an index page but just
happens to have wrongly set FIL_PAGE_TYPE, such pages should never
be modified to without also adjusting the page type during page
allocation or buf_flush_init_for_writing() or
fil_block_reset_type(). */
buf_page_print(page);
ib::fatal() << "Apparent corruption of an index page " << bpage->id()
<< " to be written to data file. We intentionally crash"
" the server to prevent corrupt data from ending up in"
" data files.";
}
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
#endif /* UNIV_DEBUG */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
bool buf_dblwr_t::flush_buffered_writes(const ulint size)
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_assert_owner(&mutex);
ut_ad(size == block_size());
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
for (;;)
{
if (!first_free)
return false;
if (!batch_running)
break;
mysql_cond_wait(&cond, &mutex);
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(reserved == first_free);
/* Disallow anyone else to post to doublewrite buffer or to
start another batch of flushing. */
batch_running= true;
const ulint old_first_free= first_free;
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* Now safe to release the mutex. */
mysql_mutex_unlock(&mutex);
#ifdef UNIV_DEBUG
for (ulint len2= 0, i= 0; i < old_first_free; len2 += srv_page_size, i++)
{
buf_page_t *bpage= buf_block_arr[i].bpage;
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (bpage->zip.data)
/* No simple validate for ROW_FORMAT=COMPRESSED pages exists. */
continue;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* Check that the actual page in the buffer pool is not corrupt
and the LSN values are sane. */
buf_dblwr_check_block(bpage);
ut_d(buf_dblwr_check_page_lsn(*bpage, write_buf + len2));
}
#endif /* UNIV_DEBUG */
/* Write out the first block of the doublewrite buffer */
fil_io_t fio= fil_io(IORequestWrite, true, block1, 0, 0,
std::min(size, old_first_free) << srv_page_size_shift,
write_buf, nullptr);
fio.node->space->release_for_io();
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (old_first_free > size)
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* Write out the second block of the doublewrite buffer. */
fio= fil_io(IORequestWrite, true, block2, 0, 0,
(old_first_free - size) << srv_page_size_shift,
write_buf + (size << srv_page_size_shift), nullptr);
fio.node->space->release_for_io();
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* increment the doublewrite flushed pages counter */
srv_stats.dblwr_pages_written.add(first_free);
srv_stats.dblwr_writes.inc();
/* Now flush the doublewrite buffer data to disk */
fil_flush(TRX_SYS_SPACE);
/* We know that the writes have been flushed to disk now
and in recovery we will find them in the doublewrite buffer
blocks. Next do the writes to the intended positions. */
/* Up to this point old_first_free == first_free because we have set
the batch_running flag disallowing any other thread to post any
request but we can't safely access first_free in the loop below.
This is so because it is possible that after we are done with the
last iteration and before we terminate the loop, the batch gets
finished in the IO helper thread and another thread posts a new
batch setting first_free to a higher value. If this happens and we
are using first_free in the loop termination condition then we'll
end up dispatching the same block twice from two different
threads. */
ut_ad(old_first_free == first_free);
for (ulint i= 0; i < old_first_free; i++)
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
auto e= buf_block_arr[i];
buf_page_t* bpage= e.bpage;
ut_a(bpage->in_file());
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/* We request frame here to get correct buffer in case of
encryption and/or page compression */
void *frame= buf_page_get_frame(bpage);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
auto e_size= e.size;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (UNIV_LIKELY_NULL(bpage->zip.data))
{
e_size= bpage->zip_size();
ut_ad(e_size);
}
else
{
ut_ad(bpage->state() == BUF_BLOCK_FILE_PAGE);
ut_ad(!bpage->zip_size());
ut_d(buf_dblwr_check_page_lsn(*bpage, static_cast<const byte*>(frame)));
}
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
fil_io(IORequest(IORequest::WRITE, bpage, e.lru), false,
bpage->id(), bpage->zip_size(), 0, e_size, frame, bpage);
}
return true;
}
/** Flush possible buffered writes to persistent storage.
It is very important to call this function after a batch of writes has been
posted, and also when we may have to wait for a page latch!
Otherwise a deadlock of threads can occur. */
void buf_dblwr_t::flush_buffered_writes()
{
if (!is_initialised() || !srv_use_doublewrite_buf)
{
os_aio_wait_until_no_pending_writes();
fil_flush_file_spaces();
return;
}
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(!srv_read_only_mode);
const ulint size= block_size();
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_lock(&mutex);
if (!flush_buffered_writes(size))
mysql_mutex_unlock(&mutex);
}
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
/** Schedule a page write. If the doublewrite memory buffer is full,
flush_buffered_writes() will be invoked to make space.
@param bpage buffer pool page to be written
@param lru true=buf_pool.LRU; false=buf_pool.flush_list
@param size payload size in bytes */
void buf_dblwr_t::add_to_batch(buf_page_t *bpage, bool lru, size_t size)
{
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
ut_ad(bpage->in_file());
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
const ulint buf_size= 2 * block_size();
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
mysql_mutex_lock(&mutex);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
for (;;)
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
{
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
while (batch_running)
mysql_cond_wait(&cond, &mutex);
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
ut_ad(first_free <= buf_size);
if (first_free != buf_size)
break;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (flush_buffered_writes(buf_size / 2))
mysql_mutex_lock(&mutex);
}
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
byte *p= write_buf + srv_page_size * first_free;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
/* We request frame here to get correct buffer in case of
encryption and/or page compression */
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
void *frame= buf_page_get_frame(bpage);
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
memcpy_aligned<OS_FILE_LOG_BLOCK_SIZE>(p, frame, size);
ut_ad(!bpage->zip_size() || bpage->zip_size() == size);
ut_ad(reserved == first_free);
ut_ad(reserved < buf_size);
buf_block_arr[first_free++]= { bpage, lru, size };
reserved= first_free;
MDEV-15053 Reduce buf_pool_t::mutex contention User-visible changes: The INFORMATION_SCHEMA views INNODB_BUFFER_PAGE and INNODB_BUFFER_PAGE_LRU will report a dummy value FLUSH_TYPE=0 and will no longer report the PAGE_STATE value READY_FOR_USE. We will remove some fields from buf_page_t and move much code to member functions of buf_pool_t and buf_page_t, so that the access rules of data members can be enforced consistently. Evicting or adding pages in buf_pool.LRU will remain covered by buf_pool.mutex. Evicting or adding pages in buf_pool.page_hash will remain covered by both buf_pool.mutex and the buf_pool.page_hash X-latch. After this fix, buf_pool.page_hash lookups can entirely avoid acquiring buf_pool.mutex, only relying on buf_pool.hash_lock_get() S-latch. Similarly, buf_flush_check_neighbors() can will rely solely on buf_pool.mutex, no buf_pool.page_hash latch at all. The buf_pool.mutex is rather contended in I/O heavy benchmarks, especially when the workload does not fit in the buffer pool. The first attempt to alleviate the contention was the buf_pool_t::mutex split in commit 4ed7082eefe56b3e97e0edefb3df76dd7ef5e858 which introduced buf_block_t::mutex, which we are now removing. Later, multiple instances of buf_pool_t were introduced in commit c18084f71b02ea707c6461353e6cfc15d7553bc6 and recently removed by us in commit 1a6f708ec594ac0ae2dd30db926ab07b100fa24b (MDEV-15058). UNIV_BUF_DEBUG: Remove. This option to enable some buffer pool related debugging in otherwise non-debug builds has not been used for years. Instead, we have been using UNIV_DEBUG, which is enabled in CMAKE_BUILD_TYPE=Debug. buf_block_t::mutex, buf_pool_t::zip_mutex: Remove. We can mainly rely on std::atomic and the buf_pool.page_hash latches, and in some cases depend on buf_pool.mutex or buf_pool.flush_list_mutex just like before. We must always release buf_block_t::lock before invoking unfix() or io_unfix(), to prevent a glitch where a block that was added to the buf_pool.free list would apper X-latched. See commit c5883debd6ef440a037011c11873b396923e93c5 how this glitch was finally caught in a debug environment. We move some buf_pool_t::page_hash specific code from the ha and hash modules to buf_pool, for improved readability. buf_pool_t::close(): Assert that all blocks are clean, except on aborted startup or crash-like shutdown. buf_pool_t::validate(): No longer attempt to validate n_flush[] against the number of BUF_IO_WRITE fixed blocks, because buf_page_t::flush_type no longer exists. buf_pool_t::watch_set(): Replaces buf_pool_watch_set(). Reduce mutex contention by separating the buf_pool.watch[] allocation and the insert into buf_pool.page_hash. buf_pool_t::page_hash_lock<bool exclusive>(): Acquire a buf_pool.page_hash latch. Replaces and extends buf_page_hash_lock_s_confirm() and buf_page_hash_lock_x_confirm(). buf_pool_t::READ_AHEAD_PAGES: Renamed from BUF_READ_AHEAD_PAGES. buf_pool_t::curr_size, old_size, read_ahead_area, n_pend_reads: Use Atomic_counter. buf_pool_t::running_out(): Replaces buf_LRU_buf_pool_running_out(). buf_pool_t::LRU_remove(): Remove a block from the LRU list and return its predecessor. Incorporates buf_LRU_adjust_hp(), which was removed. buf_page_get_gen(): Remove a redundant call of fsp_is_system_temporary(), for mode == BUF_GET_IF_IN_POOL_OR_WATCH, which is only used by BTR_DELETE_OP (purge), which is never invoked on temporary tables. buf_free_from_unzip_LRU_list_batch(): Avoid redundant assignments. buf_LRU_free_from_unzip_LRU_list(): Simplify the loop condition. buf_LRU_free_page(): Clarify the function comment. buf_flush_check_neighbor(), buf_flush_check_neighbors(): Rewrite the construction of the page hash range. We will hold the buf_pool.mutex for up to buf_pool.read_ahead_area (at most 64) consecutive lookups of buf_pool.page_hash. buf_flush_page_and_try_neighbors(): Remove. Merge to its only callers, and remove redundant operations in buf_flush_LRU_list_batch(). buf_read_ahead_random(), buf_read_ahead_linear(): Rewrite. Do not acquire buf_pool.mutex, and iterate directly with page_id_t. ut_2_power_up(): Remove. my_round_up_to_next_power() is inlined and avoids any loops. fil_page_get_prev(), fil_page_get_next(), fil_addr_is_null(): Remove. buf_flush_page(): Add a fil_space_t* parameter. Minimize the buf_pool.mutex hold time. buf_pool.n_flush[] is no longer updated atomically with the io_fix, and we will protect most buf_block_t fields with buf_block_t::lock. The function buf_flush_write_block_low() is removed and merged here. buf_page_init_for_read(): Use static linkage. Initialize the newly allocated block and acquire the exclusive buf_block_t::lock while not holding any mutex. IORequest::IORequest(): Remove the body. We only need to invoke set_punch_hole() in buf_flush_page() and nowhere else. buf_page_t::flush_type: Remove. Replaced by IORequest::flush_type. This field is only used during a fil_io() call. That function already takes IORequest as a parameter, so we had better introduce for the rarely changing field. buf_block_t::init(): Replaces buf_page_init(). buf_page_t::init(): Replaces buf_page_init_low(). buf_block_t::initialise(): Initialise many fields, but keep the buf_page_t::state(). Both buf_pool_t::validate() and buf_page_optimistic_get() requires that buf_page_t::in_file() be protected atomically with buf_page_t::in_page_hash and buf_page_t::in_LRU_list. buf_page_optimistic_get(): Now that buf_block_t::mutex no longer exists, we must check buf_page_t::io_fix() after acquiring the buf_pool.page_hash lock, to detect whether buf_page_init_for_read() has been initiated. We will also check the io_fix() before acquiring hash_lock in order to avoid unnecessary computation. The field buf_block_t::modify_clock (protected by buf_block_t::lock) allows buf_page_optimistic_get() to validate the block. buf_page_t::real_size: Remove. It was only used while flushing pages of page_compressed tables. buf_page_encrypt(): Add an output parameter that allows us ot eliminate buf_page_t::real_size. Replace a condition with debug assertion. buf_page_should_punch_hole(): Remove. buf_dblwr_t::add_to_batch(): Replaces buf_dblwr_add_to_batch(). Add the parameter size (to replace buf_page_t::real_size). buf_dblwr_t::write_single_page(): Replaces buf_dblwr_write_single_page(). Add the parameter size (to replace buf_page_t::real_size). fil_system_t::detach(): Replaces fil_space_detach(). Ensure that fil_validate() will not be violated even if fil_system.mutex is released and reacquired. fil_node_t::complete_io(): Renamed from fil_node_complete_io(). fil_node_t::close_to_free(): Replaces fil_node_close_to_free(). Avoid invoking fil_node_t::close() because fil_system.n_open has already been decremented in fil_space_t::detach(). BUF_BLOCK_READY_FOR_USE: Remove. Directly use BUF_BLOCK_MEMORY. BUF_BLOCK_ZIP_DIRTY: Remove. Directly use BUF_BLOCK_ZIP_PAGE, and distinguish dirty pages by buf_page_t::oldest_modification(). BUF_BLOCK_POOL_WATCH: Remove. Use BUF_BLOCK_NOT_USED instead. This state was only being used for buf_page_t that are in buf_pool.watch. buf_pool_t::watch[]: Remove pointer indirection. buf_page_t::in_flush_list: Remove. It was set if and only if buf_page_t::oldest_modification() is nonzero. buf_page_decrypt_after_read(), buf_corrupt_page_release(), buf_page_check_corrupt(): Change the const fil_space_t* parameter to const fil_node_t& so that we can report the correct file name. buf_page_monitor(): Declare as an ATTRIBUTE_COLD global function. buf_page_io_complete(): Split to buf_page_read_complete() and buf_page_write_complete(). buf_dblwr_t::in_use: Remove. buf_dblwr_t::buf_block_array: Add IORequest::flush_t. buf_dblwr_sync_datafiles(): Remove. It was a useless wrapper of os_aio_wait_until_no_pending_writes(). buf_flush_write_complete(): Declare static, not global. Add the parameter IORequest::flush_t. buf_flush_freed_page(): Simplify the code. recv_sys_t::flush_lru: Renamed from flush_type and changed to bool. fil_read(), fil_write(): Replaced with direct use of fil_io(). fil_buffering_disabled(): Remove. Check srv_file_flush_method directly. fil_mutex_enter_and_prepare_for_io(): Return the resolved fil_space_t* to avoid a duplicated lookup in the caller. fil_report_invalid_page_access(): Clean up the parameters. fil_io(): Return fil_io_t, which comprises fil_node_t and error code. Always invoke fil_space_t::acquire_for_io() and let either the sync=true caller or fil_aio_callback() invoke fil_space_t::release_for_io(). fil_aio_callback(): Rewrite to replace buf_page_io_complete(). fil_check_pending_operations(): Remove a parameter, and remove some redundant lookups. fil_node_close_to_free(): Wait for n_pending==0. Because we no longer do an extra lookup of the tablespace between fil_io() and the completion of the operation, we must give fil_node_t::complete_io() a chance to decrement the counter. fil_close_tablespace(): Remove unused parameter trx, and document that this is only invoked during the error handling of IMPORT TABLESPACE. row_import_discard_changes(): Merged with the only caller, row_import_cleanup(). Do not lock up the data dictionary while invoking fil_close_tablespace(). logs_empty_and_mark_files_at_shutdown(): Do not invoke fil_close_all_files(), to avoid a !needs_flush assertion failure on fil_node_t::close(). innodb_shutdown(): Invoke os_aio_free() before fil_close_all_files(). fil_close_all_files(): Invoke fil_flush_file_spaces() to ensure proper durability. thread_pool::unbind(): Fix a crash that would occur on Windows after srv_thread_pool->disable_aio() and os_file_close(). This fix was submitted by Vladislav Vaintroub. Thanks to Matthias Leich and Axel Schwenke for extensive testing, Vladislav Vaintroub for helpful comments, and Eugene Kosov for a review.
2020-06-05 11:35:46 +02:00
MDEV-23399: Performance regression with write workloads The buffer pool refactoring in MDEV-15053 and MDEV-22871 shifted the performance bottleneck to the page flushing. The configuration parameters will be changed as follows: innodb_lru_flush_size=32 (new: how many pages to flush on LRU eviction) innodb_lru_scan_depth=1536 (old: 1024) innodb_max_dirty_pages_pct=90 (old: 75) innodb_max_dirty_pages_pct_lwm=75 (old: 0) Note: The parameter innodb_lru_scan_depth will only affect LRU eviction of buffer pool pages when a new page is being allocated. The page cleaner thread will no longer evict any pages. It used to guarantee that some pages will remain free in the buffer pool. Now, we perform that eviction 'on demand' in buf_LRU_get_free_block(). The parameter innodb_lru_scan_depth(srv_LRU_scan_depth) is used as follows: * When the buffer pool is being shrunk in buf_pool_t::withdraw_blocks() * As a buf_pool.free limit in buf_LRU_list_batch() for terminating the flushing that is initiated e.g., by buf_LRU_get_free_block() The parameter also used to serve as an initial limit for unzip_LRU eviction (evicting uncompressed page frames while retaining ROW_FORMAT=COMPRESSED pages), but now we will use a hard-coded limit of 100 or unlimited for invoking buf_LRU_scan_and_free_block(). The status variables will be changed as follows: innodb_buffer_pool_pages_flushed: This includes also the count of innodb_buffer_pool_pages_LRU_flushed and should work reliably, updated one by one in buf_flush_page() to give more real-time statistics. The function buf_flush_stats(), which we are removing, was not called in every code path. For both counters, we will use regular variables that are incremented in a critical section of buf_pool.mutex. Note that show_innodb_vars() directly links to the variables, and reads of the counters will *not* be protected by buf_pool.mutex, so you cannot get a consistent snapshot of both variables. The following INFORMATION_SCHEMA.INNODB_METRICS counters will be removed, because the page cleaner no longer deals with writing or evicting least recently used pages, and because the single-page writes have been removed: * buffer_LRU_batch_flush_avg_time_slot * buffer_LRU_batch_flush_avg_time_thread * buffer_LRU_batch_flush_avg_time_est * buffer_LRU_batch_flush_avg_pass * buffer_LRU_single_flush_scanned * buffer_LRU_single_flush_num_scan * buffer_LRU_single_flush_scanned_per_call When moving to a single buffer pool instance in MDEV-15058, we missed some opportunity to simplify the buf_flush_page_cleaner thread. It was unnecessarily using a mutex and some complex data structures, even though we always have a single page cleaner thread. Furthermore, the buf_flush_page_cleaner thread had separate 'recovery' and 'shutdown' modes where it was waiting to be triggered by some other thread, adding unnecessary latency and potential for hangs in relatively rarely executed startup or shutdown code. The page cleaner was also running two kinds of batches in an interleaved fashion: "LRU flush" (writing out some least recently used pages and evicting them on write completion) and the normal batches that aim to increase the MIN(oldest_modification) in the buffer pool, to help the log checkpoint advance. The buf_pool.flush_list flushing was being blocked by buf_block_t::lock for no good reason. Furthermore, if the FIL_PAGE_LSN of a page is ahead of log_sys.get_flushed_lsn(), that is, what has been persistently written to the redo log, we would trigger a log flush and then resume the page flushing. This would unnecessarily limit the performance of the page cleaner thread and trigger the infamous messages "InnoDB: page_cleaner: 1000ms intended loop took 4450ms. The settings might not be optimal" that were suppressed in commit d1ab89037a518fcffbc50c24e4bd94e4ec33aed0 unless log_warnings>2. Our revised algorithm will make log_sys.get_flushed_lsn() advance at the start of buf_flush_lists(), and then execute a 'best effort' to write out all pages. The flush batches will skip pages that were modified since the log was written, or are are currently exclusively locked. The MDEV-13670 message "page_cleaner: 1000ms intended loop took" message will be removed, because by design, the buf_flush_page_cleaner() should not be blocked during a batch for extended periods of time. We will remove the single-page flushing altogether. Related to this, the debug parameter innodb_doublewrite_batch_size will be removed, because all of the doublewrite buffer will be used for flushing batches. If a page needs to be evicted from the buffer pool and all 100 least recently used pages in the buffer pool have unflushed changes, buf_LRU_get_free_block() will execute buf_flush_lists() to write out and evict innodb_lru_flush_size pages. At most one thread will execute buf_flush_lists() in buf_LRU_get_free_block(); other threads will wait for that LRU flushing batch to finish. To improve concurrency, we will replace the InnoDB ib_mutex_t and os_event_t native mutexes and condition variables in this area of code. Most notably, this means that the buffer pool mutex (buf_pool.mutex) is no longer instrumented via any InnoDB interfaces. It will continue to be instrumented via PERFORMANCE_SCHEMA. For now, both buf_pool.flush_list_mutex and buf_pool.mutex will be declared with MY_MUTEX_INIT_FAST (PTHREAD_MUTEX_ADAPTIVE_NP). The critical sections of buf_pool.flush_list_mutex should be shorter than those for buf_pool.mutex, because in the worst case, they cover a linear scan of buf_pool.flush_list, while the worst case of a critical section of buf_pool.mutex covers a linear scan of the potentially much longer buf_pool.LRU list. mysql_mutex_is_owner(), safe_mutex_is_owner(): New predicate, usable with SAFE_MUTEX. Some InnoDB debug assertions need this predicate instead of mysql_mutex_assert_owner() or mysql_mutex_assert_not_owner(). buf_pool_t::n_flush_LRU, buf_pool_t::n_flush_list: Replaces buf_pool_t::init_flush[] and buf_pool_t::n_flush[]. The number of active flush operations. buf_pool_t::mutex, buf_pool_t::flush_list_mutex: Use mysql_mutex_t instead of ib_mutex_t, to have native mutexes with PERFORMANCE_SCHEMA and SAFE_MUTEX instrumentation. buf_pool_t::done_flush_LRU: Condition variable for !n_flush_LRU. buf_pool_t::done_flush_list: Condition variable for !n_flush_list. buf_pool_t::do_flush_list: Condition variable to wake up the buf_flush_page_cleaner when a log checkpoint needs to be written or the server is being shut down. Replaces buf_flush_event. We will keep using timed waits (the page cleaner thread will wake _at least_ once per second), because the calculations for innodb_adaptive_flushing depend on fixed time intervals. buf_dblwr: Allocate statically, and move all code to member functions. Use a native mutex and condition variable. Remove code to deal with single-page flushing. buf_dblwr_check_block(): Make the check debug-only. We were spending a significant amount of execution time in page_simple_validate_new(). flush_counters_t::unzip_LRU_evicted: Remove. IORequest: Make more members const. FIXME: m_fil_node should be removed. buf_flush_sync_lsn: Protect by std::atomic, not page_cleaner.mutex (which we are removing). page_cleaner_slot_t, page_cleaner_t: Remove many redundant members. pc_request_flush_slot(): Replaces pc_request() and pc_flush_slot(). recv_writer_thread: Remove. Recovery works just fine without it, if we simply invoke buf_flush_sync() at the end of each batch in recv_sys_t::apply(). recv_recovery_from_checkpoint_finish(): Remove. We can simply call recv_sys.debug_free() directly. srv_started_redo: Replaces srv_start_state. SRV_SHUTDOWN_FLUSH_PHASE: Remove. logs_empty_and_mark_files_at_shutdown() can communicate with the normal page cleaner loop via the new function flush_buffer_pool(). buf_flush_remove(): Assert that the calling thread is holding buf_pool.flush_list_mutex. This removes unnecessary mutex operations from buf_flush_remove_pages() and buf_flush_dirty_pages(), which replace buf_LRU_flush_or_remove_pages(). buf_flush_lists(): Renamed from buf_flush_batch(), with simplified interface. Return the number of flushed pages. Clarified comments and renamed min_n to max_n. Identify LRU batch by lsn=0. Merge all the functions buf_flush_start(), buf_flush_batch(), buf_flush_end() directly to this function, which was their only caller, and remove 2 unnecessary buf_pool.mutex release/re-acquisition that we used to perform around the buf_flush_batch() call. At the start, if not all log has been durably written, wait for a background task to do it, or start a new task to do it. This allows the log write to run concurrently with our page flushing batch. Any pages that were skipped due to too recent FIL_PAGE_LSN or due to them being latched by a writer should be flushed during the next batch, unless there are further modifications to those pages. It is possible that a page that we must flush due to small oldest_modification also carries a recent FIL_PAGE_LSN or is being constantly modified. In the worst case, all writers would then end up waiting in log_free_check() to allow the flushing and the checkpoint to complete. buf_do_flush_list_batch(): Clarify comments, and rename min_n to max_n. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_flush_space(): Auxiliary function to look up a tablespace for page flushing. buf_flush_page(): Defer the computation of space->full_crc32(). Never call log_write_up_to(), but instead skip persistent pages whose latest modification (FIL_PAGE_LSN) is newer than the redo log. Also skip pages on which we cannot acquire a shared latch without waiting. buf_flush_try_neighbors(): Do not bother checking buf_fix_count because buf_flush_page() will no longer wait for the page latch. Take the tablespace as a parameter, and only execute this function when innodb_flush_neighbors>0. Avoid repeated calls of page_id_t::fold(). buf_flush_relocate_on_flush_list(): Declare as cold, and push down a condition from the callers. buf_flush_check_neighbor(): Take id.fold() as a parameter. buf_flush_sync(): Ensure that the buf_pool.flush_list is empty, because the flushing batch will skip pages whose modifications have not yet been written to the log or were latched for modification. buf_free_from_unzip_LRU_list_batch(): Remove redundant local variables. buf_flush_LRU_list_batch(): Let the caller buf_do_LRU_batch() initialize the counters, and report n->evicted. Cache the last looked up tablespace. If neighbor flushing is not applicable, invoke buf_flush_page() directly, avoiding a page lookup in between. buf_do_LRU_batch(): Return the number of pages flushed. buf_LRU_free_page(): Only release and re-acquire buf_pool.mutex if adaptive hash index entries are pointing to the block. buf_LRU_get_free_block(): Do not wake up the page cleaner, because it will no longer perform any useful work for us, and we do not want it to compete for I/O while buf_flush_lists(innodb_lru_flush_size, 0) writes out and evicts at most innodb_lru_flush_size pages. (The function buf_do_LRU_batch() may complete after writing fewer pages if more than innodb_lru_scan_depth pages end up in buf_pool.free list.) Eliminate some mutex release-acquire cycles, and wait for the LRU flush batch to complete before rescanning. buf_LRU_check_size_of_non_data_objects(): Simplify the code. buf_page_write_complete(): Remove the parameter evict, and always evict pages that were part of an LRU flush. buf_page_create(): Take a pre-allocated page as a parameter. buf_pool_t::free_block(): Free a pre-allocated block. recv_sys_t::recover_low(), recv_sys_t::apply(): Preallocate the block while not holding recv_sys.mutex. During page allocation, we may initiate a page flush, which in turn may initiate a log flush, which would require acquiring log_sys.mutex, which should always be acquired before recv_sys.mutex in order to avoid deadlocks. Therefore, we must not be holding recv_sys.mutex while allocating a buffer pool block. BtrBulk::logFreeCheck(): Skip a redundant condition. row_undo_step(): Do not invoke srv_inc_activity_count() for every row that is being rolled back. It should suffice to invoke the function in trx_flush_log_if_needed() during trx_t::commit_in_memory() when the rollback completes. sync_check_enable(): Remove. We will enable innodb_sync_debug from the very beginning. Reviewed by: Vladislav Vaintroub
2020-10-15 11:10:42 +02:00
if (first_free != buf_size || !flush_buffered_writes(buf_size / 2))
mysql_mutex_unlock(&mutex);
}