mariadb/linux/memory.c

314 lines
9.3 KiB
C
Raw Normal View History

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2007-2011 Tokutek Inc. All rights reserved."
#include <toku_portability.h>
#include "db.h" // get Toku-specific version of db.h
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <dlfcn.h>
#include "memory.h"
#include "toku_assert.h"
static malloc_fun_t t_malloc = 0;
static malloc_fun_t t_xmalloc = 0;
static free_fun_t t_free = 0;
static realloc_fun_t t_realloc = 0;
static realloc_fun_t t_xrealloc = 0;
///////////////////////////////////////////////////////////////////////////////////
// Engine status
//
// Status is intended for display to humans to help understand system behavior.
// It does not need to be perfectly thread-safe.
static MEMORY_STATUS_S memory_status;
static volatile uint64_t max_in_use; // maximum memory footprint (used - freed), approximate (not worth threadsafety overhead for exact, but worth keeping as volatile)
#define STATUS_INIT(k,t,l) { \
memory_status.status[k].keyname = #k; \
memory_status.status[k].type = t; \
memory_status.status[k].legend = "memory: " l; \
}
static void
status_init(void) {
// Note, this function initializes the keyname, type, and legend fields.
// Value fields are initialized to zero by compiler.
STATUS_INIT(MEMORY_MALLOC_COUNT, UINT64, "number of malloc operations");
STATUS_INIT(MEMORY_FREE_COUNT, UINT64, "number of free operations");
STATUS_INIT(MEMORY_REALLOC_COUNT, UINT64, "number of realloc operations");
STATUS_INIT(MEMORY_MALLOC_FAIL, UINT64, "number of malloc operations that failed");
STATUS_INIT(MEMORY_REALLOC_FAIL, UINT64, "number of realloc operations that failed" );
STATUS_INIT(MEMORY_REQUESTED, UINT64, "number of bytes requested");
STATUS_INIT(MEMORY_USED, UINT64, "number of bytes used (requested + overhead)");
STATUS_INIT(MEMORY_FREED, UINT64, "number of bytes freed");
STATUS_INIT(MEMORY_MAX_IN_USE, UINT64, "estimated maximum memory footprint");
STATUS_INIT(MEMORY_MALLOCATOR_VERSION, CHARSTR, "mallocator version");
STATUS_INIT(MEMORY_MMAP_THRESHOLD, UINT64, "mmap threshold");
memory_status.initialized = 1; // TODO 2949 Make this a bool, set to true
}
#undef STATUS_INIT
#define STATUS_VALUE(x) memory_status.status[x].value.num
void
toku_memory_get_status(MEMORY_STATUS statp) {
if (!memory_status.initialized)
status_init();
STATUS_VALUE(MEMORY_MAX_IN_USE) = max_in_use;
*statp = memory_status;
}
#define STATUS_VERSION_STRING memory_status.status[MEMORY_MALLOCATOR_VERSION].value.str
int
toku_memory_startup(void) {
int result = 0;
// initialize libc malloc
size_t mmap_threshold = 64 * 1024; // 64K and larger should be malloced with mmap().
int success = mallopt(M_MMAP_THRESHOLD, mmap_threshold);
if (success) {
STATUS_VERSION_STRING = "libc";
STATUS_VALUE(MEMORY_MMAP_THRESHOLD) = mmap_threshold;
} else
result = EINVAL;
// jemalloc has a mallctl function, while libc malloc does not. we can check if jemalloc
// is loaded by checking if the mallctl function can be found. if it can, we call it
// to get version and mmap threshold configuration.
typedef int (*mallctl_fun_t)(const char *, void *, size_t *, void *, size_t);
mallctl_fun_t mallctl_f;
mallctl_f = (mallctl_fun_t) dlsym(RTLD_DEFAULT, "mallctl");
if (mallctl_f) { // jemalloc is loaded
size_t version_length = sizeof STATUS_VERSION_STRING;
result = mallctl_f("version", &STATUS_VERSION_STRING, &version_length, NULL, 0);
if (result == 0) {
size_t lg_chunk; // log2 of the mmap threshold
size_t lg_chunk_length = sizeof lg_chunk;
result = mallctl_f("opt.lg_chunk", &lg_chunk, &lg_chunk_length, NULL, 0);
if (result == 0)
STATUS_VALUE(MEMORY_MMAP_THRESHOLD) = 1 << lg_chunk;
}
}
return result;
}
void
toku_memory_shutdown(void) {
}
// jemalloc's malloc_usable_size does not work with a NULL pointer, so we implement a version that works
static size_t
my_malloc_usable_size(void *p) {
return p == NULL ? 0 : malloc_usable_size(p);
}
// Note that max_in_use may be slightly off because use of max_in_use is not thread-safe.
// It is not worth the overhead to make it completely accurate, but
// this logic is intended to guarantee that it increases monotonically.
// Note that status.sum_used and status.sum_freed increase monotonically
// and that max_in_use is declared volatile.
static inline void
set_max(uint64_t sum_used, uint64_t sum_freed) {
if (sum_used >= sum_freed) {
uint64_t in_use = sum_used - sum_freed;
uint64_t old_max;
do {
old_max = max_in_use;
} while (old_max < in_use &&
!__sync_bool_compare_and_swap(&max_in_use, old_max, in_use));
}
}
size_t
toku_memory_footprint(void * p, size_t touched) {
static size_t pagesize = 0;
size_t rval = 0;
if (!pagesize)
pagesize = sysconf(_SC_PAGESIZE);
if (p) {
size_t usable = my_malloc_usable_size(p);
if (usable >= STATUS_VALUE(MEMORY_MMAP_THRESHOLD)) {
int num_pages = (touched + pagesize) / pagesize;
rval = num_pages * pagesize;
}
else {
rval = usable;
}
}
return rval;
}
void *
toku_malloc(size_t size) {
void *p = t_malloc ? t_malloc(size) : os_malloc(size);
if (p) {
size_t used = my_malloc_usable_size(p);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_MALLOC_COUNT), 1);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REQUESTED), size);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_USED), used);
set_max(STATUS_VALUE(MEMORY_USED), STATUS_VALUE(MEMORY_FREED));
} else {
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_MALLOC_FAIL), 1);
}
return p;
}
void *
toku_calloc(size_t nmemb, size_t size) {
size_t newsize = nmemb * size;
void *p = toku_malloc(newsize);
if (p) memset(p, 0, newsize);
return p;
}
void *
toku_realloc(void *p, size_t size) {
size_t used_orig = p ? my_malloc_usable_size(p) : 0;
void *q = t_realloc ? t_realloc(p, size) : os_realloc(p, size);
if (q) {
size_t used = my_malloc_usable_size(q);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REALLOC_COUNT), 1);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REQUESTED), size);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_USED), used);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_FREED), used_orig);
set_max(STATUS_VALUE(MEMORY_USED), STATUS_VALUE(MEMORY_FREED));
} else {
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REALLOC_FAIL), 1);
}
return q;
}
void *
toku_memdup(const void *v, size_t len) {
void *p = toku_malloc(len);
if (p) memcpy(p, v,len);
return p;
}
char *
toku_strdup(const char *s) {
return toku_memdup(s, strlen(s)+1);
}
void
toku_free(void *p) {
if (p) {
size_t used = my_malloc_usable_size(p);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_FREE_COUNT), 1);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_FREED), used);
if (t_free)
t_free(p);
else
os_free(p);
}
}
void
toku_free_n(void* p, size_t size __attribute__((unused))) {
toku_free(p);
}
void *
toku_xmalloc(size_t size) {
void *p = t_xmalloc ? t_xmalloc(size) : os_malloc(size);
if (p == NULL) // avoid function call in common case
resource_assert(p);
size_t used = my_malloc_usable_size(p);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_MALLOC_COUNT), 1);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REQUESTED), size);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_USED), used);
set_max(STATUS_VALUE(MEMORY_USED), STATUS_VALUE(MEMORY_FREED));
return p;
}
void *
toku_xcalloc(size_t nmemb, size_t size) {
size_t newsize = nmemb * size;
void *vp = toku_xmalloc(newsize);
if (vp) memset(vp, 0, newsize);
return vp;
}
void *
toku_xrealloc(void *v, size_t size) {
size_t used_orig = v ? my_malloc_usable_size(v) : 0;
void *p = t_xrealloc ? t_xrealloc(v, size) : os_realloc(v, size);
if (p == 0) // avoid function call in common case
resource_assert(p);
size_t used = my_malloc_usable_size(p);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REALLOC_COUNT), 1);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_REQUESTED), size);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_USED), used);
__sync_add_and_fetch(&STATUS_VALUE(MEMORY_FREED), used_orig);
set_max(STATUS_VALUE(MEMORY_USED), STATUS_VALUE(MEMORY_FREED));
return p;
}
size_t
toku_malloc_usable_size(void *p) {
return my_malloc_usable_size(p);
}
void *
toku_xmemdup (const void *v, size_t len) {
void *p = toku_xmalloc(len);
memcpy(p, v, len);
return p;
}
char *
toku_xstrdup (const char *s) {
return toku_xmemdup(s, strlen(s)+1);
}
void
toku_set_func_malloc(malloc_fun_t f) {
t_malloc = f;
t_xmalloc = f;
}
void
toku_set_func_xmalloc_only(malloc_fun_t f) {
t_xmalloc = f;
}
void
toku_set_func_malloc_only(malloc_fun_t f) {
t_malloc = f;
}
void
toku_set_func_realloc(realloc_fun_t f) {
t_realloc = f;
t_xrealloc = f;
}
void
toku_set_func_xrealloc_only(realloc_fun_t f) {
t_xrealloc = f;
}
void
toku_set_func_realloc_only(realloc_fun_t f) {
t_realloc = f;
}
void
toku_set_func_free(free_fun_t f) {
t_free = f;
}
#include <valgrind/drd.h>
void __attribute__((constructor)) toku_memory_drd_ignore(void);
void
toku_memory_drd_ignore(void) {
DRD_IGNORE_VAR(memory_status);
}