2003-01-09 01:19:14 +01:00
|
|
|
/* Copyright (C) 2000-2003 MySQL AB
|
2000-08-21 13:35:27 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2006-12-23 20:17:15 +01:00
|
|
|
the Free Software Foundation; version 2 of the License.
|
2000-08-21 13:35:27 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
2000-08-21 13:35:27 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
2000-12-15 12:18:52 +01:00
|
|
|
/* sql_yacc.yy */
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%{
|
2002-11-30 16:43:53 +01:00
|
|
|
/* thd is passed as an arg to yyparse(), and subsequently to yylex().
|
|
|
|
** The type will be void*, so it must be cast to (THD*) when used.
|
|
|
|
** Use the YYTHD macro for this.
|
2002-11-26 14:18:16 +01:00
|
|
|
*/
|
|
|
|
#define YYPARSE_PARAM yythd
|
2002-11-30 16:43:53 +01:00
|
|
|
#define YYLEX_PARAM yythd
|
2002-11-26 14:18:16 +01:00
|
|
|
#define YYTHD ((THD *)yythd)
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
#define MYSQL_YACC
|
|
|
|
#define YYINITDEPTH 100
|
|
|
|
#define YYMAXDEPTH 3200 /* Because of 64K stack */
|
2003-12-19 18:52:13 +01:00
|
|
|
#define Lex (YYTHD->lex)
|
2002-10-30 12:18:52 +01:00
|
|
|
#define Select Lex->current_select
|
2000-07-31 21:29:14 +02:00
|
|
|
#include "mysql_priv.h"
|
2001-10-09 14:53:54 +02:00
|
|
|
#include "slave.h"
|
2000-07-31 21:29:14 +02:00
|
|
|
#include "lex_symbol.h"
|
2002-10-02 12:33:08 +02:00
|
|
|
#include "item_create.h"
|
2004-11-12 04:01:46 +01:00
|
|
|
#include "sp_head.h"
|
|
|
|
#include "sp_pcontext.h"
|
|
|
|
#include "sp_rcontext.h"
|
|
|
|
#include "sp.h"
|
2000-07-31 21:29:14 +02:00
|
|
|
#include <myisam.h>
|
2001-09-22 16:40:57 +02:00
|
|
|
#include <myisammrg.h>
|
2000-08-21 13:35:27 +02:00
|
|
|
|
2002-11-30 16:43:53 +01:00
|
|
|
int yylex(void *yylval, void *yythd);
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-01-16 13:16:23 +01:00
|
|
|
const LEX_STRING null_lex_str={0,0};
|
|
|
|
|
2005-07-18 14:33:18 +02:00
|
|
|
#define yyoverflow(A,B,C,D,E,F) {ulong val= *(F); if (my_yyoverflow((B), (D), &val)) { yyerror((char*) (A)); return 2; } else { *(F)= (YYSIZE_T)val; }}
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
#define WARN_DEPRECATED(A,B) \
|
2003-12-10 05:31:42 +01:00
|
|
|
push_warning_printf(((THD *)yythd), MYSQL_ERROR::WARN_LEVEL_WARN, \
|
2005-04-04 00:50:05 +02:00
|
|
|
ER_WARN_DEPRECATED_SYNTAX, \
|
2005-01-16 13:16:23 +01:00
|
|
|
ER(ER_WARN_DEPRECATED_SYNTAX), (A), (B));
|
2003-12-10 05:31:42 +01:00
|
|
|
|
2005-06-15 19:58:35 +02:00
|
|
|
#define YYERROR_UNLESS(A) \
|
2005-04-04 00:50:05 +02:00
|
|
|
if (!(A)) \
|
2005-03-16 01:13:23 +01:00
|
|
|
{ \
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR)); \
|
|
|
|
YYABORT; \
|
|
|
|
}
|
|
|
|
|
2004-11-17 16:49:10 +01:00
|
|
|
/* Helper for parsing "IS [NOT] truth_value" */
|
|
|
|
inline Item *is_truth_value(Item *A, bool v1, bool v2)
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-17 16:49:10 +01:00
|
|
|
return new Item_func_if(create_func_ifnull(A,
|
|
|
|
new Item_int((char *) (v2 ? "TRUE" : "FALSE"), v2, 1)),
|
2005-01-16 13:16:23 +01:00
|
|
|
new Item_int((char *) (v1 ? "TRUE" : "FALSE"), v1, 1),
|
2004-11-17 16:49:10 +01:00
|
|
|
new Item_int((char *) (v1 ? "FALSE" : "TRUE"),!v1, 1));
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
|
2006-08-19 04:16:07 +02:00
|
|
|
#ifndef DBUG_OFF
|
|
|
|
#define YYDEBUG 1
|
|
|
|
#else
|
|
|
|
#define YYDEBUG 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
void turn_parser_debug_on()
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
MYSQLdebug is in sql/sql_yacc.cc, in bison generated code.
|
|
|
|
Turning this option on is **VERY** verbose, and should be
|
|
|
|
used when investigating a syntax error problem only.
|
|
|
|
|
|
|
|
The syntax to run with bison traces is as follows :
|
|
|
|
- Starting a server manually :
|
|
|
|
mysqld --debug="d,parser_debug" ...
|
|
|
|
- Running a test :
|
|
|
|
mysql-test-run.pl --mysqld="--debug=d,parser_debug" ...
|
|
|
|
|
|
|
|
The result will be in the process stderr (var/log/master.err)
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern int yydebug;
|
|
|
|
yydebug= 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
Helper action for a case statement (entering the CASE).
|
|
|
|
This helper is used for both 'simple' and 'searched' cases.
|
2006-12-12 00:59:02 +01:00
|
|
|
This helper, with the other case_stmt_action_..., is executed when
|
|
|
|
the following SQL code is parsed:
|
|
|
|
<pre>
|
|
|
|
CREATE PROCEDURE proc_19194_simple(i int)
|
|
|
|
BEGIN
|
|
|
|
DECLARE str CHAR(10);
|
|
|
|
|
|
|
|
CASE i
|
|
|
|
WHEN 1 THEN SET str="1";
|
|
|
|
WHEN 2 THEN SET str="2";
|
|
|
|
WHEN 3 THEN SET str="3";
|
|
|
|
ELSE SET str="unknown";
|
|
|
|
END CASE;
|
|
|
|
|
|
|
|
SELECT str;
|
|
|
|
END
|
|
|
|
</pre>
|
|
|
|
The actions are used to generate the following code:
|
|
|
|
<pre>
|
|
|
|
SHOW PROCEDURE CODE proc_19194_simple;
|
|
|
|
Pos Instruction
|
|
|
|
0 set str@1 NULL
|
|
|
|
1 set_case_expr (12) 0 i@0
|
|
|
|
2 jump_if_not 5(12) (case_expr@0 = 1)
|
|
|
|
3 set str@1 _latin1'1'
|
|
|
|
4 jump 12
|
|
|
|
5 jump_if_not 8(12) (case_expr@0 = 2)
|
|
|
|
6 set str@1 _latin1'2'
|
|
|
|
7 jump 12
|
|
|
|
8 jump_if_not 11(12) (case_expr@0 = 3)
|
|
|
|
9 set str@1 _latin1'3'
|
|
|
|
10 jump 12
|
|
|
|
11 set str@1 _latin1'unknown'
|
|
|
|
12 stmt 0 "SELECT str"
|
|
|
|
</pre>
|
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
@param lex the parser lex context
|
|
|
|
*/
|
|
|
|
|
|
|
|
void case_stmt_action_case(LEX *lex)
|
|
|
|
{
|
|
|
|
lex->sphead->new_cont_backpatch(NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
BACKPATCH: Creating target label for the jump to
|
|
|
|
"case_stmt_action_end_case"
|
2006-12-12 00:59:02 +01:00
|
|
|
(Instruction 12 in the example)
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
lex->spcont->push_label((char *)"", lex->sphead->instructions());
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Helper action for a case expression statement (the expr in 'CASE expr').
|
|
|
|
This helper is used for 'searched' cases only.
|
|
|
|
@param lex the parser lex context
|
|
|
|
@param expr the parsed expression
|
|
|
|
@return 0 on success
|
|
|
|
*/
|
|
|
|
|
|
|
|
int case_stmt_action_expr(LEX *lex, Item* expr)
|
|
|
|
{
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *parsing_ctx= lex->spcont;
|
|
|
|
int case_expr_id= parsing_ctx->register_case_expr();
|
|
|
|
sp_instr_set_case_expr *i;
|
|
|
|
|
|
|
|
if (parsing_ctx->push_case_expr_id(case_expr_id))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
i= new sp_instr_set_case_expr(sp->instructions(),
|
|
|
|
parsing_ctx, case_expr_id, expr, lex);
|
|
|
|
|
|
|
|
sp->add_cont_backpatch(i);
|
|
|
|
sp->add_instr(i);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Helper action for a case when condition.
|
|
|
|
This helper is used for both 'simple' and 'searched' cases.
|
|
|
|
@param lex the parser lex context
|
|
|
|
@param when the parsed expression for the WHEN clause
|
|
|
|
@param simple true for simple cases, false for searched cases
|
|
|
|
*/
|
|
|
|
|
|
|
|
void case_stmt_action_when(LEX *lex, Item *when, bool simple)
|
|
|
|
{
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
sp_instr_jump_if_not *i;
|
|
|
|
Item_case_expr *var;
|
|
|
|
Item *expr;
|
|
|
|
|
|
|
|
if (simple)
|
|
|
|
{
|
|
|
|
var= new Item_case_expr(ctx->get_current_case_expr_id());
|
|
|
|
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
if (var)
|
|
|
|
{
|
|
|
|
var->m_sp= sp;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
expr= new Item_func_eq(var, when);
|
|
|
|
i= new sp_instr_jump_if_not(ip, ctx, expr, lex);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
i= new sp_instr_jump_if_not(ip, ctx, when, lex);
|
|
|
|
|
|
|
|
/*
|
|
|
|
BACKPATCH: Registering forward jump from
|
|
|
|
"case_stmt_action_when" to "case_stmt_action_then"
|
2006-12-12 00:59:02 +01:00
|
|
|
(jump_if_not from instruction 2 to 5, 5 to 8 ... in the example)
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
sp->push_backpatch(i, ctx->push_label((char *)"", 0));
|
|
|
|
sp->add_cont_backpatch(i);
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Helper action for a case then statements.
|
|
|
|
This helper is used for both 'simple' and 'searched' cases.
|
|
|
|
@param lex the parser lex context
|
|
|
|
*/
|
|
|
|
|
|
|
|
void case_stmt_action_then(LEX *lex)
|
|
|
|
{
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
sp_instr_jump *i = new sp_instr_jump(ip, ctx);
|
|
|
|
sp->add_instr(i);
|
|
|
|
|
|
|
|
/*
|
|
|
|
BACKPATCH: Resolving forward jump from
|
|
|
|
"case_stmt_action_when" to "case_stmt_action_then"
|
2006-12-12 00:59:02 +01:00
|
|
|
(jump_if_not from instruction 2 to 5, 5 to 8 ... in the example)
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
sp->backpatch(ctx->pop_label());
|
|
|
|
|
|
|
|
/*
|
|
|
|
BACKPATCH: Registering forward jump from
|
2006-12-12 00:59:02 +01:00
|
|
|
"case_stmt_action_then" to "case_stmt_action_end_case"
|
|
|
|
(jump from instruction 4 to 12, 7 to 12 ... in the example)
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
*/
|
|
|
|
|
|
|
|
sp->push_backpatch(i, ctx->last_label());
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Helper action for an end case.
|
|
|
|
This helper is used for both 'simple' and 'searched' cases.
|
|
|
|
@param lex the parser lex context
|
|
|
|
@param simple true for simple cases, false for searched cases
|
|
|
|
*/
|
|
|
|
|
|
|
|
void case_stmt_action_end_case(LEX *lex, bool simple)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
BACKPATCH: Resolving forward jump from
|
|
|
|
"case_stmt_action_then" to "case_stmt_action_end_case"
|
2006-12-12 00:59:02 +01:00
|
|
|
(jump from instruction 4 to 12, 7 to 12 ... in the example)
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
*/
|
|
|
|
lex->sphead->backpatch(lex->spcont->pop_label());
|
|
|
|
|
|
|
|
if (simple)
|
|
|
|
lex->spcont->pop_case_expr_id();
|
|
|
|
|
|
|
|
lex->sphead->do_cont_backpatch();
|
|
|
|
}
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%}
|
|
|
|
%union {
|
|
|
|
int num;
|
|
|
|
ulong ulong_num;
|
2001-09-14 01:54:33 +02:00
|
|
|
ulonglong ulonglong_number;
|
2000-07-31 21:29:14 +02:00
|
|
|
LEX_STRING lex_str;
|
|
|
|
LEX_STRING *lex_str_ptr;
|
|
|
|
LEX_SYMBOL symbol;
|
|
|
|
Table_ident *table;
|
|
|
|
char *simple_string;
|
|
|
|
Item *item;
|
2004-03-18 17:27:03 +01:00
|
|
|
Item_num *item_num;
|
2000-07-31 21:29:14 +02:00
|
|
|
List<Item> *item_list;
|
|
|
|
List<String> *string_list;
|
2002-07-23 17:31:22 +02:00
|
|
|
String *string;
|
|
|
|
key_part_spec *key_part;
|
|
|
|
TABLE_LIST *table_list;
|
|
|
|
udf_func *udf;
|
|
|
|
LEX_USER *lex_user;
|
2003-08-18 23:08:08 +02:00
|
|
|
struct sys_var_with_base variable;
|
2005-08-27 15:51:11 +02:00
|
|
|
enum enum_var_type var_type;
|
2000-07-31 21:29:14 +02:00
|
|
|
Key::Keytype key_type;
|
2003-08-18 23:08:08 +02:00
|
|
|
enum ha_key_alg key_alg;
|
2000-07-31 21:29:14 +02:00
|
|
|
enum db_type db_type;
|
|
|
|
enum row_type row_type;
|
2001-11-05 23:05:45 +01:00
|
|
|
enum ha_rkey_function ha_rkey_mode;
|
2001-03-21 00:02:22 +01:00
|
|
|
enum enum_tx_isolation tx_isolation;
|
2003-07-06 17:12:45 +02:00
|
|
|
enum Cast_target cast_type;
|
2000-07-31 21:29:14 +02:00
|
|
|
enum Item_udftype udf_type;
|
2002-09-12 16:36:22 +02:00
|
|
|
CHARSET_INFO *charset;
|
2002-11-16 19:19:10 +01:00
|
|
|
thr_lock_type lock_type;
|
2004-11-12 04:01:46 +01:00
|
|
|
interval_type interval, interval_time_st;
|
2003-11-03 13:01:59 +01:00
|
|
|
timestamp_type date_time_type;
|
2002-10-27 22:27:00 +01:00
|
|
|
st_select_lex *select_lex;
|
2002-11-07 22:45:19 +01:00
|
|
|
chooser_compare_func_creator boolfunc2creator;
|
2004-11-12 04:01:46 +01:00
|
|
|
struct sp_cond_type *spcondtype;
|
|
|
|
struct { int vars, conds, hndlrs, curs; } spblock;
|
|
|
|
sp_name *spname;
|
|
|
|
struct st_lex *lex;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
%{
|
2004-06-24 01:57:57 +02:00
|
|
|
bool my_yyoverflow(short **a, YYSTYPE **b, ulong *yystacksize);
|
2000-07-31 21:29:14 +02:00
|
|
|
%}
|
|
|
|
|
|
|
|
%pure_parser /* We have threads */
|
|
|
|
|
2005-02-14 21:50:09 +01:00
|
|
|
%token END_OF_INPUT
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-01-16 13:16:23 +01:00
|
|
|
%token ABORT_SYM
|
|
|
|
%token ACTION
|
|
|
|
%token ADD
|
|
|
|
%token ADDDATE_SYM
|
|
|
|
%token AFTER_SYM
|
|
|
|
%token AGAINST
|
|
|
|
%token AGGREGATE_SYM
|
|
|
|
%token ALGORITHM_SYM
|
|
|
|
%token ALL
|
|
|
|
%token ALTER
|
|
|
|
%token ANALYZE_SYM
|
|
|
|
%token AND_AND_SYM
|
|
|
|
%token AND_SYM
|
|
|
|
%token ANY_SYM
|
|
|
|
%token AS
|
|
|
|
%token ASC
|
|
|
|
%token ASCII_SYM
|
|
|
|
%token ASENSITIVE_SYM
|
|
|
|
%token ATAN
|
|
|
|
%token AUTO_INC
|
|
|
|
%token AVG_ROW_LENGTH
|
|
|
|
%token AVG_SYM
|
|
|
|
%token BACKUP_SYM
|
|
|
|
%token BEFORE_SYM
|
|
|
|
%token BEGIN_SYM
|
|
|
|
%token BENCHMARK_SYM
|
|
|
|
%token BERKELEY_DB_SYM
|
|
|
|
%token BIGINT
|
|
|
|
%token BINARY
|
|
|
|
%token BINLOG_SYM
|
2004-12-17 15:06:05 +01:00
|
|
|
%token BIN_NUM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token BIT_AND
|
|
|
|
%token BIT_OR
|
|
|
|
%token BIT_SYM
|
|
|
|
%token BIT_XOR
|
|
|
|
%token BLOB_SYM
|
|
|
|
%token BOOLEAN_SYM
|
|
|
|
%token BOOL_SYM
|
|
|
|
%token BOTH
|
|
|
|
%token BTREE_SYM
|
|
|
|
%token BY
|
|
|
|
%token BYTE_SYM
|
|
|
|
%token CACHE_SYM
|
|
|
|
%token CALL_SYM
|
|
|
|
%token CASCADE
|
2004-11-12 04:01:46 +01:00
|
|
|
%token CASCADED
|
2005-01-16 13:16:23 +01:00
|
|
|
%token CAST_SYM
|
2005-02-14 21:50:09 +01:00
|
|
|
%token CHAIN_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token CHANGE
|
|
|
|
%token CHANGED
|
|
|
|
%token CHARSET
|
|
|
|
%token CHAR_SYM
|
|
|
|
%token CHECKSUM_SYM
|
|
|
|
%token CHECK_SYM
|
|
|
|
%token CIPHER_SYM
|
|
|
|
%token CLIENT_SYM
|
|
|
|
%token CLOSE_SYM
|
|
|
|
%token COALESCE
|
2005-11-17 11:11:48 +01:00
|
|
|
%token CODE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token COLLATE_SYM
|
|
|
|
%token COLLATION_SYM
|
|
|
|
%token COLUMNS
|
|
|
|
%token COLUMN_SYM
|
|
|
|
%token COMMENT_SYM
|
|
|
|
%token COMMITTED_SYM
|
|
|
|
%token COMMIT_SYM
|
2005-02-14 21:50:09 +01:00
|
|
|
%token COMPACT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token COMPRESSED_SYM
|
|
|
|
%token CONCAT
|
|
|
|
%token CONCAT_WS
|
|
|
|
%token CONCURRENT
|
2004-11-12 04:01:46 +01:00
|
|
|
%token CONDITION_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token CONNECTION_SYM
|
|
|
|
%token CONSISTENT_SYM
|
|
|
|
%token CONSTRAINT
|
2004-11-12 04:01:46 +01:00
|
|
|
%token CONTAINS_SYM
|
|
|
|
%token CONTINUE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token CONVERT_SYM
|
|
|
|
%token CONVERT_TZ_SYM
|
|
|
|
%token COUNT_SYM
|
|
|
|
%token CREATE
|
|
|
|
%token CROSS
|
|
|
|
%token CUBE_SYM
|
|
|
|
%token CURDATE
|
2004-04-05 14:55:26 +02:00
|
|
|
%token CURRENT_USER
|
2005-01-16 13:16:23 +01:00
|
|
|
%token CURSOR_SYM
|
|
|
|
%token CURTIME
|
|
|
|
%token DATABASE
|
|
|
|
%token DATABASES
|
|
|
|
%token DATA_SYM
|
|
|
|
%token DATETIME
|
|
|
|
%token DATE_ADD_INTERVAL
|
|
|
|
%token DATE_SUB_INTERVAL
|
|
|
|
%token DATE_SYM
|
|
|
|
%token DAY_HOUR_SYM
|
|
|
|
%token DAY_MICROSECOND_SYM
|
|
|
|
%token DAY_MINUTE_SYM
|
|
|
|
%token DAY_SECOND_SYM
|
|
|
|
%token DAY_SYM
|
|
|
|
%token DEALLOCATE_SYM
|
2005-02-14 21:50:09 +01:00
|
|
|
%token DECIMAL_NUM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token DECIMAL_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token DECLARE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token DECODE_SYM
|
|
|
|
%token DEFAULT
|
|
|
|
%token DEFINER_SYM
|
|
|
|
%token DELAYED_SYM
|
|
|
|
%token DELAY_KEY_WRITE_SYM
|
|
|
|
%token DELETE_SYM
|
|
|
|
%token DESC
|
|
|
|
%token DESCRIBE
|
|
|
|
%token DES_DECRYPT_SYM
|
|
|
|
%token DES_ENCRYPT_SYM
|
|
|
|
%token DES_KEY_FILE
|
|
|
|
%token DETERMINISTIC_SYM
|
|
|
|
%token DIRECTORY_SYM
|
|
|
|
%token DISABLE_SYM
|
|
|
|
%token DISCARD
|
|
|
|
%token DISTINCT
|
|
|
|
%token DIV_SYM
|
|
|
|
%token DOUBLE_SYM
|
|
|
|
%token DO_SYM
|
|
|
|
%token DROP
|
|
|
|
%token DUAL_SYM
|
|
|
|
%token DUMPFILE
|
2003-01-21 20:07:59 +01:00
|
|
|
%token DUPLICATE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token DYNAMIC_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token EACH_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token ELSEIF_SYM
|
|
|
|
%token ELT_FUNC
|
|
|
|
%token ENABLE_SYM
|
|
|
|
%token ENCLOSED
|
|
|
|
%token ENCODE_SYM
|
|
|
|
%token ENCRYPT
|
|
|
|
%token END
|
|
|
|
%token ENGINES_SYM
|
|
|
|
%token ENGINE_SYM
|
|
|
|
%token ENUM
|
|
|
|
%token EQ
|
|
|
|
%token EQUAL_SYM
|
|
|
|
%token ERRORS
|
|
|
|
%token ESCAPED
|
|
|
|
%token ESCAPE_SYM
|
|
|
|
%token EVENTS_SYM
|
|
|
|
%token EXECUTE_SYM
|
|
|
|
%token EXISTS
|
2004-11-12 04:01:46 +01:00
|
|
|
%token EXIT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token EXPANSION_SYM
|
|
|
|
%token EXPORT_SET
|
|
|
|
%token EXTENDED_SYM
|
|
|
|
%token EXTRACT_SYM
|
|
|
|
%token FALSE_SYM
|
|
|
|
%token FAST_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token FETCH_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token FIELD_FUNC
|
|
|
|
%token FILE_SYM
|
|
|
|
%token FIRST_SYM
|
|
|
|
%token FIXED_SYM
|
|
|
|
%token FLOAT_NUM
|
|
|
|
%token FLOAT_SYM
|
|
|
|
%token FLUSH_SYM
|
|
|
|
%token FORCE_SYM
|
|
|
|
%token FOREIGN
|
|
|
|
%token FORMAT_SYM
|
|
|
|
%token FOR_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token FOUND_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token FRAC_SECOND_SYM
|
|
|
|
%token FROM
|
|
|
|
%token FROM_UNIXTIME
|
|
|
|
%token FULL
|
|
|
|
%token FULLTEXT_SYM
|
|
|
|
%token FUNCTION_SYM
|
|
|
|
%token FUNC_ARG0
|
|
|
|
%token FUNC_ARG1
|
|
|
|
%token FUNC_ARG2
|
|
|
|
%token FUNC_ARG3
|
|
|
|
%token GE
|
|
|
|
%token GEOMCOLLFROMTEXT
|
|
|
|
%token GEOMETRYCOLLECTION
|
|
|
|
%token GEOMETRY_SYM
|
|
|
|
%token GEOMFROMTEXT
|
|
|
|
%token GEOMFROMWKB
|
|
|
|
%token GET_FORMAT
|
|
|
|
%token GLOBAL_SYM
|
|
|
|
%token GRANT
|
|
|
|
%token GRANTS
|
|
|
|
%token GREATEST_SYM
|
|
|
|
%token GROUP
|
|
|
|
%token GROUP_CONCAT_SYM
|
|
|
|
%token GROUP_UNIQUE_USERS
|
|
|
|
%token GT_SYM
|
|
|
|
%token HANDLER_SYM
|
|
|
|
%token HASH_SYM
|
|
|
|
%token HAVING
|
|
|
|
%token HELP_SYM
|
|
|
|
%token HEX_NUM
|
|
|
|
%token HIGH_PRIORITY
|
|
|
|
%token HOSTS_SYM
|
|
|
|
%token HOUR_MICROSECOND_SYM
|
|
|
|
%token HOUR_MINUTE_SYM
|
|
|
|
%token HOUR_SECOND_SYM
|
|
|
|
%token HOUR_SYM
|
|
|
|
%token IDENT
|
|
|
|
%token IDENTIFIED_SYM
|
|
|
|
%token IDENT_QUOTED
|
|
|
|
%token IF
|
|
|
|
%token IGNORE_SYM
|
|
|
|
%token IMPORT
|
|
|
|
%token INDEXES
|
|
|
|
%token INDEX_SYM
|
|
|
|
%token INFILE
|
|
|
|
%token INNER_SYM
|
|
|
|
%token INNOBASE_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token INOUT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token INSENSITIVE_SYM
|
|
|
|
%token INSERT
|
|
|
|
%token INSERT_METHOD
|
|
|
|
%token INTERVAL_SYM
|
|
|
|
%token INTO
|
|
|
|
%token INT_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token INVOKER_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token IN_SYM
|
|
|
|
%token IS
|
|
|
|
%token ISOLATION
|
|
|
|
%token ISSUER_SYM
|
|
|
|
%token ITERATE_SYM
|
|
|
|
%token JOIN_SYM
|
|
|
|
%token KEYS
|
|
|
|
%token KEY_SYM
|
|
|
|
%token KILL_SYM
|
|
|
|
%token LABEL_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token LANGUAGE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token LAST_INSERT_ID
|
|
|
|
%token LAST_SYM
|
|
|
|
%token LE
|
|
|
|
%token LEADING
|
|
|
|
%token LEAST_SYM
|
|
|
|
%token LEAVES
|
|
|
|
%token LEAVE_SYM
|
|
|
|
%token LEFT
|
|
|
|
%token LEVEL_SYM
|
|
|
|
%token LEX_HOSTNAME
|
|
|
|
%token LIKE
|
|
|
|
%token LIMIT
|
|
|
|
%token LINEFROMTEXT
|
|
|
|
%token LINES
|
|
|
|
%token LINESTRING
|
|
|
|
%token LOAD
|
|
|
|
%token LOCAL_SYM
|
|
|
|
%token LOCATE
|
2004-11-12 04:01:46 +01:00
|
|
|
%token LOCATOR_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token LOCKS_SYM
|
|
|
|
%token LOCK_SYM
|
|
|
|
%token LOGS_SYM
|
|
|
|
%token LOG_SYM
|
|
|
|
%token LONGBLOB
|
|
|
|
%token LONGTEXT
|
|
|
|
%token LONG_NUM
|
|
|
|
%token LONG_SYM
|
|
|
|
%token LOOP_SYM
|
|
|
|
%token LOW_PRIORITY
|
|
|
|
%token LT
|
|
|
|
%token MAKE_SET_SYM
|
|
|
|
%token MASTER_CONNECT_RETRY_SYM
|
|
|
|
%token MASTER_HOST_SYM
|
|
|
|
%token MASTER_LOG_FILE_SYM
|
|
|
|
%token MASTER_LOG_POS_SYM
|
|
|
|
%token MASTER_PASSWORD_SYM
|
|
|
|
%token MASTER_PORT_SYM
|
|
|
|
%token MASTER_POS_WAIT
|
|
|
|
%token MASTER_SERVER_ID_SYM
|
|
|
|
%token MASTER_SSL_CAPATH_SYM
|
|
|
|
%token MASTER_SSL_CA_SYM
|
|
|
|
%token MASTER_SSL_CERT_SYM
|
|
|
|
%token MASTER_SSL_CIPHER_SYM
|
|
|
|
%token MASTER_SSL_KEY_SYM
|
|
|
|
%token MASTER_SSL_SYM
|
|
|
|
%token MASTER_SYM
|
|
|
|
%token MASTER_USER_SYM
|
|
|
|
%token MATCH
|
|
|
|
%token MAX_CONNECTIONS_PER_HOUR
|
|
|
|
%token MAX_QUERIES_PER_HOUR
|
|
|
|
%token MAX_ROWS
|
|
|
|
%token MAX_SYM
|
|
|
|
%token MAX_UPDATES_PER_HOUR
|
2005-02-14 21:50:09 +01:00
|
|
|
%token MAX_USER_CONNECTIONS_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token MEDIUMBLOB
|
|
|
|
%token MEDIUMINT
|
|
|
|
%token MEDIUMTEXT
|
|
|
|
%token MEDIUM_SYM
|
|
|
|
%token MERGE_SYM
|
|
|
|
%token MICROSECOND_SYM
|
|
|
|
%token MIGRATE_SYM
|
|
|
|
%token MINUTE_MICROSECOND_SYM
|
|
|
|
%token MINUTE_SECOND_SYM
|
|
|
|
%token MINUTE_SYM
|
|
|
|
%token MIN_ROWS
|
|
|
|
%token MIN_SYM
|
|
|
|
%token MLINEFROMTEXT
|
|
|
|
%token MODE_SYM
|
|
|
|
%token MODIFIES_SYM
|
|
|
|
%token MODIFY_SYM
|
|
|
|
%token MOD_SYM
|
|
|
|
%token MONTH_SYM
|
|
|
|
%token MPOINTFROMTEXT
|
|
|
|
%token MPOLYFROMTEXT
|
|
|
|
%token MULTILINESTRING
|
|
|
|
%token MULTIPOINT
|
|
|
|
%token MULTIPOLYGON
|
2004-12-24 13:31:21 +01:00
|
|
|
%token MUTEX_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token NAMES_SYM
|
|
|
|
%token NAME_SYM
|
|
|
|
%token NATIONAL_SYM
|
|
|
|
%token NATURAL
|
|
|
|
%token NCHAR_STRING
|
|
|
|
%token NCHAR_SYM
|
2004-04-15 09:14:14 +02:00
|
|
|
%token NDBCLUSTER_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token NE
|
|
|
|
%token NEW_SYM
|
|
|
|
%token NEXT_SYM
|
|
|
|
%token NONE_SYM
|
|
|
|
%token NOT2_SYM
|
|
|
|
%token NOT_SYM
|
|
|
|
%token NOW_SYM
|
|
|
|
%token NO_SYM
|
|
|
|
%token NO_WRITE_TO_BINLOG
|
|
|
|
%token NULL_SYM
|
|
|
|
%token NUM
|
|
|
|
%token NUMERIC_SYM
|
2003-09-15 07:26:48 +02:00
|
|
|
%token NVARCHAR_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token OFFSET_SYM
|
2006-05-13 20:56:05 +02:00
|
|
|
%token OJ_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token OLD_PASSWORD
|
|
|
|
%token ON
|
2004-06-03 23:17:18 +02:00
|
|
|
%token ONE_SHOT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token ONE_SYM
|
|
|
|
%token OPEN_SYM
|
|
|
|
%token OPTIMIZE
|
|
|
|
%token OPTION
|
|
|
|
%token OPTIONALLY
|
|
|
|
%token OR2_SYM
|
|
|
|
%token ORDER_SYM
|
|
|
|
%token OR_OR_SYM
|
|
|
|
%token OR_SYM
|
|
|
|
%token OUTER
|
|
|
|
%token OUTFILE
|
2004-11-12 04:01:46 +01:00
|
|
|
%token OUT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token PACK_KEYS_SYM
|
|
|
|
%token PARTIAL
|
|
|
|
%token PASSWORD
|
2005-07-14 22:01:49 +02:00
|
|
|
%token PARAM_MARKER
|
2005-01-16 13:16:23 +01:00
|
|
|
%token PHASE_SYM
|
|
|
|
%token POINTFROMTEXT
|
|
|
|
%token POINT_SYM
|
|
|
|
%token POLYFROMTEXT
|
|
|
|
%token POLYGON
|
|
|
|
%token POSITION_SYM
|
|
|
|
%token PRECISION
|
|
|
|
%token PREPARE_SYM
|
|
|
|
%token PREV_SYM
|
|
|
|
%token PRIMARY_SYM
|
|
|
|
%token PRIVILEGES
|
|
|
|
%token PROCEDURE
|
|
|
|
%token PROCESS
|
|
|
|
%token PROCESSLIST_SYM
|
|
|
|
%token PURGE
|
|
|
|
%token QUARTER_SYM
|
|
|
|
%token QUERY_SYM
|
|
|
|
%token QUICK
|
|
|
|
%token RAID_0_SYM
|
|
|
|
%token RAID_CHUNKS
|
|
|
|
%token RAID_CHUNKSIZE
|
|
|
|
%token RAID_STRIPED_SYM
|
|
|
|
%token RAID_TYPE
|
|
|
|
%token RAND
|
|
|
|
%token READS_SYM
|
|
|
|
%token READ_SYM
|
|
|
|
%token REAL
|
|
|
|
%token RECOVER_SYM
|
2005-02-14 21:50:09 +01:00
|
|
|
%token REDUNDANT_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token REFERENCES
|
|
|
|
%token REGEXP
|
|
|
|
%token RELAY_LOG_FILE_SYM
|
|
|
|
%token RELAY_LOG_POS_SYM
|
|
|
|
%token RELAY_THREAD
|
2005-02-14 21:50:09 +01:00
|
|
|
%token RELEASE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token RELOAD
|
|
|
|
%token RENAME
|
|
|
|
%token REPAIR
|
|
|
|
%token REPEATABLE_SYM
|
|
|
|
%token REPEAT_SYM
|
|
|
|
%token REPLACE
|
|
|
|
%token REPLICATION
|
|
|
|
%token REQUIRE_SYM
|
|
|
|
%token RESET_SYM
|
|
|
|
%token RESOURCES
|
|
|
|
%token RESTORE_SYM
|
|
|
|
%token RESTRICT
|
|
|
|
%token RESUME_SYM
|
|
|
|
%token RETURNS_SYM
|
|
|
|
%token RETURN_SYM
|
|
|
|
%token REVOKE
|
|
|
|
%token RIGHT
|
|
|
|
%token ROLLBACK_SYM
|
|
|
|
%token ROLLUP_SYM
|
|
|
|
%token ROUND
|
2005-02-14 21:50:09 +01:00
|
|
|
%token ROUTINE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token ROWS_SYM
|
|
|
|
%token ROW_COUNT_SYM
|
|
|
|
%token ROW_FORMAT_SYM
|
|
|
|
%token ROW_SYM
|
|
|
|
%token RTREE_SYM
|
|
|
|
%token SAVEPOINT_SYM
|
|
|
|
%token SECOND_MICROSECOND_SYM
|
|
|
|
%token SECOND_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token SECURITY_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token SELECT_SYM
|
|
|
|
%token SENSITIVE_SYM
|
2003-03-18 00:07:40 +01:00
|
|
|
%token SEPARATOR_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token SERIALIZABLE_SYM
|
|
|
|
%token SERIAL_SYM
|
|
|
|
%token SESSION_SYM
|
|
|
|
%token SET
|
|
|
|
%token SET_VAR
|
|
|
|
%token SHARE_SYM
|
|
|
|
%token SHIFT_LEFT
|
|
|
|
%token SHIFT_RIGHT
|
|
|
|
%token SHOW
|
|
|
|
%token SHUTDOWN
|
|
|
|
%token SIGNED_SYM
|
|
|
|
%token SIMPLE_SYM
|
|
|
|
%token SLAVE
|
|
|
|
%token SMALLINT
|
|
|
|
%token SNAPSHOT_SYM
|
|
|
|
%token SOUNDS_SYM
|
|
|
|
%token SPATIAL_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token SPECIFIC_SYM
|
|
|
|
%token SQLEXCEPTION_SYM
|
|
|
|
%token SQLSTATE_SYM
|
|
|
|
%token SQLWARNING_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token SQL_BIG_RESULT
|
|
|
|
%token SQL_BUFFER_RESULT
|
|
|
|
%token SQL_CACHE_SYM
|
|
|
|
%token SQL_CALC_FOUND_ROWS
|
|
|
|
%token SQL_NO_CACHE_SYM
|
|
|
|
%token SQL_SMALL_RESULT
|
|
|
|
%token SQL_SYM
|
|
|
|
%token SQL_THREAD
|
2001-09-30 04:46:20 +02:00
|
|
|
%token SSL_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token STARTING
|
|
|
|
%token START_SYM
|
|
|
|
%token STATUS_SYM
|
|
|
|
%token STD_SYM
|
2005-02-25 19:19:04 +01:00
|
|
|
%token STDDEV_SAMP_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token STOP_SYM
|
|
|
|
%token STORAGE_SYM
|
|
|
|
%token STRAIGHT_JOIN
|
|
|
|
%token STRING_SYM
|
|
|
|
%token SUBDATE_SYM
|
|
|
|
%token SUBJECT_SYM
|
|
|
|
%token SUBSTRING
|
|
|
|
%token SUBSTRING_INDEX
|
|
|
|
%token SUM_SYM
|
|
|
|
%token SUPER_SYM
|
|
|
|
%token SUSPEND_SYM
|
2005-08-25 00:50:58 +02:00
|
|
|
%token SYSDATE
|
2005-01-16 13:16:23 +01:00
|
|
|
%token TABLES
|
|
|
|
%token TABLESPACE
|
|
|
|
%token TABLE_SYM
|
|
|
|
%token TEMPORARY
|
|
|
|
%token TEMPTABLE_SYM
|
|
|
|
%token TERMINATED
|
|
|
|
%token TEXT_STRING
|
|
|
|
%token TEXT_SYM
|
|
|
|
%token TIMESTAMP
|
|
|
|
%token TIMESTAMP_ADD
|
|
|
|
%token TIMESTAMP_DIFF
|
|
|
|
%token TIME_SYM
|
|
|
|
%token TINYBLOB
|
|
|
|
%token TINYINT
|
|
|
|
%token TINYTEXT
|
|
|
|
%token TO_SYM
|
|
|
|
%token TRAILING
|
|
|
|
%token TRANSACTION_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
%token TRIGGER_SYM
|
2005-07-19 18:06:49 +02:00
|
|
|
%token TRIGGERS_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token TRIM
|
|
|
|
%token TRUE_SYM
|
|
|
|
%token TRUNCATE_SYM
|
2002-06-12 23:13:12 +02:00
|
|
|
%token TYPES_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token TYPE_SYM
|
|
|
|
%token UDF_RETURNS_SYM
|
|
|
|
%token UDF_SONAME_SYM
|
|
|
|
%token ULONGLONG_NUM
|
|
|
|
%token UNCOMMITTED_SYM
|
|
|
|
%token UNDEFINED_SYM
|
|
|
|
%token UNDERSCORE_CHARSET
|
2004-11-12 04:01:46 +01:00
|
|
|
%token UNDO_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token UNICODE_SYM
|
|
|
|
%token UNION_SYM
|
|
|
|
%token UNIQUE_SYM
|
|
|
|
%token UNIQUE_USERS
|
|
|
|
%token UNIX_TIMESTAMP
|
|
|
|
%token UNKNOWN_SYM
|
|
|
|
%token UNLOCK_SYM
|
|
|
|
%token UNSIGNED
|
|
|
|
%token UNTIL_SYM
|
|
|
|
%token UPDATE_SYM
|
2006-02-17 07:52:32 +01:00
|
|
|
%token UPGRADE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token USAGE
|
|
|
|
%token USER
|
|
|
|
%token USE_FRM
|
|
|
|
%token USE_SYM
|
|
|
|
%token USING
|
|
|
|
%token UTC_DATE_SYM
|
|
|
|
%token UTC_TIMESTAMP_SYM
|
|
|
|
%token UTC_TIME_SYM
|
2005-02-25 19:19:04 +01:00
|
|
|
%token VAR_SAMP_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token VALUES
|
|
|
|
%token VALUE_SYM
|
|
|
|
%token VARBINARY
|
|
|
|
%token VARCHAR
|
|
|
|
%token VARIABLES
|
|
|
|
%token VARIANCE_SYM
|
|
|
|
%token VARYING
|
|
|
|
%token VIEW_SYM
|
|
|
|
%token WARNINGS
|
|
|
|
%token WEEK_SYM
|
|
|
|
%token WHEN_SYM
|
|
|
|
%token WHERE
|
2004-11-12 04:01:46 +01:00
|
|
|
%token WHILE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
%token WITH
|
|
|
|
%token WORK_SYM
|
|
|
|
%token WRITE_SYM
|
|
|
|
%token X509_SYM
|
|
|
|
%token XA_SYM
|
|
|
|
%token XOR
|
|
|
|
%token YEARWEEK
|
|
|
|
%token YEAR_MONTH_SYM
|
|
|
|
%token YEAR_SYM
|
|
|
|
%token ZEROFILL
|
2001-09-20 03:45:13 +02:00
|
|
|
|
2005-10-25 08:00:57 +02:00
|
|
|
%left JOIN_SYM INNER_SYM STRAIGHT_JOIN CROSS LEFT RIGHT
|
2005-09-10 14:01:54 +02:00
|
|
|
/* A dummy token to force the priority of table_ref production in a join. */
|
|
|
|
%left TABLE_REF_PRIORITY
|
2000-07-31 21:29:14 +02:00
|
|
|
%left SET_VAR
|
2004-11-17 16:49:10 +01:00
|
|
|
%left OR_OR_SYM OR_SYM OR2_SYM XOR
|
|
|
|
%left AND_SYM AND_AND_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
%left BETWEEN_SYM CASE_SYM WHEN_SYM THEN_SYM ELSE
|
|
|
|
%left EQ EQUAL_SYM GE GT_SYM LE LT NE IS LIKE REGEXP IN_SYM
|
|
|
|
%left '|'
|
|
|
|
%left '&'
|
|
|
|
%left SHIFT_LEFT SHIFT_RIGHT
|
|
|
|
%left '-' '+'
|
2002-11-21 01:07:14 +01:00
|
|
|
%left '*' '/' '%' DIV_SYM MOD_SYM
|
2002-06-29 15:25:09 +02:00
|
|
|
%left '^'
|
2003-12-19 15:25:50 +01:00
|
|
|
%left NEG '~'
|
2004-11-17 16:49:10 +01:00
|
|
|
%right NOT_SYM NOT2_SYM
|
2002-08-22 15:12:45 +02:00
|
|
|
%right BINARY COLLATE_SYM
|
2002-10-15 16:33:06 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <lex_str>
|
2005-02-08 23:50:45 +01:00
|
|
|
IDENT IDENT_QUOTED TEXT_STRING DECIMAL_NUM FLOAT_NUM NUM LONG_NUM HEX_NUM
|
2003-11-03 13:01:59 +01:00
|
|
|
LEX_HOSTNAME ULONGLONG_NUM field_ident select_alias ident ident_or_text
|
2003-04-08 11:38:17 +02:00
|
|
|
UNDERSCORE_CHARSET IDENT_sys TEXT_STRING_sys TEXT_STRING_literal
|
2003-11-18 12:47:27 +01:00
|
|
|
NCHAR_STRING opt_component key_cache_name
|
2006-02-14 05:24:01 +01:00
|
|
|
sp_opt_label BIN_NUM label_ident TEXT_STRING_filesystem
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <lex_str_ptr>
|
|
|
|
opt_table_alias
|
|
|
|
|
|
|
|
%type <table>
|
2005-01-16 13:16:23 +01:00
|
|
|
table_ident table_ident_nodb references xid
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <simple_string>
|
2002-11-21 01:07:14 +01:00
|
|
|
remember_name remember_end opt_ident opt_db text_or_password
|
2004-12-06 17:01:51 +01:00
|
|
|
opt_constraint constraint ident_or_empty
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <string>
|
2003-03-18 00:07:40 +01:00
|
|
|
text_string opt_gconcat_separator
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <num>
|
2005-03-16 02:32:47 +01:00
|
|
|
type int_type real_type order_dir lock_option
|
2000-07-31 21:29:14 +02:00
|
|
|
udf_type if_exists opt_local opt_table_options table_options
|
2005-08-27 15:51:11 +02:00
|
|
|
table_option opt_if_not_exists opt_no_write_to_binlog
|
|
|
|
delete_option opt_temporary all_or_any opt_distinct
|
2004-03-23 14:43:24 +01:00
|
|
|
opt_ignore_leaves fulltext_options spatial_type union_option
|
2005-02-14 21:50:09 +01:00
|
|
|
start_transaction_opts opt_chain opt_release
|
2005-08-27 15:51:11 +02:00
|
|
|
union_opt select_derived_init option_type2
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <ulong_num>
|
2005-04-04 00:50:05 +02:00
|
|
|
ulong_num raid_types merge_insert_types
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-09-14 01:54:33 +02:00
|
|
|
%type <ulonglong_number>
|
|
|
|
ulonglong_num
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-16 19:19:10 +01:00
|
|
|
%type <lock_type>
|
|
|
|
replace_lock_option opt_low_priority insert_lock_option load_data_lock
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <item>
|
2001-12-10 16:51:07 +01:00
|
|
|
literal text_literal insert_ident order_ident
|
2000-07-31 21:29:14 +02:00
|
|
|
simple_ident select_item2 expr opt_expr opt_else sum_expr in_sum_expr
|
2006-10-12 16:02:57 +02:00
|
|
|
variable variable_aux bool_term bool_factor bool_test bool_pri
|
2004-11-17 16:49:10 +01:00
|
|
|
predicate bit_expr bit_term bit_factor value_expr term factor
|
|
|
|
table_wild simple_expr udf_expr
|
2005-08-12 16:57:19 +02:00
|
|
|
expr_or_default set_expr_or_default interval_expr
|
2006-08-31 17:00:25 +02:00
|
|
|
param_marker geometry_function
|
2004-06-22 17:27:16 +02:00
|
|
|
signed_literal now_or_signed_literal opt_escape
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_opt_default
|
|
|
|
simple_ident_nospvar simple_ident_q
|
2005-06-07 12:11:36 +02:00
|
|
|
field_or_var limit_option
|
2004-03-18 17:27:03 +01:00
|
|
|
|
|
|
|
%type <item_num>
|
|
|
|
NUM_literal
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <item_list>
|
2004-11-12 04:01:46 +01:00
|
|
|
expr_list udf_expr_list udf_expr_list2 when_list
|
2006-10-24 14:26:41 +02:00
|
|
|
ident_list ident_list_arg opt_expr_list
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-08-27 15:51:11 +02:00
|
|
|
%type <var_type>
|
|
|
|
option_type opt_var_type opt_var_ident_type
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <key_type>
|
2003-12-02 16:06:24 +01:00
|
|
|
key_type opt_unique_or_fulltext constraint_key_type
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-02-22 12:24:42 +01:00
|
|
|
%type <key_alg>
|
|
|
|
key_alg opt_btree_or_rtree
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <string_list>
|
2005-08-12 16:57:19 +02:00
|
|
|
key_usage_list using_list
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <key_part>
|
|
|
|
key_part
|
|
|
|
|
|
|
|
%type <table_list>
|
2002-10-30 12:18:52 +01:00
|
|
|
join_table_list join_table
|
2004-11-12 04:01:46 +01:00
|
|
|
table_factor table_ref
|
2005-03-16 01:13:23 +01:00
|
|
|
select_derived derived_table_list
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-11-03 13:01:59 +01:00
|
|
|
%type <date_time_type> date_time_type;
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <interval> interval
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
%type <interval_time_st> interval_time_st
|
|
|
|
|
2003-12-17 23:52:03 +01:00
|
|
|
%type <db_type> storage_engines
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
%type <row_type> row_types
|
|
|
|
|
2002-07-23 17:31:22 +02:00
|
|
|
%type <tx_isolation> isolation_types
|
2001-03-21 00:02:22 +01:00
|
|
|
|
2001-11-05 23:05:45 +01:00
|
|
|
%type <ha_rkey_mode> handler_rkey_mode
|
|
|
|
|
2004-01-22 21:13:24 +01:00
|
|
|
%type <cast_type> cast_type
|
2002-01-02 23:46:43 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <udf_type> udf_func_type
|
|
|
|
|
2005-07-06 16:37:57 +02:00
|
|
|
%type <symbol> FUNC_ARG0 FUNC_ARG1 FUNC_ARG2 FUNC_ARG3 keyword keyword_sp
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2006-03-01 12:13:07 +01:00
|
|
|
%type <lex_user> user grant_user
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-12-04 23:14:51 +01:00
|
|
|
%type <charset>
|
2003-03-05 09:37:39 +01:00
|
|
|
opt_collate
|
2002-09-12 16:36:22 +02:00
|
|
|
charset_name
|
|
|
|
charset_name_or_default
|
2003-04-05 15:56:15 +02:00
|
|
|
old_or_new_charset_name
|
|
|
|
old_or_new_charset_name_or_default
|
2003-01-09 12:37:59 +01:00
|
|
|
collation_name
|
|
|
|
collation_name_or_default
|
2002-09-12 16:36:22 +02:00
|
|
|
|
2002-07-23 17:31:22 +02:00
|
|
|
%type <variable> internal_variable_name
|
|
|
|
|
2006-08-31 17:00:25 +02:00
|
|
|
%type <select_lex> subselect subselect_init
|
2005-03-16 01:13:23 +01:00
|
|
|
get_select_lex
|
2002-10-27 22:27:00 +01:00
|
|
|
|
2002-11-07 22:45:19 +01:00
|
|
|
%type <boolfunc2creator> comp_op
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <NONE>
|
2001-12-17 18:59:20 +01:00
|
|
|
query verb_clause create change select do drop insert replace insert2
|
2000-11-13 22:55:10 +01:00
|
|
|
insert_values update delete truncate rename
|
2003-08-26 09:15:49 +02:00
|
|
|
show describe load alter optimize keycache preload flush
|
2005-02-01 20:48:05 +01:00
|
|
|
reset purge begin commit rollback savepoint release
|
2003-11-28 11:18:13 +01:00
|
|
|
slave master_def master_defs master_file_def slave_until_opts
|
2003-08-21 16:15:06 +02:00
|
|
|
repair restore backup analyze check start checksum
|
2003-02-22 01:07:17 +01:00
|
|
|
field_list field_list_item field_spec kill column_def key_def
|
2003-08-26 09:15:49 +02:00
|
|
|
keycache_list assign_to_keycache preload_list preload_keys
|
2000-07-31 21:29:14 +02:00
|
|
|
select_item_list select_item values_list no_braces
|
2002-11-28 17:25:41 +01:00
|
|
|
opt_limit_clause delete_limit_clause fields opt_values values
|
2000-07-31 21:29:14 +02:00
|
|
|
procedure_list procedure_list2 procedure_item
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
expr_list2 udf_expr_list3 handler
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_precision opt_ignore opt_column opt_restrict
|
|
|
|
grant revoke set lock unlock string_list field_options field_option
|
2003-03-20 17:04:21 +01:00
|
|
|
field_opt_list opt_binary table_lock_list table_lock
|
2002-06-02 20:22:20 +02:00
|
|
|
ref_list opt_on_delete opt_on_delete_list opt_on_delete_item use
|
2003-03-20 17:04:21 +01:00
|
|
|
opt_delete_options opt_delete_option varchar nchar nvarchar
|
2002-11-16 19:19:10 +01:00
|
|
|
opt_outer table_list table_name opt_option opt_place
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_attribute opt_attribute_list attribute column_list column_list_id
|
2005-05-17 20:54:20 +02:00
|
|
|
opt_column_list grant_privileges grant_ident grant_list grant_option
|
2004-12-23 11:46:24 +01:00
|
|
|
object_privilege object_privilege_list user_list rename_list
|
2004-11-25 21:55:49 +01:00
|
|
|
clear_privileges flush_options flush_option
|
2000-07-31 21:29:14 +02:00
|
|
|
equal optional_braces opt_key_definition key_usage_list2
|
|
|
|
opt_mi_check_type opt_to mi_check_types normal_join
|
2000-10-14 02:16:35 +02:00
|
|
|
table_to_table_list table_to_table opt_table_list opt_as
|
2001-11-05 23:05:45 +01:00
|
|
|
handler_rkey_function handler_read_or_scan
|
2002-11-21 14:56:48 +01:00
|
|
|
single_multi table_wild_list table_wild_one opt_wild
|
2004-03-23 14:43:24 +01:00
|
|
|
union_clause union_list
|
2003-03-05 13:43:10 +01:00
|
|
|
precision subselect_start opt_and charset
|
2002-11-21 01:07:14 +01:00
|
|
|
subselect_end select_var_list select_var_list_init help opt_len
|
2004-04-06 12:00:51 +02:00
|
|
|
opt_extended_describe
|
2005-09-14 09:53:09 +02:00
|
|
|
prepare prepare_src execute deallocate
|
2005-11-10 20:25:03 +01:00
|
|
|
statement sp_suid
|
2005-01-16 13:16:23 +01:00
|
|
|
sp_c_chistics sp_a_chistics sp_chistic sp_c_chistic xa
|
2005-03-16 02:32:47 +01:00
|
|
|
load_data opt_field_or_var_spec fields_or_vars opt_load_data_set_spec
|
2005-11-10 20:25:03 +01:00
|
|
|
definer view_replace_or_algorithm view_replace view_algorithm_opt
|
2006-03-02 13:18:49 +01:00
|
|
|
view_algorithm view_or_trigger_or_sp view_or_trigger_or_sp_tail
|
|
|
|
view_suid view_tail view_list_opt view_list view_select
|
|
|
|
view_check_option trigger_tail sp_tail
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
case_stmt_specification simple_case_stmt searched_case_stmt
|
2001-06-03 16:07:26 +02:00
|
|
|
END_OF_INPUT
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
%type <NONE> call sp_proc_stmts sp_proc_stmts1 sp_proc_stmt
|
|
|
|
%type <num> sp_decl_idents sp_opt_inout sp_handler_type sp_hcond_list
|
|
|
|
%type <spcondtype> sp_cond sp_hcond
|
|
|
|
%type <spblock> sp_decls sp_decl
|
|
|
|
%type <lex> sp_cursor_stmt
|
|
|
|
%type <spname> sp_name
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
%type <NONE>
|
|
|
|
'-' '+' '*' '/' '%' '(' ')'
|
2004-11-17 16:49:10 +01:00
|
|
|
',' '!' '{' '}' '&' '|' AND_SYM OR_SYM OR_OR_SYM BETWEEN_SYM CASE_SYM
|
2005-01-16 13:16:23 +01:00
|
|
|
THEN_SYM WHEN_SYM DIV_SYM MOD_SYM OR2_SYM AND_AND_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
%%
|
|
|
|
|
|
|
|
|
|
|
|
query:
|
|
|
|
END_OF_INPUT
|
2001-03-25 00:02:26 +01:00
|
|
|
{
|
2002-11-26 14:18:16 +01:00
|
|
|
THD *thd= YYTHD;
|
2002-02-14 14:04:14 +01:00
|
|
|
if (!thd->bootstrap &&
|
2003-12-19 18:52:13 +01:00
|
|
|
(!(thd->lex->select_lex.options & OPTION_FOUND_COMMENT)))
|
2002-02-14 14:04:14 +01:00
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_EMPTY_QUERY, ER(ER_EMPTY_QUERY), MYF(0));
|
2002-02-14 14:04:14 +01:00
|
|
|
YYABORT;
|
2002-11-29 16:17:52 +01:00
|
|
|
}
|
2002-02-14 14:04:14 +01:00
|
|
|
else
|
|
|
|
{
|
2003-12-19 18:52:13 +01:00
|
|
|
thd->lex->sql_command= SQLCOM_EMPTY_QUERY;
|
2002-02-14 14:04:14 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
| verb_clause END_OF_INPUT {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
verb_clause:
|
2004-11-12 04:01:46 +01:00
|
|
|
statement
|
|
|
|
| begin
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Verb clauses, except begin */
|
|
|
|
statement:
|
2000-07-31 21:29:14 +02:00
|
|
|
alter
|
|
|
|
| analyze
|
2000-10-10 21:31:00 +02:00
|
|
|
| backup
|
2004-11-12 04:01:46 +01:00
|
|
|
| call
|
2000-07-31 21:29:14 +02:00
|
|
|
| change
|
|
|
|
| check
|
2003-08-21 16:15:06 +02:00
|
|
|
| checksum
|
2000-07-31 21:29:14 +02:00
|
|
|
| commit
|
|
|
|
| create
|
2004-06-07 10:09:10 +02:00
|
|
|
| deallocate
|
2000-07-31 21:29:14 +02:00
|
|
|
| delete
|
|
|
|
| describe
|
2001-12-17 18:59:20 +01:00
|
|
|
| do
|
2000-07-31 21:29:14 +02:00
|
|
|
| drop
|
2004-06-07 10:09:10 +02:00
|
|
|
| execute
|
2003-08-05 21:14:15 +02:00
|
|
|
| flush
|
2000-07-31 21:29:14 +02:00
|
|
|
| grant
|
2003-08-05 21:14:15 +02:00
|
|
|
| handler
|
|
|
|
| help
|
2000-07-31 21:29:14 +02:00
|
|
|
| insert
|
2003-08-05 21:14:15 +02:00
|
|
|
| kill
|
2000-07-31 21:29:14 +02:00
|
|
|
| load
|
|
|
|
| lock
|
|
|
|
| optimize
|
2003-08-26 09:15:49 +02:00
|
|
|
| keycache
|
2003-06-12 13:29:02 +02:00
|
|
|
| preload
|
2004-06-07 10:09:10 +02:00
|
|
|
| prepare
|
2002-12-04 23:14:51 +01:00
|
|
|
| purge
|
2005-02-01 20:48:05 +01:00
|
|
|
| release
|
2000-08-21 02:00:52 +02:00
|
|
|
| rename
|
2003-08-05 21:14:15 +02:00
|
|
|
| repair
|
2000-07-31 21:29:14 +02:00
|
|
|
| replace
|
2000-10-14 10:16:17 +02:00
|
|
|
| reset
|
2000-10-10 21:31:00 +02:00
|
|
|
| restore
|
2000-07-31 21:29:14 +02:00
|
|
|
| revoke
|
|
|
|
| rollback
|
2003-06-06 03:18:58 +02:00
|
|
|
| savepoint
|
2000-07-31 21:29:14 +02:00
|
|
|
| select
|
|
|
|
| set
|
2003-08-05 21:14:15 +02:00
|
|
|
| show
|
2000-08-21 23:39:08 +02:00
|
|
|
| slave
|
2003-02-06 15:55:59 +01:00
|
|
|
| start
|
2000-11-13 22:55:10 +01:00
|
|
|
| truncate
|
2000-07-31 21:29:14 +02:00
|
|
|
| unlock
|
|
|
|
| update
|
2002-10-28 14:44:19 +01:00
|
|
|
| use
|
2005-01-16 13:16:23 +01:00
|
|
|
| xa
|
2003-08-05 21:14:15 +02:00
|
|
|
;
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2004-04-05 17:43:37 +02:00
|
|
|
deallocate:
|
2004-06-18 02:02:29 +02:00
|
|
|
deallocate_or_drop PREPARE_SYM ident
|
2004-04-05 17:43:37 +02:00
|
|
|
{
|
|
|
|
THD *thd=YYTHD;
|
2004-04-30 18:08:38 +02:00
|
|
|
LEX *lex= thd->lex;
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
if (lex->stmt_prepare_mode)
|
2004-04-05 17:43:37 +02:00
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-04-30 18:08:38 +02:00
|
|
|
lex->sql_command= SQLCOM_DEALLOCATE_PREPARE;
|
2004-04-05 17:43:37 +02:00
|
|
|
lex->prepared_stmt_name= $3;
|
|
|
|
};
|
|
|
|
|
2004-06-18 02:02:29 +02:00
|
|
|
deallocate_or_drop:
|
|
|
|
DEALLOCATE_SYM |
|
|
|
|
DROP
|
|
|
|
;
|
|
|
|
|
|
|
|
|
2004-04-05 17:43:37 +02:00
|
|
|
prepare:
|
2004-05-21 02:27:50 +02:00
|
|
|
PREPARE_SYM ident FROM prepare_src
|
2004-04-05 17:43:37 +02:00
|
|
|
{
|
|
|
|
THD *thd=YYTHD;
|
2004-04-30 18:08:38 +02:00
|
|
|
LEX *lex= thd->lex;
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
if (lex->stmt_prepare_mode)
|
2004-04-05 17:43:37 +02:00
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-04-30 18:08:38 +02:00
|
|
|
lex->sql_command= SQLCOM_PREPARE;
|
2004-04-05 17:43:37 +02:00
|
|
|
lex->prepared_stmt_name= $2;
|
|
|
|
};
|
|
|
|
|
2004-05-21 02:27:50 +02:00
|
|
|
prepare_src:
|
|
|
|
TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
THD *thd=YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
lex->prepared_stmt_code= $1;
|
2004-10-14 17:03:46 +02:00
|
|
|
lex->prepared_stmt_code_is_varref= FALSE;
|
2004-05-21 02:27:50 +02:00
|
|
|
}
|
|
|
|
| '@' ident_or_text
|
|
|
|
{
|
|
|
|
THD *thd=YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
lex->prepared_stmt_code= $2;
|
2004-10-14 17:03:46 +02:00
|
|
|
lex->prepared_stmt_code_is_varref= TRUE;
|
2004-05-21 02:27:50 +02:00
|
|
|
};
|
2004-06-07 10:09:10 +02:00
|
|
|
|
2004-04-05 17:43:37 +02:00
|
|
|
execute:
|
|
|
|
EXECUTE_SYM ident
|
|
|
|
{
|
|
|
|
THD *thd=YYTHD;
|
2004-04-30 18:08:38 +02:00
|
|
|
LEX *lex= thd->lex;
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
if (lex->stmt_prepare_mode)
|
2004-04-05 17:43:37 +02:00
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-04-30 18:08:38 +02:00
|
|
|
lex->sql_command= SQLCOM_EXECUTE;
|
2004-04-05 17:43:37 +02:00
|
|
|
lex->prepared_stmt_name= $2;
|
|
|
|
}
|
|
|
|
execute_using
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
execute_using:
|
|
|
|
/* nothing */
|
|
|
|
| USING execute_var_list
|
|
|
|
;
|
|
|
|
|
|
|
|
execute_var_list:
|
2004-04-30 18:08:38 +02:00
|
|
|
execute_var_list ',' execute_var_ident
|
|
|
|
| execute_var_ident
|
2004-04-05 17:43:37 +02:00
|
|
|
;
|
|
|
|
|
|
|
|
execute_var_ident: '@' ident_or_text
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
LEX_STRING *lexstr= (LEX_STRING*)sql_memdup(&$2, sizeof(LEX_STRING));
|
|
|
|
if (!lexstr || lex->prepared_stmt_params.push_back(lexstr))
|
|
|
|
YYABORT;
|
2004-04-30 18:08:38 +02:00
|
|
|
}
|
2004-04-05 17:43:37 +02:00
|
|
|
;
|
|
|
|
|
2002-10-28 14:44:19 +01:00
|
|
|
/* help */
|
|
|
|
|
2002-12-04 23:14:51 +01:00
|
|
|
help:
|
2005-08-29 12:19:08 +02:00
|
|
|
HELP_SYM
|
|
|
|
{
|
|
|
|
if (Lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "HELP");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ident_or_text
|
2002-10-28 14:44:19 +01:00
|
|
|
{
|
2003-02-12 20:55:37 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_HELP;
|
2005-08-29 12:19:08 +02:00
|
|
|
lex->help_arg= $3.str;
|
2002-10-30 14:38:07 +01:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
/* change master */
|
|
|
|
|
|
|
|
change:
|
2000-08-21 23:39:08 +02:00
|
|
|
CHANGE MASTER_SYM TO_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
|
|
|
LEX *lex = Lex;
|
|
|
|
lex->sql_command = SQLCOM_CHANGE_MASTER;
|
2002-10-29 20:59:03 +01:00
|
|
|
bzero((char*) &lex->mi, sizeof(lex->mi));
|
2002-11-28 18:57:56 +01:00
|
|
|
}
|
|
|
|
master_defs
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
master_defs:
|
|
|
|
master_def
|
2002-07-23 17:31:22 +02:00
|
|
|
| master_defs ',' master_def;
|
2000-08-21 23:39:08 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
master_def:
|
|
|
|
MASTER_HOST_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.host = $3.str;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
MASTER_USER_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.user = $3.str;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
MASTER_PASSWORD_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.password = $3.str;
|
|
|
|
}
|
|
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
MASTER_PORT_SYM EQ ulong_num
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
Lex->mi.port = $3;
|
|
|
|
}
|
|
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
MASTER_CONNECT_RETRY_SYM EQ ulong_num
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
Lex->mi.connect_retry = $3;
|
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| MASTER_SSL_SYM EQ ulong_num
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
Lex->mi.ssl= $3 ?
|
|
|
|
LEX_MASTER_INFO::SSL_ENABLE : LEX_MASTER_INFO::SSL_DISABLE;
|
|
|
|
}
|
|
|
|
| MASTER_SSL_CA_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.ssl_ca= $3.str;
|
|
|
|
}
|
|
|
|
| MASTER_SSL_CAPATH_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.ssl_capath= $3.str;
|
|
|
|
}
|
|
|
|
| MASTER_SSL_CERT_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.ssl_cert= $3.str;
|
|
|
|
}
|
|
|
|
| MASTER_SSL_CIPHER_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.ssl_cipher= $3.str;
|
|
|
|
}
|
|
|
|
| MASTER_SSL_KEY_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.ssl_key= $3.str;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
master_file_def
|
|
|
|
;
|
|
|
|
|
|
|
|
master_file_def:
|
|
|
|
MASTER_LOG_FILE_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.log_file_name = $3.str;
|
|
|
|
}
|
|
|
|
| MASTER_LOG_POS_SYM EQ ulonglong_num
|
|
|
|
{
|
|
|
|
Lex->mi.pos = $3;
|
|
|
|
/*
|
|
|
|
If the user specified a value < BIN_LOG_HEADER_SIZE, adjust it
|
|
|
|
instead of causing subsequent errors.
|
|
|
|
We need to do it in this file, because only there we know that
|
|
|
|
MASTER_LOG_POS has been explicitely specified. On the contrary
|
|
|
|
in change_master() (sql_repl.cc) we cannot distinguish between 0
|
|
|
|
(MASTER_LOG_POS explicitely specified as 0) and 0 (unspecified),
|
|
|
|
whereas we want to distinguish (specified 0 means "read the binlog
|
|
|
|
from 0" (4 in fact), unspecified means "don't change the position
|
|
|
|
(keep the preceding value)").
|
|
|
|
*/
|
|
|
|
Lex->mi.pos = max(BIN_LOG_HEADER_SIZE, Lex->mi.pos);
|
|
|
|
}
|
|
|
|
| RELAY_LOG_FILE_SYM EQ TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
Lex->mi.relay_log_name = $3.str;
|
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| RELAY_LOG_POS_SYM EQ ulong_num
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
Lex->mi.relay_log_pos = $3;
|
|
|
|
/* Adjust if < BIN_LOG_HEADER_SIZE (same comment as Lex->mi.pos) */
|
|
|
|
Lex->mi.relay_log_pos = max(BIN_LOG_HEADER_SIZE, Lex->mi.relay_log_pos);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
/* create a table */
|
|
|
|
|
|
|
|
create:
|
|
|
|
CREATE opt_table_options TABLE_SYM opt_if_not_exists table_ident
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_CREATE_TABLE;
|
|
|
|
if (!lex->select_lex.add_table_to_list(thd, $5, NULL,
|
|
|
|
TL_OPTION_UPDATING,
|
|
|
|
(using_update_log ?
|
|
|
|
TL_READ_NO_INSERT:
|
|
|
|
TL_READ)))
|
|
|
|
YYABORT;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
lex->alter_info.reset();
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->col_list.empty();
|
|
|
|
lex->change=NullS;
|
|
|
|
bzero((char*) &lex->create_info,sizeof(lex->create_info));
|
|
|
|
lex->create_info.options=$2 | $4;
|
|
|
|
lex->create_info.db_type= (enum db_type) lex->thd->variables.table_type;
|
|
|
|
lex->create_info.default_table_charset= NULL;
|
|
|
|
lex->name=0;
|
|
|
|
}
|
|
|
|
create2
|
|
|
|
{ Lex->current_select= &Lex->select_lex; }
|
|
|
|
| CREATE opt_unique_or_fulltext INDEX_SYM ident key_alg ON table_ident
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_CREATE_INDEX;
|
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $7, NULL,
|
|
|
|
TL_OPTION_UPDATING))
|
|
|
|
YYABORT;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
lex->alter_info.reset();
|
|
|
|
lex->alter_info.flags= ALTER_ADD_INDEX;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->col_list.empty();
|
|
|
|
lex->change=NullS;
|
|
|
|
}
|
|
|
|
'(' key_list ')'
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
Key *key= new Key($2, $4.str, $5, 0, lex->col_list);
|
2004-11-12 04:01:46 +01:00
|
|
|
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
lex->alter_info.key_list.push_back(key);
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->col_list.empty();
|
|
|
|
}
|
|
|
|
| CREATE DATABASE opt_if_not_exists ident
|
|
|
|
{
|
|
|
|
Lex->create_info.default_table_charset= NULL;
|
|
|
|
Lex->create_info.used_fields= 0;
|
|
|
|
}
|
|
|
|
opt_create_database_options
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command=SQLCOM_CREATE_DB;
|
|
|
|
lex->name=$4.str;
|
|
|
|
lex->create_info.options=$3;
|
|
|
|
}
|
2005-11-10 20:25:03 +01:00
|
|
|
| CREATE
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-11-10 20:25:03 +01:00
|
|
|
Lex->create_view_mode= VIEW_CREATE_NEW;
|
|
|
|
Lex->create_view_algorithm= VIEW_ALGORITHM_UNDEFINED;
|
|
|
|
Lex->create_view_suid= TRUE;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2006-03-02 13:18:49 +01:00
|
|
|
view_or_trigger_or_sp
|
2004-11-12 04:01:46 +01:00
|
|
|
{}
|
2004-11-25 21:55:49 +01:00
|
|
|
| CREATE USER clear_privileges grant_list
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_CREATE_USER;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
2004-11-25 21:55:49 +01:00
|
|
|
clear_privileges:
|
|
|
|
/* Nothing */
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->users_list.empty();
|
|
|
|
lex->columns.empty();
|
|
|
|
lex->grant= lex->grant_tot_col= 0;
|
2004-12-23 11:46:24 +01:00
|
|
|
lex->all_privileges= 0;
|
2004-11-25 21:55:49 +01:00
|
|
|
lex->select_lex.db= 0;
|
|
|
|
lex->ssl_type= SSL_TYPE_NOT_SPECIFIED;
|
|
|
|
lex->ssl_cipher= lex->x509_subject= lex->x509_issuer= 0;
|
|
|
|
bzero((char *)&(lex->mqh),sizeof(lex->mqh));
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_name:
|
2005-04-12 15:43:24 +02:00
|
|
|
ident '.' ident
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2006-01-11 15:11:05 +01:00
|
|
|
if (!$1.str || check_db_name($1.str))
|
|
|
|
{
|
|
|
|
my_error(ER_WRONG_DB_NAME, MYF(0), $1.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
2006-01-19 16:13:04 +01:00
|
|
|
if (check_routine_name($3))
|
2006-01-11 15:11:05 +01:00
|
|
|
{
|
|
|
|
my_error(ER_SP_WRONG_NAME, MYF(0), $3.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= new sp_name($1, $3);
|
|
|
|
$$->init_qname(YYTHD);
|
|
|
|
}
|
2005-04-12 15:43:24 +02:00
|
|
|
| ident
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= YYTHD;
|
|
|
|
LEX_STRING db;
|
2006-01-19 16:13:04 +01:00
|
|
|
if (check_routine_name($1))
|
2006-01-11 15:11:05 +01:00
|
|
|
{
|
|
|
|
my_error(ER_SP_WRONG_NAME, MYF(0), $1.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
if (thd->copy_db_to(&db.str, &db.length))
|
|
|
|
YYABORT;
|
|
|
|
$$= new sp_name(db, $1);
|
|
|
|
if ($$)
|
|
|
|
$$->init_qname(YYTHD);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
create_function_tail:
|
|
|
|
RETURNS_SYM udf_type UDF_SONAME_SYM TEXT_STRING_sys
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2006-07-31 21:01:43 +02:00
|
|
|
if (lex->definer != NULL)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
DEFINER is a concept meaningful when interpreting SQL code.
|
|
|
|
UDF functions are compiled.
|
|
|
|
Using DEFINER with UDF has therefore no semantic,
|
|
|
|
and is considered a parsing error.
|
|
|
|
*/
|
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "SONAME", "DEFINER");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->sql_command = SQLCOM_CREATE_FUNCTION;
|
|
|
|
lex->udf.name = lex->spname->m_name;
|
|
|
|
lex->udf.returns=(Item_result) $2;
|
|
|
|
lex->udf.dl=$4.str;
|
|
|
|
}
|
|
|
|
| '('
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp;
|
|
|
|
|
2006-02-09 13:00:32 +01:00
|
|
|
/*
|
|
|
|
First check if AGGREGATE was used, in that case it's a
|
|
|
|
syntax error.
|
|
|
|
*/
|
|
|
|
if (lex->udf.type == UDFTYPE_AGGREGATE)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_NO_AGGREGATE, MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), "FUNCTION");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
/* Order is important here: new - reset - init */
|
|
|
|
sp= new sp_head();
|
|
|
|
sp->reset_thd_mem_root(YYTHD);
|
|
|
|
sp->init(lex);
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_sp_name(YYTHD, lex->spname);
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
sp->m_type= TYPE_ENUM_FUNCTION;
|
|
|
|
lex->sphead= sp;
|
|
|
|
/*
|
|
|
|
* We have to turn of CLIENT_MULTI_QUERIES while parsing a
|
|
|
|
* stored procedure, otherwise yylex will chop it into pieces
|
|
|
|
* at each ';'.
|
|
|
|
*/
|
|
|
|
sp->m_old_cmq= YYTHD->client_capabilities & CLIENT_MULTI_QUERIES;
|
|
|
|
YYTHD->client_capabilities &= ~CLIENT_MULTI_QUERIES;
|
|
|
|
lex->sphead->m_param_begin= lex->tok_start+1;
|
|
|
|
}
|
|
|
|
sp_fdparam_list ')'
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->m_param_end= lex->tok_start;
|
|
|
|
}
|
|
|
|
RETURNS_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2005-03-04 22:14:35 +01:00
|
|
|
lex->charset= NULL;
|
|
|
|
lex->length= lex->dec= NULL;
|
|
|
|
lex->interval_list.empty();
|
|
|
|
lex->type= 0;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
type
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
2005-03-04 22:14:35 +01:00
|
|
|
|
2005-12-07 15:01:17 +01:00
|
|
|
if (sp->fill_field_definition(YYTHD, lex,
|
|
|
|
(enum enum_field_types) $8,
|
|
|
|
&sp->m_return_field_def))
|
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
bzero((char *)&lex->sp_chistics, sizeof(st_sp_chistics));
|
|
|
|
}
|
|
|
|
sp_c_chistics
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->m_chistics= &lex->sp_chistics;
|
|
|
|
lex->sphead->m_body_begin= lex->tok_start;
|
|
|
|
}
|
|
|
|
sp_proc_stmt
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
if (sp->is_not_allowed_in_function("function"))
|
|
|
|
YYABORT;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->sql_command= SQLCOM_CREATE_SPFUNCTION;
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_strings(YYTHD, lex);
|
2005-11-25 17:09:26 +01:00
|
|
|
if (!(sp->m_flags & sp_head::HAS_RETURN))
|
|
|
|
{
|
|
|
|
my_error(ER_SP_NORETURN, MYF(0), sp->m_qname.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
/* Restore flag if it was cleared above */
|
|
|
|
if (sp->m_old_cmq)
|
|
|
|
YYTHD->client_capabilities |= CLIENT_MULTI_QUERIES;
|
|
|
|
sp->restore_thd_mem_root(YYTHD);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_a_chistics:
|
|
|
|
/* Empty */ {}
|
|
|
|
| sp_a_chistics sp_chistic {}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_c_chistics:
|
|
|
|
/* Empty */ {}
|
|
|
|
| sp_c_chistics sp_c_chistic {}
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Characteristics for both create and alter */
|
|
|
|
sp_chistic:
|
|
|
|
COMMENT_SYM TEXT_STRING_sys
|
|
|
|
{ Lex->sp_chistics.comment= $2; }
|
|
|
|
| LANGUAGE_SYM SQL_SYM
|
|
|
|
{ /* Just parse it, we only have one language for now. */ }
|
|
|
|
| NO_SYM SQL_SYM
|
|
|
|
{ Lex->sp_chistics.daccess= SP_NO_SQL; }
|
|
|
|
| CONTAINS_SYM SQL_SYM
|
|
|
|
{ Lex->sp_chistics.daccess= SP_CONTAINS_SQL; }
|
|
|
|
| READS_SYM SQL_SYM DATA_SYM
|
|
|
|
{ Lex->sp_chistics.daccess= SP_READS_SQL_DATA; }
|
|
|
|
| MODIFIES_SYM SQL_SYM DATA_SYM
|
|
|
|
{ Lex->sp_chistics.daccess= SP_MODIFIES_SQL_DATA; }
|
|
|
|
| sp_suid
|
|
|
|
{ }
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Create characteristics */
|
|
|
|
sp_c_chistic:
|
|
|
|
sp_chistic { }
|
|
|
|
| DETERMINISTIC_SYM { Lex->sp_chistics.detistic= TRUE; }
|
2004-11-17 16:49:10 +01:00
|
|
|
| not DETERMINISTIC_SYM { Lex->sp_chistics.detistic= FALSE; }
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
sp_suid:
|
|
|
|
SQL_SYM SECURITY_SYM DEFINER_SYM
|
|
|
|
{
|
|
|
|
Lex->sp_chistics.suid= SP_IS_SUID;
|
|
|
|
}
|
|
|
|
| SQL_SYM SECURITY_SYM INVOKER_SYM
|
|
|
|
{
|
|
|
|
Lex->sp_chistics.suid= SP_IS_NOT_SUID;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
call:
|
|
|
|
CALL_SYM sp_name
|
|
|
|
{
|
|
|
|
LEX *lex = Lex;
|
|
|
|
|
|
|
|
lex->sql_command= SQLCOM_CALL;
|
|
|
|
lex->spname= $2;
|
|
|
|
lex->value_list.empty();
|
2005-07-09 19:51:59 +02:00
|
|
|
sp_add_used_routine(lex, YYTHD, $2, TYPE_ENUM_PROCEDURE);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
opt_sp_cparam_list {}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
/* CALL parameters */
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
opt_sp_cparam_list:
|
2004-11-12 04:01:46 +01:00
|
|
|
/* Empty */
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
| '(' opt_sp_cparams ')'
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
opt_sp_cparams:
|
|
|
|
/* Empty */
|
|
|
|
| sp_cparams
|
|
|
|
;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_cparams:
|
|
|
|
sp_cparams ',' expr
|
|
|
|
{
|
|
|
|
Lex->value_list.push_back($3);
|
|
|
|
}
|
|
|
|
| expr
|
|
|
|
{
|
|
|
|
Lex->value_list.push_back($1);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Stored FUNCTION parameter declaration list */
|
|
|
|
sp_fdparam_list:
|
|
|
|
/* Empty */
|
|
|
|
| sp_fdparams
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_fdparams:
|
|
|
|
sp_fdparams ',' sp_fdparam
|
|
|
|
| sp_fdparam
|
|
|
|
;
|
|
|
|
|
2005-12-07 15:01:17 +01:00
|
|
|
sp_init_param:
|
|
|
|
/* Empty */
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->length= 0;
|
|
|
|
lex->dec= 0;
|
|
|
|
lex->type= 0;
|
|
|
|
|
|
|
|
lex->default_value= 0;
|
|
|
|
lex->on_update_value= 0;
|
|
|
|
|
|
|
|
lex->comment= null_lex_str;
|
|
|
|
lex->charset= NULL;
|
|
|
|
|
|
|
|
lex->interval_list.empty();
|
|
|
|
lex->uint_geom_type= 0;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_fdparam:
|
2005-12-07 15:01:17 +01:00
|
|
|
ident sp_init_param type
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc->find_variable(&$1, TRUE))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_DUP_PARAM, MYF(0), $1.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spvar= spc->push_variable(&$1,
|
|
|
|
(enum enum_field_types)$3,
|
|
|
|
sp_param_in);
|
2005-12-07 15:01:17 +01:00
|
|
|
|
|
|
|
if (lex->sphead->fill_field_definition(YYTHD, lex,
|
|
|
|
(enum enum_field_types) $3,
|
2006-04-07 16:53:15 +02:00
|
|
|
&spvar->field_def))
|
2005-12-07 15:01:17 +01:00
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
spvar->field_def.field_name= spvar->name.str;
|
|
|
|
spvar->field_def.pack_flag |= FIELDFLAG_MAYBE_NULL;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Stored PROCEDURE parameter declaration list */
|
|
|
|
sp_pdparam_list:
|
|
|
|
/* Empty */
|
|
|
|
| sp_pdparams
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_pdparams:
|
|
|
|
sp_pdparams ',' sp_pdparam
|
|
|
|
| sp_pdparam
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_pdparam:
|
2005-12-07 15:01:17 +01:00
|
|
|
sp_opt_inout sp_init_param ident type
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc->find_variable(&$3, TRUE))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-12-07 15:01:17 +01:00
|
|
|
my_error(ER_SP_DUP_PARAM, MYF(0), $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spvar= spc->push_variable(&$3,
|
|
|
|
(enum enum_field_types)$4,
|
|
|
|
(sp_param_mode_t)$1);
|
2005-12-07 15:01:17 +01:00
|
|
|
|
|
|
|
if (lex->sphead->fill_field_definition(YYTHD, lex,
|
|
|
|
(enum enum_field_types) $4,
|
2006-04-07 16:53:15 +02:00
|
|
|
&spvar->field_def))
|
2005-12-07 15:01:17 +01:00
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
spvar->field_def.field_name= spvar->name.str;
|
|
|
|
spvar->field_def.pack_flag |= FIELDFLAG_MAYBE_NULL;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_opt_inout:
|
|
|
|
/* Empty */ { $$= sp_param_in; }
|
|
|
|
| IN_SYM { $$= sp_param_in; }
|
|
|
|
| OUT_SYM { $$= sp_param_out; }
|
|
|
|
| INOUT_SYM { $$= sp_param_inout; }
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_proc_stmts:
|
|
|
|
/* Empty */ {}
|
2005-03-04 14:35:28 +01:00
|
|
|
| sp_proc_stmts sp_proc_stmt ';'
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
sp_proc_stmts1:
|
|
|
|
sp_proc_stmt ';' {}
|
2005-03-04 14:35:28 +01:00
|
|
|
| sp_proc_stmts1 sp_proc_stmt ';'
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
sp_decls:
|
|
|
|
/* Empty */
|
|
|
|
{
|
|
|
|
$$.vars= $$.conds= $$.hndlrs= $$.curs= 0;
|
|
|
|
}
|
|
|
|
| sp_decls sp_decl ';'
|
|
|
|
{
|
|
|
|
/* We check for declarations out of (standard) order this way
|
|
|
|
because letting the grammar rules reflect it caused tricky
|
|
|
|
shift/reduce conflicts with the wrong result. (And we get
|
|
|
|
better error handling this way.) */
|
|
|
|
if (($2.vars || $2.conds) && ($1.curs || $1.hndlrs))
|
|
|
|
{ /* Variable or condition following cursor or handler */
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_SP_VARCOND_AFTER_CURSHNDLR,
|
|
|
|
ER(ER_SP_VARCOND_AFTER_CURSHNDLR), MYF(0));
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
if ($2.curs && $1.hndlrs)
|
|
|
|
{ /* Cursor following handler */
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_SP_CURSOR_AFTER_HANDLER,
|
|
|
|
ER(ER_SP_CURSOR_AFTER_HANDLER), MYF(0));
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$.vars= $1.vars + $2.vars;
|
|
|
|
$$.conds= $1.conds + $2.conds;
|
|
|
|
$$.hndlrs= $1.hndlrs + $2.hndlrs;
|
|
|
|
$$.curs= $1.curs + $2.curs;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_decl:
|
2005-12-07 15:01:17 +01:00
|
|
|
DECLARE_SYM sp_decl_idents
|
2005-11-01 14:58:52 +01:00
|
|
|
{
|
2005-12-02 14:30:42 +01:00
|
|
|
LEX *lex= Lex;
|
2005-11-01 14:58:52 +01:00
|
|
|
|
2005-12-02 14:30:42 +01:00
|
|
|
lex->sphead->reset_lex(YYTHD);
|
|
|
|
lex->spcont->declare_var_boundary($2);
|
|
|
|
}
|
2005-12-07 15:01:17 +01:00
|
|
|
type
|
2005-03-04 14:35:28 +01:00
|
|
|
sp_opt_default
|
2005-09-13 12:50:21 +02:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2005-12-07 15:01:17 +01:00
|
|
|
sp_pcontext *pctx= lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
uint num_vars= pctx->context_var_count();
|
2005-12-07 15:01:17 +01:00
|
|
|
enum enum_field_types var_type= (enum enum_field_types) $4;
|
|
|
|
Item *dflt_value_item= $5;
|
|
|
|
|
|
|
|
if (!dflt_value_item)
|
2005-09-13 12:50:21 +02:00
|
|
|
{
|
2005-12-07 15:01:17 +01:00
|
|
|
dflt_value_item= new Item_null();
|
|
|
|
/* QQ Set to the var_type with null_value? */
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint i = num_vars-$2 ; i < num_vars ; i++)
|
|
|
|
{
|
2006-04-07 16:53:15 +02:00
|
|
|
uint var_idx= pctx->var_context2runtime(i);
|
|
|
|
sp_variable_t *spvar= pctx->find_variable(var_idx);
|
2005-12-07 15:01:17 +01:00
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (!spvar)
|
2005-12-07 15:01:17 +01:00
|
|
|
YYABORT;
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
spvar->type= var_type;
|
|
|
|
spvar->dflt= dflt_value_item;
|
2005-12-07 15:01:17 +01:00
|
|
|
|
|
|
|
if (lex->sphead->fill_field_definition(YYTHD, lex, var_type,
|
2006-04-07 16:53:15 +02:00
|
|
|
&spvar->field_def))
|
2005-12-07 15:01:17 +01:00
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
spvar->field_def.field_name= spvar->name.str;
|
|
|
|
spvar->field_def.pack_flag |= FIELDFLAG_MAYBE_NULL;
|
2005-12-07 15:01:17 +01:00
|
|
|
|
|
|
|
/* The last instruction is responsible for freeing LEX. */
|
|
|
|
|
|
|
|
lex->sphead->add_instr(
|
|
|
|
new sp_instr_set(lex->sphead->instructions(), pctx, var_idx,
|
|
|
|
dflt_value_item, var_type, lex,
|
|
|
|
(i == num_vars - 1)));
|
2005-09-13 12:50:21 +02:00
|
|
|
}
|
2005-12-07 15:01:17 +01:00
|
|
|
|
|
|
|
pctx->declare_var_boundary(0);
|
2005-03-04 14:35:28 +01:00
|
|
|
lex->sphead->restore_lex(YYTHD);
|
2005-12-07 15:01:17 +01:00
|
|
|
|
2005-09-13 12:50:21 +02:00
|
|
|
$$.vars= $2;
|
|
|
|
$$.conds= $$.hndlrs= $$.curs= 0;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DECLARE_SYM ident CONDITION_SYM FOR_SYM sp_cond
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
|
|
|
|
if (spc->find_cond(&$2, TRUE))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_DUP_COND, MYF(0), $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
YYTHD->lex->spcont->push_cond(&$2, $5);
|
|
|
|
$$.vars= $$.hndlrs= $$.curs= 0;
|
|
|
|
$$.conds= 1;
|
|
|
|
}
|
|
|
|
| DECLARE_SYM sp_handler_type HANDLER_SYM FOR_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
sp_instr_hpush_jump *i=
|
|
|
|
new sp_instr_hpush_jump(sp->instructions(), ctx, $2,
|
2006-04-07 16:53:15 +02:00
|
|
|
ctx->current_var_count());
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
sp->add_instr(i);
|
|
|
|
sp->push_backpatch(i, ctx->push_label((char *)"", 0));
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
sp->m_flags|= sp_head::IN_HANDLER;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
sp_hcond_list sp_proc_stmt
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
sp_label_t *hlab= lex->spcont->pop_label(); /* After this hdlr */
|
|
|
|
sp_instr_hreturn *i;
|
|
|
|
|
|
|
|
if ($2 == SP_HANDLER_CONTINUE)
|
|
|
|
{
|
|
|
|
i= new sp_instr_hreturn(sp->instructions(), ctx,
|
2006-04-07 16:53:15 +02:00
|
|
|
ctx->current_var_count());
|
2004-11-12 04:01:46 +01:00
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* EXIT or UNDO handler, just jump to the end of the block */
|
|
|
|
i= new sp_instr_hreturn(sp->instructions(), ctx, 0);
|
|
|
|
|
|
|
|
sp->add_instr(i);
|
|
|
|
sp->push_backpatch(i, lex->spcont->last_label()); /* Block end */
|
|
|
|
}
|
|
|
|
lex->sphead->backpatch(hlab);
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
sp->m_flags&= ~sp_head::IN_HANDLER;
|
2004-11-12 04:01:46 +01:00
|
|
|
$$.vars= $$.conds= $$.curs= 0;
|
|
|
|
$$.hndlrs= $6;
|
2005-04-13 16:57:49 +02:00
|
|
|
ctx->add_handlers($6);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| DECLARE_SYM ident CURSOR_SYM FOR_SYM sp_cursor_stmt
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
uint offp;
|
|
|
|
sp_instr_cpush *i;
|
|
|
|
|
|
|
|
if (ctx->find_cursor(&$2, &offp, TRUE))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_DUP_CURS, MYF(0), $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
delete $5;
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-11-17 11:11:48 +01:00
|
|
|
i= new sp_instr_cpush(sp->instructions(), ctx, $5,
|
2006-04-07 16:53:15 +02:00
|
|
|
ctx->current_cursor_count());
|
2004-11-12 04:01:46 +01:00
|
|
|
sp->add_instr(i);
|
|
|
|
ctx->push_cursor(&$2);
|
|
|
|
$$.vars= $$.conds= $$.hndlrs= 0;
|
|
|
|
$$.curs= 1;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_cursor_stmt:
|
|
|
|
{
|
|
|
|
Lex->sphead->reset_lex(YYTHD);
|
|
|
|
|
|
|
|
/* We use statement here just be able to get a better
|
|
|
|
error message. Using 'select' works too, but will then
|
|
|
|
result in a generic "syntax error" if a non-select
|
|
|
|
statement is given. */
|
|
|
|
}
|
|
|
|
statement
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
if (lex->sql_command != SQLCOM_SELECT)
|
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_SP_BAD_CURSOR_QUERY, ER(ER_SP_BAD_CURSOR_QUERY),
|
|
|
|
MYF(0));
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
if (lex->result)
|
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_SP_BAD_CURSOR_SELECT, ER(ER_SP_BAD_CURSOR_SELECT),
|
|
|
|
MYF(0));
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sp_lex_in_use= TRUE;
|
|
|
|
$$= lex;
|
|
|
|
lex->sphead->restore_lex(YYTHD);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_handler_type:
|
|
|
|
EXIT_SYM { $$= SP_HANDLER_EXIT; }
|
|
|
|
| CONTINUE_SYM { $$= SP_HANDLER_CONTINUE; }
|
|
|
|
/* | UNDO_SYM { QQ No yet } */
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_hcond_list:
|
|
|
|
sp_hcond
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
2005-04-08 19:58:04 +02:00
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
|
|
|
|
if (ctx->find_handler($1))
|
|
|
|
{
|
|
|
|
my_message(ER_SP_DUP_HANDLER, ER(ER_SP_DUP_HANDLER), MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sp_instr_hpush_jump *i=
|
|
|
|
(sp_instr_hpush_jump *)sp->last_instruction();
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-04-08 19:58:04 +02:00
|
|
|
i->add_condition($1);
|
|
|
|
ctx->push_handler($1);
|
|
|
|
$$= 1;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| sp_hcond_list ',' sp_hcond
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
2005-04-08 19:58:04 +02:00
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
|
|
|
|
if (ctx->find_handler($3))
|
|
|
|
{
|
|
|
|
my_message(ER_SP_DUP_HANDLER, ER(ER_SP_DUP_HANDLER), MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sp_instr_hpush_jump *i=
|
|
|
|
(sp_instr_hpush_jump *)sp->last_instruction();
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-04-08 19:58:04 +02:00
|
|
|
i->add_condition($3);
|
|
|
|
ctx->push_handler($3);
|
|
|
|
$$= $1 + 1;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_cond:
|
2005-04-04 00:50:05 +02:00
|
|
|
ulong_num
|
2004-11-12 04:01:46 +01:00
|
|
|
{ /* mysql errno */
|
|
|
|
$$= (sp_cond_type_t *)YYTHD->alloc(sizeof(sp_cond_type_t));
|
|
|
|
$$->type= sp_cond_type_t::number;
|
|
|
|
$$->mysqlerr= $1;
|
|
|
|
}
|
|
|
|
| SQLSTATE_SYM opt_value TEXT_STRING_literal
|
|
|
|
{ /* SQLSTATE */
|
2005-02-28 18:07:06 +01:00
|
|
|
if (!sp_cond_check(&$3))
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BAD_SQLSTATE, MYF(0), $3.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= (sp_cond_type_t *)YYTHD->alloc(sizeof(sp_cond_type_t));
|
|
|
|
$$->type= sp_cond_type_t::state;
|
2005-02-28 18:07:06 +01:00
|
|
|
memcpy($$->sqlstate, $3.str, 5);
|
|
|
|
$$->sqlstate[5]= '\0';
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_value:
|
|
|
|
/* Empty */ {}
|
|
|
|
| VALUE_SYM {}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_hcond:
|
|
|
|
sp_cond
|
|
|
|
{
|
|
|
|
$$= $1;
|
|
|
|
}
|
|
|
|
| ident /* CONDITION name */
|
|
|
|
{
|
|
|
|
$$= Lex->spcont->find_cond(&$1);
|
|
|
|
if ($$ == NULL)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_COND_MISMATCH, MYF(0), $1.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| SQLWARNING_SYM /* SQLSTATEs 01??? */
|
|
|
|
{
|
|
|
|
$$= (sp_cond_type_t *)YYTHD->alloc(sizeof(sp_cond_type_t));
|
|
|
|
$$->type= sp_cond_type_t::warning;
|
|
|
|
}
|
2004-11-17 16:49:10 +01:00
|
|
|
| not FOUND_SYM /* SQLSTATEs 02??? */
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
$$= (sp_cond_type_t *)YYTHD->alloc(sizeof(sp_cond_type_t));
|
|
|
|
$$->type= sp_cond_type_t::notfound;
|
|
|
|
}
|
|
|
|
| SQLEXCEPTION_SYM /* All other SQLSTATEs */
|
|
|
|
{
|
|
|
|
$$= (sp_cond_type_t *)YYTHD->alloc(sizeof(sp_cond_type_t));
|
|
|
|
$$->type= sp_cond_type_t::exception;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_decl_idents:
|
|
|
|
ident
|
|
|
|
{
|
2005-12-07 15:01:17 +01:00
|
|
|
/* NOTE: field definition is filled in sp_decl section. */
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc->find_variable(&$1, TRUE))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_DUP_VAR, MYF(0), $1.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
spc->push_variable(&$1, (enum_field_types)0, sp_param_in);
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= 1;
|
|
|
|
}
|
|
|
|
| sp_decl_idents ',' ident
|
|
|
|
{
|
2005-12-07 15:01:17 +01:00
|
|
|
/* NOTE: field definition is filled in sp_decl section. */
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc->find_variable(&$3, TRUE))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_DUP_VAR, MYF(0), $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-07 16:53:15 +02:00
|
|
|
spc->push_variable(&$3, (enum_field_types)0, sp_param_in);
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= $1 + 1;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_opt_default:
|
|
|
|
/* Empty */ { $$ = NULL; }
|
|
|
|
| DEFAULT expr { $$ = $2; }
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_proc_stmt:
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->reset_lex(YYTHD);
|
|
|
|
lex->sphead->m_tmp_query= lex->tok_start;
|
|
|
|
}
|
|
|
|
statement
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
sp->m_flags|= sp_get_flags_for_command(lex);
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->sql_command == SQLCOM_CHANGE_DB)
|
|
|
|
{ /* "USE db" doesn't work in a procedure */
|
2005-08-10 08:31:32 +02:00
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "USE");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-03-04 14:35:28 +01:00
|
|
|
/*
|
|
|
|
Don't add an instruction for SET statements, since all
|
|
|
|
instructions for them were already added during processing
|
|
|
|
of "set" rule.
|
2004-11-12 04:01:46 +01:00
|
|
|
*/
|
2005-03-04 14:35:28 +01:00
|
|
|
DBUG_ASSERT(lex->sql_command != SQLCOM_SET_OPTION ||
|
|
|
|
lex->var_list.is_empty());
|
|
|
|
if (lex->sql_command != SQLCOM_SET_OPTION)
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-03-04 15:46:45 +01:00
|
|
|
sp_instr_stmt *i=new sp_instr_stmt(sp->instructions(),
|
|
|
|
lex->spcont, lex);
|
2005-02-08 20:52:50 +01:00
|
|
|
|
2006-07-07 19:24:54 +02:00
|
|
|
/*
|
|
|
|
Extract the query statement from the tokenizer. The
|
|
|
|
end is either lex->ptr, if there was no lookahead,
|
|
|
|
lex->tok_end otherwise.
|
|
|
|
*/
|
|
|
|
if (yychar == YYEMPTY)
|
2005-03-04 15:46:45 +01:00
|
|
|
i->m_query.length= lex->ptr - sp->m_tmp_query;
|
|
|
|
else
|
|
|
|
i->m_query.length= lex->tok_end - sp->m_tmp_query;
|
|
|
|
i->m_query.str= strmake_root(YYTHD->mem_root,
|
|
|
|
(char *)sp->m_tmp_query,
|
|
|
|
i->m_query.length);
|
|
|
|
sp->add_instr(i);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
sp->restore_lex(YYTHD);
|
|
|
|
}
|
2005-03-04 14:35:28 +01:00
|
|
|
| RETURN_SYM
|
|
|
|
{ Lex->sphead->reset_lex(YYTHD); }
|
|
|
|
expr
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2005-03-04 14:35:28 +01:00
|
|
|
sp_head *sp= lex->sphead;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-01-28 10:50:16 +01:00
|
|
|
if (sp->m_type != TYPE_ENUM_FUNCTION)
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_SP_BADRETURN, ER(ER_SP_BADRETURN), MYF(0));
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sp_instr_freturn *i;
|
|
|
|
|
2005-12-07 15:01:17 +01:00
|
|
|
i= new sp_instr_freturn(sp->instructions(), lex->spcont, $3,
|
|
|
|
sp->m_return_field_def.sql_type, lex);
|
2005-03-04 14:35:28 +01:00
|
|
|
sp->add_instr(i);
|
Implement WL#2661 "Prepared Statements: Dynamic SQL in Stored Procedures".
The idea of the patch is to separate statement processing logic,
such as parsing, validation of the parsed tree, execution and cleanup,
from global query processing logic, such as logging, resetting
priorities of a thread, resetting stored procedure cache, resetting
thread count of errors and warnings.
This makes PREPARE and EXECUTE behave similarly to the rest of SQL
statements and allows their use in stored procedures.
This patch contains a change in behaviour:
until recently for each SQL prepared statement command, 2 queries
were written to the general log, e.g.
[Query] prepare stmt from @stmt_text;
[Prepare] select * from t1 <-- contents of @stmt_text
The chagne was necessary to prevent [Prepare] commands from being written
to the general log when executing a stored procedure with Dynamic SQL.
We should consider whether the old behavior is preferrable and probably
restore it.
This patch refixes Bug#7115, Bug#10975 (partially), Bug#10605 (various bugs
in Dynamic SQL reported before it was disabled).
2005-09-03 01:13:18 +02:00
|
|
|
sp->m_flags|= sp_head::HAS_RETURN;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-03-04 14:35:28 +01:00
|
|
|
sp->restore_lex(YYTHD);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-11-04 15:37:39 +01:00
|
|
|
| IF
|
|
|
|
{ Lex->sphead->new_cont_backpatch(NULL); }
|
|
|
|
sp_if END IF
|
|
|
|
{ Lex->sphead->do_cont_backpatch(); }
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
| case_stmt_specification
|
2004-11-12 04:01:46 +01:00
|
|
|
| sp_labeled_control
|
|
|
|
{}
|
|
|
|
| { /* Unlabeled controls get a secret label. */
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->spcont->push_label((char *)"", lex->sphead->instructions());
|
|
|
|
}
|
|
|
|
sp_unlabeled_control
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->backpatch(lex->spcont->pop_label());
|
|
|
|
}
|
2005-07-06 16:37:57 +02:00
|
|
|
| LEAVE_SYM label_ident
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp = lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
sp_label_t *lab= ctx->find_label($2.str);
|
|
|
|
|
|
|
|
if (! lab)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "LEAVE", $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sp_instr_jump *i;
|
2006-01-25 15:11:49 +01:00
|
|
|
uint ip= sp->instructions();
|
|
|
|
uint n;
|
|
|
|
|
2006-02-15 12:11:29 +01:00
|
|
|
n= ctx->diff_handlers(lab->ctx, TRUE); /* Exclusive the dest. */
|
2006-01-25 15:11:49 +01:00
|
|
|
if (n)
|
|
|
|
sp->add_instr(new sp_instr_hpop(ip++, ctx, n));
|
2006-02-15 12:11:29 +01:00
|
|
|
n= ctx->diff_cursors(lab->ctx, TRUE); /* Exclusive the dest. */
|
2006-01-25 15:11:49 +01:00
|
|
|
if (n)
|
|
|
|
sp->add_instr(new sp_instr_cpop(ip++, ctx, n));
|
2004-11-12 04:01:46 +01:00
|
|
|
i= new sp_instr_jump(ip, ctx);
|
|
|
|
sp->push_backpatch(i, lab); /* Jumping forward */
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
}
|
2005-07-06 16:37:57 +02:00
|
|
|
| ITERATE_SYM label_ident
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
sp_label_t *lab= ctx->find_label($2.str);
|
|
|
|
|
|
|
|
if (! lab || lab->type != SP_LAB_ITER)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "ITERATE", $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sp_instr_jump *i;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
uint n;
|
|
|
|
|
2006-02-15 12:11:29 +01:00
|
|
|
n= ctx->diff_handlers(lab->ctx, FALSE); /* Inclusive the dest. */
|
2004-11-12 04:01:46 +01:00
|
|
|
if (n)
|
|
|
|
sp->add_instr(new sp_instr_hpop(ip++, ctx, n));
|
2006-02-15 12:11:29 +01:00
|
|
|
n= ctx->diff_cursors(lab->ctx, FALSE); /* Inclusive the dest. */
|
2004-11-12 04:01:46 +01:00
|
|
|
if (n)
|
|
|
|
sp->add_instr(new sp_instr_cpop(ip++, ctx, n));
|
|
|
|
i= new sp_instr_jump(ip, ctx, lab->ip); /* Jump back */
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| OPEN_SYM ident
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
uint offset;
|
|
|
|
sp_instr_copen *i;
|
|
|
|
|
|
|
|
if (! lex->spcont->find_cursor(&$2, &offset))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_CURSOR_MISMATCH, MYF(0), $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
i= new sp_instr_copen(sp->instructions(), lex->spcont, offset);
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
| FETCH_SYM sp_opt_fetch_noise ident INTO
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
uint offset;
|
|
|
|
sp_instr_cfetch *i;
|
|
|
|
|
|
|
|
if (! lex->spcont->find_cursor(&$3, &offset))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_CURSOR_MISMATCH, MYF(0), $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
i= new sp_instr_cfetch(sp->instructions(), lex->spcont, offset);
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
sp_fetch_list
|
|
|
|
{ }
|
|
|
|
| CLOSE_SYM ident
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
uint offset;
|
|
|
|
sp_instr_cclose *i;
|
|
|
|
|
|
|
|
if (! lex->spcont->find_cursor(&$2, &offset))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_CURSOR_MISMATCH, MYF(0), $2.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
i= new sp_instr_cclose(sp->instructions(), lex->spcont, offset);
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_opt_fetch_noise:
|
|
|
|
/* Empty */
|
|
|
|
| NEXT_SYM FROM
|
|
|
|
| FROM
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_fetch_list:
|
|
|
|
ident
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spv;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (!spc || !(spv = spc->find_variable(&$1)))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_UNDECLARED_VAR, MYF(0), $1.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* An SP local variable */
|
|
|
|
sp_instr_cfetch *i= (sp_instr_cfetch *)sp->last_instruction();
|
|
|
|
|
|
|
|
i->add_to_varlist(spv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
sp_fetch_list ',' ident
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spv;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (!spc || !(spv = spc->find_variable(&$3)))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_UNDECLARED_VAR, MYF(0), $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* An SP local variable */
|
|
|
|
sp_instr_cfetch *i= (sp_instr_cfetch *)sp->last_instruction();
|
|
|
|
|
|
|
|
i->add_to_varlist(spv);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_if:
|
2005-03-04 14:35:28 +01:00
|
|
|
{ Lex->sphead->reset_lex(YYTHD); }
|
|
|
|
expr THEN_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
uint ip= sp->instructions();
|
2005-03-04 14:35:28 +01:00
|
|
|
sp_instr_jump_if_not *i = new sp_instr_jump_if_not(ip, ctx,
|
|
|
|
$2, lex);
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
sp->push_backpatch(i, ctx->push_label((char *)"", 0));
|
2005-11-04 15:37:39 +01:00
|
|
|
sp->add_cont_backpatch(i);
|
2004-11-12 04:01:46 +01:00
|
|
|
sp->add_instr(i);
|
2005-03-04 14:35:28 +01:00
|
|
|
sp->restore_lex(YYTHD);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
sp_proc_stmts1
|
|
|
|
{
|
|
|
|
sp_head *sp= Lex->sphead;
|
|
|
|
sp_pcontext *ctx= Lex->spcont;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
sp_instr_jump *i = new sp_instr_jump(ip, ctx);
|
|
|
|
|
|
|
|
sp->add_instr(i);
|
|
|
|
sp->backpatch(ctx->pop_label());
|
|
|
|
sp->push_backpatch(i, ctx->push_label((char *)"", 0));
|
|
|
|
}
|
|
|
|
sp_elseifs
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->backpatch(lex->spcont->pop_label());
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
sp_elseifs:
|
|
|
|
/* Empty */
|
|
|
|
| ELSEIF_SYM sp_if
|
|
|
|
| ELSE sp_proc_stmts1
|
|
|
|
;
|
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
case_stmt_specification:
|
|
|
|
simple_case_stmt
|
|
|
|
| searched_case_stmt
|
|
|
|
;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
simple_case_stmt:
|
|
|
|
CASE_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_case(lex);
|
|
|
|
lex->sphead->reset_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (case_stmt_action_expr(lex, $3))
|
|
|
|
YYABORT;
|
2005-12-07 15:01:17 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
lex->sphead->restore_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
simple_when_clause_list
|
|
|
|
else_clause_opt
|
|
|
|
END
|
|
|
|
CASE_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_end_case(lex, true);
|
|
|
|
}
|
|
|
|
;
|
2005-12-07 15:01:17 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
searched_case_stmt:
|
|
|
|
CASE_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_case(lex);
|
|
|
|
}
|
|
|
|
searched_when_clause_list
|
|
|
|
else_clause_opt
|
|
|
|
END
|
|
|
|
CASE_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_end_case(lex, false);
|
|
|
|
}
|
|
|
|
;
|
2005-12-07 15:01:17 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
simple_when_clause_list:
|
|
|
|
simple_when_clause
|
|
|
|
| simple_when_clause_list simple_when_clause
|
|
|
|
;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
searched_when_clause_list:
|
|
|
|
searched_when_clause
|
|
|
|
| searched_when_clause_list searched_when_clause
|
|
|
|
;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
simple_when_clause:
|
|
|
|
WHEN_SYM
|
|
|
|
{
|
|
|
|
Lex->sphead->reset_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
/* Simple case: <caseval> = <whenval> */
|
2004-11-12 04:01:46 +01:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_when(lex, $3, true);
|
|
|
|
lex->sphead->restore_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
THEN_SYM
|
|
|
|
sp_proc_stmts1
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_then(lex);
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
searched_when_clause:
|
|
|
|
WHEN_SYM
|
|
|
|
{
|
|
|
|
Lex->sphead->reset_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_when(lex, $3, false);
|
|
|
|
lex->sphead->restore_lex(YYTHD); /* For expr $3 */
|
|
|
|
}
|
|
|
|
THEN_SYM
|
|
|
|
sp_proc_stmts1
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
case_stmt_action_then(lex);
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
else_clause_opt:
|
|
|
|
/* empty */
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
sp_instr_error *i= new sp_instr_error(ip, lex->spcont,
|
|
|
|
ER_SP_CASE_NOT_FOUND);
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
| ELSE sp_proc_stmts1
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_labeled_control:
|
2005-07-06 16:37:57 +02:00
|
|
|
label_ident ':'
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
sp_label_t *lab= ctx->find_label($1.str);
|
|
|
|
|
|
|
|
if (lab)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_LABEL_REDEFINE, MYF(0), $1.str);
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
lab= lex->spcont->push_label($1.str,
|
|
|
|
lex->sphead->instructions());
|
|
|
|
lab->type= SP_LAB_ITER;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_unlabeled_control sp_opt_label
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
2002-02-22 12:24:42 +01:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
if ($5.str)
|
|
|
|
{
|
|
|
|
sp_label_t *lab= lex->spcont->find_label($5.str);
|
|
|
|
|
|
|
|
if (!lab ||
|
|
|
|
my_strcasecmp(system_charset_info, $5.str, lab->name) != 0)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_LABEL_MISMATCH, MYF(0), $5.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lex->sphead->backpatch(lex->spcont->pop_label());
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
sp_opt_label:
|
2005-01-16 13:16:23 +01:00
|
|
|
/* Empty */ { $$= null_lex_str; }
|
2005-07-06 16:37:57 +02:00
|
|
|
| label_ident { $$= $1; }
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
sp_unlabeled_control:
|
|
|
|
BEGIN_SYM
|
|
|
|
{ /* QQ This is just a dummy for grouping declarations and statements
|
|
|
|
together. No [[NOT] ATOMIC] yet, and we need to figure out how
|
|
|
|
make it coexist with the existing BEGIN COMMIT/ROLLBACK. */
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_label_t *lab= lex->spcont->last_label();
|
|
|
|
|
|
|
|
lab->type= SP_LAB_BEGIN;
|
|
|
|
lex->spcont= lex->spcont->push_context();
|
|
|
|
}
|
|
|
|
sp_decls
|
|
|
|
sp_proc_stmts
|
|
|
|
END
|
2004-08-27 17:48:19 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
|
|
|
|
|
|
|
sp->backpatch(ctx->last_label()); /* We always have a label */
|
|
|
|
if ($3.hndlrs)
|
|
|
|
sp->add_instr(new sp_instr_hpop(sp->instructions(), ctx,
|
|
|
|
$3.hndlrs));
|
|
|
|
if ($3.curs)
|
|
|
|
sp->add_instr(new sp_instr_cpop(sp->instructions(), ctx,
|
|
|
|
$3.curs));
|
|
|
|
lex->spcont= ctx->pop_context();
|
|
|
|
}
|
|
|
|
| LOOP_SYM
|
|
|
|
sp_proc_stmts1 END LOOP_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
uint ip= lex->sphead->instructions();
|
|
|
|
sp_label_t *lab= lex->spcont->last_label(); /* Jumping back */
|
|
|
|
sp_instr_jump *i = new sp_instr_jump(ip, lex->spcont, lab->ip);
|
|
|
|
|
|
|
|
lex->sphead->add_instr(i);
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2005-03-04 14:35:28 +01:00
|
|
|
| WHILE_SYM
|
|
|
|
{ Lex->sphead->reset_lex(YYTHD); }
|
|
|
|
expr DO_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
uint ip= sp->instructions();
|
|
|
|
sp_instr_jump_if_not *i = new sp_instr_jump_if_not(ip, lex->spcont,
|
2005-03-04 14:35:28 +01:00
|
|
|
$3, lex);
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
/* Jumping forward */
|
|
|
|
sp->push_backpatch(i, lex->spcont->last_label());
|
2005-11-04 15:37:39 +01:00
|
|
|
sp->new_cont_backpatch(i);
|
2004-11-12 04:01:46 +01:00
|
|
|
sp->add_instr(i);
|
2005-03-04 14:35:28 +01:00
|
|
|
sp->restore_lex(YYTHD);
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_proc_stmts1 END WHILE_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
uint ip= lex->sphead->instructions();
|
|
|
|
sp_label_t *lab= lex->spcont->last_label(); /* Jumping back */
|
|
|
|
sp_instr_jump *i = new sp_instr_jump(ip, lex->spcont, lab->ip);
|
|
|
|
|
|
|
|
lex->sphead->add_instr(i);
|
2005-11-04 15:37:39 +01:00
|
|
|
lex->sphead->do_cont_backpatch();
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-03-04 14:35:28 +01:00
|
|
|
| REPEAT_SYM sp_proc_stmts1 UNTIL_SYM
|
|
|
|
{ Lex->sphead->reset_lex(YYTHD); }
|
|
|
|
expr END REPEAT_SYM
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
uint ip= lex->sphead->instructions();
|
|
|
|
sp_label_t *lab= lex->spcont->last_label(); /* Jumping back */
|
|
|
|
sp_instr_jump_if_not *i = new sp_instr_jump_if_not(ip, lex->spcont,
|
2005-03-04 14:35:28 +01:00
|
|
|
$5, lab->ip,
|
|
|
|
lex);
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->sphead->add_instr(i);
|
2005-03-04 14:35:28 +01:00
|
|
|
lex->sphead->restore_lex(YYTHD);
|
2005-11-04 15:37:39 +01:00
|
|
|
/* We can shortcut the cont_backpatch here */
|
|
|
|
i->m_cont_dest= ip+1;
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
trg_action_time:
|
|
|
|
BEFORE_SYM
|
|
|
|
{ Lex->trg_chistics.action_time= TRG_ACTION_BEFORE; }
|
|
|
|
| AFTER_SYM
|
|
|
|
{ Lex->trg_chistics.action_time= TRG_ACTION_AFTER; }
|
|
|
|
;
|
|
|
|
|
|
|
|
trg_event:
|
|
|
|
INSERT
|
|
|
|
{ Lex->trg_chistics.event= TRG_EVENT_INSERT; }
|
|
|
|
| UPDATE_SYM
|
|
|
|
{ Lex->trg_chistics.event= TRG_EVENT_UPDATE; }
|
|
|
|
| DELETE_SYM
|
|
|
|
{ Lex->trg_chistics.event= TRG_EVENT_DELETE; }
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
create2:
|
2004-09-13 11:19:38 +02:00
|
|
|
'(' create2a {}
|
|
|
|
| opt_create_table_options create3 {}
|
|
|
|
| LIKE table_ident
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= lex->thd;
|
2004-09-13 11:19:38 +02:00
|
|
|
if (!(lex->name= (char *)$2))
|
2002-12-28 10:38:29 +01:00
|
|
|
YYABORT;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
if ($2->db.str == NULL &&
|
|
|
|
thd->copy_db_to(&($2->db.str), &($2->db.length)))
|
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-09-13 11:19:38 +02:00
|
|
|
}
|
|
|
|
| '(' LIKE table_ident ')'
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= lex->thd;
|
2004-09-13 11:19:38 +02:00
|
|
|
if (!(lex->name= (char *)$3))
|
2003-05-13 10:15:11 +02:00
|
|
|
YYABORT;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
if ($3->db.str == NULL &&
|
|
|
|
thd->copy_db_to(&($3->db.str), &($3->db.length)))
|
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-09-13 11:19:38 +02:00
|
|
|
}
|
2003-08-11 21:44:43 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-06-30 22:24:03 +02:00
|
|
|
create2a:
|
|
|
|
field_list ')' opt_create_table_options create3 {}
|
2003-08-18 23:08:08 +02:00
|
|
|
| create_select ')' { Select->set_braces(1);} union_opt {}
|
2003-06-17 15:20:07 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
create3:
|
2000-10-14 02:16:35 +02:00
|
|
|
/* empty */ {}
|
2003-06-30 22:24:03 +02:00
|
|
|
| opt_duplicate opt_as create_select
|
2003-08-18 23:08:08 +02:00
|
|
|
{ Select->set_braces(0);} union_clause {}
|
2003-06-30 22:24:03 +02:00
|
|
|
| opt_duplicate opt_as '(' create_select ')'
|
2003-08-18 23:08:08 +02:00
|
|
|
{ Select->set_braces(1);} union_opt {}
|
2003-06-17 15:20:07 +02:00
|
|
|
;
|
|
|
|
|
2003-06-30 22:24:03 +02:00
|
|
|
create_select:
|
2003-06-17 15:20:07 +02:00
|
|
|
SELECT_SYM
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2005-02-15 11:02:01 +01:00
|
|
|
lex->lock_option= using_update_log ? TL_READ_NO_INSERT : TL_READ;
|
2003-07-03 10:55:36 +02:00
|
|
|
if (lex->sql_command == SQLCOM_INSERT)
|
|
|
|
lex->sql_command= SQLCOM_INSERT_SELECT;
|
|
|
|
else if (lex->sql_command == SQLCOM_REPLACE)
|
|
|
|
lex->sql_command= SQLCOM_REPLACE_SELECT;
|
2004-11-12 04:01:46 +01:00
|
|
|
/*
|
|
|
|
The following work only with the local list, the global list
|
|
|
|
is created correctly in this case
|
|
|
|
*/
|
2003-08-20 16:35:12 +02:00
|
|
|
lex->current_select->table_list.save_and_clear(&lex->save_list);
|
2001-06-15 04:03:15 +02:00
|
|
|
mysql_init_select(lex);
|
2004-08-13 09:01:30 +02:00
|
|
|
lex->current_select->parsing_place= SELECT_LIST;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2003-05-17 09:05:07 +02:00
|
|
|
select_options select_item_list
|
|
|
|
{
|
2004-08-13 09:01:30 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2003-05-17 09:05:07 +02:00
|
|
|
}
|
2003-08-11 21:44:43 +02:00
|
|
|
opt_select_from
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
The following work only with the local list, the global list
|
|
|
|
is created correctly in this case
|
|
|
|
*/
|
|
|
|
Lex->current_select->table_list.push_front(&Lex->save_list);
|
|
|
|
}
|
2003-08-11 21:44:43 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2000-10-14 02:16:35 +02:00
|
|
|
opt_as:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| AS {};
|
2000-10-14 02:16:35 +02:00
|
|
|
|
2003-01-09 12:37:59 +01:00
|
|
|
opt_create_database_options:
|
|
|
|
/* empty */ {}
|
|
|
|
| create_database_options {};
|
|
|
|
|
|
|
|
create_database_options:
|
|
|
|
create_database_option {}
|
|
|
|
| create_database_options create_database_option {};
|
|
|
|
|
|
|
|
create_database_option:
|
2004-08-27 17:48:19 +02:00
|
|
|
default_collation {}
|
|
|
|
| default_charset {};
|
2003-01-09 12:37:59 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_table_options:
|
2000-08-21 23:39:08 +02:00
|
|
|
/* empty */ { $$= 0; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_options { $$= $1;};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_options:
|
|
|
|
table_option { $$=$1; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_option table_options { $$= $1 | $2; };
|
2000-08-21 23:39:08 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
table_option:
|
2002-04-16 01:09:30 +02:00
|
|
|
TEMPORARY { $$=HA_LEX_CREATE_TMP_TABLE; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_if_not_exists:
|
2000-08-21 23:39:08 +02:00
|
|
|
/* empty */ { $$= 0; }
|
2004-11-17 16:49:10 +01:00
|
|
|
| IF not EXISTS { $$=HA_LEX_CREATE_IF_NOT_EXISTS; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_create_table_options:
|
|
|
|
/* empty */
|
2002-04-16 01:09:30 +02:00
|
|
|
| create_table_options;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-10-23 16:18:54 +02:00
|
|
|
create_table_options_space_separated:
|
|
|
|
create_table_option
|
|
|
|
| create_table_option create_table_options_space_separated;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
create_table_options:
|
|
|
|
create_table_option
|
2002-12-07 12:35:57 +01:00
|
|
|
| create_table_option create_table_options
|
2002-10-23 16:18:54 +02:00
|
|
|
| create_table_option ',' create_table_options;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
create_table_option:
|
2004-11-12 04:01:46 +01:00
|
|
|
ENGINE_SYM opt_equal storage_engines { Lex->create_info.db_type= $3; Lex->create_info.used_fields|= HA_CREATE_USED_ENGINE; }
|
|
|
|
| TYPE_SYM opt_equal storage_engines { Lex->create_info.db_type= $3; WARN_DEPRECATED("TYPE=storage_engine","ENGINE=storage_engine"); Lex->create_info.used_fields|= HA_CREATE_USED_ENGINE; }
|
2002-11-28 17:25:41 +01:00
|
|
|
| MAX_ROWS opt_equal ulonglong_num { Lex->create_info.max_rows= $3; Lex->create_info.used_fields|= HA_CREATE_USED_MAX_ROWS;}
|
|
|
|
| MIN_ROWS opt_equal ulonglong_num { Lex->create_info.min_rows= $3; Lex->create_info.used_fields|= HA_CREATE_USED_MIN_ROWS;}
|
2005-04-04 00:50:05 +02:00
|
|
|
| AVG_ROW_LENGTH opt_equal ulong_num { Lex->create_info.avg_row_length=$3; Lex->create_info.used_fields|= HA_CREATE_USED_AVG_ROW_LENGTH;}
|
2004-11-12 04:01:46 +01:00
|
|
|
| PASSWORD opt_equal TEXT_STRING_sys { Lex->create_info.password=$3.str; Lex->create_info.used_fields|= HA_CREATE_USED_PASSWORD; }
|
2006-06-29 15:39:34 +02:00
|
|
|
| COMMENT_SYM opt_equal TEXT_STRING_sys { Lex->create_info.comment=$3; Lex->create_info.used_fields|= HA_CREATE_USED_COMMENT; }
|
2002-11-28 17:25:41 +01:00
|
|
|
| AUTO_INC opt_equal ulonglong_num { Lex->create_info.auto_increment_value=$3; Lex->create_info.used_fields|= HA_CREATE_USED_AUTO;}
|
2005-08-29 17:24:07 +02:00
|
|
|
| PACK_KEYS_SYM opt_equal ulong_num
|
|
|
|
{
|
|
|
|
switch($3) {
|
|
|
|
case 0:
|
|
|
|
Lex->create_info.table_options|= HA_OPTION_NO_PACK_KEYS;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
Lex->create_info.table_options|= HA_OPTION_PACK_KEYS;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
Lex->create_info.used_fields|= HA_CREATE_USED_PACK_KEYS;
|
|
|
|
}
|
|
|
|
| PACK_KEYS_SYM opt_equal DEFAULT
|
|
|
|
{
|
|
|
|
Lex->create_info.table_options&=
|
|
|
|
~(HA_OPTION_PACK_KEYS | HA_OPTION_NO_PACK_KEYS);
|
|
|
|
Lex->create_info.used_fields|= HA_CREATE_USED_PACK_KEYS;
|
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| CHECKSUM_SYM opt_equal ulong_num { Lex->create_info.table_options|= $3 ? HA_OPTION_CHECKSUM : HA_OPTION_NO_CHECKSUM; Lex->create_info.used_fields|= HA_CREATE_USED_CHECKSUM; }
|
|
|
|
| DELAY_KEY_WRITE_SYM opt_equal ulong_num { Lex->create_info.table_options|= $3 ? HA_OPTION_DELAY_KEY_WRITE : HA_OPTION_NO_DELAY_KEY_WRITE; Lex->create_info.used_fields|= HA_CREATE_USED_DELAY_KEY_WRITE; }
|
2004-11-12 04:01:46 +01:00
|
|
|
| ROW_FORMAT_SYM opt_equal row_types { Lex->create_info.row_type= $3; Lex->create_info.used_fields|= HA_CREATE_USED_ROW_FORMAT; }
|
2005-10-25 17:15:37 +02:00
|
|
|
| RAID_TYPE opt_equal raid_types
|
|
|
|
{
|
|
|
|
my_error(ER_WARN_DEPRECATED_SYNTAX, MYF(0), "RAID_TYPE", "PARTITION");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
| RAID_CHUNKS opt_equal ulong_num
|
|
|
|
{
|
|
|
|
my_error(ER_WARN_DEPRECATED_SYNTAX, MYF(0), "RAID_CHUNKS", "PARTITION");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
| RAID_CHUNKSIZE opt_equal ulong_num
|
|
|
|
{
|
|
|
|
my_error(ER_WARN_DEPRECATED_SYNTAX, MYF(0), "RAID_CHUNKSIZE", "PARTITION");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-11-28 17:25:41 +01:00
|
|
|
| UNION_SYM opt_equal '(' table_list ')'
|
2000-09-14 01:39:07 +02:00
|
|
|
{
|
|
|
|
/* Move the union list to the merge_list */
|
|
|
|
LEX *lex=Lex;
|
2002-10-30 12:18:52 +01:00
|
|
|
TABLE_LIST *table_list= lex->select_lex.get_table_list();
|
|
|
|
lex->create_info.merge_list= lex->select_lex.table_list;
|
2000-09-14 01:39:07 +02:00
|
|
|
lex->create_info.merge_list.elements--;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->create_info.merge_list.first=
|
|
|
|
(byte*) (table_list->next_local);
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->select_lex.table_list.elements=1;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->select_lex.table_list.next=
|
|
|
|
(byte**) &(table_list->next_local);
|
|
|
|
table_list->next_local= 0;
|
2001-03-06 14:24:08 +01:00
|
|
|
lex->create_info.used_fields|= HA_CREATE_USED_UNION;
|
2000-09-14 01:39:07 +02:00
|
|
|
}
|
2004-08-27 17:48:19 +02:00
|
|
|
| default_charset
|
|
|
|
| default_collation
|
2002-11-28 17:25:41 +01:00
|
|
|
| INSERT_METHOD opt_equal merge_insert_types { Lex->create_info.merge_insert_method= $3; Lex->create_info.used_fields|= HA_CREATE_USED_INSERT_METHOD;}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DATA_SYM DIRECTORY_SYM opt_equal TEXT_STRING_sys { Lex->create_info.data_file_name= $4.str; Lex->create_info.used_fields|= HA_CREATE_USED_DATADIR; }
|
|
|
|
| INDEX_SYM DIRECTORY_SYM opt_equal TEXT_STRING_sys { Lex->create_info.index_file_name= $4.str; Lex->create_info.used_fields|= HA_CREATE_USED_INDEXDIR; }
|
2005-09-13 03:02:17 +02:00
|
|
|
| CONNECTION_SYM opt_equal TEXT_STRING_sys { Lex->create_info.connect_string.str= $3.str; Lex->create_info.connect_string.length= $3.length; Lex->create_info.used_fields|= HA_CREATE_USED_CONNECTION; }
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-08-27 17:48:19 +02:00
|
|
|
default_charset:
|
|
|
|
opt_default charset opt_equal charset_name_or_default
|
|
|
|
{
|
|
|
|
HA_CREATE_INFO *cinfo= &Lex->create_info;
|
|
|
|
if ((cinfo->used_fields & HA_CREATE_USED_DEFAULT_CHARSET) &&
|
|
|
|
cinfo->default_table_charset && $4 &&
|
|
|
|
!my_charset_same(cinfo->default_table_charset,$4))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_CONFLICTING_DECLARATIONS, MYF(0),
|
|
|
|
"CHARACTER SET ", cinfo->default_table_charset->csname,
|
|
|
|
"CHARACTER SET ", $4->csname);
|
2004-08-27 17:48:19 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
Lex->create_info.default_table_charset= $4;
|
|
|
|
Lex->create_info.used_fields|= HA_CREATE_USED_DEFAULT_CHARSET;
|
|
|
|
};
|
|
|
|
|
|
|
|
default_collation:
|
|
|
|
opt_default COLLATE_SYM opt_equal collation_name_or_default
|
|
|
|
{
|
|
|
|
HA_CREATE_INFO *cinfo= &Lex->create_info;
|
|
|
|
if ((cinfo->used_fields & HA_CREATE_USED_DEFAULT_CHARSET) &&
|
|
|
|
cinfo->default_table_charset && $4 &&
|
|
|
|
!my_charset_same(cinfo->default_table_charset,$4))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_COLLATION_CHARSET_MISMATCH, MYF(0),
|
|
|
|
$4->name, cinfo->default_table_charset->csname);
|
2004-08-27 17:48:19 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
Lex->create_info.default_table_charset= $4;
|
|
|
|
Lex->create_info.used_fields|= HA_CREATE_USED_DEFAULT_CHARSET;
|
|
|
|
};
|
|
|
|
|
2003-12-17 23:52:03 +01:00
|
|
|
storage_engines:
|
2003-12-02 21:23:13 +01:00
|
|
|
ident_or_text
|
|
|
|
{
|
|
|
|
$$ = ha_resolve_by_name($1.str,$1.length);
|
|
|
|
if ($$ == DB_TYPE_UNKNOWN) {
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_UNKNOWN_STORAGE_ENGINE, MYF(0), $1.str);
|
2003-12-02 21:23:13 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
row_types:
|
|
|
|
DEFAULT { $$= ROW_TYPE_DEFAULT; }
|
|
|
|
| FIXED_SYM { $$= ROW_TYPE_FIXED; }
|
|
|
|
| DYNAMIC_SYM { $$= ROW_TYPE_DYNAMIC; }
|
2005-01-07 15:43:27 +01:00
|
|
|
| COMPRESSED_SYM { $$= ROW_TYPE_COMPRESSED; }
|
|
|
|
| REDUNDANT_SYM { $$= ROW_TYPE_REDUNDANT; }
|
|
|
|
| COMPACT_SYM { $$= ROW_TYPE_COMPACT; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
raid_types:
|
|
|
|
RAID_STRIPED_SYM { $$= RAID_TYPE_0; }
|
|
|
|
| RAID_0_SYM { $$= RAID_TYPE_0; }
|
2005-04-04 00:50:05 +02:00
|
|
|
| ulong_num { $$=$1;};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-09-22 16:40:57 +02:00
|
|
|
merge_insert_types:
|
|
|
|
NO_SYM { $$= MERGE_INSERT_DISABLED; }
|
|
|
|
| FIRST_SYM { $$= MERGE_INSERT_TO_FIRST; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| LAST_SYM { $$= MERGE_INSERT_TO_LAST; };
|
2001-09-22 16:40:57 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_select_from:
|
2002-11-28 17:25:41 +01:00
|
|
|
opt_limit_clause {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| select_from select_lock_type;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
udf_func_type:
|
2003-09-03 11:34:32 +02:00
|
|
|
/* empty */ { $$ = UDFTYPE_FUNCTION; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| AGGREGATE_SYM { $$ = UDFTYPE_AGGREGATE; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
udf_type:
|
|
|
|
STRING_SYM {$$ = (int) STRING_RESULT; }
|
|
|
|
| REAL {$$ = (int) REAL_RESULT; }
|
2005-02-08 23:50:45 +01:00
|
|
|
| DECIMAL_SYM {$$ = (int) DECIMAL_RESULT; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| INT_SYM {$$ = (int) INT_RESULT; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_list:
|
|
|
|
field_list_item
|
2002-04-16 01:09:30 +02:00
|
|
|
| field_list ',' field_list_item;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
field_list_item:
|
2003-02-26 00:03:47 +01:00
|
|
|
column_def
|
2003-02-22 01:07:17 +01:00
|
|
|
| key_def
|
|
|
|
;
|
|
|
|
|
|
|
|
column_def:
|
2004-04-28 17:14:53 +02:00
|
|
|
field_spec opt_check_constraint
|
2000-07-31 21:29:14 +02:00
|
|
|
| field_spec references
|
|
|
|
{
|
|
|
|
Lex->col_list.empty(); /* Alloced by sql_alloc */
|
|
|
|
}
|
2003-02-26 00:03:47 +01:00
|
|
|
;
|
2003-02-22 01:07:17 +01:00
|
|
|
|
|
|
|
key_def:
|
2003-02-26 00:03:47 +01:00
|
|
|
key_type opt_ident key_alg '(' key_list ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
Key *key= new Key($1, $2, $3, 0, lex->col_list);
|
|
|
|
lex->alter_info.key_list.push_back(key);
|
|
|
|
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->col_list.empty(); /* Alloced by sql_alloc */
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2003-12-02 16:06:24 +01:00
|
|
|
| opt_constraint constraint_key_type opt_ident key_alg '(' key_list ')'
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
const char *key_name= $3 ? $3:$1;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
Key *key= new Key($2, key_name, $4, 0, lex->col_list);
|
|
|
|
lex->alter_info.key_list.push_back(key);
|
2003-12-02 16:06:24 +01:00
|
|
|
lex->col_list.empty(); /* Alloced by sql_alloc */
|
|
|
|
}
|
2000-11-13 22:55:10 +01:00
|
|
|
| opt_constraint FOREIGN KEY_SYM opt_ident '(' key_list ')' references
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2002-06-02 20:22:20 +02:00
|
|
|
LEX *lex=Lex;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
const char *key_name= $4 ? $4 : $1;
|
|
|
|
Key *key= new foreign_key(key_name, lex->col_list,
|
|
|
|
$8,
|
|
|
|
lex->ref_list,
|
|
|
|
lex->fk_delete_opt,
|
|
|
|
lex->fk_update_opt,
|
|
|
|
lex->fk_match_option);
|
|
|
|
lex->alter_info.key_list.push_back(key);
|
|
|
|
key= new Key(Key::MULTIPLE, key_name,
|
|
|
|
HA_KEY_ALG_UNDEF, 1,
|
|
|
|
lex->col_list);
|
|
|
|
lex->alter_info.key_list.push_back(key);
|
2002-06-02 20:22:20 +02:00
|
|
|
lex->col_list.empty(); /* Alloced by sql_alloc */
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-04-28 17:14:53 +02:00
|
|
|
| constraint opt_check_constraint
|
|
|
|
{
|
|
|
|
Lex->col_list.empty(); /* Alloced by sql_alloc */
|
|
|
|
}
|
2002-11-24 14:47:19 +01:00
|
|
|
| opt_constraint check_constraint
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
|
|
|
Lex->col_list.empty(); /* Alloced by sql_alloc */
|
2002-11-24 14:47:19 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2004-04-28 17:14:53 +02:00
|
|
|
opt_check_constraint:
|
2002-11-24 14:47:19 +01:00
|
|
|
/* empty */
|
2004-04-28 17:14:53 +02:00
|
|
|
| check_constraint
|
|
|
|
;
|
|
|
|
|
|
|
|
check_constraint:
|
|
|
|
CHECK_SYM expr
|
2002-11-24 14:47:19 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_constraint:
|
2003-12-02 16:06:24 +01:00
|
|
|
/* empty */ { $$=(char*) 0; }
|
2004-05-05 20:24:21 +02:00
|
|
|
| constraint { $$= $1; }
|
|
|
|
;
|
|
|
|
|
|
|
|
constraint:
|
|
|
|
CONSTRAINT opt_ident { $$=$2; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_spec:
|
|
|
|
field_ident
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2004-12-02 09:48:43 +01:00
|
|
|
lex->length=lex->dec=0; lex->type=0;
|
2004-04-02 08:12:53 +02:00
|
|
|
lex->default_value= lex->on_update_value= 0;
|
2005-01-16 13:16:23 +01:00
|
|
|
lex->comment=null_lex_str;
|
2002-06-19 18:21:30 +02:00
|
|
|
lex->charset=NULL;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
type opt_attribute
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (add_field_to_list(lex->thd, $1.str,
|
2000-07-31 21:29:14 +02:00
|
|
|
(enum enum_field_types) $3,
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->length,lex->dec,lex->type,
|
2004-04-02 08:12:53 +02:00
|
|
|
lex->default_value, lex->on_update_value,
|
2005-01-16 13:16:23 +01:00
|
|
|
&lex->comment,
|
2004-12-02 09:48:43 +01:00
|
|
|
lex->change,&lex->interval_list,lex->charset,
|
2003-03-27 10:09:09 +01:00
|
|
|
lex->uint_geom_type))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
type:
|
2002-11-21 01:07:14 +01:00
|
|
|
int_type opt_len field_options { $$=$1; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| real_type opt_precision field_options { $$=$1; }
|
|
|
|
| FLOAT_SYM float_options field_options { $$=FIELD_TYPE_FLOAT; }
|
2004-12-17 15:06:05 +01:00
|
|
|
| BIT_SYM { Lex->length= (char*) "1";
|
|
|
|
$$=FIELD_TYPE_BIT; }
|
|
|
|
| BIT_SYM '(' NUM ')' { Lex->length= $3.str;
|
|
|
|
$$=FIELD_TYPE_BIT; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| BOOL_SYM { Lex->length=(char*) "1";
|
|
|
|
$$=FIELD_TYPE_TINY; }
|
2002-12-01 13:59:06 +01:00
|
|
|
| BOOLEAN_SYM { Lex->length=(char*) "1";
|
|
|
|
$$=FIELD_TYPE_TINY; }
|
2002-09-12 16:36:22 +02:00
|
|
|
| char '(' NUM ')' opt_binary { Lex->length=$3.str;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_STRING; }
|
|
|
|
| char opt_binary { Lex->length=(char*) "1";
|
|
|
|
$$=FIELD_TYPE_STRING; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| nchar '(' NUM ')' opt_bin_mod { Lex->length=$3.str;
|
2003-08-11 21:44:43 +02:00
|
|
|
$$=FIELD_TYPE_STRING;
|
2003-03-21 08:21:01 +01:00
|
|
|
Lex->charset=national_charset_info; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| nchar opt_bin_mod { Lex->length=(char*) "1";
|
2003-08-11 21:44:43 +02:00
|
|
|
$$=FIELD_TYPE_STRING;
|
2003-03-21 08:21:01 +01:00
|
|
|
Lex->charset=national_charset_info; }
|
2002-11-29 16:17:52 +01:00
|
|
|
| BINARY '(' NUM ')' { Lex->length=$3.str;
|
2003-01-29 14:31:20 +01:00
|
|
|
Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_STRING; }
|
2004-11-16 09:05:13 +01:00
|
|
|
| BINARY { Lex->length= (char*) "1";
|
|
|
|
Lex->charset=&my_charset_bin;
|
|
|
|
$$=FIELD_TYPE_STRING; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| varchar '(' NUM ')' opt_binary { Lex->length=$3.str;
|
2004-12-06 01:00:37 +01:00
|
|
|
$$= MYSQL_TYPE_VARCHAR; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| nvarchar '(' NUM ')' opt_bin_mod { Lex->length=$3.str;
|
2004-12-06 01:00:37 +01:00
|
|
|
$$= MYSQL_TYPE_VARCHAR;
|
2003-03-21 08:21:01 +01:00
|
|
|
Lex->charset=national_charset_info; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| VARBINARY '(' NUM ')' { Lex->length=$3.str;
|
2003-01-29 14:31:20 +01:00
|
|
|
Lex->charset=&my_charset_bin;
|
2004-12-06 01:00:37 +01:00
|
|
|
$$= MYSQL_TYPE_VARCHAR; }
|
2002-11-21 01:07:14 +01:00
|
|
|
| YEAR_SYM opt_len field_options { $$=FIELD_TYPE_YEAR; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| DATE_SYM { $$=FIELD_TYPE_DATE; }
|
|
|
|
| TIME_SYM { $$=FIELD_TYPE_TIME; }
|
2005-01-11 12:26:40 +01:00
|
|
|
| TIMESTAMP opt_len
|
2002-11-20 20:44:32 +01:00
|
|
|
{
|
2003-10-15 11:50:36 +02:00
|
|
|
if (YYTHD->variables.sql_mode & MODE_MAXDB)
|
2002-11-20 20:44:32 +01:00
|
|
|
$$=FIELD_TYPE_DATETIME;
|
|
|
|
else
|
2004-10-01 16:54:06 +02:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Unlike other types TIMESTAMP fields are NOT NULL by default.
|
|
|
|
*/
|
|
|
|
Lex->type|= NOT_NULL_FLAG;
|
2002-12-04 23:14:51 +01:00
|
|
|
$$=FIELD_TYPE_TIMESTAMP;
|
2004-10-01 16:54:06 +02:00
|
|
|
}
|
2002-11-20 20:44:32 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DATETIME { $$=FIELD_TYPE_DATETIME; }
|
2003-01-29 14:31:20 +01:00
|
|
|
| TINYBLOB { Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_TINY_BLOB; }
|
2003-01-29 14:31:20 +01:00
|
|
|
| BLOB_SYM opt_len { Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_BLOB; }
|
2004-10-20 03:04:37 +02:00
|
|
|
| spatial_type
|
|
|
|
{
|
2004-01-15 18:06:22 +01:00
|
|
|
#ifdef HAVE_SPATIAL
|
2004-10-20 03:04:37 +02:00
|
|
|
Lex->charset=&my_charset_bin;
|
|
|
|
Lex->uint_geom_type= (uint)$1;
|
|
|
|
$$=FIELD_TYPE_GEOMETRY;
|
2004-01-15 18:06:22 +01:00
|
|
|
#else
|
2005-02-19 10:51:49 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
2004-11-13 18:35:51 +01:00
|
|
|
sym_group_geom.name, sym_group_geom.needed_define);
|
2004-10-20 03:04:37 +02:00
|
|
|
YYABORT;
|
2004-01-15 18:06:22 +01:00
|
|
|
#endif
|
2004-10-20 03:04:37 +02:00
|
|
|
}
|
2003-01-29 14:31:20 +01:00
|
|
|
| MEDIUMBLOB { Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_MEDIUM_BLOB; }
|
2003-01-29 14:31:20 +01:00
|
|
|
| LONGBLOB { Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_LONG_BLOB; }
|
2003-01-29 14:31:20 +01:00
|
|
|
| LONG_SYM VARBINARY { Lex->charset=&my_charset_bin;
|
2000-07-31 21:29:14 +02:00
|
|
|
$$=FIELD_TYPE_MEDIUM_BLOB; }
|
2002-06-07 14:23:33 +02:00
|
|
|
| LONG_SYM varchar opt_binary { $$=FIELD_TYPE_MEDIUM_BLOB; }
|
|
|
|
| TINYTEXT opt_binary { $$=FIELD_TYPE_TINY_BLOB; }
|
2002-11-21 01:07:14 +01:00
|
|
|
| TEXT_SYM opt_len opt_binary { $$=FIELD_TYPE_BLOB; }
|
2002-06-07 14:23:33 +02:00
|
|
|
| MEDIUMTEXT opt_binary { $$=FIELD_TYPE_MEDIUM_BLOB; }
|
|
|
|
| LONGTEXT opt_binary { $$=FIELD_TYPE_LONG_BLOB; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| DECIMAL_SYM float_options field_options
|
2005-02-08 23:50:45 +01:00
|
|
|
{ $$=FIELD_TYPE_NEWDECIMAL;}
|
2000-07-31 21:29:14 +02:00
|
|
|
| NUMERIC_SYM float_options field_options
|
2005-02-08 23:50:45 +01:00
|
|
|
{ $$=FIELD_TYPE_NEWDECIMAL;}
|
2002-11-21 01:07:14 +01:00
|
|
|
| FIXED_SYM float_options field_options
|
2005-02-08 23:50:45 +01:00
|
|
|
{ $$=FIELD_TYPE_NEWDECIMAL;}
|
2002-10-25 12:08:47 +02:00
|
|
|
| ENUM {Lex->interval_list.empty();} '(' string_list ')' opt_binary
|
2004-12-02 09:48:43 +01:00
|
|
|
{ $$=FIELD_TYPE_ENUM; }
|
2002-10-25 12:08:47 +02:00
|
|
|
| SET { Lex->interval_list.empty();} '(' string_list ')' opt_binary
|
2004-12-02 09:48:43 +01:00
|
|
|
{ $$=FIELD_TYPE_SET; }
|
2002-11-21 01:07:14 +01:00
|
|
|
| LONG_SYM opt_binary { $$=FIELD_TYPE_MEDIUM_BLOB; }
|
2002-11-25 11:11:16 +01:00
|
|
|
| SERIAL_SYM
|
|
|
|
{
|
|
|
|
$$=FIELD_TYPE_LONGLONG;
|
|
|
|
Lex->type|= (AUTO_INCREMENT_FLAG | NOT_NULL_FLAG | UNSIGNED_FLAG |
|
|
|
|
UNIQUE_FLAG);
|
|
|
|
}
|
2002-11-20 20:44:32 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-01-15 18:06:22 +01:00
|
|
|
spatial_type:
|
|
|
|
GEOMETRY_SYM { $$= Field::GEOM_GEOMETRY; }
|
|
|
|
| GEOMETRYCOLLECTION { $$= Field::GEOM_GEOMETRYCOLLECTION; }
|
2005-10-15 19:23:13 +02:00
|
|
|
| POINT_SYM { Lex->length= (char*)"21";
|
|
|
|
$$= Field::GEOM_POINT;
|
|
|
|
}
|
2004-01-15 18:06:22 +01:00
|
|
|
| MULTIPOINT { $$= Field::GEOM_MULTIPOINT; }
|
|
|
|
| LINESTRING { $$= Field::GEOM_LINESTRING; }
|
|
|
|
| MULTILINESTRING { $$= Field::GEOM_MULTILINESTRING; }
|
|
|
|
| POLYGON { $$= Field::GEOM_POLYGON; }
|
|
|
|
| MULTIPOLYGON { $$= Field::GEOM_MULTIPOLYGON; }
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
char:
|
|
|
|
CHAR_SYM {}
|
2003-03-20 16:31:01 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
nchar:
|
|
|
|
NCHAR_SYM {}
|
|
|
|
| NATIONAL_SYM CHAR_SYM {}
|
|
|
|
;
|
2000-08-21 23:39:08 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
varchar:
|
|
|
|
char VARYING {}
|
|
|
|
| VARCHAR {}
|
2003-03-20 17:04:21 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
nvarchar:
|
|
|
|
NATIONAL_SYM VARCHAR {}
|
2003-09-15 07:26:48 +02:00
|
|
|
| NVARCHAR_SYM {}
|
2003-03-20 17:04:21 +01:00
|
|
|
| NCHAR_SYM VARCHAR {}
|
|
|
|
| NATIONAL_SYM CHAR_SYM VARYING {}
|
|
|
|
| NCHAR_SYM VARYING {}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
int_type:
|
|
|
|
INT_SYM { $$=FIELD_TYPE_LONG; }
|
|
|
|
| TINYINT { $$=FIELD_TYPE_TINY; }
|
|
|
|
| SMALLINT { $$=FIELD_TYPE_SHORT; }
|
|
|
|
| MEDIUMINT { $$=FIELD_TYPE_INT24; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| BIGINT { $$=FIELD_TYPE_LONGLONG; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
real_type:
|
2003-01-16 01:04:50 +01:00
|
|
|
REAL { $$= YYTHD->variables.sql_mode & MODE_REAL_AS_FLOAT ?
|
2000-07-31 21:29:14 +02:00
|
|
|
FIELD_TYPE_FLOAT : FIELD_TYPE_DOUBLE; }
|
|
|
|
| DOUBLE_SYM { $$=FIELD_TYPE_DOUBLE; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| DOUBLE_SYM PRECISION { $$=FIELD_TYPE_DOUBLE; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
float_options:
|
2005-02-08 23:50:45 +01:00
|
|
|
/* empty */ { Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| '(' NUM ')' { Lex->length=$2.str; Lex->dec= (char*)0; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| precision {};
|
2001-06-15 04:03:15 +02:00
|
|
|
|
|
|
|
precision:
|
|
|
|
'(' NUM ',' NUM ')'
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->length=$2.str; lex->dec=$4.str;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_options:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| field_opt_list {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_opt_list:
|
|
|
|
field_opt_list field_option {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| field_option {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_option:
|
2002-01-02 23:46:43 +01:00
|
|
|
SIGNED_SYM {}
|
2002-01-02 20:29:41 +01:00
|
|
|
| UNSIGNED { Lex->type|= UNSIGNED_FLAG;}
|
2002-04-16 01:09:30 +02:00
|
|
|
| ZEROFILL { Lex->type|= UNSIGNED_FLAG | ZEROFILL_FLAG; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_len:
|
2002-11-21 01:07:14 +01:00
|
|
|
/* empty */ { Lex->length=(char*) 0; } /* use default length */
|
|
|
|
| '(' NUM ')' { Lex->length= $2.str; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_precision:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| precision {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_attribute:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| opt_attribute_list {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_attribute_list:
|
|
|
|
opt_attribute_list attribute {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| attribute;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
attribute:
|
|
|
|
NULL_SYM { Lex->type&= ~ NOT_NULL_FLAG; }
|
2004-11-17 16:49:10 +01:00
|
|
|
| not NULL_SYM { Lex->type|= NOT_NULL_FLAG; }
|
2004-04-02 08:12:53 +02:00
|
|
|
| DEFAULT now_or_signed_literal { Lex->default_value=$2; }
|
|
|
|
| ON UPDATE_SYM NOW_SYM optional_braces
|
|
|
|
{ Lex->on_update_value= new Item_func_now_local(); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| AUTO_INC { Lex->type|= AUTO_INCREMENT_FLAG | NOT_NULL_FLAG; }
|
2002-11-20 20:44:32 +01:00
|
|
|
| SERIAL_SYM DEFAULT VALUE_SYM
|
2004-03-30 19:22:14 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->type|= AUTO_INCREMENT_FLAG | NOT_NULL_FLAG | UNIQUE_FLAG;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_ADD_INDEX;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
|
|
|
| opt_primary KEY_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->type|= PRI_KEY_FLAG | NOT_NULL_FLAG;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_ADD_INDEX;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
|
|
|
| UNIQUE_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->type|= UNIQUE_FLAG;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_ADD_INDEX;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
|
|
|
| UNIQUE_SYM KEY_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->type|= UNIQUE_KEY_FLAG;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_ADD_INDEX;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
2005-01-16 13:16:23 +01:00
|
|
|
| COMMENT_SYM TEXT_STRING_sys { Lex->comment= $2; }
|
2003-08-11 21:44:43 +02:00
|
|
|
| COLLATE_SYM collation_name
|
|
|
|
{
|
2003-03-16 14:19:24 +01:00
|
|
|
if (Lex->charset && !my_charset_same(Lex->charset,$2))
|
2003-03-02 11:47:56 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_COLLATION_CHARSET_MISMATCH, MYF(0),
|
|
|
|
$2->name,Lex->charset->csname);
|
2003-03-02 11:47:56 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
Lex->charset=$2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-04-02 08:12:53 +02:00
|
|
|
now_or_signed_literal:
|
|
|
|
NOW_SYM optional_braces { $$= new Item_func_now_local(); }
|
|
|
|
| signed_literal { $$=$1; }
|
|
|
|
;
|
|
|
|
|
2003-03-05 13:43:10 +01:00
|
|
|
charset:
|
|
|
|
CHAR_SYM SET {}
|
|
|
|
| CHARSET {}
|
|
|
|
;
|
2002-11-25 11:11:16 +01:00
|
|
|
|
2002-09-12 16:36:22 +02:00
|
|
|
charset_name:
|
2003-03-05 09:37:39 +01:00
|
|
|
ident_or_text
|
2002-11-29 16:17:52 +01:00
|
|
|
{
|
2003-03-04 16:53:53 +01:00
|
|
|
if (!($$=get_charset_by_csname($1.str,MY_CS_PRIMARY,MYF(0))))
|
2002-06-20 15:47:55 +02:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_UNKNOWN_CHARACTER_SET, MYF(0), $1.str);
|
2002-06-20 15:47:55 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2003-03-18 07:02:57 +01:00
|
|
|
}
|
|
|
|
| BINARY { $$= &my_charset_bin; }
|
|
|
|
;
|
2002-06-20 15:47:55 +02:00
|
|
|
|
2002-09-12 16:36:22 +02:00
|
|
|
charset_name_or_default:
|
|
|
|
charset_name { $$=$1; }
|
|
|
|
| DEFAULT { $$=NULL; } ;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-04-05 15:56:15 +02:00
|
|
|
|
|
|
|
old_or_new_charset_name:
|
|
|
|
ident_or_text
|
|
|
|
{
|
|
|
|
if (!($$=get_charset_by_csname($1.str,MY_CS_PRIMARY,MYF(0))) &&
|
|
|
|
!($$=get_old_charset_by_name($1.str)))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_UNKNOWN_CHARACTER_SET, MYF(0), $1.str);
|
2003-04-05 15:56:15 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| BINARY { $$= &my_charset_bin; }
|
|
|
|
;
|
|
|
|
|
|
|
|
old_or_new_charset_name_or_default:
|
|
|
|
old_or_new_charset_name { $$=$1; }
|
|
|
|
| DEFAULT { $$=NULL; } ;
|
|
|
|
|
2003-01-09 12:37:59 +01:00
|
|
|
collation_name:
|
2003-03-05 09:37:39 +01:00
|
|
|
ident_or_text
|
2003-01-09 12:37:59 +01:00
|
|
|
{
|
|
|
|
if (!($$=get_charset_by_name($1.str,MYF(0))))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_UNKNOWN_COLLATION, MYF(0), $1.str);
|
2003-01-09 12:37:59 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2003-03-05 09:37:39 +01:00
|
|
|
opt_collate:
|
|
|
|
/* empty */ { $$=NULL; }
|
2003-04-05 15:56:15 +02:00
|
|
|
| COLLATE_SYM collation_name_or_default { $$=$2; }
|
2003-03-05 09:37:39 +01:00
|
|
|
;
|
|
|
|
|
2003-01-09 12:37:59 +01:00
|
|
|
collation_name_or_default:
|
|
|
|
collation_name { $$=$1; }
|
|
|
|
| DEFAULT { $$=NULL; } ;
|
|
|
|
|
2002-10-24 11:22:42 +02:00
|
|
|
opt_default:
|
|
|
|
/* empty */ {}
|
|
|
|
| DEFAULT {};
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_binary:
|
2002-06-19 18:21:30 +02:00
|
|
|
/* empty */ { Lex->charset=NULL; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| ASCII_SYM opt_bin_mod { Lex->charset=&my_charset_latin1; }
|
2003-01-29 14:31:20 +01:00
|
|
|
| BYTE_SYM { Lex->charset=&my_charset_bin; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| UNICODE_SYM opt_bin_mod
|
|
|
|
{
|
|
|
|
if (!(Lex->charset=get_charset_by_csname("ucs2",
|
|
|
|
MY_CS_PRIMARY,MYF(0))))
|
|
|
|
{
|
|
|
|
my_error(ER_UNKNOWN_CHARACTER_SET, MYF(0), "ucs2");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| charset charset_name opt_bin_mod { Lex->charset=$2; }
|
|
|
|
| BINARY opt_bin_charset { Lex->type|= BINCMP_FLAG; };
|
|
|
|
|
|
|
|
opt_bin_mod:
|
|
|
|
/* empty */ { }
|
|
|
|
| BINARY { Lex->type|= BINCMP_FLAG; };
|
|
|
|
|
|
|
|
opt_bin_charset:
|
2006-07-12 22:22:38 +02:00
|
|
|
/* empty */ { Lex->charset= NULL; }
|
2005-08-27 08:26:14 +02:00
|
|
|
| ASCII_SYM { Lex->charset=&my_charset_latin1; }
|
2002-12-19 06:38:25 +01:00
|
|
|
| UNICODE_SYM
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
if (!(Lex->charset=get_charset_by_csname("ucs2",
|
|
|
|
MY_CS_PRIMARY,MYF(0))))
|
2002-12-19 06:38:25 +01:00
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_UNKNOWN_CHARACTER_SET, MYF(0), "ucs2");
|
2002-12-19 06:38:25 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
2003-03-05 13:43:10 +01:00
|
|
|
| charset charset_name { Lex->charset=$2; } ;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-25 11:11:16 +01:00
|
|
|
opt_primary:
|
|
|
|
/* empty */
|
|
|
|
| PRIMARY_SYM
|
2002-11-26 14:18:16 +01:00
|
|
|
;
|
2002-11-25 11:11:16 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
references:
|
2002-06-02 20:22:20 +02:00
|
|
|
REFERENCES table_ident
|
|
|
|
{
|
2002-12-04 23:14:51 +01:00
|
|
|
LEX *lex=Lex;
|
2002-06-02 20:22:20 +02:00
|
|
|
lex->fk_delete_opt= lex->fk_update_opt= lex->fk_match_option= 0;
|
|
|
|
lex->ref_list.empty();
|
|
|
|
}
|
|
|
|
opt_ref_list
|
|
|
|
{
|
|
|
|
$$=$2;
|
2002-06-03 11:59:31 +02:00
|
|
|
};
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2002-06-02 20:22:20 +02:00
|
|
|
opt_ref_list:
|
2002-06-04 07:23:57 +02:00
|
|
|
/* empty */ opt_on_delete {}
|
2002-06-03 11:59:31 +02:00
|
|
|
| '(' ref_list ')' opt_on_delete {};
|
2002-06-02 20:22:20 +02:00
|
|
|
|
|
|
|
ref_list:
|
|
|
|
ref_list ',' ident { Lex->ref_list.push_back(new key_part_spec($3.str)); }
|
2002-06-03 11:59:31 +02:00
|
|
|
| ident { Lex->ref_list.push_back(new key_part_spec($1.str)); };
|
2002-06-02 20:22:20 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_on_delete:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| opt_on_delete_list {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_on_delete_list:
|
|
|
|
opt_on_delete_list opt_on_delete_item {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| opt_on_delete_item {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_on_delete_item:
|
2002-06-02 20:22:20 +02:00
|
|
|
ON DELETE_SYM delete_option { Lex->fk_delete_opt= $3; }
|
|
|
|
| ON UPDATE_SYM delete_option { Lex->fk_update_opt= $3; }
|
|
|
|
| MATCH FULL { Lex->fk_match_option= foreign_key::FK_MATCH_FULL; }
|
|
|
|
| MATCH PARTIAL { Lex->fk_match_option= foreign_key::FK_MATCH_PARTIAL; }
|
2002-06-03 11:59:31 +02:00
|
|
|
| MATCH SIMPLE_SYM { Lex->fk_match_option= foreign_key::FK_MATCH_SIMPLE; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
delete_option:
|
2002-06-02 20:22:20 +02:00
|
|
|
RESTRICT { $$= (int) foreign_key::FK_OPTION_RESTRICT; }
|
|
|
|
| CASCADE { $$= (int) foreign_key::FK_OPTION_CASCADE; }
|
|
|
|
| SET NULL_SYM { $$= (int) foreign_key::FK_OPTION_SET_NULL; }
|
|
|
|
| NO_SYM ACTION { $$= (int) foreign_key::FK_OPTION_NO_ACTION; }
|
2002-06-03 11:59:31 +02:00
|
|
|
| SET DEFAULT { $$= (int) foreign_key::FK_OPTION_DEFAULT; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_type:
|
2003-12-02 16:06:24 +01:00
|
|
|
key_or_index { $$= Key::MULTIPLE; }
|
2004-01-23 13:02:57 +01:00
|
|
|
| FULLTEXT_SYM opt_key_or_index { $$= Key::FULLTEXT; }
|
|
|
|
| SPATIAL_SYM opt_key_or_index
|
2004-01-15 18:06:22 +01:00
|
|
|
{
|
|
|
|
#ifdef HAVE_SPATIAL
|
|
|
|
$$= Key::SPATIAL;
|
|
|
|
#else
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
sym_group_geom.name, sym_group_geom.needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
#endif
|
|
|
|
};
|
2003-12-02 16:06:24 +01:00
|
|
|
|
|
|
|
constraint_key_type:
|
|
|
|
PRIMARY_SYM KEY_SYM { $$= Key::PRIMARY; }
|
2004-01-23 13:02:57 +01:00
|
|
|
| UNIQUE_SYM opt_key_or_index { $$= Key::UNIQUE; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_or_index:
|
|
|
|
KEY_SYM {}
|
2004-06-23 12:29:05 +02:00
|
|
|
| INDEX_SYM {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-01-23 13:02:57 +01:00
|
|
|
opt_key_or_index:
|
|
|
|
/* empty */ {}
|
|
|
|
| key_or_index
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
keys_or_index:
|
|
|
|
KEYS {}
|
2004-06-23 12:29:05 +02:00
|
|
|
| INDEX_SYM {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| INDEXES {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2000-08-28 15:43:58 +02:00
|
|
|
opt_unique_or_fulltext:
|
2000-07-31 21:29:14 +02:00
|
|
|
/* empty */ { $$= Key::MULTIPLE; }
|
|
|
|
| UNIQUE_SYM { $$= Key::UNIQUE; }
|
2003-06-16 00:13:23 +02:00
|
|
|
| FULLTEXT_SYM { $$= Key::FULLTEXT;}
|
2004-01-15 18:06:22 +01:00
|
|
|
| SPATIAL_SYM
|
|
|
|
{
|
|
|
|
#ifdef HAVE_SPATIAL
|
|
|
|
$$= Key::SPATIAL;
|
|
|
|
#else
|
2005-02-19 10:51:49 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
2004-10-20 03:04:37 +02:00
|
|
|
sym_group_geom.name, sym_group_geom.needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
#endif
|
|
|
|
}
|
2003-06-16 00:13:23 +02:00
|
|
|
;
|
2002-02-22 12:24:42 +01:00
|
|
|
|
|
|
|
key_alg:
|
2002-04-25 10:36:55 +02:00
|
|
|
/* empty */ { $$= HA_KEY_ALG_UNDEF; }
|
2003-01-10 02:56:34 +01:00
|
|
|
| USING opt_btree_or_rtree { $$= $2; }
|
2003-01-09 21:42:31 +01:00
|
|
|
| TYPE_SYM opt_btree_or_rtree { $$= $2; };
|
2002-02-22 12:24:42 +01:00
|
|
|
|
|
|
|
opt_btree_or_rtree:
|
|
|
|
BTREE_SYM { $$= HA_KEY_ALG_BTREE; }
|
2004-01-15 18:06:22 +01:00
|
|
|
| RTREE_SYM
|
|
|
|
{
|
|
|
|
$$= HA_KEY_ALG_RTREE;
|
|
|
|
}
|
2002-06-03 11:59:31 +02:00
|
|
|
| HASH_SYM { $$= HA_KEY_ALG_HASH; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_list:
|
|
|
|
key_list ',' key_part order_dir { Lex->col_list.push_back($3); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| key_part order_dir { Lex->col_list.push_back($1); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_part:
|
|
|
|
ident { $$=new key_part_spec($1.str); }
|
2004-10-26 10:16:35 +02:00
|
|
|
| ident '(' NUM ')'
|
|
|
|
{
|
|
|
|
int key_part_len= atoi($3.str);
|
|
|
|
if (!key_part_len)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_KEY_PART_0, MYF(0), $1.str);
|
2004-10-26 10:16:35 +02:00
|
|
|
}
|
|
|
|
$$=new key_part_spec($1.str,(uint) key_part_len);
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_ident:
|
|
|
|
/* empty */ { $$=(char*) 0; } /* Defaultlength */
|
2002-04-16 01:09:30 +02:00
|
|
|
| field_ident { $$=$1.str; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-07-06 18:09:57 +02:00
|
|
|
opt_component:
|
2005-01-16 13:16:23 +01:00
|
|
|
/* empty */ { $$= null_lex_str; }
|
|
|
|
| '.' ident { $$= $2; };
|
2003-09-03 11:34:32 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
string_list:
|
|
|
|
text_string { Lex->interval_list.push_back($1); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| string_list ',' text_string { Lex->interval_list.push_back($3); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
** Alter table
|
|
|
|
*/
|
|
|
|
|
|
|
|
alter:
|
|
|
|
ALTER opt_ignore TABLE_SYM table_ident
|
|
|
|
{
|
2002-11-26 14:18:16 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
LEX *lex= thd->lex;
|
2004-12-31 11:04:35 +01:00
|
|
|
lex->sql_command= SQLCOM_ALTER_TABLE;
|
|
|
|
lex->name= 0;
|
|
|
|
lex->duplicates= DUP_ERROR;
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!lex->select_lex.add_table_to_list(thd, $4, NULL,
|
|
|
|
TL_OPTION_UPDATING))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
lex->col_list.empty();
|
2002-11-05 00:10:05 +01:00
|
|
|
lex->select_lex.init_order();
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
lex->select_lex.db=
|
|
|
|
((TABLE_LIST*) lex->select_lex.table_list.first)->db;
|
|
|
|
lex->name=0;
|
2002-11-29 16:17:52 +01:00
|
|
|
bzero((char*) &lex->create_info,sizeof(lex->create_info));
|
2000-07-31 21:29:14 +02:00
|
|
|
lex->create_info.db_type= DB_TYPE_DEFAULT;
|
2004-07-08 12:03:01 +02:00
|
|
|
lex->create_info.default_table_charset= NULL;
|
2001-09-30 04:47:35 +02:00
|
|
|
lex->create_info.row_type= ROW_TYPE_NOT_USED;
|
2006-12-11 23:50:12 +01:00
|
|
|
lex->alter_info.reset();
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
alter_list
|
|
|
|
{}
|
2004-12-06 17:01:51 +01:00
|
|
|
| ALTER DATABASE ident_or_empty
|
2004-08-27 17:48:19 +02:00
|
|
|
{
|
|
|
|
Lex->create_info.default_table_charset= NULL;
|
|
|
|
Lex->create_info.used_fields= 0;
|
|
|
|
}
|
|
|
|
opt_create_database_options
|
2002-06-27 11:41:02 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= Lex->thd;
|
2002-06-27 11:41:02 +02:00
|
|
|
lex->sql_command=SQLCOM_ALTER_DB;
|
2004-12-06 17:01:51 +01:00
|
|
|
lex->name= $3;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
if (lex->name == NULL && thd->copy_db_to(&lex->name, NULL))
|
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| ALTER PROCEDURE sp_name
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
2005-04-20 17:59:28 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_NO_DROP_SP, MYF(0), "PROCEDURE");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
bzero((char *)&lex->sp_chistics, sizeof(st_sp_chistics));
|
|
|
|
}
|
|
|
|
sp_a_chistics
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
|
|
|
|
lex->sql_command= SQLCOM_ALTER_PROCEDURE;
|
|
|
|
lex->spname= $3;
|
|
|
|
}
|
|
|
|
| ALTER FUNCTION_SYM sp_name
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2002-06-27 11:41:02 +02:00
|
|
|
|
2005-04-20 17:59:28 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_NO_DROP_SP, MYF(0), "FUNCTION");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
bzero((char *)&lex->sp_chistics, sizeof(st_sp_chistics));
|
|
|
|
}
|
|
|
|
sp_a_chistics
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
|
|
|
|
lex->sql_command= SQLCOM_ALTER_FUNCTION;
|
|
|
|
lex->spname= $3;
|
|
|
|
}
|
2005-11-10 20:25:03 +01:00
|
|
|
| ALTER view_algorithm_opt definer view_suid
|
|
|
|
VIEW_SYM table_ident
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
lex->sql_command= SQLCOM_CREATE_VIEW;
|
|
|
|
lex->create_view_mode= VIEW_ALTER;
|
|
|
|
/* first table in list is target VIEW name */
|
2006-04-12 11:50:12 +02:00
|
|
|
lex->select_lex.add_table_to_list(thd, $6, NULL, TL_OPTION_UPDATING);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-11-10 20:25:03 +01:00
|
|
|
view_list_opt AS view_select view_check_option
|
2004-11-12 04:01:46 +01:00
|
|
|
{}
|
|
|
|
;
|
2002-06-27 11:41:02 +02:00
|
|
|
|
2004-12-06 17:01:51 +01:00
|
|
|
ident_or_empty:
|
|
|
|
/* empty */ { $$= 0; }
|
|
|
|
| ident { $$= $1.str; };
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
alter_list:
|
2004-05-21 16:57:03 +02:00
|
|
|
| DISCARD TABLESPACE { Lex->alter_info.tablespace_op= DISCARD_TABLESPACE; }
|
|
|
|
| IMPORT TABLESPACE { Lex->alter_info.tablespace_op= IMPORT_TABLESPACE; }
|
2000-11-11 19:27:34 +01:00
|
|
|
| alter_list_item
|
2002-04-16 01:09:30 +02:00
|
|
|
| alter_list ',' alter_list_item;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
add_column:
|
2004-11-12 04:01:46 +01:00
|
|
|
ADD opt_column
|
2004-03-30 19:22:14 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->change=0;
|
|
|
|
lex->alter_info.flags|= ALTER_ADD_COLUMN;
|
2004-03-30 19:22:14 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
alter_list_item:
|
2004-11-12 04:01:46 +01:00
|
|
|
add_column column_def opt_place { }
|
|
|
|
| ADD key_def
|
|
|
|
{
|
|
|
|
Lex->alter_info.flags|= ALTER_ADD_INDEX;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| add_column '(' field_list ')'
|
|
|
|
{
|
|
|
|
Lex->alter_info.flags|= ALTER_ADD_COLUMN | ALTER_ADD_INDEX;
|
|
|
|
}
|
2001-06-15 04:03:15 +02:00
|
|
|
| CHANGE opt_column field_ident
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->change= $3.str;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_CHANGE_COLUMN;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2001-10-29 09:49:35 +01:00
|
|
|
field_spec opt_place
|
2002-06-04 07:23:57 +02:00
|
|
|
| MODIFY_SYM opt_column field_ident
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-12-02 09:48:43 +01:00
|
|
|
lex->length=lex->dec=0; lex->type=0;
|
2004-04-02 08:12:53 +02:00
|
|
|
lex->default_value= lex->on_update_value= 0;
|
2005-01-16 13:16:23 +01:00
|
|
|
lex->comment=null_lex_str;
|
2003-06-30 12:23:54 +02:00
|
|
|
lex->charset= NULL;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_CHANGE_COLUMN;
|
2002-06-04 07:23:57 +02:00
|
|
|
}
|
|
|
|
type opt_attribute
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (add_field_to_list(lex->thd,$3.str,
|
2002-06-04 07:23:57 +02:00
|
|
|
(enum enum_field_types) $5,
|
|
|
|
lex->length,lex->dec,lex->type,
|
2004-04-02 08:12:53 +02:00
|
|
|
lex->default_value, lex->on_update_value,
|
2005-01-16 13:16:23 +01:00
|
|
|
&lex->comment,
|
2004-12-02 09:48:43 +01:00
|
|
|
$3.str, &lex->interval_list, lex->charset,
|
2003-03-27 10:09:09 +01:00
|
|
|
lex->uint_geom_type))
|
2002-06-04 07:23:57 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
opt_place
|
2000-07-31 21:29:14 +02:00
|
|
|
| DROP opt_column field_ident opt_restrict
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.drop_list.push_back(new Alter_drop(Alter_drop::COLUMN,
|
2004-11-12 04:01:46 +01:00
|
|
|
$3.str));
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_DROP_COLUMN;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DROP FOREIGN KEY_SYM opt_ident
|
|
|
|
{
|
|
|
|
Lex->alter_info.flags|= ALTER_DROP_INDEX;
|
|
|
|
}
|
2001-06-15 04:03:15 +02:00
|
|
|
| DROP PRIMARY_SYM KEY_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.drop_list.push_back(new Alter_drop(Alter_drop::KEY,
|
|
|
|
primary_key_name));
|
|
|
|
lex->alter_info.flags|= ALTER_DROP_INDEX;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DROP key_or_index field_ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.drop_list.push_back(new Alter_drop(Alter_drop::KEY,
|
|
|
|
$3.str));
|
|
|
|
lex->alter_info.flags|= ALTER_DROP_INDEX;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DISABLE_SYM KEYS
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->alter_info.keys_onoff= DISABLE;
|
|
|
|
lex->alter_info.flags|= ALTER_KEYS_ONOFF;
|
|
|
|
}
|
|
|
|
| ENABLE_SYM KEYS
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->alter_info.keys_onoff= ENABLE;
|
|
|
|
lex->alter_info.flags|= ALTER_KEYS_ONOFF;
|
|
|
|
}
|
2003-12-11 17:05:51 +01:00
|
|
|
| ALTER opt_column field_ident SET DEFAULT signed_literal
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.alter_list.push_back(new Alter_column($3.str,$6));
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->alter_info.flags|= ALTER_CHANGE_COLUMN_DEFAULT;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ALTER opt_column field_ident DROP DEFAULT
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.alter_list.push_back(new Alter_column($3.str,
|
|
|
|
(Item*) 0));
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->alter_info.flags|= ALTER_CHANGE_COLUMN_DEFAULT;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2002-04-29 11:24:14 +02:00
|
|
|
| RENAME opt_to table_ident
|
2002-12-02 20:38:00 +01:00
|
|
|
{
|
2001-06-07 13:10:58 +02:00
|
|
|
LEX *lex=Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= lex->thd;
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->select_lex.db=$3->db.str;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
if (lex->select_lex.db == NULL &&
|
|
|
|
thd->copy_db_to(&lex->select_lex.db, NULL))
|
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
2004-07-26 10:52:40 +02:00
|
|
|
if (check_table_name($3->table.str,$3->table.length) ||
|
|
|
|
$3->db.str && check_db_name($3->db.str))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_WRONG_TABLE_NAME, MYF(0), $3->table.str);
|
2004-07-26 10:52:40 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
lex->name= $3->table.str;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_RENAME;
|
2001-06-07 13:10:58 +02:00
|
|
|
}
|
2004-03-30 18:33:45 +02:00
|
|
|
| CONVERT_SYM TO_SYM charset charset_name_or_default opt_collate
|
|
|
|
{
|
|
|
|
if (!$4)
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
$4= thd->variables.collation_database;
|
|
|
|
}
|
|
|
|
$5= $5 ? $5 : $4;
|
|
|
|
if (!my_charset_same($4,$5))
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_COLLATION_CHARSET_MISMATCH, MYF(0),
|
|
|
|
$5->name, $4->csname);
|
2004-03-30 18:33:45 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2004-03-30 19:18:49 +02:00
|
|
|
LEX *lex= Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->create_info.table_charset=
|
2004-03-31 02:32:38 +02:00
|
|
|
lex->create_info.default_table_charset= $5;
|
|
|
|
lex->create_info.used_fields|= (HA_CREATE_USED_CHARSET |
|
|
|
|
HA_CREATE_USED_DEFAULT_CHARSET);
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->alter_info.flags|= ALTER_CONVERT;
|
2004-03-30 18:33:45 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| create_table_options_space_separated
|
2004-03-30 19:22:14 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_OPTIONS;
|
2004-03-30 19:22:14 +02:00
|
|
|
}
|
2005-05-25 17:33:36 +02:00
|
|
|
| FORCE_SYM
|
|
|
|
{
|
|
|
|
Lex->alter_info.flags|= ALTER_FORCE;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| order_clause
|
2004-03-30 19:22:14 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.flags|= ALTER_ORDER;
|
2004-03-30 19:22:14 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_column:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| COLUMN_SYM {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_ignore:
|
2004-12-31 11:04:35 +01:00
|
|
|
/* empty */ { Lex->ignore= 0;}
|
|
|
|
| IGNORE_SYM { Lex->ignore= 1;}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_restrict:
|
2004-11-12 04:01:46 +01:00
|
|
|
/* empty */ { Lex->drop_mode= DROP_DEFAULT; }
|
|
|
|
| RESTRICT { Lex->drop_mode= DROP_RESTRICT; }
|
|
|
|
| CASCADE { Lex->drop_mode= DROP_CASCADE; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_place:
|
|
|
|
/* empty */ {}
|
|
|
|
| AFTER_SYM ident { store_position_for_column($2.str); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| FIRST_SYM { store_position_for_column(first_keyword); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_to:
|
|
|
|
/* empty */ {}
|
|
|
|
| TO_SYM {}
|
2002-04-29 11:24:14 +02:00
|
|
|
| EQ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| AS {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-10-24 11:52:51 +02:00
|
|
|
/*
|
2003-09-15 12:43:31 +02:00
|
|
|
SLAVE START and SLAVE STOP are deprecated. We keep them for compatibility.
|
2002-11-21 14:56:48 +01:00
|
|
|
*/
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
slave:
|
2004-11-12 04:01:46 +01:00
|
|
|
START_SYM SLAVE slave_thread_opts
|
2003-09-13 22:13:41 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_SLAVE_START;
|
|
|
|
lex->type = 0;
|
|
|
|
/* We'll use mi structure for UNTIL options */
|
|
|
|
bzero((char*) &lex->mi, sizeof(lex->mi));
|
2004-01-26 20:16:37 +01:00
|
|
|
/* If you change this code don't forget to update SLAVE START too */
|
2003-09-13 22:13:41 +02:00
|
|
|
}
|
|
|
|
slave_until
|
|
|
|
{}
|
2002-11-21 14:56:48 +01:00
|
|
|
| STOP_SYM SLAVE slave_thread_opts
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_SLAVE_STOP;
|
|
|
|
lex->type = 0;
|
2004-01-26 20:16:37 +01:00
|
|
|
/* If you change this code don't forget to update SLAVE STOP too */
|
2002-11-21 14:56:48 +01:00
|
|
|
}
|
2003-09-15 12:43:31 +02:00
|
|
|
| SLAVE START_SYM slave_thread_opts
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_SLAVE_START;
|
|
|
|
lex->type = 0;
|
2004-01-26 19:39:00 +01:00
|
|
|
/* We'll use mi structure for UNTIL options */
|
|
|
|
bzero((char*) &lex->mi, sizeof(lex->mi));
|
|
|
|
}
|
|
|
|
slave_until
|
|
|
|
{}
|
2003-09-15 12:43:31 +02:00
|
|
|
| SLAVE STOP_SYM slave_thread_opts
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_SLAVE_STOP;
|
|
|
|
lex->type = 0;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2000-08-21 23:39:08 +02:00
|
|
|
|
2003-02-06 15:55:59 +01:00
|
|
|
start:
|
2004-11-10 17:56:45 +01:00
|
|
|
START_SYM TRANSACTION_SYM start_transaction_opts
|
|
|
|
{
|
2005-06-07 12:53:08 +02:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_BEGIN;
|
|
|
|
lex->start_transaction_opt= $3;
|
2004-11-10 17:56:45 +01:00
|
|
|
}
|
2003-02-06 15:55:59 +01:00
|
|
|
;
|
|
|
|
|
2004-11-10 17:56:45 +01:00
|
|
|
start_transaction_opts:
|
|
|
|
/*empty*/ { $$ = 0; }
|
|
|
|
| WITH CONSISTENT_SYM SNAPSHOT_SYM
|
|
|
|
{
|
|
|
|
$$= MYSQL_START_TRANS_OPT_WITH_CONS_SNAPSHOT;
|
|
|
|
}
|
2004-11-11 07:50:46 +01:00
|
|
|
;
|
2004-11-10 17:56:45 +01:00
|
|
|
|
2002-07-23 17:31:22 +02:00
|
|
|
slave_thread_opts:
|
2003-02-12 20:55:37 +01:00
|
|
|
{ Lex->slave_thd_opt= 0; }
|
|
|
|
slave_thread_opt_list
|
2003-09-13 22:13:41 +02:00
|
|
|
{}
|
2003-02-13 07:14:35 +01:00
|
|
|
;
|
2003-02-12 20:55:37 +01:00
|
|
|
|
|
|
|
slave_thread_opt_list:
|
2002-07-23 17:31:22 +02:00
|
|
|
slave_thread_opt
|
2003-02-12 20:55:37 +01:00
|
|
|
| slave_thread_opt_list ',' slave_thread_opt
|
|
|
|
;
|
2002-03-10 05:48:06 +01:00
|
|
|
|
|
|
|
slave_thread_opt:
|
2002-12-04 23:14:51 +01:00
|
|
|
/*empty*/ {}
|
2002-07-23 17:31:22 +02:00
|
|
|
| SQL_THREAD { Lex->slave_thd_opt|=SLAVE_SQL; }
|
2003-04-16 08:25:43 +02:00
|
|
|
| RELAY_THREAD { Lex->slave_thd_opt|=SLAVE_IO; }
|
2002-07-23 17:31:22 +02:00
|
|
|
;
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2003-09-13 22:13:41 +02:00
|
|
|
slave_until:
|
|
|
|
/*empty*/ {}
|
|
|
|
| UNTIL_SYM slave_until_opts
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if ((lex->mi.log_file_name || lex->mi.pos) &&
|
|
|
|
(lex->mi.relay_log_name || lex->mi.relay_log_pos) ||
|
|
|
|
!((lex->mi.log_file_name && lex->mi.pos) ||
|
|
|
|
(lex->mi.relay_log_name && lex->mi.relay_log_pos)))
|
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_BAD_SLAVE_UNTIL_COND,
|
|
|
|
ER(ER_BAD_SLAVE_UNTIL_COND), MYF(0));
|
2003-09-13 22:13:41 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
slave_until_opts:
|
|
|
|
master_file_def
|
|
|
|
| slave_until_opts ',' master_file_def ;
|
|
|
|
|
|
|
|
|
2000-09-15 00:34:50 +02:00
|
|
|
restore:
|
|
|
|
RESTORE_SYM table_or_tables
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_RESTORE_TABLE;
|
|
|
|
}
|
2003-03-17 18:56:34 +01:00
|
|
|
table_list FROM TEXT_STRING_sys
|
2000-09-15 00:34:50 +02:00
|
|
|
{
|
|
|
|
Lex->backup_dir = $6.str;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2002-07-23 17:31:22 +02:00
|
|
|
|
2000-09-15 00:34:50 +02:00
|
|
|
backup:
|
|
|
|
BACKUP_SYM table_or_tables
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_BACKUP_TABLE;
|
|
|
|
}
|
2003-03-17 18:56:34 +01:00
|
|
|
table_list TO_SYM TEXT_STRING_sys
|
2000-09-15 00:34:50 +02:00
|
|
|
{
|
|
|
|
Lex->backup_dir = $6.str;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-09-15 00:34:50 +02:00
|
|
|
|
2003-08-21 16:15:06 +02:00
|
|
|
checksum:
|
|
|
|
CHECKSUM_SYM table_or_tables
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_CHECKSUM;
|
|
|
|
}
|
2003-09-03 11:34:32 +02:00
|
|
|
table_list opt_checksum_type
|
|
|
|
{}
|
2003-08-21 16:15:06 +02:00
|
|
|
;
|
|
|
|
|
2003-09-03 11:34:32 +02:00
|
|
|
opt_checksum_type:
|
|
|
|
/* nothing */ { Lex->check_opt.flags= 0; }
|
|
|
|
| QUICK { Lex->check_opt.flags= T_QUICK; }
|
|
|
|
| EXTENDED_SYM { Lex->check_opt.flags= T_EXTEND; }
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
repair:
|
2003-05-15 18:35:39 +02:00
|
|
|
REPAIR opt_no_write_to_binlog table_or_tables
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_REPAIR;
|
2003-05-15 18:35:39 +02:00
|
|
|
lex->no_write_to_binlog= $2;
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->check_opt.init();
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
table_list opt_mi_repair_type
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-03-13 18:20:17 +01:00
|
|
|
opt_mi_repair_type:
|
2000-07-31 21:29:14 +02:00
|
|
|
/* empty */ { Lex->check_opt.flags = T_MEDIUM; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| mi_repair_types {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-03-13 18:20:17 +01:00
|
|
|
mi_repair_types:
|
|
|
|
mi_repair_type {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| mi_repair_type mi_repair_types {};
|
2000-10-10 23:06:37 +02:00
|
|
|
|
2002-03-13 18:20:17 +01:00
|
|
|
mi_repair_type:
|
2002-03-21 18:32:37 +01:00
|
|
|
QUICK { Lex->check_opt.flags|= T_QUICK; }
|
2000-08-17 00:05:02 +02:00
|
|
|
| EXTENDED_SYM { Lex->check_opt.flags|= T_EXTEND; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| USE_FRM { Lex->check_opt.sql_flags|= TT_USEFRM; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
analyze:
|
2003-05-15 18:35:39 +02:00
|
|
|
ANALYZE_SYM opt_no_write_to_binlog table_or_tables
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_ANALYZE;
|
2003-05-15 18:35:39 +02:00
|
|
|
lex->no_write_to_binlog= $2;
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->check_opt.init();
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
table_list opt_mi_check_type
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
check:
|
2000-08-21 23:39:08 +02:00
|
|
|
CHECK_SYM table_or_tables
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2005-03-30 17:43:52 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "CHECK");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command = SQLCOM_CHECK;
|
|
|
|
lex->check_opt.init();
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
table_list opt_mi_check_type
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-03-13 18:20:17 +01:00
|
|
|
opt_mi_check_type:
|
|
|
|
/* empty */ { Lex->check_opt.flags = T_MEDIUM; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| mi_check_types {};
|
2002-03-13 18:20:17 +01:00
|
|
|
|
|
|
|
mi_check_types:
|
|
|
|
mi_check_type {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| mi_check_type mi_check_types {};
|
2002-03-13 18:20:17 +01:00
|
|
|
|
|
|
|
mi_check_type:
|
|
|
|
QUICK { Lex->check_opt.flags|= T_QUICK; }
|
|
|
|
| FAST_SYM { Lex->check_opt.flags|= T_FAST; }
|
|
|
|
| MEDIUM_SYM { Lex->check_opt.flags|= T_MEDIUM; }
|
|
|
|
| EXTENDED_SYM { Lex->check_opt.flags|= T_EXTEND; }
|
2006-02-17 07:52:32 +01:00
|
|
|
| CHANGED { Lex->check_opt.flags|= T_CHECK_ONLY_CHANGED; }
|
|
|
|
| FOR_SYM UPGRADE_SYM { Lex->check_opt.sql_flags|= TT_FOR_UPGRADE; };
|
2002-03-13 18:20:17 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
optimize:
|
2003-05-15 18:35:39 +02:00
|
|
|
OPTIMIZE opt_no_write_to_binlog table_or_tables
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_OPTIMIZE;
|
2003-08-11 21:44:43 +02:00
|
|
|
lex->no_write_to_binlog= $2;
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->check_opt.init();
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
table_list opt_mi_check_type
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-05-15 18:35:39 +02:00
|
|
|
opt_no_write_to_binlog:
|
|
|
|
/* empty */ { $$= 0; }
|
|
|
|
| NO_WRITE_TO_BINLOG { $$= 1; }
|
2003-05-16 15:28:17 +02:00
|
|
|
| LOCAL_SYM { $$= 1; }
|
2003-05-15 18:35:39 +02:00
|
|
|
;
|
|
|
|
|
2000-08-21 02:00:52 +02:00
|
|
|
rename:
|
|
|
|
RENAME table_or_tables
|
|
|
|
{
|
2005-11-16 13:09:06 +01:00
|
|
|
Lex->sql_command= SQLCOM_RENAME_TABLE;
|
2000-08-21 02:00:52 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
table_to_table_list
|
|
|
|
{}
|
2004-11-25 21:55:49 +01:00
|
|
|
| RENAME USER clear_privileges rename_list
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_RENAME_USER;
|
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
2000-08-21 02:00:52 +02:00
|
|
|
|
2004-11-25 21:55:49 +01:00
|
|
|
rename_list:
|
|
|
|
user TO_SYM user
|
|
|
|
{
|
|
|
|
if (Lex->users_list.push_back($1) || Lex->users_list.push_back($3))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
| rename_list ',' user TO_SYM user
|
|
|
|
{
|
|
|
|
if (Lex->users_list.push_back($3) || Lex->users_list.push_back($5))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2000-08-21 02:00:52 +02:00
|
|
|
table_to_table_list:
|
|
|
|
table_to_table
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_to_table_list ',' table_to_table;
|
2000-08-21 02:00:52 +02:00
|
|
|
|
|
|
|
table_to_table:
|
|
|
|
table_ident TO_SYM table_ident
|
2002-11-29 16:17:52 +01:00
|
|
|
{
|
2003-08-11 21:44:43 +02:00
|
|
|
LEX *lex=Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sl= lex->current_select;
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!sl->add_table_to_list(lex->thd, $1,NULL,TL_OPTION_UPDATING,
|
|
|
|
TL_IGNORE) ||
|
|
|
|
!sl->add_table_to_list(lex->thd, $3,NULL,TL_OPTION_UPDATING,
|
|
|
|
TL_IGNORE))
|
2002-10-30 12:18:52 +01:00
|
|
|
YYABORT;
|
2002-11-29 16:17:52 +01:00
|
|
|
};
|
2000-08-21 02:00:52 +02:00
|
|
|
|
2003-08-26 09:15:49 +02:00
|
|
|
keycache:
|
2004-06-23 12:29:05 +02:00
|
|
|
CACHE_SYM INDEX_SYM keycache_list IN_SYM key_cache_name
|
2003-08-26 09:15:49 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2003-11-18 12:47:27 +01:00
|
|
|
lex->sql_command= SQLCOM_ASSIGN_TO_KEYCACHE;
|
2005-01-16 13:16:23 +01:00
|
|
|
lex->ident= $5;
|
2003-08-26 09:15:49 +02:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
keycache_list:
|
|
|
|
assign_to_keycache
|
|
|
|
| keycache_list ',' assign_to_keycache;
|
|
|
|
|
|
|
|
assign_to_keycache:
|
2003-11-18 12:47:27 +01:00
|
|
|
table_ident cache_keys_spec
|
2003-08-26 09:15:49 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
SELECT_LEX *sel= &lex->select_lex;
|
|
|
|
if (!sel->add_table_to_list(lex->thd, $1, NULL, 0,
|
|
|
|
TL_READ,
|
|
|
|
sel->get_use_index(),
|
2003-11-18 12:47:27 +01:00
|
|
|
(List<String> *)0))
|
2003-08-26 09:15:49 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-11-18 12:47:27 +01:00
|
|
|
key_cache_name:
|
|
|
|
ident { $$= $1; }
|
|
|
|
| DEFAULT { $$ = default_key_cache_base; }
|
2003-11-18 22:47:04 +01:00
|
|
|
;
|
2003-11-18 12:47:27 +01:00
|
|
|
|
2003-06-12 13:29:02 +02:00
|
|
|
preload:
|
2004-06-23 12:29:05 +02:00
|
|
|
LOAD INDEX_SYM INTO CACHE_SYM
|
2003-06-12 13:29:02 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command=SQLCOM_PRELOAD_KEYS;
|
|
|
|
}
|
|
|
|
preload_list
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
preload_list:
|
|
|
|
preload_keys
|
|
|
|
| preload_list ',' preload_keys;
|
|
|
|
|
|
|
|
preload_keys:
|
2003-08-26 09:15:49 +02:00
|
|
|
table_ident cache_keys_spec opt_ignore_leaves
|
2003-06-12 13:29:02 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
SELECT_LEX *sel= &lex->select_lex;
|
2003-08-11 21:44:43 +02:00
|
|
|
if (!sel->add_table_to_list(lex->thd, $1, NULL, $3,
|
|
|
|
TL_READ,
|
2003-06-12 13:29:02 +02:00
|
|
|
sel->get_use_index(),
|
|
|
|
(List<String> *)0))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-08-27 00:14:13 +02:00
|
|
|
cache_keys_spec:
|
2003-11-18 12:47:27 +01:00
|
|
|
{ Select->interval_list.empty(); }
|
2003-08-27 00:14:13 +02:00
|
|
|
cache_key_list_or_empty
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
SELECT_LEX *sel= &lex->select_lex;
|
|
|
|
sel->use_index= sel->interval_list;
|
|
|
|
}
|
|
|
|
;
|
2003-06-12 13:29:02 +02:00
|
|
|
|
2003-08-26 09:15:49 +02:00
|
|
|
cache_key_list_or_empty:
|
2003-11-18 12:47:27 +01:00
|
|
|
/* empty */ { Lex->select_lex.use_index_ptr= 0; }
|
2004-02-02 09:19:51 +01:00
|
|
|
| opt_key_or_index '(' key_usage_list2 ')'
|
2003-11-18 12:47:27 +01:00
|
|
|
{
|
|
|
|
SELECT_LEX *sel= &Lex->select_lex;
|
|
|
|
sel->use_index_ptr= &sel->use_index;
|
|
|
|
}
|
2003-06-12 13:29:02 +02:00
|
|
|
;
|
|
|
|
|
2003-06-19 11:34:33 +02:00
|
|
|
opt_ignore_leaves:
|
2003-06-12 13:29:02 +02:00
|
|
|
/* empty */
|
|
|
|
{ $$= 0; }
|
|
|
|
| IGNORE_SYM LEAVES { $$= TL_OPTION_IGNORE_LEAVES; }
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/*
|
2001-12-17 18:59:20 +01:00
|
|
|
Select : retrieve data from table
|
2000-07-31 21:29:14 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
select:
|
2003-07-29 15:59:46 +02:00
|
|
|
select_init
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
2003-08-12 16:40:11 +02:00
|
|
|
}
|
|
|
|
;
|
2001-12-13 01:31:19 +01:00
|
|
|
|
2002-11-28 16:10:29 +01:00
|
|
|
/* Need select_init2 for subselects. */
|
2001-12-13 01:31:19 +01:00
|
|
|
select_init:
|
2002-11-28 16:10:29 +01:00
|
|
|
SELECT_SYM select_init2
|
2001-10-25 13:41:49 +02:00
|
|
|
|
|
2005-02-13 23:35:52 +01:00
|
|
|
'(' select_paren ')' union_opt;
|
|
|
|
|
|
|
|
select_paren:
|
|
|
|
SELECT_SYM select_part2
|
2002-11-29 16:17:52 +01:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX * sel= lex->current_select;
|
2002-12-05 18:38:42 +01:00
|
|
|
if (sel->set_braces(1))
|
2002-10-30 12:18:52 +01:00
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-10-30 12:18:52 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-08-31 17:00:25 +02:00
|
|
|
if (sel->linkage == UNION_TYPE &&
|
|
|
|
!sel->master_unit()->first_select()->braces &&
|
|
|
|
sel->master_unit()->first_select()->linkage ==
|
|
|
|
UNION_TYPE)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-05-08 22:14:40 +02:00
|
|
|
/* select in braces, can't contain global parameters */
|
2003-09-09 14:23:38 +02:00
|
|
|
if (sel->master_unit()->fake_select_lex)
|
|
|
|
sel->master_unit()->global_parameters=
|
|
|
|
sel->master_unit()->fake_select_lex;
|
2005-02-13 23:35:52 +01:00
|
|
|
}
|
|
|
|
| '(' select_paren ')';
|
2001-08-14 19:33:49 +02:00
|
|
|
|
2002-11-28 16:10:29 +01:00
|
|
|
select_init2:
|
|
|
|
select_part2
|
2002-11-29 16:17:52 +01:00
|
|
|
{
|
2002-11-28 16:10:29 +01:00
|
|
|
LEX *lex= Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX * sel= lex->current_select;
|
2002-12-05 18:38:42 +01:00
|
|
|
if (lex->current_select->set_braces(0))
|
2002-11-28 16:10:29 +01:00
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-11-28 16:10:29 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2003-02-12 20:55:37 +01:00
|
|
|
if (sel->linkage == UNION_TYPE &&
|
|
|
|
sel->master_unit()->first_select()->braces)
|
2002-12-24 12:58:07 +01:00
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-12-24 12:58:07 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-11-28 16:10:29 +01:00
|
|
|
}
|
2002-11-28 17:25:41 +01:00
|
|
|
union_clause
|
2002-11-28 16:10:29 +01:00
|
|
|
;
|
|
|
|
|
2001-08-14 19:33:49 +02:00
|
|
|
select_part2:
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-02-09 12:31:03 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2003-02-13 16:56:01 +01:00
|
|
|
if (sel->linkage != UNION_TYPE)
|
|
|
|
mysql_init_select(lex);
|
2004-08-13 09:01:30 +02:00
|
|
|
lex->current_select->parsing_place= SELECT_LIST;
|
2003-05-17 09:05:07 +02:00
|
|
|
}
|
|
|
|
select_options select_item_list
|
|
|
|
{
|
2004-08-13 09:01:30 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2003-05-17 09:05:07 +02:00
|
|
|
select_into select_lock_type;
|
2001-10-19 16:43:30 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
select_into:
|
2005-04-26 20:27:06 +02:00
|
|
|
opt_order_clause opt_limit_clause {}
|
2002-11-28 17:25:41 +01:00
|
|
|
| into
|
2000-07-31 21:29:14 +02:00
|
|
|
| select_from
|
2002-11-28 17:25:41 +01:00
|
|
|
| into select_from
|
|
|
|
| select_from into;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_from:
|
2004-05-19 14:51:41 +02:00
|
|
|
FROM join_table_list where_clause group_clause having_clause
|
|
|
|
opt_order_clause opt_limit_clause procedure_clause
|
2005-07-17 18:46:14 +02:00
|
|
|
| FROM DUAL_SYM where_clause opt_limit_clause
|
2005-02-02 07:38:24 +01:00
|
|
|
/* oracle compatibility: oracle always requires FROM clause,
|
|
|
|
and DUAL is system table without fields.
|
|
|
|
Is "SELECT 1 FROM DUAL" any better than "SELECT 1" ?
|
|
|
|
Hmmm :) */
|
2004-05-19 14:51:41 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_options:
|
|
|
|
/* empty*/
|
2005-05-13 13:04:32 +02:00
|
|
|
| select_option_list
|
|
|
|
{
|
|
|
|
if (test_all_bits(Select->options, SELECT_ALL | SELECT_DISTINCT))
|
|
|
|
{
|
2005-05-16 14:21:35 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "ALL", "DISTINCT");
|
2005-05-13 13:04:32 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
2005-05-17 22:52:36 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_option_list:
|
|
|
|
select_option_list select_option
|
2002-04-16 01:09:30 +02:00
|
|
|
| select_option;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_option:
|
2001-06-03 16:07:26 +02:00
|
|
|
STRAIGHT_JOIN { Select->options|= SELECT_STRAIGHT_JOIN; }
|
2002-07-24 18:55:08 +02:00
|
|
|
| HIGH_PRIORITY
|
|
|
|
{
|
|
|
|
if (check_simple_select())
|
|
|
|
YYABORT;
|
|
|
|
Lex->lock_option= TL_READ_HIGH_PRIORITY;
|
|
|
|
}
|
2005-05-13 13:04:32 +02:00
|
|
|
| DISTINCT { Select->options|= SELECT_DISTINCT; }
|
2001-06-03 16:07:26 +02:00
|
|
|
| SQL_SMALL_RESULT { Select->options|= SELECT_SMALL_RESULT; }
|
|
|
|
| SQL_BIG_RESULT { Select->options|= SELECT_BIG_RESULT; }
|
2002-07-24 18:55:08 +02:00
|
|
|
| SQL_BUFFER_RESULT
|
|
|
|
{
|
|
|
|
if (check_simple_select())
|
|
|
|
YYABORT;
|
|
|
|
Select->options|= OPTION_BUFFER_RESULT;
|
|
|
|
}
|
|
|
|
| SQL_CALC_FOUND_ROWS
|
|
|
|
{
|
|
|
|
if (check_simple_select())
|
|
|
|
YYABORT;
|
|
|
|
Select->options|= OPTION_FOUND_ROWS;
|
|
|
|
}
|
2006-06-27 19:28:32 +02:00
|
|
|
| SQL_NO_CACHE_SYM
|
|
|
|
{
|
|
|
|
Lex->safe_to_cache_query=0;
|
|
|
|
Lex->select_lex.options&= ~OPTION_TO_QUERY_CACHE;
|
|
|
|
Lex->select_lex.sql_cache= SELECT_LEX::SQL_NO_CACHE;
|
|
|
|
}
|
2003-02-27 21:26:09 +01:00
|
|
|
| SQL_CACHE_SYM
|
|
|
|
{
|
2006-06-27 19:28:32 +02:00
|
|
|
/* Honor this flag only if SQL_NO_CACHE wasn't specified. */
|
|
|
|
if (Lex->select_lex.sql_cache != SELECT_LEX::SQL_NO_CACHE)
|
|
|
|
{
|
|
|
|
Lex->safe_to_cache_query=1;
|
|
|
|
Lex->select_lex.options|= OPTION_TO_QUERY_CACHE;
|
|
|
|
Lex->select_lex.sql_cache= SELECT_LEX::SQL_CACHE;
|
|
|
|
}
|
2003-02-27 21:26:09 +01:00
|
|
|
}
|
2005-05-13 13:04:32 +02:00
|
|
|
| ALL { Select->options|= SELECT_ALL; }
|
2002-07-24 18:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-03-21 00:02:22 +01:00
|
|
|
select_lock_type:
|
|
|
|
/* empty */
|
|
|
|
| FOR_SYM UPDATE_SYM
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2002-11-25 12:44:47 +01:00
|
|
|
lex->current_select->set_lock_for_tables(TL_WRITE);
|
2002-11-22 14:50:53 +01:00
|
|
|
lex->safe_to_cache_query=0;
|
2002-07-24 18:55:08 +02:00
|
|
|
}
|
2001-12-11 19:45:48 +01:00
|
|
|
| LOCK_SYM IN_SYM SHARE_SYM MODE_SYM
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2002-11-25 12:44:47 +01:00
|
|
|
lex->current_select->
|
|
|
|
set_lock_for_tables(TL_READ_WITH_SHARED_LOCKS);
|
2002-11-22 14:50:53 +01:00
|
|
|
lex->safe_to_cache_query=0;
|
2002-07-24 18:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2001-03-21 00:02:22 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
select_item_list:
|
|
|
|
select_item_list ',' select_item
|
|
|
|
| select_item
|
|
|
|
| '*'
|
|
|
|
{
|
2003-01-25 01:25:52 +01:00
|
|
|
THD *thd= YYTHD;
|
2005-07-01 06:05:42 +02:00
|
|
|
if (add_item_to_list(thd,
|
|
|
|
new Item_field(&thd->lex->current_select->
|
|
|
|
context,
|
|
|
|
NULL, NULL, "*")))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2003-12-19 18:52:13 +01:00
|
|
|
(thd->lex->current_select->with_wild)++;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
select_item:
|
|
|
|
remember_name select_item2 remember_end select_alias
|
|
|
|
{
|
2002-12-06 20:11:27 +01:00
|
|
|
if (add_item_to_list(YYTHD, $2))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
if ($4.str)
|
2005-06-21 19:30:48 +02:00
|
|
|
{
|
|
|
|
$2->is_autogenerated_name= FALSE;
|
2006-07-15 22:45:38 +02:00
|
|
|
$2->set_name($4.str, $4.length, system_charset_info);
|
2005-06-21 19:30:48 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
else if (!$2->name) {
|
|
|
|
char *str = $1;
|
|
|
|
if (str[-1] == '`')
|
|
|
|
str--;
|
|
|
|
$2->set_name(str,(uint) ($3 - str), YYTHD->charset());
|
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
remember_name:
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$=(char*) Lex->tok_start; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
remember_end:
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$=(char*) Lex->tok_end; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_item2:
|
|
|
|
table_wild { $$=$1; } /* table.* */
|
2002-04-16 01:09:30 +02:00
|
|
|
| expr { $$=$1; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
select_alias:
|
2005-01-16 13:16:23 +01:00
|
|
|
/* empty */ { $$=null_lex_str;}
|
2003-03-17 18:56:34 +01:00
|
|
|
| AS ident { $$=$2; }
|
|
|
|
| AS TEXT_STRING_sys { $$=$2; }
|
|
|
|
| ident { $$=$1; }
|
|
|
|
| TEXT_STRING_sys { $$=$1; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
optional_braces:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| '(' ')' {};
|
2000-08-21 23:39:08 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* all possible expressions */
|
2003-01-21 17:20:46 +01:00
|
|
|
expr:
|
2005-03-16 01:13:23 +01:00
|
|
|
bool_term { Select->expr_list.push_front(new List<Item>); }
|
|
|
|
bool_or_expr
|
|
|
|
{
|
|
|
|
List<Item> *list= Select->expr_list.pop();
|
|
|
|
if (list->elements)
|
|
|
|
{
|
|
|
|
list->push_front($1);
|
|
|
|
$$= new Item_cond_or(*list);
|
|
|
|
/* optimize construction of logical OR to reduce
|
|
|
|
amount of objects for complex expressions */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
$$= $1;
|
|
|
|
delete list;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
bool_or_expr:
|
|
|
|
/* empty */
|
|
|
|
| bool_or_expr or bool_term
|
|
|
|
{ Select->expr_list.head()->push_back($3); }
|
|
|
|
;
|
2004-11-17 16:49:10 +01:00
|
|
|
|
|
|
|
bool_term:
|
2005-03-16 01:13:23 +01:00
|
|
|
bool_term XOR bool_term { $$= new Item_cond_xor($1,$3); }
|
|
|
|
| bool_factor { Select->expr_list.push_front(new List<Item>); }
|
|
|
|
bool_and_expr
|
|
|
|
{
|
|
|
|
List<Item> *list= Select->expr_list.pop();
|
|
|
|
if (list->elements)
|
|
|
|
{
|
|
|
|
list->push_front($1);
|
|
|
|
$$= new Item_cond_and(*list);
|
|
|
|
/* optimize construction of logical AND to reduce
|
|
|
|
amount of objects for complex expressions */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
$$= $1;
|
|
|
|
delete list;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
bool_and_expr:
|
|
|
|
/* empty */
|
|
|
|
| bool_and_expr and bool_factor
|
|
|
|
{ Select->expr_list.head()->push_back($3); }
|
|
|
|
;
|
2004-11-17 16:49:10 +01:00
|
|
|
|
|
|
|
bool_factor:
|
|
|
|
NOT_SYM bool_factor { $$= negate_expression(YYTHD, $2); }
|
|
|
|
| bool_test ;
|
|
|
|
|
|
|
|
bool_test:
|
|
|
|
bool_pri IS TRUE_SYM { $$= is_truth_value($1,1,0); }
|
|
|
|
| bool_pri IS not TRUE_SYM { $$= is_truth_value($1,0,0); }
|
|
|
|
| bool_pri IS FALSE_SYM { $$= is_truth_value($1,0,1); }
|
|
|
|
| bool_pri IS not FALSE_SYM { $$= is_truth_value($1,1,1); }
|
|
|
|
| bool_pri IS UNKNOWN_SYM { $$= new Item_func_isnull($1); }
|
|
|
|
| bool_pri IS not UNKNOWN_SYM { $$= new Item_func_isnotnull($1); }
|
|
|
|
| bool_pri ;
|
|
|
|
|
|
|
|
bool_pri:
|
|
|
|
bool_pri IS NULL_SYM { $$= new Item_func_isnull($1); }
|
|
|
|
| bool_pri IS not NULL_SYM { $$= new Item_func_isnotnull($1); }
|
2005-02-04 00:08:43 +01:00
|
|
|
| bool_pri EQUAL_SYM predicate { $$= new Item_func_equal($1,$3); }
|
|
|
|
| bool_pri comp_op predicate %prec EQ
|
|
|
|
{ $$= (*$2)(0)->create($1,$3); }
|
2006-08-31 17:00:25 +02:00
|
|
|
| bool_pri comp_op all_or_any '(' subselect ')' %prec EQ
|
|
|
|
{ $$= all_any_subquery_creator($1, $2, $3, $5); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| predicate ;
|
|
|
|
|
|
|
|
predicate:
|
2006-08-31 17:00:25 +02:00
|
|
|
bit_expr IN_SYM '(' subselect ')'
|
|
|
|
{ $$= new Item_in_subselect($1, $4); }
|
|
|
|
| bit_expr not IN_SYM '(' subselect ')'
|
|
|
|
{ $$= negate_expression(YYTHD, new Item_in_subselect($1, $5)); }
|
|
|
|
| bit_expr IN_SYM '(' expr ')'
|
|
|
|
{
|
|
|
|
$$= new Item_func_eq($1, $4);
|
|
|
|
}
|
|
|
|
| bit_expr IN_SYM '(' expr ',' expr_list ')'
|
2005-07-17 03:06:34 +02:00
|
|
|
{
|
2006-08-31 17:00:25 +02:00
|
|
|
$6->push_front($4);
|
|
|
|
$6->push_front($1);
|
|
|
|
$$= new Item_func_in(*$6);
|
2005-07-17 03:06:34 +02:00
|
|
|
}
|
2006-08-31 17:00:25 +02:00
|
|
|
| bit_expr not IN_SYM '(' expr ')'
|
2005-07-17 03:06:34 +02:00
|
|
|
{
|
2006-08-31 17:00:25 +02:00
|
|
|
$$= new Item_func_ne($1, $5);
|
|
|
|
}
|
|
|
|
| bit_expr not IN_SYM '(' expr ',' expr_list ')'
|
|
|
|
{
|
|
|
|
$7->push_front($5);
|
|
|
|
$7->push_front($1);
|
|
|
|
Item_func_in *item = new Item_func_in(*$7);
|
2005-09-07 15:42:47 +02:00
|
|
|
item->negate();
|
|
|
|
$$= item;
|
2005-07-17 03:06:34 +02:00
|
|
|
}
|
2005-02-04 00:08:43 +01:00
|
|
|
| bit_expr BETWEEN_SYM bit_expr AND_SYM predicate
|
|
|
|
{ $$= new Item_func_between($1,$3,$5); }
|
|
|
|
| bit_expr not BETWEEN_SYM bit_expr AND_SYM predicate
|
2005-09-07 15:42:47 +02:00
|
|
|
{
|
|
|
|
Item_func_between *item= new Item_func_between($1,$4,$6);
|
|
|
|
item->negate();
|
|
|
|
$$= item;
|
|
|
|
}
|
2004-11-17 16:49:10 +01:00
|
|
|
| bit_expr SOUNDS_SYM LIKE bit_expr
|
|
|
|
{ $$= new Item_func_eq(new Item_func_soundex($1),
|
|
|
|
new Item_func_soundex($4)); }
|
|
|
|
| bit_expr LIKE simple_expr opt_escape
|
2005-10-21 03:01:52 +02:00
|
|
|
{ $$= new Item_func_like($1,$3,$4,Lex->escape_used); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| bit_expr not LIKE simple_expr opt_escape
|
2005-10-21 03:01:52 +02:00
|
|
|
{ $$= new Item_func_not(new Item_func_like($1,$4,$5, Lex->escape_used)); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| bit_expr REGEXP bit_expr { $$= new Item_func_regex($1,$3); }
|
|
|
|
| bit_expr not REGEXP bit_expr
|
2004-11-17 16:49:12 +01:00
|
|
|
{ $$= negate_expression(YYTHD, new Item_func_regex($1,$4)); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| bit_expr ;
|
|
|
|
|
|
|
|
bit_expr:
|
|
|
|
bit_expr '|' bit_term { $$= new Item_func_bit_or($1,$3); }
|
|
|
|
| bit_term ;
|
|
|
|
|
|
|
|
bit_term:
|
|
|
|
bit_term '&' bit_factor { $$= new Item_func_bit_and($1,$3); }
|
|
|
|
| bit_factor ;
|
|
|
|
|
|
|
|
bit_factor:
|
|
|
|
bit_factor SHIFT_LEFT value_expr
|
|
|
|
{ $$= new Item_func_shift_left($1,$3); }
|
|
|
|
| bit_factor SHIFT_RIGHT value_expr
|
|
|
|
{ $$= new Item_func_shift_right($1,$3); }
|
|
|
|
| value_expr ;
|
|
|
|
|
|
|
|
value_expr:
|
|
|
|
value_expr '+' term { $$= new Item_func_plus($1,$3); }
|
|
|
|
| value_expr '-' term { $$= new Item_func_minus($1,$3); }
|
|
|
|
| value_expr '+' interval_expr interval
|
|
|
|
{ $$= new Item_date_add_interval($1,$3,$4,0); }
|
|
|
|
| value_expr '-' interval_expr interval
|
|
|
|
{ $$= new Item_date_add_interval($1,$3,$4,1); }
|
|
|
|
| term ;
|
|
|
|
|
|
|
|
term:
|
|
|
|
term '*' factor { $$= new Item_func_mul($1,$3); }
|
|
|
|
| term '/' factor { $$= new Item_func_div($1,$3); }
|
|
|
|
| term '%' factor { $$= new Item_func_mod($1,$3); }
|
|
|
|
| term DIV_SYM factor { $$= new Item_func_int_div($1,$3); }
|
|
|
|
| term MOD_SYM factor { $$= new Item_func_mod($1,$3); }
|
|
|
|
| factor ;
|
|
|
|
|
|
|
|
factor:
|
|
|
|
factor '^' simple_expr { $$= new Item_func_bit_xor($1,$3); }
|
|
|
|
| simple_expr ;
|
|
|
|
|
|
|
|
or: OR_SYM | OR2_SYM;
|
|
|
|
and: AND_SYM | AND_AND_SYM;
|
|
|
|
not: NOT_SYM | NOT2_SYM;
|
|
|
|
not2: '!' | NOT2_SYM;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-07 22:45:19 +01:00
|
|
|
comp_op: EQ { $$ = &comp_eq_creator; }
|
|
|
|
| GE { $$ = &comp_ge_creator; }
|
|
|
|
| GT_SYM { $$ = &comp_gt_creator; }
|
|
|
|
| LE { $$ = &comp_le_creator; }
|
|
|
|
| LT { $$ = &comp_lt_creator; }
|
|
|
|
| NE { $$ = &comp_ne_creator; }
|
|
|
|
;
|
|
|
|
|
|
|
|
all_or_any: ALL { $$ = 1; }
|
|
|
|
| ANY_SYM { $$ = 0; }
|
|
|
|
;
|
|
|
|
|
2003-01-26 20:01:45 +01:00
|
|
|
interval_expr:
|
2003-01-27 10:46:33 +01:00
|
|
|
INTERVAL_SYM expr { $$=$2; }
|
2003-01-26 20:01:45 +01:00
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
simple_expr:
|
|
|
|
simple_ident
|
2003-03-21 09:04:08 +01:00
|
|
|
| simple_expr COLLATE_SYM ident_or_text %prec NEG
|
2003-08-11 21:44:43 +02:00
|
|
|
{
|
2003-05-21 20:39:58 +02:00
|
|
|
$$= new Item_func_set_collation($1,
|
|
|
|
new Item_string($3.str,
|
|
|
|
$3.length,
|
2004-03-16 16:35:47 +01:00
|
|
|
YYTHD->charset()));
|
2003-03-21 09:04:08 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| literal
|
2002-06-12 23:13:12 +02:00
|
|
|
| param_marker
|
2006-10-12 16:02:57 +02:00
|
|
|
| variable
|
2000-07-31 21:29:14 +02:00
|
|
|
| sum_expr
|
2004-11-17 16:49:10 +01:00
|
|
|
| simple_expr OR_OR_SYM simple_expr
|
|
|
|
{ $$= new Item_func_concat($1, $3); }
|
|
|
|
| '+' simple_expr %prec NEG { $$= $2; }
|
|
|
|
| '-' simple_expr %prec NEG { $$= new Item_func_neg($2); }
|
|
|
|
| '~' simple_expr %prec NEG { $$= new Item_func_bit_neg($2); }
|
|
|
|
| not2 simple_expr %prec NEG { $$= negate_expression(YYTHD, $2); }
|
2006-08-31 17:00:25 +02:00
|
|
|
| '(' subselect ')'
|
|
|
|
{
|
|
|
|
$$= new Item_singlerow_subselect($2);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| '(' expr ')' { $$= $2; }
|
2003-01-26 20:01:45 +01:00
|
|
|
| '(' expr ',' expr_list ')'
|
|
|
|
{
|
|
|
|
$4->push_front($2);
|
|
|
|
$$= new Item_row(*$4);
|
|
|
|
}
|
2002-11-30 19:33:01 +01:00
|
|
|
| ROW_SYM '(' expr ',' expr_list ')'
|
2002-11-15 19:32:09 +01:00
|
|
|
{
|
2002-11-30 19:33:01 +01:00
|
|
|
$5->push_front($3);
|
|
|
|
$$= new Item_row(*$5);
|
2002-11-15 19:32:09 +01:00
|
|
|
}
|
2006-08-31 17:00:25 +02:00
|
|
|
| EXISTS '(' subselect ')'
|
|
|
|
{
|
|
|
|
$$= new Item_exists_subselect($3);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| '{' ident expr '}' { $$= $3; }
|
2004-11-17 16:49:10 +01:00
|
|
|
| MATCH ident_list_arg AGAINST '(' bit_expr fulltext_options ')'
|
2003-10-20 15:53:48 +02:00
|
|
|
{ $2->push_front($5);
|
2003-10-22 17:57:09 +02:00
|
|
|
Select->add_ftfunc_to_list((Item_func_match*)
|
|
|
|
($$=new Item_func_match(*$2,$6))); }
|
2002-12-19 06:38:26 +01:00
|
|
|
| ASCII_SYM '(' expr ')' { $$= new Item_func_ascii($3); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| BINARY simple_expr %prec NEG
|
2003-03-04 16:53:53 +01:00
|
|
|
{
|
2005-02-08 23:50:45 +01:00
|
|
|
$$= create_func_cast($2, ITEM_CAST_CHAR, -1, 0, &my_charset_bin);
|
2003-03-04 16:53:53 +01:00
|
|
|
}
|
2003-05-28 14:57:58 +02:00
|
|
|
| CAST_SYM '(' expr AS cast_type ')'
|
2003-10-20 15:53:48 +02:00
|
|
|
{
|
2005-02-08 23:50:45 +01:00
|
|
|
LEX *lex= Lex;
|
2003-10-20 15:53:48 +02:00
|
|
|
$$= create_func_cast($3, $5,
|
2005-02-08 23:50:45 +01:00
|
|
|
lex->length ? atoi(lex->length) : -1,
|
|
|
|
lex->dec ? atoi(lex->dec) : 0,
|
|
|
|
lex->charset);
|
2006-08-08 11:40:07 +02:00
|
|
|
if (!$$)
|
|
|
|
YYABORT;
|
2003-08-21 11:15:25 +02:00
|
|
|
}
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
| CASE_SYM opt_expr when_list opt_else END
|
|
|
|
{ $$= new Item_func_case(* $3, $2, $4 ); }
|
2003-05-28 14:57:58 +02:00
|
|
|
| CONVERT_SYM '(' expr ',' cast_type ')'
|
2003-08-21 11:15:25 +02:00
|
|
|
{
|
|
|
|
$$= create_func_cast($3, $5,
|
|
|
|
Lex->length ? atoi(Lex->length) : -1,
|
2005-02-08 23:50:45 +01:00
|
|
|
Lex->dec ? atoi(Lex->dec) : 0,
|
2003-08-21 11:15:25 +02:00
|
|
|
Lex->charset);
|
2006-08-08 11:40:07 +02:00
|
|
|
if (!$$)
|
|
|
|
YYABORT;
|
2003-08-21 11:15:25 +02:00
|
|
|
}
|
2002-09-12 16:36:22 +02:00
|
|
|
| CONVERT_SYM '(' expr USING charset_name ')'
|
|
|
|
{ $$= new Item_func_conv_charset($3,$5); }
|
2003-01-05 11:07:24 +01:00
|
|
|
| DEFAULT '(' simple_ident ')'
|
2005-06-01 15:42:40 +02:00
|
|
|
{
|
|
|
|
if ($3->is_splocal())
|
|
|
|
{
|
|
|
|
Item_splocal *il= static_cast<Item_splocal *>($3);
|
|
|
|
|
2005-12-07 15:01:17 +01:00
|
|
|
my_error(ER_WRONG_COLUMN_NAME, MYF(0), il->my_name()->str);
|
2005-06-01 15:42:40 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-08-12 16:57:19 +02:00
|
|
|
$$= new Item_default_value(Lex->current_context(), $3);
|
2005-06-01 15:42:40 +02:00
|
|
|
}
|
2005-12-08 22:58:59 +01:00
|
|
|
| VALUES '(' simple_ident_nospvar ')'
|
2005-08-12 16:57:19 +02:00
|
|
|
{ $$= new Item_insert_value(Lex->current_context(), $3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| FUNC_ARG0 '(' ')'
|
2004-01-15 18:06:22 +01:00
|
|
|
{
|
|
|
|
if (!$1.symbol->create_func)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
$1.symbol->group->name,
|
|
|
|
$1.symbol->group->needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$= ((Item*(*)(void))($1.symbol->create_func))();
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| FUNC_ARG1 '(' expr ')'
|
2004-01-15 18:06:22 +01:00
|
|
|
{
|
|
|
|
if (!$1.symbol->create_func)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
$1.symbol->group->name,
|
|
|
|
$1.symbol->group->needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$= ((Item*(*)(Item*))($1.symbol->create_func))($3);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| FUNC_ARG2 '(' expr ',' expr ')'
|
2004-01-15 18:06:22 +01:00
|
|
|
{
|
|
|
|
if (!$1.symbol->create_func)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
$1.symbol->group->name,
|
|
|
|
$1.symbol->group->needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$= ((Item*(*)(Item*,Item*))($1.symbol->create_func))($3,$5);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| FUNC_ARG3 '(' expr ',' expr ',' expr ')'
|
2004-01-15 18:06:22 +01:00
|
|
|
{
|
|
|
|
if (!$1.symbol->create_func)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
$1.symbol->group->name,
|
|
|
|
$1.symbol->group->needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$= ((Item*(*)(Item*,Item*,Item*))($1.symbol->create_func))($3,$5,$7);
|
|
|
|
}
|
2003-06-23 09:56:44 +02:00
|
|
|
| ADDDATE_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_date_add_interval($3, $5, INTERVAL_DAY, 0);}
|
|
|
|
| ADDDATE_SYM '(' expr ',' INTERVAL_SYM expr interval ')'
|
|
|
|
{ $$= new Item_date_add_interval($3, $6, $7, 0); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| REPEAT_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_repeat($3,$5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| ATAN '(' expr ')'
|
|
|
|
{ $$= new Item_func_atan($3); }
|
|
|
|
| ATAN '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_atan($3,$5); }
|
|
|
|
| CHAR_SYM '(' expr_list ')'
|
|
|
|
{ $$= new Item_func_char(*$3); }
|
2005-10-13 16:24:47 +02:00
|
|
|
| CHAR_SYM '(' expr_list USING charset_name ')'
|
|
|
|
{ $$= new Item_func_char(*$3, $5); }
|
2002-06-20 20:26:04 +02:00
|
|
|
| CHARSET '(' expr ')'
|
|
|
|
{ $$= new Item_func_charset($3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| COALESCE '(' expr_list ')'
|
|
|
|
{ $$= new Item_func_coalesce(* $3); }
|
2003-02-27 13:53:10 +01:00
|
|
|
| COLLATION_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_collation($3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| CONCAT '(' expr_list ')'
|
|
|
|
{ $$= new Item_func_concat(* $3); }
|
|
|
|
| CONCAT_WS '(' expr ',' expr_list ')'
|
2004-10-28 08:43:31 +02:00
|
|
|
{ $5->push_front($3); $$= new Item_func_concat_ws(*$5); }
|
2004-08-10 10:42:31 +02:00
|
|
|
| CONVERT_TZ_SYM '(' expr ',' expr ',' expr ')'
|
|
|
|
{
|
2004-12-17 13:34:48 +01:00
|
|
|
if (Lex->add_time_zone_tables_to_query_tables(YYTHD))
|
|
|
|
YYABORT;
|
2004-08-10 10:42:31 +02:00
|
|
|
$$= new Item_func_convert_tz($3, $5, $7);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| CURDATE optional_braces
|
2003-08-11 21:43:01 +02:00
|
|
|
{ $$= new Item_func_curdate_local(); Lex->safe_to_cache_query=0; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| CURTIME optional_braces
|
2003-08-11 21:43:01 +02:00
|
|
|
{ $$= new Item_func_curtime_local(); Lex->safe_to_cache_query=0; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| CURTIME '(' expr ')'
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2003-08-11 21:43:01 +02:00
|
|
|
$$= new Item_func_curtime_local($3);
|
2002-11-22 14:50:53 +01:00
|
|
|
Lex->safe_to_cache_query=0;
|
2001-12-02 13:34:01 +01:00
|
|
|
}
|
2004-04-06 12:00:51 +02:00
|
|
|
| CURRENT_USER optional_braces
|
2006-07-02 12:35:45 +02:00
|
|
|
{
|
|
|
|
$$= new Item_func_current_user(Lex->current_context());
|
|
|
|
Lex->safe_to_cache_query= 0;
|
|
|
|
}
|
2003-01-26 20:01:45 +01:00
|
|
|
| DATE_ADD_INTERVAL '(' expr ',' interval_expr interval ')'
|
|
|
|
{ $$= new Item_date_add_interval($3,$5,$6,0); }
|
|
|
|
| DATE_SUB_INTERVAL '(' expr ',' interval_expr interval ')'
|
|
|
|
{ $$= new Item_date_add_interval($3,$5,$6,1); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| DATABASE '(' ')'
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2001-12-02 13:34:01 +01:00
|
|
|
$$= new Item_func_database();
|
2002-12-04 23:14:51 +01:00
|
|
|
Lex->safe_to_cache_query=0;
|
2001-12-02 13:34:01 +01:00
|
|
|
}
|
2003-06-23 09:56:44 +02:00
|
|
|
| DATE_SYM '(' expr ')'
|
2003-07-08 12:06:05 +02:00
|
|
|
{ $$= new Item_date_typecast($3); }
|
2003-06-23 09:56:44 +02:00
|
|
|
| DAY_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_dayofmonth($3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| ELT_FUNC '(' expr ',' expr_list ')'
|
2003-07-15 15:11:49 +02:00
|
|
|
{ $5->push_front($3); $$= new Item_func_elt(*$5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MAKE_SET_SYM '(' expr ',' expr_list ')'
|
|
|
|
{ $$= new Item_func_make_set($3, *$5); }
|
2001-12-02 13:34:01 +01:00
|
|
|
| ENCRYPT '(' expr ')'
|
|
|
|
{
|
|
|
|
$$= new Item_func_encrypt($3);
|
2003-11-17 19:53:40 +01:00
|
|
|
Lex->uncacheable(UNCACHEABLE_RAND);
|
2001-12-02 13:34:01 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ENCRYPT '(' expr ',' expr ')' { $$= new Item_func_encrypt($3,$5); }
|
2003-04-08 11:38:17 +02:00
|
|
|
| DECODE_SYM '(' expr ',' TEXT_STRING_literal ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$= new Item_func_decode($3,$5.str); }
|
2003-04-08 11:38:17 +02:00
|
|
|
| ENCODE_SYM '(' expr ',' TEXT_STRING_literal ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$= new Item_func_encode($3,$5.str); }
|
2001-12-13 02:36:36 +01:00
|
|
|
| DES_DECRYPT_SYM '(' expr ')'
|
2001-12-13 01:31:19 +01:00
|
|
|
{ $$= new Item_func_des_decrypt($3); }
|
2001-12-13 02:36:36 +01:00
|
|
|
| DES_DECRYPT_SYM '(' expr ',' expr ')'
|
2001-12-13 01:31:19 +01:00
|
|
|
{ $$= new Item_func_des_decrypt($3,$5); }
|
2001-12-13 02:36:36 +01:00
|
|
|
| DES_ENCRYPT_SYM '(' expr ')'
|
2001-12-13 01:31:19 +01:00
|
|
|
{ $$= new Item_func_des_encrypt($3); }
|
2001-12-13 02:36:36 +01:00
|
|
|
| DES_ENCRYPT_SYM '(' expr ',' expr ')'
|
2001-12-13 01:31:19 +01:00
|
|
|
{ $$= new Item_func_des_encrypt($3,$5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| EXPORT_SET '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_export_set($3, $5, $7); }
|
|
|
|
| EXPORT_SET '(' expr ',' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_export_set($3, $5, $7, $9); }
|
|
|
|
| EXPORT_SET '(' expr ',' expr ',' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_export_set($3, $5, $7, $9, $11); }
|
|
|
|
| FORMAT_SYM '(' expr ',' NUM ')'
|
|
|
|
{ $$= new Item_func_format($3,atoi($5.str)); }
|
|
|
|
| FROM_UNIXTIME '(' expr ')'
|
|
|
|
{ $$= new Item_func_from_unixtime($3); }
|
|
|
|
| FROM_UNIXTIME '(' expr ',' expr ')'
|
|
|
|
{
|
2001-12-02 13:34:01 +01:00
|
|
|
$$= new Item_func_date_format (new Item_func_from_unixtime($3),$5,0);
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| FIELD_FUNC '(' expr ',' expr_list ')'
|
2003-07-15 14:33:00 +02:00
|
|
|
{ $5->push_front($3); $$= new Item_func_field(*$5); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| geometry_function
|
|
|
|
{
|
|
|
|
#ifdef HAVE_SPATIAL
|
|
|
|
$$= $1;
|
|
|
|
#else
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_FEATURE_DISABLED, MYF(0),
|
|
|
|
sym_group_geom.name, sym_group_geom.needed_define);
|
2004-01-15 18:06:22 +01:00
|
|
|
YYABORT;
|
|
|
|
#endif
|
|
|
|
}
|
2003-11-03 13:01:59 +01:00
|
|
|
| GET_FORMAT '(' date_time_type ',' expr ')'
|
2003-10-20 10:24:18 +02:00
|
|
|
{ $$= new Item_func_get_format($3, $5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| HOUR_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_hour($3); }
|
|
|
|
| IF '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_if($3,$5,$7); }
|
|
|
|
| INSERT '(' expr ',' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_insert($3,$5,$7,$9); }
|
2003-01-26 20:01:45 +01:00
|
|
|
| interval_expr interval '+' expr
|
2000-07-31 21:29:14 +02:00
|
|
|
/* we cannot put interval before - */
|
2003-01-26 20:01:45 +01:00
|
|
|
{ $$= new Item_date_add_interval($4,$1,$2,0); }
|
|
|
|
| interval_expr
|
|
|
|
{
|
|
|
|
if ($1->type() != Item::ROW_ITEM)
|
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2003-01-26 20:01:45 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$= new Item_func_interval((Item_row *)$1);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| LAST_INSERT_ID '(' ')'
|
|
|
|
{
|
2004-03-25 17:42:13 +01:00
|
|
|
$$= new Item_func_last_insert_id();
|
2003-01-28 13:48:12 +01:00
|
|
|
Lex->safe_to_cache_query= 0;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| LAST_INSERT_ID '(' expr ')'
|
|
|
|
{
|
2004-03-25 17:42:13 +01:00
|
|
|
$$= new Item_func_last_insert_id($3);
|
2003-01-28 13:48:12 +01:00
|
|
|
Lex->safe_to_cache_query= 0;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| LEFT '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_left($3,$5); }
|
|
|
|
| LOCATE '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_locate($5,$3); }
|
|
|
|
| LOCATE '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_locate($5,$3,$7); }
|
2002-02-28 14:28:36 +01:00
|
|
|
| GREATEST_SYM '(' expr ',' expr_list ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $5->push_front($3); $$= new Item_func_max(*$5); }
|
|
|
|
| LEAST_SYM '(' expr ',' expr_list ')'
|
|
|
|
{ $5->push_front($3); $$= new Item_func_min(*$5); }
|
2002-07-17 10:11:48 +02:00
|
|
|
| LOG_SYM '(' expr ')'
|
2002-08-30 11:40:40 +02:00
|
|
|
{ $$= new Item_func_log($3); }
|
2002-07-17 10:11:48 +02:00
|
|
|
| LOG_SYM '(' expr ',' expr ')'
|
2002-08-30 11:40:40 +02:00
|
|
|
{ $$= new Item_func_log($3, $5); }
|
2003-01-25 14:07:51 +01:00
|
|
|
| MASTER_POS_WAIT '(' expr ',' expr ')'
|
2003-08-11 21:44:43 +02:00
|
|
|
{
|
2003-01-25 14:07:51 +01:00
|
|
|
$$= new Item_master_pos_wait($3, $5);
|
2003-08-11 21:44:43 +02:00
|
|
|
Lex->safe_to_cache_query=0;
|
2003-02-04 20:52:14 +01:00
|
|
|
}
|
2003-01-25 14:07:51 +01:00
|
|
|
| MASTER_POS_WAIT '(' expr ',' expr ',' expr ')'
|
2003-08-11 21:44:43 +02:00
|
|
|
{
|
2003-01-25 14:07:51 +01:00
|
|
|
$$= new Item_master_pos_wait($3, $5, $7);
|
2003-08-11 21:44:43 +02:00
|
|
|
Lex->safe_to_cache_query=0;
|
2003-01-25 14:07:51 +01:00
|
|
|
}
|
2003-06-23 09:56:44 +02:00
|
|
|
| MICROSECOND_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_microsecond($3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MINUTE_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_minute($3); }
|
2002-11-21 01:07:14 +01:00
|
|
|
| MOD_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$ = new Item_func_mod( $3, $5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MONTH_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_month($3); }
|
|
|
|
| NOW_SYM optional_braces
|
2003-08-11 21:43:01 +02:00
|
|
|
{ $$= new Item_func_now_local(); Lex->safe_to_cache_query=0;}
|
2000-07-31 21:29:14 +02:00
|
|
|
| NOW_SYM '(' expr ')'
|
2003-08-11 21:43:01 +02:00
|
|
|
{ $$= new Item_func_now_local($3); Lex->safe_to_cache_query=0;}
|
2001-12-02 13:34:01 +01:00
|
|
|
| PASSWORD '(' expr ')'
|
2003-07-01 21:40:59 +02:00
|
|
|
{
|
2003-07-08 00:36:14 +02:00
|
|
|
$$= YYTHD->variables.old_passwords ?
|
|
|
|
(Item *) new Item_func_old_password($3) :
|
2003-07-04 18:52:04 +02:00
|
|
|
(Item *) new Item_func_password($3);
|
|
|
|
}
|
|
|
|
| OLD_PASSWORD '(' expr ')'
|
|
|
|
{ $$= new Item_func_old_password($3); }
|
2004-11-17 16:49:10 +01:00
|
|
|
| POSITION_SYM '(' bit_expr IN_SYM expr ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$ = new Item_func_locate($5,$3); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| QUARTER_SYM '(' expr ')'
|
|
|
|
{ $$ = new Item_func_quarter($3); }
|
2001-12-02 13:34:01 +01:00
|
|
|
| RAND '(' expr ')'
|
2003-11-17 19:53:40 +01:00
|
|
|
{ $$= new Item_func_rand($3); Lex->uncacheable(UNCACHEABLE_RAND);}
|
2001-12-02 13:34:01 +01:00
|
|
|
| RAND '(' ')'
|
2003-11-17 19:53:40 +01:00
|
|
|
{ $$= new Item_func_rand(); Lex->uncacheable(UNCACHEABLE_RAND);}
|
2000-07-31 21:29:14 +02:00
|
|
|
| REPLACE '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_replace($3,$5,$7); }
|
|
|
|
| RIGHT '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_right($3,$5); }
|
|
|
|
| ROUND '(' expr ')'
|
|
|
|
{ $$= new Item_func_round($3, new Item_int((char*)"0",0,1),0); }
|
|
|
|
| ROUND '(' expr ',' expr ')' { $$= new Item_func_round($3,$5,0); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| ROW_COUNT_SYM '(' ')'
|
|
|
|
{
|
|
|
|
$$= new Item_func_row_count();
|
|
|
|
Lex->safe_to_cache_query= 0;
|
|
|
|
}
|
2003-06-23 09:56:44 +02:00
|
|
|
| SUBDATE_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_date_add_interval($3, $5, INTERVAL_DAY, 1);}
|
|
|
|
| SUBDATE_SYM '(' expr ',' INTERVAL_SYM expr interval ')'
|
|
|
|
{ $$= new Item_date_add_interval($3, $6, $7, 1); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| SECOND_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_second($3); }
|
|
|
|
| SUBSTRING '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_substr($3,$5,$7); }
|
|
|
|
| SUBSTRING '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_substr($3,$5); }
|
|
|
|
| SUBSTRING '(' expr FROM expr FOR_SYM expr ')'
|
|
|
|
{ $$= new Item_func_substr($3,$5,$7); }
|
|
|
|
| SUBSTRING '(' expr FROM expr ')'
|
|
|
|
{ $$= new Item_func_substr($3,$5); }
|
|
|
|
| SUBSTRING_INDEX '(' expr ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_substr_index($3,$5,$7); }
|
2005-08-25 00:50:58 +02:00
|
|
|
| SYSDATE optional_braces
|
2006-03-10 15:47:56 +01:00
|
|
|
{
|
|
|
|
if (global_system_variables.sysdate_is_now == 0)
|
|
|
|
$$= new Item_func_sysdate_local();
|
|
|
|
else $$= new Item_func_now_local();
|
|
|
|
Lex->safe_to_cache_query=0;
|
|
|
|
}
|
2005-08-25 00:50:58 +02:00
|
|
|
| SYSDATE '(' expr ')'
|
2006-03-10 15:47:56 +01:00
|
|
|
{
|
|
|
|
if (global_system_variables.sysdate_is_now == 0)
|
|
|
|
$$= new Item_func_sysdate_local($3);
|
|
|
|
else $$= new Item_func_now_local($3);
|
|
|
|
Lex->safe_to_cache_query=0;
|
|
|
|
}
|
2003-06-23 09:56:44 +02:00
|
|
|
| TIME_SYM '(' expr ')'
|
2003-07-08 12:06:05 +02:00
|
|
|
{ $$= new Item_time_typecast($3); }
|
|
|
|
| TIMESTAMP '(' expr ')'
|
|
|
|
{ $$= new Item_datetime_typecast($3); }
|
2003-06-23 09:56:44 +02:00
|
|
|
| TIMESTAMP '(' expr ',' expr ')'
|
2003-07-08 12:06:05 +02:00
|
|
|
{ $$= new Item_func_add_time($3, $5, 1, 0); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| TIMESTAMP_ADD '(' interval_time_st ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_date_add_interval($7,$5,$3,0); }
|
|
|
|
| TIMESTAMP_DIFF '(' interval_time_st ',' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_timestamp_diff($5,$7,$3); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| TRIM '(' expr ')'
|
2003-06-03 13:57:14 +02:00
|
|
|
{ $$= new Item_func_trim($3); }
|
|
|
|
| TRIM '(' LEADING expr FROM expr ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$= new Item_func_ltrim($6,$4); }
|
2003-06-03 13:57:14 +02:00
|
|
|
| TRIM '(' TRAILING expr FROM expr ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$= new Item_func_rtrim($6,$4); }
|
2003-06-03 13:57:14 +02:00
|
|
|
| TRIM '(' BOTH expr FROM expr ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$= new Item_func_trim($6,$4); }
|
2003-06-03 13:57:14 +02:00
|
|
|
| TRIM '(' LEADING FROM expr ')'
|
|
|
|
{ $$= new Item_func_ltrim($5); }
|
|
|
|
| TRIM '(' TRAILING FROM expr ')'
|
|
|
|
{ $$= new Item_func_rtrim($5); }
|
|
|
|
| TRIM '(' BOTH FROM expr ')'
|
|
|
|
{ $$= new Item_func_trim($5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| TRIM '(' expr FROM expr ')'
|
|
|
|
{ $$= new Item_func_trim($5,$3); }
|
2000-11-13 22:55:10 +01:00
|
|
|
| TRUNCATE_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_round($3,$5,1); }
|
2006-10-24 14:26:41 +02:00
|
|
|
| ident '.' ident '(' opt_expr_list ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2005-04-15 11:06:25 +02:00
|
|
|
LEX *lex= Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
sp_name *name= new sp_name($1, $3);
|
|
|
|
|
|
|
|
name->init_qname(YYTHD);
|
2005-07-09 19:51:59 +02:00
|
|
|
sp_add_used_routine(lex, YYTHD, name, TYPE_ENUM_FUNCTION);
|
2004-11-12 04:01:46 +01:00
|
|
|
if ($5)
|
2005-08-12 16:57:19 +02:00
|
|
|
$$= new Item_func_sp(Lex->current_context(), name, *$5);
|
2000-07-31 21:29:14 +02:00
|
|
|
else
|
2005-08-12 16:57:19 +02:00
|
|
|
$$= new Item_func_sp(Lex->current_context(), name);
|
2005-04-15 11:06:25 +02:00
|
|
|
lex->safe_to_cache_query=0;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2005-09-20 11:28:23 +02:00
|
|
|
| IDENT_sys '('
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
#ifdef HAVE_DLOPEN
|
2005-09-20 11:28:23 +02:00
|
|
|
udf_func *udf= 0;
|
2006-10-24 14:26:41 +02:00
|
|
|
LEX *lex= Lex;
|
2005-09-20 11:28:23 +02:00
|
|
|
if (using_udf_functions &&
|
|
|
|
(udf= find_udf($1.str, $1.length)) &&
|
|
|
|
udf->type == UDFTYPE_AGGREGATE)
|
|
|
|
{
|
|
|
|
if (lex->current_select->inc_in_sum_expr())
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
2006-10-24 14:26:41 +02:00
|
|
|
lex->current_select->udf_list.push_front(udf);
|
2005-09-20 11:28:23 +02:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
udf_expr_list ')'
|
|
|
|
{
|
|
|
|
#ifdef HAVE_DLOPEN
|
2006-10-24 14:26:41 +02:00
|
|
|
udf_func *udf;
|
|
|
|
LEX *lex= Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-10-24 14:26:41 +02:00
|
|
|
if (NULL != (udf= lex->current_select->udf_list.pop()))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if (udf->type == UDFTYPE_AGGREGATE)
|
|
|
|
Select->in_sum_expr--;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
switch (udf->returns) {
|
|
|
|
case STRING_RESULT:
|
|
|
|
if (udf->type == UDFTYPE_FUNCTION)
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_func_udf_str(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_func_udf_str(udf);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_sum_udf_str(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_sum_udf_str(udf);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case REAL_RESULT:
|
|
|
|
if (udf->type == UDFTYPE_FUNCTION)
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_func_udf_float(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_func_udf_float(udf);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_sum_udf_float(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_sum_udf_float(udf);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case INT_RESULT:
|
|
|
|
if (udf->type == UDFTYPE_FUNCTION)
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_func_udf_int(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_func_udf_int(udf);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_sum_udf_int(udf, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_sum_udf_int(udf);
|
|
|
|
}
|
|
|
|
break;
|
2005-02-08 23:50:45 +01:00
|
|
|
case DECIMAL_RESULT:
|
|
|
|
if (udf->type == UDFTYPE_FUNCTION)
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_func_udf_decimal(udf, *$4);
|
2005-02-08 23:50:45 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_func_udf_decimal(udf);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4 != NULL)
|
|
|
|
$$ = new Item_sum_udf_decimal(udf, *$4);
|
2005-02-08 23:50:45 +01:00
|
|
|
else
|
|
|
|
$$ = new Item_sum_udf_decimal(udf);
|
|
|
|
}
|
|
|
|
break;
|
2004-11-12 04:01:46 +01:00
|
|
|
default:
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
#endif /* HAVE_DLOPEN */
|
|
|
|
{
|
2005-04-15 11:06:25 +02:00
|
|
|
LEX *lex= Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= lex->thd;
|
|
|
|
LEX_STRING db;
|
|
|
|
if (thd->copy_db_to(&db.str, &db.length))
|
|
|
|
YYABORT;
|
|
|
|
sp_name *name= new sp_name(db, $1);
|
|
|
|
if (name)
|
|
|
|
name->init_qname(thd);
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-07-09 19:51:59 +02:00
|
|
|
sp_add_used_routine(lex, YYTHD, name, TYPE_ENUM_FUNCTION);
|
2005-09-20 11:28:23 +02:00
|
|
|
if ($4)
|
|
|
|
$$= new Item_func_sp(Lex->current_context(), name, *$4);
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
2005-08-12 16:57:19 +02:00
|
|
|
$$= new Item_func_sp(Lex->current_context(), name);
|
2005-04-15 11:06:25 +02:00
|
|
|
lex->safe_to_cache_query=0;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| UNIQUE_USERS '(' text_literal ',' NUM ',' NUM ',' expr_list ')'
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2001-12-02 13:34:01 +01:00
|
|
|
$$= new Item_func_unique_users($3,atoi($5.str),atoi($7.str), * $9);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| UNIX_TIMESTAMP '(' ')'
|
2001-12-02 13:34:01 +01:00
|
|
|
{
|
|
|
|
$$= new Item_func_unix_timestamp();
|
2002-11-22 14:50:53 +01:00
|
|
|
Lex->safe_to_cache_query=0;
|
2001-12-02 13:34:01 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| UNIX_TIMESTAMP '(' expr ')'
|
|
|
|
{ $$= new Item_func_unix_timestamp($3); }
|
|
|
|
| USER '(' ')'
|
2006-07-02 12:35:45 +02:00
|
|
|
{ $$= new Item_func_user(); Lex->safe_to_cache_query=0; }
|
2003-08-11 21:43:01 +02:00
|
|
|
| UTC_DATE_SYM optional_braces
|
|
|
|
{ $$= new Item_func_curdate_utc(); Lex->safe_to_cache_query=0;}
|
|
|
|
| UTC_TIME_SYM optional_braces
|
|
|
|
{ $$= new Item_func_curtime_utc(); Lex->safe_to_cache_query=0;}
|
|
|
|
| UTC_TIMESTAMP_SYM optional_braces
|
|
|
|
{ $$= new Item_func_now_utc(); Lex->safe_to_cache_query=0;}
|
2000-07-31 21:29:14 +02:00
|
|
|
| WEEK_SYM '(' expr ')'
|
2003-08-11 21:44:43 +02:00
|
|
|
{
|
2003-02-19 13:05:35 +01:00
|
|
|
$$= new Item_func_week($3,new Item_int((char*) "0",
|
2003-08-11 21:44:43 +02:00
|
|
|
YYTHD->variables.default_week_format,1));
|
2003-02-19 13:05:35 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| WEEK_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_week($3,$5); }
|
|
|
|
| YEAR_SYM '(' expr ')'
|
|
|
|
{ $$= new Item_func_year($3); }
|
|
|
|
| YEARWEEK '(' expr ')'
|
|
|
|
{ $$= new Item_func_yearweek($3,new Item_int((char*) "0",0,1)); }
|
|
|
|
| YEARWEEK '(' expr ',' expr ')'
|
|
|
|
{ $$= new Item_func_yearweek($3, $5); }
|
2005-04-04 00:50:05 +02:00
|
|
|
| BENCHMARK_SYM '(' ulong_num ',' expr ')'
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2001-12-02 13:34:01 +01:00
|
|
|
$$=new Item_func_benchmark($3,$5);
|
2003-11-18 21:04:01 +01:00
|
|
|
Lex->uncacheable(UNCACHEABLE_SIDEEFFECT);
|
2001-12-02 13:34:01 +01:00
|
|
|
}
|
2000-08-21 23:39:08 +02:00
|
|
|
| EXTRACT_SYM '(' interval FROM expr ')'
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$=new Item_extract( $3, $5); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-01-15 18:06:22 +01:00
|
|
|
geometry_function:
|
2005-02-19 10:51:49 +01:00
|
|
|
CONTAINS_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_rel($3, $5, Item_func::SP_CONTAINS_FUNC)); }
|
|
|
|
| GEOMFROMTEXT '(' expr ')'
|
2004-01-15 18:06:22 +01:00
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| GEOMFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| GEOMFROMWKB '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_wkb($3)); }
|
|
|
|
| GEOMFROMWKB '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_wkb($3, $5)); }
|
|
|
|
| GEOMETRYCOLLECTION '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_geometrycollection,
|
|
|
|
Geometry::wkb_point)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| LINESTRING '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_linestring, Geometry::wkb_point)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| MULTILINESTRING '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW( Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_multilinestring, Geometry::wkb_linestring)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| MLINEFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| MLINEFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| MPOINTFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| MPOINTFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| MPOLYFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| MPOLYFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| MULTIPOINT '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_multipoint, Geometry::wkb_point)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| MULTIPOLYGON '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_multipolygon, Geometry::wkb_polygon)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| POINT_SYM '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_point($3,$5)); }
|
|
|
|
| POINTFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| POINTFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| POLYFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| POLYFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| POLYGON '(' expr_list ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_spatial_collection(* $3,
|
2004-03-12 09:04:00 +01:00
|
|
|
Geometry::wkb_polygon, Geometry::wkb_linestring)); }
|
2004-01-15 18:06:22 +01:00
|
|
|
| GEOMCOLLFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| GEOMCOLLFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
| LINEFROMTEXT '(' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3)); }
|
|
|
|
| LINEFROMTEXT '(' expr ',' expr ')'
|
|
|
|
{ $$= GEOM_NEW(Item_func_geometry_from_text($3, $5)); }
|
|
|
|
;
|
|
|
|
|
2003-10-22 17:57:09 +02:00
|
|
|
fulltext_options:
|
|
|
|
/* nothing */ { $$= FT_NL; }
|
|
|
|
| WITH QUERY_SYM EXPANSION_SYM { $$= FT_NL | FT_EXPAND; }
|
|
|
|
| IN_SYM BOOLEAN_SYM MODE_SYM { $$= FT_BOOL; }
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
udf_expr_list:
|
2004-11-12 04:01:46 +01:00
|
|
|
/* empty */ { $$= NULL; }
|
|
|
|
| udf_expr_list2 { $$= $1;}
|
|
|
|
;
|
|
|
|
|
|
|
|
udf_expr_list2:
|
|
|
|
{ Select->expr_list.push_front(new List<Item>); }
|
|
|
|
udf_expr_list3
|
|
|
|
{ $$= Select->expr_list.pop(); }
|
|
|
|
;
|
|
|
|
|
|
|
|
udf_expr_list3:
|
|
|
|
udf_expr
|
|
|
|
{
|
|
|
|
Select->expr_list.head()->push_back($1);
|
|
|
|
}
|
|
|
|
| udf_expr_list3 ',' udf_expr
|
|
|
|
{
|
|
|
|
Select->expr_list.head()->push_back($3);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
udf_expr:
|
|
|
|
remember_name expr remember_end select_alias
|
|
|
|
{
|
2006-10-24 14:26:41 +02:00
|
|
|
udf_func *udf= Select->udf_list.head();
|
|
|
|
/*
|
|
|
|
Use Item::name as a storage for the attribute value of user
|
|
|
|
defined function argument. It is safe to use Item::name
|
|
|
|
because the syntax will not allow having an explicit name here.
|
|
|
|
See WL#1017 re. udf attributes.
|
|
|
|
*/
|
2004-11-12 04:01:46 +01:00
|
|
|
if ($4.str)
|
2005-06-21 19:30:48 +02:00
|
|
|
{
|
2006-10-24 14:26:41 +02:00
|
|
|
if (!udf)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Disallow using AS to specify explicit names for the arguments
|
|
|
|
of stored routine calls
|
|
|
|
*/
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2005-06-21 19:30:48 +02:00
|
|
|
$2->is_autogenerated_name= FALSE;
|
2006-07-15 22:45:38 +02:00
|
|
|
$2->set_name($4.str, $4.length, system_charset_info);
|
2005-06-21 19:30:48 +02:00
|
|
|
}
|
2006-10-24 14:26:41 +02:00
|
|
|
else if (udf)
|
2005-06-21 19:30:48 +02:00
|
|
|
$2->set_name($1, (uint) ($3 - $1), YYTHD->charset());
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= $2;
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
sum_expr:
|
|
|
|
AVG_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_avg($3); }
|
2005-03-13 21:50:43 +01:00
|
|
|
| AVG_SYM '(' DISTINCT in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_avg_distinct($4); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| BIT_AND '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_and($3); }
|
|
|
|
| BIT_OR '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_or($3); }
|
2003-10-15 08:11:03 +02:00
|
|
|
| BIT_XOR '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_xor($3); }
|
2003-02-06 15:55:59 +01:00
|
|
|
| COUNT_SYM '(' opt_all '*' ')'
|
2000-07-31 21:29:14 +02:00
|
|
|
{ $$=new Item_sum_count(new Item_int((int32) 0L,1)); }
|
|
|
|
| COUNT_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_count($3); }
|
2003-05-13 09:54:07 +02:00
|
|
|
| COUNT_SYM '(' DISTINCT
|
2003-07-03 01:30:52 +02:00
|
|
|
{ Select->in_sum_expr++; }
|
2003-05-13 09:54:07 +02:00
|
|
|
expr_list
|
2003-07-03 01:30:52 +02:00
|
|
|
{ Select->in_sum_expr--; }
|
2003-05-13 09:54:07 +02:00
|
|
|
')'
|
|
|
|
{ $$=new Item_sum_count_distinct(* $5); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| GROUP_UNIQUE_USERS '(' text_literal ',' NUM ',' NUM ',' in_sum_expr ')'
|
|
|
|
{ $$= new Item_sum_unique_users($3,atoi($5.str),atoi($7.str),$9); }
|
|
|
|
| MIN_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_min($3); }
|
2004-11-12 04:01:46 +01:00
|
|
|
/*
|
|
|
|
According to ANSI SQL, DISTINCT is allowed and has
|
|
|
|
no sence inside MIN and MAX grouping functions; so MIN|MAX(DISTINCT ...)
|
|
|
|
is processed like an ordinary MIN | MAX()
|
|
|
|
*/
|
|
|
|
| MIN_SYM '(' DISTINCT in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_min($4); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MAX_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_max($3); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| MAX_SYM '(' DISTINCT in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_max($4); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| STD_SYM '(' in_sum_expr ')'
|
2005-02-25 19:19:04 +01:00
|
|
|
{ $$=new Item_sum_std($3, 0); }
|
2002-12-14 00:36:59 +01:00
|
|
|
| VARIANCE_SYM '(' in_sum_expr ')'
|
2005-02-25 19:19:04 +01:00
|
|
|
{ $$=new Item_sum_variance($3, 0); }
|
|
|
|
| STDDEV_SAMP_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_std($3, 1); }
|
|
|
|
| VAR_SAMP_SYM '(' in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_variance($3, 1); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| SUM_SYM '(' in_sum_expr ')'
|
2003-03-18 00:07:40 +01:00
|
|
|
{ $$=new Item_sum_sum($3); }
|
2004-11-12 04:01:46 +01:00
|
|
|
| SUM_SYM '(' DISTINCT in_sum_expr ')'
|
|
|
|
{ $$=new Item_sum_sum_distinct($4); }
|
2004-04-07 03:33:58 +02:00
|
|
|
| GROUP_CONCAT_SYM '(' opt_distinct
|
|
|
|
{ Select->in_sum_expr++; }
|
|
|
|
expr_list opt_gorder_clause
|
|
|
|
opt_gconcat_separator
|
|
|
|
')'
|
2003-08-11 21:44:43 +02:00
|
|
|
{
|
2005-07-01 06:05:42 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
|
|
|
sel->in_sum_expr--;
|
2005-08-12 16:57:19 +02:00
|
|
|
$$=new Item_func_group_concat(Lex->current_context(), $3, $5,
|
2005-07-01 06:05:42 +02:00
|
|
|
sel->gorder_list, $7);
|
2004-04-07 03:33:58 +02:00
|
|
|
$5->empty();
|
2003-03-18 00:07:40 +01:00
|
|
|
};
|
|
|
|
|
2006-10-12 16:02:57 +02:00
|
|
|
variable:
|
|
|
|
'@'
|
|
|
|
{
|
|
|
|
if (! Lex->parsing_options.allows_variable)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
variable_aux
|
|
|
|
{
|
|
|
|
$$= $3;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
variable_aux:
|
|
|
|
ident_or_text SET_VAR expr
|
|
|
|
{
|
|
|
|
$$= new Item_func_set_user_var($1, $3);
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->uncacheable(UNCACHEABLE_RAND);
|
|
|
|
}
|
|
|
|
| ident_or_text
|
|
|
|
{
|
|
|
|
$$= new Item_func_get_user_var($1);
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->uncacheable(UNCACHEABLE_RAND);
|
|
|
|
}
|
|
|
|
| '@' opt_var_ident_type ident_or_text opt_component
|
|
|
|
{
|
|
|
|
if ($3.str && $4.str && check_reserved_words(&$3))
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
if (!($$= get_system_var(YYTHD, $2, $3, $4)))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-03-18 00:07:40 +01:00
|
|
|
opt_distinct:
|
|
|
|
/* empty */ { $$ = 0; }
|
|
|
|
|DISTINCT { $$ = 1; };
|
|
|
|
|
|
|
|
opt_gconcat_separator:
|
2004-11-08 00:13:54 +01:00
|
|
|
/* empty */ { $$ = new (YYTHD->mem_root) String(",",1,default_charset_info); }
|
2003-03-18 00:07:40 +01:00
|
|
|
|SEPARATOR_SYM text_string { $$ = $2; };
|
2003-08-11 21:44:43 +02:00
|
|
|
|
2003-03-18 00:07:40 +01:00
|
|
|
|
|
|
|
opt_gorder_clause:
|
2003-10-12 16:56:05 +02:00
|
|
|
/* empty */
|
|
|
|
{
|
2004-04-05 12:56:05 +02:00
|
|
|
Select->gorder_list = NULL;
|
2003-10-12 16:56:05 +02:00
|
|
|
}
|
|
|
|
| order_clause
|
|
|
|
{
|
2004-04-05 12:56:05 +02:00
|
|
|
SELECT_LEX *select= Select;
|
|
|
|
select->gorder_list=
|
|
|
|
(SQL_LIST*) sql_memdup((char*) &select->order_list,
|
2003-10-12 16:56:05 +02:00
|
|
|
sizeof(st_sql_list));
|
2004-04-05 12:56:05 +02:00
|
|
|
select->order_list.empty();
|
2003-10-12 16:56:05 +02:00
|
|
|
};
|
2003-08-11 21:44:43 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
in_sum_expr:
|
2003-02-06 15:55:59 +01:00
|
|
|
opt_all
|
2002-10-30 12:18:52 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->current_select->inc_in_sum_expr())
|
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-12-04 23:14:51 +01:00
|
|
|
YYABORT;
|
2002-10-30 12:18:52 +01:00
|
|
|
}
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
expr
|
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
Select->in_sum_expr--;
|
2003-02-07 15:38:37 +01:00
|
|
|
$$= $3;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-01-22 21:13:24 +01:00
|
|
|
cast_type:
|
2005-02-08 23:50:45 +01:00
|
|
|
BINARY opt_len { $$=ITEM_CAST_CHAR; Lex->charset= &my_charset_bin; Lex->dec= 0; }
|
|
|
|
| CHAR_SYM opt_len opt_binary { $$=ITEM_CAST_CHAR; Lex->dec= 0; }
|
2005-02-09 13:32:43 +01:00
|
|
|
| NCHAR_SYM opt_len { $$=ITEM_CAST_CHAR; Lex->charset= national_charset_info; Lex->dec=0; }
|
2005-02-08 23:50:45 +01:00
|
|
|
| SIGNED_SYM { $$=ITEM_CAST_SIGNED_INT; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| SIGNED_SYM INT_SYM { $$=ITEM_CAST_SIGNED_INT; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| UNSIGNED { $$=ITEM_CAST_UNSIGNED_INT; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| UNSIGNED INT_SYM { $$=ITEM_CAST_UNSIGNED_INT; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| DATE_SYM { $$=ITEM_CAST_DATE; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| TIME_SYM { $$=ITEM_CAST_TIME; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| DATETIME { $$=ITEM_CAST_DATETIME; Lex->charset= NULL; Lex->dec=Lex->length= (char*)0; }
|
|
|
|
| DECIMAL_SYM float_options { $$=ITEM_CAST_DECIMAL; Lex->charset= NULL; }
|
2003-08-21 11:15:25 +02:00
|
|
|
;
|
|
|
|
|
2006-10-24 14:26:41 +02:00
|
|
|
opt_expr_list:
|
|
|
|
/* empty */ { $$= NULL; }
|
|
|
|
| expr_list { $$= $1;}
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
expr_list:
|
2001-06-03 16:07:26 +02:00
|
|
|
{ Select->expr_list.push_front(new List<Item>); }
|
2000-07-31 21:29:14 +02:00
|
|
|
expr_list2
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$= Select->expr_list.pop(); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
expr_list2:
|
2001-06-03 16:07:26 +02:00
|
|
|
expr { Select->expr_list.head()->push_back($1); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| expr_list2 ',' expr { Select->expr_list.head()->push_back($3); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-10-09 14:53:54 +02:00
|
|
|
ident_list_arg:
|
|
|
|
ident_list { $$= $1; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| '(' ident_list ')' { $$= $2; };
|
2001-10-09 14:53:54 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
ident_list:
|
2001-06-03 16:07:26 +02:00
|
|
|
{ Select->expr_list.push_front(new List<Item>); }
|
2000-07-31 21:29:14 +02:00
|
|
|
ident_list2
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$= Select->expr_list.pop(); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
ident_list2:
|
2001-06-03 16:07:26 +02:00
|
|
|
simple_ident { Select->expr_list.head()->push_back($1); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| ident_list2 ',' simple_ident { Select->expr_list.head()->push_back($3); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_expr:
|
|
|
|
/* empty */ { $$= NULL; }
|
2003-10-20 15:53:48 +02:00
|
|
|
| expr { $$= $1; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_else:
|
|
|
|
/* empty */ { $$= NULL; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| ELSE expr { $$= $2; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
when_list:
|
Bug#19194 (Right recursion in parser for CASE causes excessive stack usage,
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
2006-11-17 20:14:29 +01:00
|
|
|
WHEN_SYM expr THEN_SYM expr
|
|
|
|
{
|
|
|
|
$$= new List<Item>;
|
|
|
|
$$->push_back($2);
|
|
|
|
$$->push_back($4);
|
|
|
|
}
|
|
|
|
| when_list WHEN_SYM expr THEN_SYM expr
|
|
|
|
{
|
|
|
|
$1->push_back($3);
|
|
|
|
$1->push_back($5);
|
|
|
|
$$= $1;
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
/* Warning - may return NULL in case of incomplete SELECT */
|
2004-11-12 04:01:46 +01:00
|
|
|
table_ref:
|
|
|
|
table_factor { $$=$1; }
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
| join_table
|
2004-09-14 18:28:29 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (!($$= lex->current_select->nest_last_join(lex->thd)))
|
|
|
|
YYABORT;
|
2004-09-14 18:28:29 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
join_table_list:
|
2005-06-15 19:58:35 +02:00
|
|
|
derived_table_list { YYERROR_UNLESS($$=$1); }
|
2005-03-16 01:13:23 +01:00
|
|
|
;
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
/* Warning - may return NULL in case of incomplete SELECT */
|
|
|
|
derived_table_list:
|
2004-11-12 04:01:46 +01:00
|
|
|
table_ref { $$=$1; }
|
2005-03-16 01:13:23 +01:00
|
|
|
| derived_table_list ',' table_ref
|
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && ($$=$3));
|
2005-03-16 01:13:23 +01:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
2005-10-25 08:00:57 +02:00
|
|
|
/*
|
|
|
|
Notice that JOIN is a left-associative operation, and it must be parsed
|
|
|
|
as such, that is, the parser must process first the left join operand
|
|
|
|
then the right one. Such order of processing ensures that the parser
|
|
|
|
produces correct join trees which is essential for semantic analysis
|
|
|
|
and subsequent optimization phases.
|
|
|
|
*/
|
2004-11-12 04:01:46 +01:00
|
|
|
join_table:
|
2005-10-25 08:00:57 +02:00
|
|
|
/* INNER JOIN variants */
|
2005-09-10 14:01:54 +02:00
|
|
|
/*
|
2005-10-25 08:00:57 +02:00
|
|
|
Use %prec to evaluate production 'table_ref' before 'normal_join'
|
|
|
|
so that [INNER | CROSS] JOIN is properly nested as other
|
|
|
|
left-associative joins.
|
2005-09-10 14:01:54 +02:00
|
|
|
*/
|
|
|
|
table_ref %prec TABLE_REF_PRIORITY normal_join table_ref
|
2005-10-25 08:00:57 +02:00
|
|
|
{ YYERROR_UNLESS($1 && ($$=$3)); }
|
2005-06-10 18:02:19 +02:00
|
|
|
| table_ref STRAIGHT_JOIN table_factor
|
2005-06-15 19:58:35 +02:00
|
|
|
{ YYERROR_UNLESS($1 && ($$=$3)); $3->straight=1; }
|
2005-08-12 16:57:19 +02:00
|
|
|
| table_ref normal_join table_ref
|
|
|
|
ON
|
|
|
|
{
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
YYERROR_UNLESS($1 && $3);
|
2005-08-12 16:57:19 +02:00
|
|
|
/* Change the current name resolution context to a local context. */
|
2005-11-28 20:57:50 +01:00
|
|
|
if (push_new_name_resolution_context(YYTHD, $1, $3))
|
2005-08-12 16:57:19 +02:00
|
|
|
YYABORT;
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= IN_ON;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
add_join_on($3,$6);
|
|
|
|
Lex->pop_context();
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
| table_ref STRAIGHT_JOIN table_factor
|
|
|
|
ON
|
|
|
|
{
|
Bug#21462 (Stored procedures with no arguments require parenthesis)
The syntax of the CALL statement, to invoke a stored procedure, has been
changed to make the use of parenthesis optional in the argument list.
With this change, "CALL p;" is equivalent to "CALL p();".
While the SQL spec does not explicitely mandate this syntax, supporting it
is needed for practical reasons, for integration with JDBC / ODBC connectors.
Also, warnings in the sql/sql_yacc.yy file, which were not reported by Bison 2.1
but are now reported by Bison 2.2, have been fixed.
The warning found were:
bison -y -p MYSQL -d --debug --verbose sql_yacc.yy
sql_yacc.yy:653.9-18: warning: symbol UNLOCK_SYM redeclared
sql_yacc.yy:656.9-17: warning: symbol UNTIL_SYM redeclared
sql_yacc.yy:658.9-18: warning: symbol UPDATE_SYM redeclared
sql_yacc.yy:5169.11-5174.11: warning: unused value: $2
sql_yacc.yy:5208.11-5220.11: warning: unused value: $5
sql_yacc.yy:5221.11-5234.11: warning: unused value: $5
conflicts: 249 shift/reduce
"unused value: $2" correspond to the $$=$1 assignment in the 1st {} block
in table_ref -> join_table {} {},
which does not procude a result ($$) for the rule but an intermediate $2
value for the action instead.
"unused value: $5" are similar, with $$ assignments in {} actions blocks
which are not for the final reduce.
2006-10-09 18:59:02 +02:00
|
|
|
YYERROR_UNLESS($1 && $3);
|
2005-08-12 16:57:19 +02:00
|
|
|
/* Change the current name resolution context to a local context. */
|
2005-11-28 20:57:50 +01:00
|
|
|
if (push_new_name_resolution_context(YYTHD, $1, $3))
|
2005-08-12 16:57:19 +02:00
|
|
|
YYABORT;
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= IN_ON;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
$3->straight=1;
|
|
|
|
add_join_on($3,$6);
|
|
|
|
Lex->pop_context();
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| table_ref normal_join table_ref
|
2003-08-11 21:44:43 +02:00
|
|
|
USING
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && $3);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2003-02-06 15:55:59 +01:00
|
|
|
'(' using_list ')'
|
2005-08-12 16:57:19 +02:00
|
|
|
{ add_join_natural($1,$3,$7); $$=$3; }
|
2005-10-25 08:00:57 +02:00
|
|
|
| table_ref NATURAL JOIN_SYM table_factor
|
|
|
|
{
|
|
|
|
YYERROR_UNLESS($1 && ($$=$4));
|
|
|
|
add_join_natural($1,$4,NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* LEFT JOIN variants */
|
2005-08-12 16:57:19 +02:00
|
|
|
| table_ref LEFT opt_outer JOIN_SYM table_ref
|
|
|
|
ON
|
|
|
|
{
|
2006-01-11 21:39:09 +01:00
|
|
|
YYERROR_UNLESS($1 && $5);
|
2005-08-12 16:57:19 +02:00
|
|
|
/* Change the current name resolution context to a local context. */
|
2005-11-28 20:57:50 +01:00
|
|
|
if (push_new_name_resolution_context(YYTHD, $1, $5))
|
2005-08-12 16:57:19 +02:00
|
|
|
YYABORT;
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= IN_ON;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
expr
|
|
|
|
{
|
|
|
|
add_join_on($5,$8);
|
|
|
|
Lex->pop_context();
|
|
|
|
$5->outer_join|=JOIN_TYPE_LEFT;
|
|
|
|
$$=$5;
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| table_ref LEFT opt_outer JOIN_SYM table_factor
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && $5);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
USING '(' using_list ')'
|
2005-08-12 16:57:19 +02:00
|
|
|
{ add_join_natural($1,$5,$9); $5->outer_join|=JOIN_TYPE_LEFT; $$=$5; }
|
2004-11-12 04:01:46 +01:00
|
|
|
| table_ref NATURAL LEFT opt_outer JOIN_SYM table_factor
|
2003-04-26 19:43:28 +02:00
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && $6);
|
2005-08-12 16:57:19 +02:00
|
|
|
add_join_natural($1,$6,NULL);
|
2004-11-12 04:01:46 +01:00
|
|
|
$6->outer_join|=JOIN_TYPE_LEFT;
|
2003-04-26 19:43:28 +02:00
|
|
|
$$=$6;
|
|
|
|
}
|
2005-10-25 08:00:57 +02:00
|
|
|
|
|
|
|
/* RIGHT JOIN variants */
|
2005-08-12 16:57:19 +02:00
|
|
|
| table_ref RIGHT opt_outer JOIN_SYM table_ref
|
|
|
|
ON
|
|
|
|
{
|
2006-01-11 21:39:09 +01:00
|
|
|
YYERROR_UNLESS($1 && $5);
|
2005-08-12 16:57:19 +02:00
|
|
|
/* Change the current name resolution context to a local context. */
|
2005-11-28 20:57:50 +01:00
|
|
|
if (push_new_name_resolution_context(YYTHD, $1, $5))
|
2005-08-12 16:57:19 +02:00
|
|
|
YYABORT;
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= IN_ON;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
expr
|
2005-04-04 00:50:05 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (!($$= lex->current_select->convert_right_join()))
|
|
|
|
YYABORT;
|
2005-08-12 16:57:19 +02:00
|
|
|
add_join_on($$, $8);
|
|
|
|
Lex->pop_context();
|
2006-09-25 15:15:14 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| table_ref RIGHT opt_outer JOIN_SYM table_factor
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && $5);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-09-25 23:33:25 +02:00
|
|
|
USING '(' using_list ')'
|
2005-04-04 00:50:05 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (!($$= lex->current_select->convert_right_join()))
|
|
|
|
YYABORT;
|
2005-08-12 16:57:19 +02:00
|
|
|
add_join_natural($$,$5,$9);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| table_ref NATURAL RIGHT opt_outer JOIN_SYM table_factor
|
2003-04-26 19:43:28 +02:00
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1 && $6);
|
2005-08-12 16:57:19 +02:00
|
|
|
add_join_natural($6,$1,NULL);
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (!($$= lex->current_select->convert_right_join()))
|
|
|
|
YYABORT;
|
2005-10-25 08:00:57 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
normal_join:
|
2003-02-06 15:55:59 +01:00
|
|
|
JOIN_SYM {}
|
|
|
|
| INNER_SYM JOIN_SYM {}
|
|
|
|
| CROSS JOIN_SYM {}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
/* Warning - may return NULL in case of incomplete SELECT */
|
2004-11-12 04:01:46 +01:00
|
|
|
table_factor:
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2001-06-15 04:03:15 +02:00
|
|
|
sel->use_index_ptr=sel->ignore_index_ptr=0;
|
2003-01-09 21:42:31 +01:00
|
|
|
sel->table_join_options= 0;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
table_ident opt_table_alias opt_key_definition
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2002-11-23 17:54:15 +01:00
|
|
|
LEX *lex= Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!($$= sel->add_table_to_list(lex->thd, $2, $3,
|
2003-01-09 21:42:31 +01:00
|
|
|
sel->get_table_join_options(),
|
2002-12-06 20:11:27 +01:00
|
|
|
lex->lock_option,
|
2002-10-30 12:18:52 +01:00
|
|
|
sel->get_use_index(),
|
|
|
|
sel->get_ignore_index())))
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
2004-09-14 18:28:29 +02:00
|
|
|
sel->add_joined_table($$);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2005-08-12 16:57:19 +02:00
|
|
|
| '{' ident table_ref LEFT OUTER JOIN_SYM table_ref
|
|
|
|
ON
|
|
|
|
{
|
|
|
|
/* Change the current name resolution context to a local context. */
|
2005-11-28 20:57:50 +01:00
|
|
|
if (push_new_name_resolution_context(YYTHD, $3, $7))
|
2005-08-12 16:57:19 +02:00
|
|
|
YYABORT;
|
2005-11-28 20:57:50 +01:00
|
|
|
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
|
|
|
expr '}'
|
|
|
|
{
|
2006-05-13 20:56:05 +02:00
|
|
|
LEX *lex= Lex;
|
2005-08-12 16:57:19 +02:00
|
|
|
YYERROR_UNLESS($3 && $7);
|
|
|
|
add_join_on($7,$10);
|
|
|
|
Lex->pop_context();
|
|
|
|
$7->outer_join|=JOIN_TYPE_LEFT;
|
|
|
|
$$=$7;
|
2006-05-13 20:56:05 +02:00
|
|
|
if (!($$= lex->current_select->nest_last_join(lex->thd)))
|
|
|
|
YYABORT;
|
2005-08-12 16:57:19 +02:00
|
|
|
}
|
2005-03-16 01:13:23 +01:00
|
|
|
| select_derived_init get_select_lex select_derived2
|
2004-09-14 18:28:29 +02:00
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
2005-03-16 01:13:23 +01:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
|
|
|
if ($1)
|
|
|
|
{
|
|
|
|
if (sel->set_braces(1))
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
/* select in braces, can't contain global parameters */
|
|
|
|
if (sel->master_unit()->fake_select_lex)
|
|
|
|
sel->master_unit()->global_parameters=
|
|
|
|
sel->master_unit()->fake_select_lex;
|
|
|
|
}
|
|
|
|
if ($2->init_nested_join(lex->thd))
|
2005-04-04 00:50:05 +02:00
|
|
|
YYABORT;
|
2005-03-16 01:13:23 +01:00
|
|
|
$$= 0;
|
2005-04-04 00:50:05 +02:00
|
|
|
/* incomplete derived tables return NULL, we must be
|
2005-03-16 01:13:23 +01:00
|
|
|
nested in select_derived rule to be here. */
|
2004-09-14 18:28:29 +02:00
|
|
|
}
|
2005-03-16 01:13:23 +01:00
|
|
|
| '(' get_select_lex select_derived union_opt ')' opt_table_alias
|
|
|
|
{
|
|
|
|
/* Use $2 instead of Lex->current_select as derived table will
|
|
|
|
alter value of Lex->current_select. */
|
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
if (!($3 || $6) && $2->embedding &&
|
2005-03-16 01:13:23 +01:00
|
|
|
!$2->embedding->nested_join->join_list.elements)
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-03-16 01:13:23 +01:00
|
|
|
/* we have a derived table ($3 == NULL) but no alias,
|
|
|
|
Since we are nested in further parentheses so we
|
|
|
|
can pass NULL to the outer level parentheses
|
|
|
|
Permits parsing of "((((select ...))) as xyz)" */
|
|
|
|
$$= 0;
|
2004-09-14 18:28:29 +02:00
|
|
|
}
|
2005-03-16 01:13:23 +01:00
|
|
|
else
|
|
|
|
if (!$3)
|
|
|
|
{
|
|
|
|
/* Handle case of derived table, alias may be NULL if there
|
|
|
|
are no outer parentheses, add_table_to_list() will throw
|
|
|
|
error in this case */
|
|
|
|
LEX *lex=Lex;
|
|
|
|
SELECT_LEX *sel= lex->current_select;
|
|
|
|
SELECT_LEX_UNIT *unit= sel->master_unit();
|
|
|
|
lex->current_select= sel= unit->outer_select();
|
|
|
|
if (!($$= sel->
|
|
|
|
add_table_to_list(lex->thd, new Table_ident(unit), $6, 0,
|
|
|
|
TL_READ,(List<String> *)0,
|
|
|
|
(List<String> *)0)))
|
2002-12-24 12:58:07 +01:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
YYABORT;
|
2005-04-04 00:50:05 +02:00
|
|
|
sel->add_joined_table($$);
|
2005-08-12 16:57:19 +02:00
|
|
|
lex->pop_context();
|
2005-03-16 01:13:23 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
if ($4 || $6)
|
|
|
|
{
|
|
|
|
/* simple nested joins cannot have aliases or unions */
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-03-26 14:06:05 +01:00
|
|
|
YYABORT;
|
2005-03-16 01:13:23 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
$$= $3;
|
|
|
|
}
|
|
|
|
;
|
2002-03-26 14:06:05 +01:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
/* handle contents of parentheses in join expression */
|
2002-11-28 17:25:41 +01:00
|
|
|
select_derived:
|
2005-03-16 01:13:23 +01:00
|
|
|
get_select_lex
|
2005-02-13 23:35:52 +01:00
|
|
|
{
|
2005-03-16 01:13:23 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if ($1->init_nested_join(lex->thd))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
derived_table_list
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
/* for normal joins, $3 != NULL and end_nested_join() != NULL,
|
|
|
|
for derived tables, both must equal NULL */
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
if (!($$= $1->end_nested_join(lex->thd)) && $3)
|
|
|
|
YYABORT;
|
|
|
|
if (!$3 && $$)
|
|
|
|
{
|
2005-02-13 23:35:52 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
2005-03-16 01:13:23 +01:00
|
|
|
}
|
|
|
|
}
|
2005-02-15 16:12:13 +01:00
|
|
|
;
|
2005-02-13 23:35:52 +01:00
|
|
|
|
2005-02-15 18:25:42 +01:00
|
|
|
select_derived2:
|
2002-03-26 14:06:05 +01:00
|
|
|
{
|
2002-05-06 23:04:16 +02:00
|
|
|
LEX *lex= Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->derived_tables|= DERIVED_SUBQUERY;
|
2006-03-06 18:26:39 +01:00
|
|
|
if (lex->sql_command == (int)SQLCOM_HA_READ ||
|
|
|
|
lex->sql_command == (int)SQLCOM_KILL)
|
2004-02-12 18:37:15 +01:00
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2003-01-09 21:17:16 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-12-04 23:14:51 +01:00
|
|
|
if (lex->current_select->linkage == GLOBAL_OPTIONS_TYPE ||
|
2002-05-06 23:04:16 +02:00
|
|
|
mysql_new_select(lex, 1))
|
2002-03-26 14:06:05 +01:00
|
|
|
YYABORT;
|
|
|
|
mysql_init_select(lex);
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->current_select->linkage= DERIVED_TABLE_TYPE;
|
2004-08-13 09:01:30 +02:00
|
|
|
lex->current_select->parsing_place= SELECT_LIST;
|
2004-02-02 13:58:36 +01:00
|
|
|
}
|
|
|
|
select_options select_item_list
|
|
|
|
{
|
2004-08-13 09:01:30 +02:00
|
|
|
Select->parsing_place= NO_MATTER;
|
2002-03-26 14:06:05 +01:00
|
|
|
}
|
2005-02-13 23:35:52 +01:00
|
|
|
opt_select_from
|
2002-11-28 17:25:41 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
get_select_lex:
|
|
|
|
/* Empty */ { $$= Select; }
|
|
|
|
;
|
|
|
|
|
|
|
|
select_derived_init:
|
|
|
|
SELECT_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2006-10-12 16:02:57 +02:00
|
|
|
|
|
|
|
if (! lex->parsing_options.allows_derived)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_DERIVED, MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2005-03-16 01:13:23 +01:00
|
|
|
TABLE_LIST *embedding;
|
|
|
|
if (!sel->embedding || sel->end_nested_join(lex->thd))
|
|
|
|
{
|
|
|
|
/* we are not in parentheses */
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
embedding= Select->embedding;
|
|
|
|
$$= embedding &&
|
|
|
|
!embedding->nested_join->join_list.elements;
|
|
|
|
/* return true if we are deeply nested */
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_outer:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| OUTER {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_key_definition:
|
|
|
|
/* empty */ {}
|
|
|
|
| USE_SYM key_usage_list
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2001-06-15 04:03:15 +02:00
|
|
|
sel->use_index= *$2;
|
|
|
|
sel->use_index_ptr= &sel->use_index;
|
|
|
|
}
|
2003-01-09 21:42:31 +01:00
|
|
|
| FORCE_SYM key_usage_list
|
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2003-01-09 21:42:31 +01:00
|
|
|
sel->use_index= *$2;
|
|
|
|
sel->use_index_ptr= &sel->use_index;
|
|
|
|
sel->table_join_options|= TL_OPTION_FORCE_INDEX;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| IGNORE_SYM key_usage_list
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2001-06-15 04:03:15 +02:00
|
|
|
sel->ignore_index= *$2;
|
|
|
|
sel->ignore_index_ptr= &sel->ignore_index;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_usage_list:
|
2003-07-03 01:30:52 +02:00
|
|
|
key_or_index { Select->interval_list.empty(); }
|
2003-01-09 21:42:31 +01:00
|
|
|
'(' key_list_or_empty ')'
|
2003-07-03 01:30:52 +02:00
|
|
|
{ $$= &Select->interval_list; }
|
2003-01-09 21:42:31 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
key_list_or_empty:
|
|
|
|
/* empty */ {}
|
|
|
|
| key_usage_list2 {}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
key_usage_list2:
|
|
|
|
key_usage_list2 ',' ident
|
2003-07-03 01:30:52 +02:00
|
|
|
{ Select->
|
2004-11-08 00:13:54 +01:00
|
|
|
interval_list.push_back(new (YYTHD->mem_root) String((const char*) $3.str, $3.length,
|
2003-06-03 11:59:17 +02:00
|
|
|
system_charset_info)); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| ident
|
2003-07-03 01:30:52 +02:00
|
|
|
{ Select->
|
2004-11-08 00:13:54 +01:00
|
|
|
interval_list.push_back(new (YYTHD->mem_root) String((const char*) $1.str, $1.length,
|
2003-06-03 11:59:17 +02:00
|
|
|
system_charset_info)); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| PRIMARY_SYM
|
2003-07-03 01:30:52 +02:00
|
|
|
{ Select->
|
2004-11-08 00:13:54 +01:00
|
|
|
interval_list.push_back(new (YYTHD->mem_root) String("PRIMARY", 7,
|
2003-06-03 11:59:17 +02:00
|
|
|
system_charset_info)); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
using_list:
|
|
|
|
ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2005-08-12 16:57:19 +02:00
|
|
|
if (!($$= new List<String>))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2005-08-12 16:57:19 +02:00
|
|
|
$$->push_back(new (YYTHD->mem_root)
|
|
|
|
String((const char *) $1.str, $1.length,
|
|
|
|
system_charset_info));
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| using_list ',' ident
|
|
|
|
{
|
2005-08-12 16:57:19 +02:00
|
|
|
$1->push_back(new (YYTHD->mem_root)
|
|
|
|
String((const char *) $3.str, $3.length,
|
|
|
|
system_charset_info));
|
|
|
|
$$= $1;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
interval:
|
2004-11-12 04:01:46 +01:00
|
|
|
interval_time_st {}
|
|
|
|
| DAY_HOUR_SYM { $$=INTERVAL_DAY_HOUR; }
|
2003-06-23 09:56:44 +02:00
|
|
|
| DAY_MICROSECOND_SYM { $$=INTERVAL_DAY_MICROSECOND; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| DAY_MINUTE_SYM { $$=INTERVAL_DAY_MINUTE; }
|
|
|
|
| DAY_SECOND_SYM { $$=INTERVAL_DAY_SECOND; }
|
2003-06-23 09:56:44 +02:00
|
|
|
| HOUR_MICROSECOND_SYM { $$=INTERVAL_HOUR_MICROSECOND; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| HOUR_MINUTE_SYM { $$=INTERVAL_HOUR_MINUTE; }
|
|
|
|
| HOUR_SECOND_SYM { $$=INTERVAL_HOUR_SECOND; }
|
2003-06-23 09:56:44 +02:00
|
|
|
| MICROSECOND_SYM { $$=INTERVAL_MICROSECOND; }
|
|
|
|
| MINUTE_MICROSECOND_SYM { $$=INTERVAL_MINUTE_MICROSECOND; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MINUTE_SECOND_SYM { $$=INTERVAL_MINUTE_SECOND; }
|
2004-11-12 04:01:46 +01:00
|
|
|
| SECOND_MICROSECOND_SYM { $$=INTERVAL_SECOND_MICROSECOND; }
|
|
|
|
| YEAR_MONTH_SYM { $$=INTERVAL_YEAR_MONTH; };
|
|
|
|
|
|
|
|
interval_time_st:
|
|
|
|
DAY_SYM { $$=INTERVAL_DAY; }
|
|
|
|
| WEEK_SYM { $$=INTERVAL_WEEK; }
|
|
|
|
| HOUR_SYM { $$=INTERVAL_HOUR; }
|
|
|
|
| FRAC_SECOND_SYM { $$=INTERVAL_MICROSECOND; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| MINUTE_SYM { $$=INTERVAL_MINUTE; }
|
|
|
|
| MONTH_SYM { $$=INTERVAL_MONTH; }
|
2004-11-12 04:01:46 +01:00
|
|
|
| QUARTER_SYM { $$=INTERVAL_QUARTER; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| SECOND_SYM { $$=INTERVAL_SECOND; }
|
2004-08-11 10:27:19 +02:00
|
|
|
| YEAR_SYM { $$=INTERVAL_YEAR; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-11-03 13:01:59 +01:00
|
|
|
date_time_type:
|
2004-08-11 10:27:19 +02:00
|
|
|
DATE_SYM {$$=MYSQL_TIMESTAMP_DATE;}
|
|
|
|
| TIME_SYM {$$=MYSQL_TIMESTAMP_TIME;}
|
|
|
|
| DATETIME {$$=MYSQL_TIMESTAMP_DATETIME;}
|
|
|
|
| TIMESTAMP {$$=MYSQL_TIMESTAMP_DATETIME;}
|
|
|
|
;
|
2003-10-20 10:24:18 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
table_alias:
|
|
|
|
/* empty */
|
|
|
|
| AS
|
2002-04-16 01:09:30 +02:00
|
|
|
| EQ;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_table_alias:
|
|
|
|
/* empty */ { $$=0; }
|
|
|
|
| table_alias ident
|
2002-04-16 01:09:30 +02:00
|
|
|
{ $$= (LEX_STRING*) sql_memdup(&$2,sizeof(LEX_STRING)); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-02-06 15:55:59 +01:00
|
|
|
opt_all:
|
|
|
|
/* empty */
|
|
|
|
| ALL
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
where_clause:
|
2003-07-03 01:30:52 +02:00
|
|
|
/* empty */ { Select->where= 0; }
|
2004-08-31 20:10:57 +02:00
|
|
|
| WHERE
|
|
|
|
{
|
|
|
|
Select->parsing_place= IN_WHERE;
|
|
|
|
}
|
|
|
|
expr
|
2002-11-11 14:57:35 +01:00
|
|
|
{
|
2004-08-31 20:10:57 +02:00
|
|
|
SELECT_LEX *select= Select;
|
|
|
|
select->where= $3;
|
|
|
|
select->parsing_place= NO_MATTER;
|
|
|
|
if ($3)
|
|
|
|
$3->top_level_item();
|
2002-11-11 14:57:35 +01:00
|
|
|
}
|
2002-11-21 14:56:48 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
having_clause:
|
|
|
|
/* empty */
|
2003-05-17 09:05:07 +02:00
|
|
|
| HAVING
|
|
|
|
{
|
2004-08-13 09:01:30 +02:00
|
|
|
Select->parsing_place= IN_HAVING;
|
2003-05-17 09:05:07 +02:00
|
|
|
}
|
|
|
|
expr
|
2002-11-21 14:56:48 +01:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2003-05-17 09:05:07 +02:00
|
|
|
sel->having= $3;
|
2004-08-13 09:01:30 +02:00
|
|
|
sel->parsing_place= NO_MATTER;
|
2002-11-21 14:56:48 +01:00
|
|
|
if ($3)
|
|
|
|
$3->top_level_item();
|
|
|
|
}
|
2002-11-11 14:57:35 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_escape:
|
2005-10-21 03:01:52 +02:00
|
|
|
ESCAPE_SYM simple_expr
|
|
|
|
{
|
|
|
|
Lex->escape_used= TRUE;
|
|
|
|
$$= $2;
|
|
|
|
}
|
2004-06-22 17:27:16 +02:00
|
|
|
| /* empty */
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-10-21 03:01:52 +02:00
|
|
|
Lex->escape_used= FALSE;
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= ((YYTHD->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) ?
|
|
|
|
new Item_string("", 0, &my_charset_latin1) :
|
|
|
|
new Item_string("\\", 1, &my_charset_latin1));
|
2004-06-22 17:27:16 +02:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
2001-12-17 18:59:20 +01:00
|
|
|
group by statement in select
|
2000-07-31 21:29:14 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
group_clause:
|
|
|
|
/* empty */
|
2002-07-16 21:42:53 +02:00
|
|
|
| GROUP BY group_list olap_opt;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
group_list:
|
2001-12-10 16:51:07 +01:00
|
|
|
group_list ',' order_ident order_dir
|
2002-12-06 20:11:27 +01:00
|
|
|
{ if (add_group_to_list(YYTHD, $3,(bool) $4)) YYABORT; }
|
2001-12-10 16:51:07 +01:00
|
|
|
| order_ident order_dir
|
2002-12-06 20:11:27 +01:00
|
|
|
{ if (add_group_to_list(YYTHD, $1,(bool) $2)) YYABORT; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-07-16 21:42:53 +02:00
|
|
|
olap_opt:
|
|
|
|
/* empty */ {}
|
2002-07-20 13:51:52 +02:00
|
|
|
| WITH CUBE_SYM
|
2002-07-16 21:42:53 +02:00
|
|
|
{
|
2002-07-24 18:55:08 +02:00
|
|
|
LEX *lex=Lex;
|
2002-10-30 12:18:52 +01:00
|
|
|
if (lex->current_select->linkage == GLOBAL_OPTIONS_TYPE)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "WITH CUBE",
|
2002-10-30 12:18:52 +01:00
|
|
|
"global union parameters");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2003-07-03 01:30:52 +02:00
|
|
|
lex->current_select->olap= CUBE_TYPE;
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_NOT_SUPPORTED_YET, MYF(0), "CUBE");
|
2003-06-04 17:28:51 +02:00
|
|
|
YYABORT; /* To be deleted in 5.1 */
|
2002-07-16 21:42:53 +02:00
|
|
|
}
|
2002-07-20 13:51:52 +02:00
|
|
|
| WITH ROLLUP_SYM
|
2002-07-16 21:42:53 +02:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->current_select->linkage == GLOBAL_OPTIONS_TYPE)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "WITH ROLLUP",
|
2002-10-30 12:18:52 +01:00
|
|
|
"global union parameters");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2003-07-03 01:30:52 +02:00
|
|
|
lex->current_select->olap= ROLLUP_TYPE;
|
2002-07-16 21:42:53 +02:00
|
|
|
}
|
2002-07-24 18:55:08 +02:00
|
|
|
;
|
2002-07-16 21:42:53 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/*
|
2001-12-17 18:59:20 +01:00
|
|
|
Order by statement in select
|
2000-07-31 21:29:14 +02:00
|
|
|
*/
|
|
|
|
|
2000-11-17 01:36:46 +01:00
|
|
|
opt_order_clause:
|
2000-07-31 21:29:14 +02:00
|
|
|
/* empty */
|
2002-04-16 01:09:30 +02:00
|
|
|
| order_clause;
|
2000-11-17 01:36:46 +01:00
|
|
|
|
|
|
|
order_clause:
|
2002-12-04 23:14:51 +01:00
|
|
|
ORDER_SYM BY
|
|
|
|
{
|
2002-01-02 23:46:43 +01:00
|
|
|
LEX *lex=Lex;
|
2006-04-21 07:15:38 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
|
|
|
SELECT_LEX_UNIT *unit= sel-> master_unit();
|
|
|
|
if (sel->linkage != GLOBAL_OPTIONS_TYPE &&
|
|
|
|
sel->olap != UNSPECIFIED_OLAP_TYPE)
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0),
|
|
|
|
"CUBE/ROLLUP", "ORDER BY");
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-04-21 07:15:38 +02:00
|
|
|
if (lex->sql_command != SQLCOM_ALTER_TABLE && !unit->fake_select_lex)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
A query of the of the form (SELECT ...) ORDER BY order_list is
|
|
|
|
executed in the same way as the query
|
|
|
|
SELECT ... ORDER BY order_list
|
|
|
|
unless the SELECT construct contains ORDER BY or LIMIT clauses.
|
|
|
|
Otherwise we create a fake SELECT_LEX if it has not been created
|
|
|
|
yet.
|
|
|
|
*/
|
|
|
|
SELECT_LEX *first_sl= unit->first_select();
|
|
|
|
if (!first_sl->next_select() &&
|
|
|
|
(first_sl->order_list.elements ||
|
2006-04-21 17:19:38 +02:00
|
|
|
first_sl->select_limit) &&
|
2006-04-21 07:15:38 +02:00
|
|
|
unit->add_fake_select_lex(lex->thd))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
} order_list;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
order_list:
|
|
|
|
order_list ',' order_ident order_dir
|
2002-12-06 20:11:27 +01:00
|
|
|
{ if (add_order_to_list(YYTHD, $3,(bool) $4)) YYABORT; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| order_ident order_dir
|
2002-12-06 20:11:27 +01:00
|
|
|
{ if (add_order_to_list(YYTHD, $1,(bool) $2)) YYABORT; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
order_dir:
|
|
|
|
/* empty */ { $$ = 1; }
|
2001-12-10 16:51:07 +01:00
|
|
|
| ASC { $$ =1; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| DESC { $$ =0; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
2003-02-12 20:55:37 +01:00
|
|
|
opt_limit_clause_init:
|
|
|
|
/* empty */
|
|
|
|
{
|
2004-02-04 14:26:41 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2005-06-07 12:11:36 +02:00
|
|
|
sel->offset_limit= 0;
|
|
|
|
sel->select_limit= 0;
|
2003-02-12 20:55:37 +01:00
|
|
|
}
|
2002-12-01 17:10:13 +01:00
|
|
|
| limit_clause {}
|
|
|
|
;
|
|
|
|
|
2003-02-12 20:55:37 +01:00
|
|
|
opt_limit_clause:
|
|
|
|
/* empty */ {}
|
|
|
|
| limit_clause {}
|
|
|
|
;
|
|
|
|
|
2002-12-01 17:10:13 +01:00
|
|
|
limit_clause:
|
2003-06-04 17:28:51 +02:00
|
|
|
LIMIT limit_options {}
|
2002-11-21 14:56:48 +01:00
|
|
|
;
|
2002-11-16 19:19:10 +01:00
|
|
|
|
|
|
|
limit_options:
|
2005-06-07 12:11:36 +02:00
|
|
|
limit_option
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2002-11-16 19:19:10 +01:00
|
|
|
sel->select_limit= $1;
|
2005-06-07 12:11:36 +02:00
|
|
|
sel->offset_limit= 0;
|
2004-05-05 20:21:41 +02:00
|
|
|
sel->explicit_limit= 1;
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
2005-06-07 12:11:36 +02:00
|
|
|
| limit_option ',' limit_option
|
2002-11-16 19:19:10 +01:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2002-11-16 19:19:10 +01:00
|
|
|
sel->select_limit= $3;
|
|
|
|
sel->offset_limit= $1;
|
2004-05-05 20:21:41 +02:00
|
|
|
sel->explicit_limit= 1;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2005-06-07 12:11:36 +02:00
|
|
|
| limit_option OFFSET_SYM limit_option
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2002-11-16 19:19:10 +01:00
|
|
|
sel->select_limit= $1;
|
|
|
|
sel->offset_limit= $3;
|
2004-05-05 20:21:41 +02:00
|
|
|
sel->explicit_limit= 1;
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
|
|
|
;
|
2005-06-07 12:11:36 +02:00
|
|
|
limit_option:
|
|
|
|
param_marker
|
|
|
|
| ULONGLONG_NUM { $$= new Item_uint($1.str, $1.length); }
|
|
|
|
| LONG_NUM { $$= new Item_uint($1.str, $1.length); }
|
|
|
|
| NUM { $$= new Item_uint($1.str, $1.length); }
|
2005-06-07 16:48:56 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
delete_limit_clause:
|
|
|
|
/* empty */
|
|
|
|
{
|
2002-01-02 23:46:43 +01:00
|
|
|
LEX *lex=Lex;
|
2005-06-07 12:11:36 +02:00
|
|
|
lex->current_select->select_limit= 0;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2005-06-07 12:11:36 +02:00
|
|
|
| LIMIT limit_option
|
2004-05-05 20:21:41 +02:00
|
|
|
{
|
|
|
|
SELECT_LEX *sel= Select;
|
2005-06-07 12:11:36 +02:00
|
|
|
sel->select_limit= $2;
|
2004-05-05 20:21:41 +02:00
|
|
|
sel->explicit_limit= 1;
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
ulong_num:
|
|
|
|
NUM { int error; $$= (ulong) my_strtoll10($1.str, (char**) 0, &error); }
|
2005-06-18 01:55:42 +02:00
|
|
|
| HEX_NUM { $$= (ulong) strtol($1.str, (char**) 0, 16); }
|
2004-05-12 01:38:57 +02:00
|
|
|
| LONG_NUM { int error; $$= (ulong) my_strtoll10($1.str, (char**) 0, &error); }
|
|
|
|
| ULONGLONG_NUM { int error; $$= (ulong) my_strtoll10($1.str, (char**) 0, &error); }
|
2005-04-04 00:50:05 +02:00
|
|
|
| DECIMAL_NUM { int error; $$= (ulong) my_strtoll10($1.str, (char**) 0, &error); }
|
2004-05-12 01:38:57 +02:00
|
|
|
| FLOAT_NUM { int error; $$= (ulong) my_strtoll10($1.str, (char**) 0, &error); }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-09-14 01:54:33 +02:00
|
|
|
ulonglong_num:
|
2004-05-12 01:38:57 +02:00
|
|
|
NUM { int error; $$= (ulonglong) my_strtoll10($1.str, (char**) 0, &error); }
|
|
|
|
| ULONGLONG_NUM { int error; $$= (ulonglong) my_strtoll10($1.str, (char**) 0, &error); }
|
|
|
|
| LONG_NUM { int error; $$= (ulonglong) my_strtoll10($1.str, (char**) 0, &error); }
|
2005-02-08 23:50:45 +01:00
|
|
|
| DECIMAL_NUM { int error; $$= (ulonglong) my_strtoll10($1.str, (char**) 0, &error); }
|
2004-05-12 01:38:57 +02:00
|
|
|
| FLOAT_NUM { int error; $$= (ulonglong) my_strtoll10($1.str, (char**) 0, &error); }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
procedure_clause:
|
|
|
|
/* empty */
|
|
|
|
| PROCEDURE ident /* Procedure name */
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2006-10-12 16:02:57 +02:00
|
|
|
|
|
|
|
if (! lex->parsing_options.allows_select_procedure)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_CLAUSE, MYF(0), "PROCEDURE");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2002-12-05 23:40:28 +01:00
|
|
|
if (&lex->select_lex != lex->current_select)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE", "subquery");
|
2002-12-05 23:40:28 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
lex->proc_list.elements=0;
|
|
|
|
lex->proc_list.first=0;
|
|
|
|
lex->proc_list.next= (byte**) &lex->proc_list.first;
|
2005-07-01 06:05:42 +02:00
|
|
|
if (add_proc_to_list(lex->thd, new Item_field(&lex->
|
|
|
|
current_select->
|
|
|
|
context,
|
|
|
|
NULL,NULL,$2.str)))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2003-11-18 21:04:01 +01:00
|
|
|
Lex->uncacheable(UNCACHEABLE_SIDEEFFECT);
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
'(' procedure_list ')';
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
procedure_list:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| procedure_list2 {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
procedure_list2:
|
|
|
|
procedure_list2 ',' procedure_item
|
2002-04-16 01:09:30 +02:00
|
|
|
| procedure_item;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
procedure_item:
|
|
|
|
remember_name expr
|
|
|
|
{
|
2002-11-29 15:40:18 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (add_proc_to_list(lex->thd, $2))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
if (!$2->name)
|
2005-06-21 19:30:48 +02:00
|
|
|
$2->set_name($1,(uint) ((char*) lex->tok_end - $1),
|
|
|
|
YYTHD->charset());
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
|
|
select_var_list_init:
|
|
|
|
{
|
2002-10-16 20:17:57 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (!lex->describe && (!(lex->result= new select_dumpvar())))
|
2002-10-16 15:55:08 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-12-04 23:14:51 +01:00
|
|
|
select_var_list
|
2002-12-07 12:35:57 +01:00
|
|
|
{}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-10-11 20:49:10 +02:00
|
|
|
select_var_list:
|
2002-10-16 15:55:08 +02:00
|
|
|
select_var_list ',' select_var_ident
|
|
|
|
| select_var_ident {}
|
|
|
|
;
|
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
select_var_ident:
|
|
|
|
'@' ident_or_text
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->result)
|
|
|
|
((select_dumpvar *)lex->result)->var_list.push_back( new my_var($2,0,0,(enum_field_types)0));
|
|
|
|
else
|
2006-05-03 16:02:43 +02:00
|
|
|
/*
|
|
|
|
The parser won't create select_result instance only
|
|
|
|
if it's an EXPLAIN.
|
|
|
|
*/
|
|
|
|
DBUG_ASSERT(lex->describe);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| ident_or_text
|
2002-10-11 20:49:10 +02:00
|
|
|
{
|
2002-10-16 15:55:08 +02:00
|
|
|
LEX *lex=Lex;
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *t;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
if (!lex->spcont || !(t=lex->spcont->find_variable(&$1)))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_SP_UNDECLARED_VAR, MYF(0), $1.str);
|
2002-10-11 20:49:10 +02:00
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2006-05-03 16:02:43 +02:00
|
|
|
if (lex->result)
|
|
|
|
{
|
2005-11-22 23:50:37 +01:00
|
|
|
my_var *var;
|
|
|
|
((select_dumpvar *)lex->result)->
|
|
|
|
var_list.push_back(var= new my_var($1,1,t->offset,t->type));
|
2005-11-23 11:26:07 +01:00
|
|
|
#ifndef DBUG_OFF
|
2005-11-22 23:50:37 +01:00
|
|
|
if (var)
|
2005-12-07 15:01:17 +01:00
|
|
|
var->sp= lex->sphead;
|
2005-11-22 23:50:37 +01:00
|
|
|
#endif
|
2006-05-03 16:02:43 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
The parser won't create select_result instance only
|
|
|
|
if it's an EXPLAIN.
|
|
|
|
*/
|
|
|
|
DBUG_ASSERT(lex->describe);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2002-10-11 20:49:10 +02:00
|
|
|
}
|
2002-10-16 20:17:57 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-28 17:25:41 +01:00
|
|
|
into:
|
2006-10-12 16:02:57 +02:00
|
|
|
INTO
|
|
|
|
{
|
|
|
|
if (! Lex->parsing_options.allows_select_into)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_CLAUSE, MYF(0), "INTO");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
into_destination
|
|
|
|
;
|
|
|
|
|
|
|
|
into_destination:
|
|
|
|
OUTFILE TEXT_STRING_filesystem
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-10-10 12:29:06 +02:00
|
|
|
LEX *lex= Lex;
|
2004-10-10 11:40:24 +02:00
|
|
|
lex->uncacheable(UNCACHEABLE_SIDEEFFECT);
|
2006-10-12 16:02:57 +02:00
|
|
|
if (!(lex->exchange= new sql_exchange($2.str, 0)) ||
|
2004-10-10 11:40:24 +02:00
|
|
|
!(lex->result= new select_export(lex->exchange)))
|
|
|
|
YYABORT;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
opt_field_term opt_line_term
|
2006-10-12 16:02:57 +02:00
|
|
|
| DUMPFILE TEXT_STRING_filesystem
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2002-10-16 15:55:08 +02:00
|
|
|
LEX *lex=Lex;
|
2002-10-16 20:17:57 +02:00
|
|
|
if (!lex->describe)
|
|
|
|
{
|
2003-11-18 21:04:01 +01:00
|
|
|
lex->uncacheable(UNCACHEABLE_SIDEEFFECT);
|
2006-10-12 16:02:57 +02:00
|
|
|
if (!(lex->exchange= new sql_exchange($2.str,1)))
|
2002-10-16 20:17:57 +02:00
|
|
|
YYABORT;
|
|
|
|
if (!(lex->result= new select_dump(lex->exchange)))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-10-11 20:49:10 +02:00
|
|
|
}
|
2006-10-12 16:02:57 +02:00
|
|
|
| select_var_list_init
|
2002-10-11 20:49:10 +02:00
|
|
|
{
|
2003-11-18 21:04:01 +01:00
|
|
|
Lex->uncacheable(UNCACHEABLE_SIDEEFFECT);
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-12-17 18:59:20 +01:00
|
|
|
/*
|
|
|
|
DO statement
|
|
|
|
*/
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-12-04 23:14:51 +01:00
|
|
|
do: DO_SYM
|
2001-12-17 18:59:20 +01:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_DO;
|
2004-11-16 11:36:25 +01:00
|
|
|
mysql_init_select(lex);
|
|
|
|
}
|
|
|
|
expr_list
|
|
|
|
{
|
|
|
|
Lex->insert_list= $3;
|
2001-12-17 18:59:20 +01:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/*
|
2003-06-06 14:43:23 +02:00
|
|
|
Drop : delete tables or index or user
|
2000-07-31 21:29:14 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
drop:
|
2003-08-05 21:14:15 +02:00
|
|
|
DROP opt_temporary table_or_tables if_exists table_list opt_restrict
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_DROP_TABLE;
|
2002-11-07 03:02:37 +01:00
|
|
|
lex->drop_temporary= $2;
|
|
|
|
lex->drop_if_exists= $4;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-06-23 12:29:05 +02:00
|
|
|
| DROP INDEX_SYM ident ON table_ident {}
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_DROP_INDEX;
|
A fix and test cases for
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
2006-12-08 00:20:09 +01:00
|
|
|
lex->alter_info.reset();
|
|
|
|
lex->alter_info.flags= ALTER_DROP_INDEX;
|
2004-05-21 16:57:03 +02:00
|
|
|
lex->alter_info.drop_list.push_back(new Alter_drop(Alter_drop::KEY,
|
|
|
|
$3.str));
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $5, NULL,
|
|
|
|
TL_OPTION_UPDATING))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
| DROP DATABASE if_exists ident
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_DROP_DB;
|
|
|
|
lex->drop_if_exists=$3;
|
|
|
|
lex->name=$4.str;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DROP FUNCTION_SYM if_exists sp_name
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_SP_NO_DROP_SP, MYF(0), "FUNCTION");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->sql_command = SQLCOM_DROP_FUNCTION;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->drop_if_exists= $3;
|
|
|
|
lex->spname= $4;
|
|
|
|
}
|
|
|
|
| DROP PROCEDURE if_exists sp_name
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_SP_NO_DROP_SP, MYF(0), "PROCEDURE");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command = SQLCOM_DROP_PROCEDURE;
|
|
|
|
lex->drop_if_exists= $3;
|
|
|
|
lex->spname= $4;
|
2003-06-06 14:43:23 +02:00
|
|
|
}
|
2004-11-25 21:55:49 +01:00
|
|
|
| DROP USER clear_privileges user_list
|
2003-06-06 14:43:23 +02:00
|
|
|
{
|
2004-11-25 21:55:49 +01:00
|
|
|
Lex->sql_command = SQLCOM_DROP_USER;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DROP VIEW_SYM if_exists table_list opt_restrict
|
|
|
|
{
|
2005-11-16 13:09:06 +01:00
|
|
|
LEX *lex= Lex;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->sql_command= SQLCOM_DROP_VIEW;
|
|
|
|
lex->drop_if_exists= $3;
|
|
|
|
}
|
Bug#23703 (DROP TRIGGER needs an IF EXISTS)
This change set implements the DROP TRIGGER IF EXISTS functionality.
This fix is considered a bug and not a feature, because without it,
there is no known method to write a database creation script that can create
a trigger without failing, when executed on a database that may or may not
contain already a trigger of the same name.
Implementing this functionality closes an orthogonality gap between triggers
and stored procedures / stored functions (which do support the DROP IF
EXISTS syntax).
In sql_trigger.cc, in mysql_create_or_drop_trigger,
the code has been reordered to:
- perform the tests that do not depend on the file system (access()),
- get the locks (wait_if_global_read_lock, LOCK_open)
- call access()
- perform the operation
- write to the binlog
- unlock (LOCK_open, start_waiting_global_read_lock)
This is to ensure that all the code that depends on the presence of the
trigger file is executed in the same critical section,
and prevents race conditions similar to the case fixed by Bug 14262 :
- thread 1 executes DROP TRIGGER IF EXISTS, access() returns a failure
- thread 2 executes CREATE TRIGGER
- thread 2 logs CREATE TRIGGER
- thread 1 logs DROP TRIGGER IF EXISTS
The patch itself is based on code contributed by the MySQL community,
under the terms of the Contributor License Agreement (See Bug 18161).
2006-11-13 23:40:22 +01:00
|
|
|
| DROP TRIGGER_SYM if_exists sp_name
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_DROP_TRIGGER;
|
Bug#23703 (DROP TRIGGER needs an IF EXISTS)
This change set implements the DROP TRIGGER IF EXISTS functionality.
This fix is considered a bug and not a feature, because without it,
there is no known method to write a database creation script that can create
a trigger without failing, when executed on a database that may or may not
contain already a trigger of the same name.
Implementing this functionality closes an orthogonality gap between triggers
and stored procedures / stored functions (which do support the DROP IF
EXISTS syntax).
In sql_trigger.cc, in mysql_create_or_drop_trigger,
the code has been reordered to:
- perform the tests that do not depend on the file system (access()),
- get the locks (wait_if_global_read_lock, LOCK_open)
- call access()
- perform the operation
- write to the binlog
- unlock (LOCK_open, start_waiting_global_read_lock)
This is to ensure that all the code that depends on the presence of the
trigger file is executed in the same critical section,
and prevents race conditions similar to the case fixed by Bug 14262 :
- thread 1 executes DROP TRIGGER IF EXISTS, access() returns a failure
- thread 2 executes CREATE TRIGGER
- thread 2 logs CREATE TRIGGER
- thread 1 logs DROP TRIGGER IF EXISTS
The patch itself is based on code contributed by the MySQL community,
under the terms of the Contributor License Agreement (See Bug 18161).
2006-11-13 23:40:22 +01:00
|
|
|
lex->drop_if_exists= $3;
|
|
|
|
lex->spname= $4;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_list:
|
2001-04-07 00:18:33 +02:00
|
|
|
table_name
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_list ',' table_name;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-04-07 00:18:33 +02:00
|
|
|
table_name:
|
2000-07-31 21:29:14 +02:00
|
|
|
table_ident
|
2003-01-09 02:55:26 +01:00
|
|
|
{
|
|
|
|
if (!Select->add_table_to_list(YYTHD, $1, NULL, TL_OPTION_UPDATING))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
if_exists:
|
2002-11-24 14:47:19 +01:00
|
|
|
/* empty */ { $$= 0; }
|
2002-11-07 03:02:37 +01:00
|
|
|
| IF EXISTS { $$= 1; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-07 03:02:37 +01:00
|
|
|
opt_temporary:
|
|
|
|
/* empty */ { $$= 0; }
|
|
|
|
| TEMPORARY { $$= 1; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
/*
|
|
|
|
** Insert : add new data to table
|
|
|
|
*/
|
|
|
|
|
|
|
|
insert:
|
2002-11-26 00:00:05 +01:00
|
|
|
INSERT
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2004-12-31 11:04:35 +01:00
|
|
|
lex->sql_command= SQLCOM_INSERT;
|
|
|
|
lex->duplicates= DUP_ERROR;
|
2005-01-05 15:48:23 +01:00
|
|
|
mysql_init_select(lex);
|
2002-11-26 00:00:05 +01:00
|
|
|
/* for subselects */
|
|
|
|
lex->lock_option= (using_update_log) ? TL_READ_NO_INSERT : TL_READ;
|
|
|
|
} insert_lock_option
|
2002-11-29 16:17:52 +01:00
|
|
|
opt_ignore insert2
|
2002-11-16 19:19:10 +01:00
|
|
|
{
|
2002-11-21 21:25:53 +01:00
|
|
|
Select->set_lock_for_tables($3);
|
2003-08-18 23:08:08 +02:00
|
|
|
Lex->current_select= &Lex->select_lex;
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
2002-11-28 17:25:41 +01:00
|
|
|
insert_field_spec opt_insert_update
|
2002-12-07 12:35:57 +01:00
|
|
|
{}
|
2002-11-16 19:19:10 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
replace:
|
2001-11-08 13:17:56 +01:00
|
|
|
REPLACE
|
|
|
|
{
|
2002-11-29 16:17:52 +01:00
|
|
|
LEX *lex=Lex;
|
2001-11-08 13:17:56 +01:00
|
|
|
lex->sql_command = SQLCOM_REPLACE;
|
|
|
|
lex->duplicates= DUP_REPLACE;
|
2005-01-05 15:48:23 +01:00
|
|
|
mysql_init_select(lex);
|
2001-11-08 13:17:56 +01:00
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
replace_lock_option insert2
|
|
|
|
{
|
2002-11-21 21:25:53 +01:00
|
|
|
Select->set_lock_for_tables($3);
|
2003-08-18 23:08:08 +02:00
|
|
|
Lex->current_select= &Lex->select_lex;
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
|
|
|
insert_field_spec
|
2002-11-28 18:57:56 +01:00
|
|
|
{}
|
2002-11-16 19:19:10 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
insert_lock_option:
|
2006-03-15 18:15:52 +01:00
|
|
|
/* empty */
|
|
|
|
{
|
|
|
|
#ifdef HAVE_QUERY_CACHE
|
|
|
|
/*
|
|
|
|
If it is SP we do not allow insert optimisation whan result of
|
|
|
|
insert visible only after the table unlocking but everyone can
|
|
|
|
read table.
|
|
|
|
*/
|
|
|
|
$$= (Lex->sphead ? TL_WRITE :TL_WRITE_CONCURRENT_INSERT);
|
|
|
|
#else
|
|
|
|
$$= TL_WRITE_CONCURRENT_INSERT;
|
|
|
|
#endif
|
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
| LOW_PRIORITY { $$= TL_WRITE_LOW_PRIORITY; }
|
|
|
|
| DELAYED_SYM { $$= TL_WRITE_DELAYED; }
|
|
|
|
| HIGH_PRIORITY { $$= TL_WRITE; }
|
2002-11-29 16:17:52 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
replace_lock_option:
|
2002-11-16 19:19:10 +01:00
|
|
|
opt_low_priority { $$= $1; }
|
|
|
|
| DELAYED_SYM { $$= TL_WRITE_DELAYED; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
insert2:
|
|
|
|
INTO insert_table {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| insert_table {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
insert_table:
|
2001-04-07 00:18:33 +02:00
|
|
|
table_name
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->field_list.empty();
|
|
|
|
lex->many_values.empty();
|
|
|
|
lex->insert_list=0;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
insert_field_spec:
|
2003-06-30 22:24:03 +02:00
|
|
|
insert_values {}
|
|
|
|
| '(' ')' insert_values {}
|
|
|
|
| '(' fields ')' insert_values {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| SET
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (!(lex->insert_list = new List_item) ||
|
|
|
|
lex->many_values.push_back(lex->insert_list))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
ident_eq_list;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
fields:
|
|
|
|
fields ',' insert_ident { Lex->field_list.push_back($3); }
|
2002-04-16 01:09:30 +02:00
|
|
|
| insert_ident { Lex->field_list.push_back($1); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
insert_values:
|
|
|
|
VALUES values_list {}
|
2002-11-25 11:11:16 +01:00
|
|
|
| VALUE_SYM values_list {}
|
2003-08-18 23:08:08 +02:00
|
|
|
| create_select { Select->set_braces(0);} union_clause {}
|
|
|
|
| '(' create_select ')' { Select->set_braces(1);} union_opt {}
|
2003-06-17 15:20:07 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
values_list:
|
|
|
|
values_list ',' no_braces
|
2002-04-16 01:09:30 +02:00
|
|
|
| no_braces;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
ident_eq_list:
|
|
|
|
ident_eq_list ',' ident_eq_value
|
|
|
|
|
|
2002-04-16 01:09:30 +02:00
|
|
|
ident_eq_value;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
ident_eq_value:
|
2004-11-12 04:01:46 +01:00
|
|
|
simple_ident_nospvar equal expr_or_default
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->field_list.push_back($1) ||
|
|
|
|
lex->insert_list->push_back($3))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
equal: EQ {}
|
2002-07-23 17:31:22 +02:00
|
|
|
| SET_VAR {}
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_equal:
|
|
|
|
/* empty */ {}
|
|
|
|
| equal {}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
no_braces:
|
|
|
|
'('
|
|
|
|
{
|
|
|
|
if (!(Lex->insert_list = new List_item))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
opt_values ')'
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->many_values.push_back(lex->insert_list))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_values:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| values;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
values:
|
2002-07-25 00:00:56 +02:00
|
|
|
values ',' expr_or_default
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
|
|
|
if (Lex->insert_list->push_back($3))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-07-25 00:00:56 +02:00
|
|
|
| expr_or_default
|
|
|
|
{
|
|
|
|
if (Lex->insert_list->push_back($1))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
expr_or_default:
|
2002-11-29 16:17:52 +01:00
|
|
|
expr { $$= $1;}
|
2005-08-12 16:57:19 +02:00
|
|
|
| DEFAULT {$$= new Item_default_value(Lex->current_context()); }
|
2002-07-25 00:00:56 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-11-28 17:25:41 +01:00
|
|
|
opt_insert_update:
|
|
|
|
/* empty */
|
2004-12-30 23:44:00 +01:00
|
|
|
| ON DUPLICATE_SYM { Lex->duplicates= DUP_UPDATE; }
|
2004-12-13 13:26:28 +01:00
|
|
|
KEY_SYM UPDATE_SYM insert_update_list
|
2002-11-28 17:25:41 +01:00
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* Update rows in a table */
|
|
|
|
|
|
|
|
update:
|
2002-11-29 13:17:54 +01:00
|
|
|
UPDATE_SYM
|
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2003-04-05 08:29:28 +02:00
|
|
|
mysql_init_select(lex);
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->sql_command= SQLCOM_UPDATE;
|
2004-02-09 12:31:03 +01:00
|
|
|
lex->lock_option= TL_UNLOCK; /* Will be set later */
|
2004-12-31 11:04:35 +01:00
|
|
|
lex->duplicates= DUP_ERROR;
|
2001-04-11 13:04:03 +02:00
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
opt_low_priority opt_ignore join_table_list
|
2004-10-06 18:14:33 +02:00
|
|
|
SET update_list
|
2002-11-16 19:19:10 +01:00
|
|
|
{
|
2002-11-29 14:20:25 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->select_lex.table_list.elements > 1)
|
2003-04-05 08:29:28 +02:00
|
|
|
lex->sql_command= SQLCOM_UPDATE_MULTI;
|
2004-01-04 22:44:33 +01:00
|
|
|
else if (lex->select_lex.get_table_list()->derived)
|
|
|
|
{
|
|
|
|
/* it is single table update and it is update of derived table */
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_NON_UPDATABLE_TABLE, MYF(0),
|
|
|
|
lex->select_lex.get_table_list()->alias, "UPDATE");
|
2004-01-04 22:44:33 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-04-15 18:31:47 +02:00
|
|
|
/*
|
|
|
|
In case of multi-update setting write lock for all tables may
|
|
|
|
be too pessimistic. We will decrease lock level if possible in
|
|
|
|
mysql_multi_update().
|
|
|
|
*/
|
|
|
|
Select->set_lock_for_tables($3);
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
2004-10-03 01:20:47 +02:00
|
|
|
where_clause opt_order_clause delete_limit_clause {}
|
2002-11-16 19:19:10 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
update_list:
|
2004-12-13 13:26:28 +01:00
|
|
|
update_list ',' update_elem
|
|
|
|
| update_elem;
|
|
|
|
|
|
|
|
update_elem:
|
2004-12-22 12:54:39 +01:00
|
|
|
simple_ident_nospvar equal expr_or_default
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-12-30 23:44:00 +01:00
|
|
|
if (add_item_to_list(YYTHD, $1) || add_value_to_list(YYTHD, $3))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2004-12-13 13:26:28 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
insert_update_list:
|
|
|
|
insert_update_list ',' insert_update_elem
|
|
|
|
| insert_update_elem;
|
|
|
|
|
|
|
|
insert_update_elem:
|
2004-12-22 12:54:39 +01:00
|
|
|
simple_ident_nospvar equal expr_or_default
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-12-13 13:26:28 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->update_list.push_back($1) ||
|
|
|
|
lex->value_list.push_back($3))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_low_priority:
|
2002-11-26 14:18:16 +01:00
|
|
|
/* empty */ { $$= YYTHD->update_lock_default; }
|
2002-11-16 19:19:10 +01:00
|
|
|
| LOW_PRIORITY { $$= TL_WRITE_LOW_PRIORITY; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
/* Delete rows from a table */
|
|
|
|
|
|
|
|
delete:
|
2000-10-10 21:31:00 +02:00
|
|
|
DELETE_SYM
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_DELETE;
|
2005-01-05 15:48:23 +01:00
|
|
|
mysql_init_select(lex);
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->lock_option= lex->thd->update_lock_default;
|
2004-12-31 11:04:35 +01:00
|
|
|
lex->ignore= 0;
|
2002-11-05 00:10:05 +01:00
|
|
|
lex->select_lex.init_order();
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
opt_delete_options single_multi {}
|
|
|
|
;
|
2001-06-03 16:07:26 +02:00
|
|
|
|
|
|
|
single_multi:
|
2002-11-16 19:19:10 +01:00
|
|
|
FROM table_ident
|
|
|
|
{
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!Select->add_table_to_list(YYTHD, $2, NULL, TL_OPTION_UPDATING,
|
|
|
|
Lex->lock_option))
|
2002-11-16 19:19:10 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
where_clause opt_order_clause
|
2002-11-28 18:57:56 +01:00
|
|
|
delete_limit_clause {}
|
2001-06-15 04:03:15 +02:00
|
|
|
| table_wild_list
|
2002-01-02 23:46:43 +01:00
|
|
|
{ mysql_init_multi_delete(Lex); }
|
2002-11-16 19:19:10 +01:00
|
|
|
FROM join_table_list where_clause
|
2005-06-08 23:07:52 +02:00
|
|
|
{
|
|
|
|
if (multi_delete_set_locks_and_link_aux_tables(Lex))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-01-02 23:46:43 +01:00
|
|
|
| FROM table_wild_list
|
|
|
|
{ mysql_init_multi_delete(Lex); }
|
2002-11-28 18:57:56 +01:00
|
|
|
USING join_table_list where_clause
|
2005-06-08 23:07:52 +02:00
|
|
|
{
|
|
|
|
if (multi_delete_set_locks_and_link_aux_tables(Lex))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
2001-06-15 04:03:15 +02:00
|
|
|
|
|
|
|
table_wild_list:
|
|
|
|
table_wild_one {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_wild_list ',' table_wild_one {};
|
2001-06-15 04:03:15 +02:00
|
|
|
|
|
|
|
table_wild_one:
|
2002-12-24 12:58:07 +01:00
|
|
|
ident opt_wild opt_table_alias
|
2002-11-21 14:56:48 +01:00
|
|
|
{
|
2003-01-09 02:55:26 +01:00
|
|
|
if (!Select->add_table_to_list(YYTHD, new Table_ident($1), $3,
|
2006-09-04 17:40:30 +02:00
|
|
|
TL_OPTION_UPDATING |
|
|
|
|
TL_OPTION_ALIAS, Lex->lock_option))
|
2002-11-21 14:56:48 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-12-24 12:58:07 +01:00
|
|
|
| ident '.' ident opt_wild opt_table_alias
|
2002-11-21 14:56:48 +01:00
|
|
|
{
|
2003-03-17 14:05:04 +01:00
|
|
|
if (!Select->add_table_to_list(YYTHD,
|
|
|
|
new Table_ident(YYTHD, $1, $3, 0),
|
2006-09-04 17:40:30 +02:00
|
|
|
$5,
|
|
|
|
TL_OPTION_UPDATING |
|
|
|
|
TL_OPTION_ALIAS,
|
2003-01-09 02:55:26 +01:00
|
|
|
Lex->lock_option))
|
2001-06-15 04:03:15 +02:00
|
|
|
YYABORT;
|
2002-11-21 14:56:48 +01:00
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
;
|
2001-06-15 04:03:15 +02:00
|
|
|
|
|
|
|
opt_wild:
|
2002-12-04 23:14:51 +01:00
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| '.' '*' {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
2000-09-20 03:54:10 +02:00
|
|
|
opt_delete_options:
|
2001-06-15 04:03:15 +02:00
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| opt_delete_option opt_delete_options {};
|
2000-09-20 03:54:10 +02:00
|
|
|
|
|
|
|
opt_delete_option:
|
2001-06-03 16:07:26 +02:00
|
|
|
QUICK { Select->options|= OPTION_QUICK; }
|
2003-11-17 21:45:07 +01:00
|
|
|
| LOW_PRIORITY { Lex->lock_option= TL_WRITE_LOW_PRIORITY; }
|
2004-12-31 11:04:35 +01:00
|
|
|
| IGNORE_SYM { Lex->ignore= 1; };
|
2000-09-20 03:54:10 +02:00
|
|
|
|
2000-11-13 22:55:10 +01:00
|
|
|
truncate:
|
2001-04-15 20:14:40 +02:00
|
|
|
TRUNCATE_SYM opt_table_sym table_name
|
2001-04-11 13:04:03 +02:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX* lex= Lex;
|
2001-04-11 13:04:03 +02:00
|
|
|
lex->sql_command= SQLCOM_TRUNCATE;
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->select_lex.options= 0;
|
2006-06-27 19:28:32 +02:00
|
|
|
lex->select_lex.sql_cache= SELECT_LEX::SQL_CACHE_UNSPECIFIED;
|
2002-11-05 00:10:05 +01:00
|
|
|
lex->select_lex.init_order();
|
2002-11-16 19:19:10 +01:00
|
|
|
}
|
|
|
|
;
|
2000-11-13 22:55:10 +01:00
|
|
|
|
2001-02-02 02:47:06 +01:00
|
|
|
opt_table_sym:
|
|
|
|
/* empty */
|
2002-04-16 01:09:30 +02:00
|
|
|
| TABLE_SYM;
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* Show things */
|
|
|
|
|
2002-12-04 23:14:51 +01:00
|
|
|
show: SHOW
|
|
|
|
{
|
2002-11-06 09:01:38 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->wild=0;
|
2005-01-24 16:44:54 +01:00
|
|
|
lex->lock_option= TL_READ;
|
|
|
|
mysql_init_select(lex);
|
|
|
|
lex->current_select->parsing_place= SELECT_LIST;
|
2002-11-06 09:01:38 +01:00
|
|
|
bzero((char*) &lex->create_info,sizeof(lex->create_info));
|
|
|
|
}
|
2002-12-05 18:38:42 +01:00
|
|
|
show_param
|
2002-11-28 18:57:56 +01:00
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
show_param:
|
2005-01-24 16:44:54 +01:00
|
|
|
DATABASES wild_and_where
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_DATABASES;
|
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_SCHEMATA))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| opt_full TABLES opt_db wild_and_where
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_TABLES;
|
2005-01-24 16:44:54 +01:00
|
|
|
lex->select_lex.db= $3;
|
2004-11-13 11:56:39 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_TABLE_NAMES))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-07-19 18:06:49 +02:00
|
|
|
| opt_full TRIGGERS_SYM opt_db wild_and_where
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_TRIGGERS;
|
|
|
|
lex->select_lex.db= $3;
|
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_TRIGGERS))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| TABLE_SYM STATUS_SYM opt_db wild_and_where
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_TABLE_STATUS;
|
2005-01-24 16:44:54 +01:00
|
|
|
lex->select_lex.db= $3;
|
2004-11-13 11:56:39 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_TABLES))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| OPEN_SYM TABLES opt_db wild_and_where
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2004-12-30 13:20:40 +01:00
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_OPEN_TABLES;
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->select_lex.db= $3;
|
2004-12-30 13:20:40 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_OPEN_TABLES))
|
|
|
|
YYABORT;
|
2000-12-18 22:22:20 +01:00
|
|
|
}
|
2003-12-17 23:52:03 +01:00
|
|
|
| ENGINE_SYM storage_engines
|
2003-12-10 05:31:42 +01:00
|
|
|
{ Lex->create_info.db_type= $2; }
|
|
|
|
show_engine_param
|
2005-01-24 16:44:54 +01:00
|
|
|
| opt_full COLUMNS from_or_in table_ident opt_db wild_and_where
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-13 11:56:39 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_FIELDS;
|
2005-01-24 16:44:54 +01:00
|
|
|
if ($5)
|
|
|
|
$4->change_db($5);
|
|
|
|
if (prepare_schema_table(YYTHD, lex, $4, SCH_COLUMNS))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-12-04 23:14:51 +01:00
|
|
|
| NEW_SYM MASTER_SYM FOR_SYM SLAVE WITH MASTER_LOG_FILE_SYM EQ
|
2004-04-15 09:14:14 +02:00
|
|
|
TEXT_STRING_sys AND_SYM MASTER_LOG_POS_SYM EQ ulonglong_num
|
|
|
|
AND_SYM MASTER_SERVER_ID_SYM EQ
|
2005-04-04 00:50:05 +02:00
|
|
|
ulong_num
|
2001-07-05 01:14:31 +02:00
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_NEW_MASTER;
|
|
|
|
Lex->mi.log_file_name = $8.str;
|
|
|
|
Lex->mi.pos = $12;
|
2002-01-20 03:16:52 +01:00
|
|
|
Lex->mi.server_id = $16;
|
2001-07-05 01:14:31 +02:00
|
|
|
}
|
2003-07-12 23:31:21 +02:00
|
|
|
| master_or_binary LOGS_SYM
|
2000-10-27 06:11:55 +02:00
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_BINLOGS;
|
2001-05-31 02:50:56 +02:00
|
|
|
}
|
|
|
|
| SLAVE HOSTS_SYM
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_SLAVE_HOSTS;
|
|
|
|
}
|
2001-12-13 14:53:18 +01:00
|
|
|
| BINLOG_SYM EVENTS_SYM binlog_in binlog_from
|
2001-06-21 21:19:24 +02:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_BINLOG_EVENTS;
|
2003-02-12 20:55:37 +01:00
|
|
|
} opt_limit_clause_init
|
2005-01-24 16:44:54 +01:00
|
|
|
| keys_or_index from_or_in table_ident opt_db where_clause
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_KEYS;
|
2005-01-24 16:44:54 +01:00
|
|
|
if ($4)
|
|
|
|
$3->change_db($4);
|
|
|
|
if (prepare_schema_table(YYTHD, lex, $3, SCH_STATISTICS))
|
2004-11-13 11:56:39 +01:00
|
|
|
YYABORT;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-06-12 23:13:12 +02:00
|
|
|
| COLUMN_SYM TYPES_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_COLUMN_TYPES;
|
|
|
|
}
|
|
|
|
| TABLE_SYM TYPES_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2003-12-17 23:52:03 +01:00
|
|
|
lex->sql_command= SQLCOM_SHOW_STORAGE_ENGINES;
|
|
|
|
WARN_DEPRECATED("SHOW TABLE TYPES", "SHOW [STORAGE] ENGINES");
|
|
|
|
}
|
|
|
|
| opt_storage ENGINES_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_STORAGE_ENGINES;
|
2002-06-12 23:13:12 +02:00
|
|
|
}
|
|
|
|
| PRIVILEGES
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_PRIVILEGES;
|
|
|
|
}
|
2002-12-04 23:14:51 +01:00
|
|
|
| COUNT_SYM '(' '*' ')' WARNINGS
|
2002-10-02 12:33:08 +02:00
|
|
|
{ (void) create_select_for_variable("warning_count"); }
|
2002-12-04 23:14:51 +01:00
|
|
|
| COUNT_SYM '(' '*' ')' ERRORS
|
2002-10-02 12:33:08 +02:00
|
|
|
{ (void) create_select_for_variable("error_count"); }
|
2003-02-12 20:55:37 +01:00
|
|
|
| WARNINGS opt_limit_clause_init
|
2002-06-12 23:13:12 +02:00
|
|
|
{ Lex->sql_command = SQLCOM_SHOW_WARNS;}
|
2003-02-12 20:55:37 +01:00
|
|
|
| ERRORS opt_limit_clause_init
|
2002-12-04 23:14:51 +01:00
|
|
|
{ Lex->sql_command = SQLCOM_SHOW_ERRORS;}
|
2005-01-24 16:44:54 +01:00
|
|
|
| opt_var_type STATUS_SYM wild_and_where
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-12-30 13:20:40 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_STATUS;
|
2005-08-27 15:51:11 +02:00
|
|
|
lex->option_type= $1;
|
2004-12-30 13:20:40 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_STATUS))
|
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2002-07-08 18:34:49 +02:00
|
|
|
| INNOBASE_SYM STATUS_SYM
|
2003-12-10 05:31:42 +01:00
|
|
|
{ Lex->sql_command = SQLCOM_SHOW_INNODB_STATUS; WARN_DEPRECATED("SHOW INNODB STATUS", "SHOW ENGINE INNODB STATUS"); }
|
2004-12-24 12:13:32 +01:00
|
|
|
| MUTEX_SYM STATUS_SYM
|
|
|
|
{ Lex->sql_command = SQLCOM_SHOW_MUTEX_STATUS; }
|
2001-01-22 04:32:58 +01:00
|
|
|
| opt_full PROCESSLIST_SYM
|
|
|
|
{ Lex->sql_command= SQLCOM_SHOW_PROCESSLIST;}
|
2005-01-24 16:44:54 +01:00
|
|
|
| opt_var_type VARIABLES wild_and_where
|
2002-08-30 11:40:40 +02:00
|
|
|
{
|
2004-12-30 13:20:40 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_VARIABLES;
|
2005-08-27 15:51:11 +02:00
|
|
|
lex->option_type= $1;
|
2004-12-30 13:20:40 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_VARIABLES))
|
|
|
|
YYABORT;
|
2002-06-28 18:30:09 +02:00
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| charset wild_and_where
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_CHARSETS;
|
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_CHARSETS))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| COLLATION_SYM wild_and_where
|
2004-11-13 11:56:39 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_COLLATIONS;
|
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_COLLATIONS))
|
|
|
|
YYABORT;
|
|
|
|
}
|
2003-07-12 23:31:21 +02:00
|
|
|
| BERKELEY_DB_SYM LOGS_SYM
|
2003-12-10 05:31:42 +01:00
|
|
|
{ Lex->sql_command= SQLCOM_SHOW_LOGS; WARN_DEPRECATED("SHOW BDB LOGS", "SHOW ENGINE BDB LOGS"); }
|
2000-12-15 12:18:52 +01:00
|
|
|
| LOGS_SYM
|
2003-12-10 05:31:42 +01:00
|
|
|
{ Lex->sql_command= SQLCOM_SHOW_LOGS; WARN_DEPRECATED("SHOW LOGS", "SHOW ENGINE BDB LOGS"); }
|
2004-04-05 14:55:26 +02:00
|
|
|
| GRANTS
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_GRANTS;
|
|
|
|
LEX_USER *curr_user;
|
2006-06-29 12:50:44 +02:00
|
|
|
if (!(curr_user= (LEX_USER*) lex->thd->alloc(sizeof(st_lex_user))))
|
2004-04-05 14:55:26 +02:00
|
|
|
YYABORT;
|
2006-06-29 12:50:44 +02:00
|
|
|
bzero(curr_user, sizeof(st_lex_user));
|
2004-04-05 14:55:26 +02:00
|
|
|
lex->grant_user= curr_user;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| GRANTS FOR_SYM user
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SHOW_GRANTS;
|
|
|
|
lex->grant_user=$3;
|
2005-01-16 13:16:23 +01:00
|
|
|
lex->grant_user->password=null_lex_str;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2002-11-06 09:01:38 +01:00
|
|
|
| CREATE DATABASE opt_if_not_exists ident
|
2002-07-02 11:31:54 +02:00
|
|
|
{
|
|
|
|
Lex->sql_command=SQLCOM_SHOW_CREATE_DB;
|
2002-11-06 09:01:38 +01:00
|
|
|
Lex->create_info.options=$3;
|
|
|
|
Lex->name=$4.str;
|
2002-07-02 11:31:54 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| CREATE TABLE_SYM table_ident
|
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command = SQLCOM_SHOW_CREATE;
|
|
|
|
if (!lex->select_lex.add_table_to_list(YYTHD, $3, NULL,0))
|
|
|
|
YYABORT;
|
|
|
|
lex->only_view= 0;
|
|
|
|
}
|
|
|
|
| CREATE VIEW_SYM table_ident
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command = SQLCOM_SHOW_CREATE;
|
|
|
|
if (!lex->select_lex.add_table_to_list(YYTHD, $3, NULL, 0))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->only_view= 1;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| MASTER_SYM STATUS_SYM
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_MASTER_STAT;
|
2000-08-21 23:39:08 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| SLAVE STATUS_SYM
|
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_SLAVE_STAT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
| CREATE PROCEDURE sp_name
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sql_command = SQLCOM_SHOW_CREATE_PROC;
|
|
|
|
lex->spname= $3;
|
|
|
|
}
|
|
|
|
| CREATE FUNCTION_SYM sp_name
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sql_command = SQLCOM_SHOW_CREATE_FUNC;
|
|
|
|
lex->spname= $3;
|
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| PROCEDURE STATUS_SYM wild_and_where
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 11:56:39 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_STATUS_PROC;
|
2005-02-08 20:52:50 +01:00
|
|
|
if (!sp_add_to_query_tables(YYTHD, lex, "mysql", "proc", TL_READ))
|
|
|
|
YYABORT;
|
2004-11-13 11:56:39 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_PROCEDURES))
|
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-01-24 16:44:54 +01:00
|
|
|
| FUNCTION_SYM STATUS_SYM wild_and_where
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2004-11-13 11:56:39 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_STATUS_FUNC;
|
2005-02-08 20:52:50 +01:00
|
|
|
if (!sp_add_to_query_tables(YYTHD, lex, "mysql", "proc", TL_READ))
|
|
|
|
YYABORT;
|
2004-11-13 11:56:39 +01:00
|
|
|
if (prepare_schema_table(YYTHD, lex, 0, SCH_PROCEDURES))
|
|
|
|
YYABORT;
|
2005-11-17 11:11:48 +01:00
|
|
|
}
|
|
|
|
| PROCEDURE CODE_SYM sp_name
|
|
|
|
{
|
|
|
|
#ifdef DBUG_OFF
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
#else
|
|
|
|
Lex->sql_command= SQLCOM_SHOW_PROC_CODE;
|
|
|
|
Lex->spname= $3;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
| FUNCTION_SYM CODE_SYM sp_name
|
|
|
|
{
|
|
|
|
#ifdef DBUG_OFF
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
#else
|
|
|
|
Lex->sql_command= SQLCOM_SHOW_FUNC_CODE;
|
|
|
|
Lex->spname= $3;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-12-10 05:31:42 +01:00
|
|
|
show_engine_param:
|
|
|
|
STATUS_SYM
|
|
|
|
{
|
|
|
|
switch (Lex->create_info.db_type) {
|
2005-09-19 15:35:07 +02:00
|
|
|
case DB_TYPE_NDBCLUSTER:
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_NDBCLUSTER_STATUS;
|
|
|
|
break;
|
2003-12-10 05:31:42 +01:00
|
|
|
case DB_TYPE_INNODB:
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_INNODB_STATUS;
|
|
|
|
break;
|
|
|
|
default:
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_NOT_SUPPORTED_YET, MYF(0), "STATUS");
|
2003-12-10 05:31:42 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| LOGS_SYM
|
|
|
|
{
|
|
|
|
switch (Lex->create_info.db_type) {
|
|
|
|
case DB_TYPE_BERKELEY_DB:
|
|
|
|
Lex->sql_command = SQLCOM_SHOW_LOGS;
|
|
|
|
break;
|
|
|
|
default:
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_NOT_SUPPORTED_YET, MYF(0), "LOGS");
|
2003-12-10 05:31:42 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2003-07-12 23:31:21 +02:00
|
|
|
master_or_binary:
|
|
|
|
MASTER_SYM
|
|
|
|
| BINARY;
|
|
|
|
|
2003-12-17 23:52:03 +01:00
|
|
|
opt_storage:
|
|
|
|
/* empty */
|
|
|
|
| STORAGE_SYM;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_db:
|
|
|
|
/* empty */ { $$= 0; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| from_or_in ident { $$= $2.str; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-01-22 04:32:58 +01:00
|
|
|
opt_full:
|
|
|
|
/* empty */ { Lex->verbose=0; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| FULL { Lex->verbose=1; };
|
2001-01-22 04:32:58 +01:00
|
|
|
|
2001-06-28 09:49:16 +02:00
|
|
|
from_or_in:
|
|
|
|
FROM
|
2002-04-16 01:09:30 +02:00
|
|
|
| IN_SYM;
|
2001-06-28 09:49:16 +02:00
|
|
|
|
2001-06-21 21:19:24 +02:00
|
|
|
binlog_in:
|
|
|
|
/* empty */ { Lex->mi.log_file_name = 0; }
|
2003-03-17 18:56:34 +01:00
|
|
|
| IN_SYM TEXT_STRING_sys { Lex->mi.log_file_name = $2.str; };
|
2001-06-21 21:19:24 +02:00
|
|
|
|
|
|
|
binlog_from:
|
|
|
|
/* empty */ { Lex->mi.pos = 4; /* skip magic number */ }
|
2002-04-16 01:09:30 +02:00
|
|
|
| FROM ulonglong_num { Lex->mi.pos = $2; };
|
2001-06-21 21:19:24 +02:00
|
|
|
|
2004-11-13 11:56:39 +01:00
|
|
|
wild_and_where:
|
|
|
|
/* empty */
|
|
|
|
| LIKE TEXT_STRING_sys
|
|
|
|
{ Lex->wild= new (YYTHD->mem_root) String($2.str, $2.length,
|
|
|
|
system_charset_info); }
|
|
|
|
| WHERE expr
|
|
|
|
{
|
|
|
|
Select->where= $2;
|
|
|
|
if ($2)
|
|
|
|
$2->top_level_item();
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2001-06-21 21:19:24 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* A Oracle compatible synonym for show */
|
|
|
|
describe:
|
|
|
|
describe_command table_ident
|
|
|
|
{
|
2004-11-13 11:56:39 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->lock_option= TL_READ;
|
|
|
|
mysql_init_select(lex);
|
|
|
|
lex->current_select->parsing_place= SELECT_LIST;
|
|
|
|
lex->sql_command= SQLCOM_SELECT;
|
|
|
|
lex->orig_sql_command= SQLCOM_SHOW_FIELDS;
|
|
|
|
lex->select_lex.db= 0;
|
|
|
|
lex->verbose= 0;
|
|
|
|
if (prepare_schema_table(YYTHD, lex, $2, SCH_COLUMNS))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
opt_describe_column {}
|
2003-10-16 14:54:47 +02:00
|
|
|
| describe_command opt_extended_describe
|
|
|
|
{ Lex->describe|= DESCRIBE_NORMAL; }
|
|
|
|
select
|
2002-12-04 23:14:51 +01:00
|
|
|
{
|
2002-10-16 20:17:57 +02:00
|
|
|
LEX *lex=Lex;
|
2002-12-04 23:14:51 +01:00
|
|
|
lex->select_lex.options|= SELECT_DESCRIBE;
|
2002-12-05 18:38:42 +01:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
describe_command:
|
|
|
|
DESC
|
2002-04-16 01:09:30 +02:00
|
|
|
| DESCRIBE;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-10-16 14:54:47 +02:00
|
|
|
opt_extended_describe:
|
|
|
|
/* empty */ {}
|
|
|
|
| EXTENDED_SYM { Lex->describe|= DESCRIBE_EXTENDED; }
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_describe_column:
|
|
|
|
/* empty */ {}
|
|
|
|
| text_string { Lex->wild= $1; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| ident
|
2004-11-08 00:13:54 +01:00
|
|
|
{ Lex->wild= new (YYTHD->mem_root) String((const char*) $1.str,$1.length,system_charset_info); };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
/* flush things */
|
|
|
|
|
|
|
|
flush:
|
2003-05-15 18:35:39 +02:00
|
|
|
FLUSH_SYM opt_no_write_to_binlog
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2006-08-25 15:51:29 +02:00
|
|
|
lex->sql_command= SQLCOM_FLUSH;
|
|
|
|
lex->type= 0;
|
2003-08-11 21:44:43 +02:00
|
|
|
lex->no_write_to_binlog= $2;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
flush_options
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
flush_options:
|
|
|
|
flush_options ',' flush_option
|
2002-04-16 01:09:30 +02:00
|
|
|
| flush_option;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
flush_option:
|
2002-11-28 18:57:56 +01:00
|
|
|
table_or_tables { Lex->type|= REFRESH_TABLES; } opt_table_list {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| TABLES WITH READ_SYM LOCK_SYM { Lex->type|= REFRESH_TABLES | REFRESH_READ_LOCK; }
|
2001-12-02 13:34:01 +01:00
|
|
|
| QUERY_SYM CACHE_SYM { Lex->type|= REFRESH_QUERY_CACHE_FREE; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| HOSTS_SYM { Lex->type|= REFRESH_HOSTS; }
|
|
|
|
| PRIVILEGES { Lex->type|= REFRESH_GRANT; }
|
|
|
|
| LOGS_SYM { Lex->type|= REFRESH_LOG; }
|
|
|
|
| STATUS_SYM { Lex->type|= REFRESH_STATUS; }
|
2000-08-21 23:39:08 +02:00
|
|
|
| SLAVE { Lex->type|= REFRESH_SLAVE; }
|
|
|
|
| MASTER_SYM { Lex->type|= REFRESH_MASTER; }
|
2002-06-20 15:46:25 +02:00
|
|
|
| DES_KEY_FILE { Lex->type|= REFRESH_DES_KEY_FILE; }
|
|
|
|
| RESOURCES { Lex->type|= REFRESH_USER_RESOURCES; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2000-08-21 23:18:32 +02:00
|
|
|
opt_table_list:
|
2002-06-20 15:46:25 +02:00
|
|
|
/* empty */ {;}
|
|
|
|
| table_list {;};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2000-10-14 10:16:17 +02:00
|
|
|
reset:
|
2001-06-15 04:03:15 +02:00
|
|
|
RESET_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_RESET; lex->type=0;
|
2002-11-28 18:57:56 +01:00
|
|
|
} reset_options
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
2000-10-14 10:16:17 +02:00
|
|
|
reset_options:
|
|
|
|
reset_options ',' reset_option
|
2002-04-16 01:09:30 +02:00
|
|
|
| reset_option;
|
2000-10-14 10:16:17 +02:00
|
|
|
|
|
|
|
reset_option:
|
2001-12-02 13:34:01 +01:00
|
|
|
SLAVE { Lex->type|= REFRESH_SLAVE; }
|
|
|
|
| MASTER_SYM { Lex->type|= REFRESH_MASTER; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| QUERY_SYM CACHE_SYM { Lex->type|= REFRESH_QUERY_CACHE;};
|
2000-10-14 10:16:17 +02:00
|
|
|
|
2000-10-27 06:11:55 +02:00
|
|
|
purge:
|
2001-06-15 04:03:15 +02:00
|
|
|
PURGE
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->type=0;
|
2003-02-16 17:39:12 +01:00
|
|
|
} purge_options
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
purge_options:
|
2003-07-12 23:31:21 +02:00
|
|
|
master_or_binary LOGS_SYM purge_option
|
2003-03-11 10:49:06 +01:00
|
|
|
;
|
2003-02-16 17:39:12 +01:00
|
|
|
|
|
|
|
purge_option:
|
2003-03-17 18:56:34 +01:00
|
|
|
TO_SYM TEXT_STRING_sys
|
2003-02-16 17:39:12 +01:00
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_PURGE;
|
|
|
|
Lex->to_log = $2.str;
|
|
|
|
}
|
|
|
|
| BEFORE_SYM expr
|
|
|
|
{
|
2004-11-25 16:13:06 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->value_list.empty();
|
|
|
|
lex->value_list.push_front($2);
|
|
|
|
lex->sql_command= SQLCOM_PURGE_BEFORE;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2003-03-11 10:49:06 +01:00
|
|
|
;
|
2000-10-27 06:11:55 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* kill threads */
|
|
|
|
|
|
|
|
kill:
|
2006-03-06 20:53:14 +01:00
|
|
|
KILL_SYM { Lex->sql_command= SQLCOM_KILL; } kill_option expr
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2004-11-25 16:13:06 +01:00
|
|
|
lex->value_list.empty();
|
2006-03-06 20:53:14 +01:00
|
|
|
lex->value_list.push_front($4);
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
kill_option:
|
|
|
|
/* empty */ { Lex->type= 0; }
|
|
|
|
| CONNECTION_SYM { Lex->type= 0; }
|
2006-03-06 20:53:14 +01:00
|
|
|
| QUERY_SYM { Lex->type= ONLY_KILL_QUERY; }
|
|
|
|
;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* change database */
|
|
|
|
|
|
|
|
use: USE_SYM ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->sql_command=SQLCOM_CHANGE_DB;
|
|
|
|
lex->select_lex.db= $2.str;
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
/* import, export of files */
|
|
|
|
|
2006-03-06 20:53:14 +01:00
|
|
|
load: LOAD DATA_SYM
|
2005-03-16 02:32:47 +01:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2005-05-20 17:47:08 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "LOAD DATA");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2005-03-16 02:32:47 +01:00
|
|
|
lex->fname_start= lex->ptr;
|
|
|
|
}
|
|
|
|
load_data
|
|
|
|
{}
|
|
|
|
|
|
|
|
|
LOAD TABLE_SYM table_ident FROM MASTER_SYM
|
|
|
|
{
|
2005-05-20 17:47:08 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "LOAD TABLE");
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command = SQLCOM_LOAD_MASTER_TABLE;
|
2006-09-11 14:45:40 +02:00
|
|
|
WARN_DEPRECATED("LOAD TABLE FROM MASTER",
|
2006-09-11 13:50:41 +02:00
|
|
|
"mysqldump or future "
|
|
|
|
"BACKUP/RESTORE DATABASE facility");
|
2005-03-16 02:32:47 +01:00
|
|
|
if (!Select->add_table_to_list(YYTHD, $3, NULL, TL_OPTION_UPDATING))
|
|
|
|
YYABORT;
|
|
|
|
};
|
|
|
|
|
|
|
|
load_data:
|
2006-02-14 05:24:01 +01:00
|
|
|
load_data_lock opt_local INFILE TEXT_STRING_filesystem
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_LOAD;
|
2005-03-16 02:32:47 +01:00
|
|
|
lex->lock_option= $1;
|
|
|
|
lex->local_file= $2;
|
2004-12-31 11:04:35 +01:00
|
|
|
lex->duplicates= DUP_ERROR;
|
|
|
|
lex->ignore= 0;
|
2005-03-16 02:32:47 +01:00
|
|
|
if (!(lex->exchange= new sql_exchange($4.str, 0)))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2005-03-16 02:32:47 +01:00
|
|
|
}
|
|
|
|
opt_duplicate INTO
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->fname_end= lex->ptr;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2005-03-16 10:13:35 +01:00
|
|
|
TABLE_SYM table_ident
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2005-03-16 10:13:35 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
if (!Select->add_table_to_list(YYTHD, $10, NULL, TL_OPTION_UPDATING,
|
|
|
|
lex->lock_option))
|
|
|
|
YYABORT;
|
|
|
|
lex->field_list.empty();
|
|
|
|
lex->update_list.empty();
|
|
|
|
lex->value_list.empty();
|
2000-08-21 23:39:08 +02:00
|
|
|
}
|
2005-03-16 10:13:35 +01:00
|
|
|
opt_field_term opt_line_term opt_ignore_lines opt_field_or_var_spec
|
|
|
|
opt_load_data_set_spec
|
|
|
|
{}
|
2001-05-29 03:18:23 +02:00
|
|
|
|
|
2005-03-16 02:32:47 +01:00
|
|
|
FROM MASTER_SYM
|
2001-05-29 03:18:23 +02:00
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_LOAD_MASTER_DATA;
|
2006-09-11 14:45:40 +02:00
|
|
|
WARN_DEPRECATED("LOAD DATA FROM MASTER",
|
2006-09-11 13:50:41 +02:00
|
|
|
"mysqldump or future "
|
|
|
|
"BACKUP/RESTORE DATABASE facility");
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_local:
|
|
|
|
/* empty */ { $$=0;}
|
2002-04-16 01:09:30 +02:00
|
|
|
| LOCAL_SYM { $$=1;};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-05-05 08:41:47 +02:00
|
|
|
load_data_lock:
|
2002-11-26 14:18:16 +01:00
|
|
|
/* empty */ { $$= YYTHD->update_lock_default; }
|
2006-03-15 18:15:52 +01:00
|
|
|
| CONCURRENT
|
|
|
|
{
|
|
|
|
#ifdef HAVE_QUERY_CACHE
|
|
|
|
/*
|
|
|
|
Ignore this option in SP to avoid problem with query cache
|
|
|
|
*/
|
|
|
|
if (Lex->sphead != 0)
|
2006-11-29 13:51:53 +01:00
|
|
|
$$= YYTHD->update_lock_default;
|
|
|
|
else
|
2006-03-15 18:15:52 +01:00
|
|
|
#endif
|
|
|
|
$$= TL_WRITE_CONCURRENT_INSERT;
|
|
|
|
}
|
2002-11-16 19:19:10 +01:00
|
|
|
| LOW_PRIORITY { $$= TL_WRITE_LOW_PRIORITY; };
|
2001-05-05 08:41:47 +02:00
|
|
|
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
opt_duplicate:
|
|
|
|
/* empty */ { Lex->duplicates=DUP_ERROR; }
|
|
|
|
| REPLACE { Lex->duplicates=DUP_REPLACE; }
|
2004-12-31 11:04:35 +01:00
|
|
|
| IGNORE_SYM { Lex->ignore= 1; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_field_term:
|
|
|
|
/* empty */
|
2002-04-16 01:09:30 +02:00
|
|
|
| COLUMNS field_term_list;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_term_list:
|
|
|
|
field_term_list field_term
|
2002-04-16 01:09:30 +02:00
|
|
|
| field_term;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
field_term:
|
2004-10-10 11:40:24 +02:00
|
|
|
TERMINATED BY text_string
|
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->field_term= $3;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| OPTIONALLY ENCLOSED BY text_string
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2004-10-10 12:29:06 +02:00
|
|
|
LEX *lex= Lex;
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(lex->exchange != 0);
|
2004-10-10 12:29:06 +02:00
|
|
|
lex->exchange->enclosed= $4;
|
|
|
|
lex->exchange->opt_enclosed= 1;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2004-10-10 12:29:06 +02:00
|
|
|
| ENCLOSED BY text_string
|
2004-10-10 11:40:24 +02:00
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->enclosed= $3;
|
|
|
|
}
|
2004-10-10 12:29:06 +02:00
|
|
|
| ESCAPED BY text_string
|
2004-10-10 11:40:24 +02:00
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->escaped= $3;
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_line_term:
|
|
|
|
/* empty */
|
2002-04-16 01:09:30 +02:00
|
|
|
| LINES line_term_list;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
line_term_list:
|
|
|
|
line_term_list line_term
|
2002-04-16 01:09:30 +02:00
|
|
|
| line_term;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
line_term:
|
2004-10-10 12:29:06 +02:00
|
|
|
TERMINATED BY text_string
|
2004-10-10 11:40:24 +02:00
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->line_term= $3;
|
|
|
|
}
|
2004-10-10 12:29:06 +02:00
|
|
|
| STARTING BY text_string
|
2004-10-10 11:40:24 +02:00
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->line_start= $3;
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_ignore_lines:
|
|
|
|
/* empty */
|
2004-10-10 12:29:06 +02:00
|
|
|
| IGNORE_SYM NUM LINES
|
|
|
|
{
|
2005-02-25 15:53:22 +01:00
|
|
|
DBUG_ASSERT(Lex->exchange != 0);
|
2004-10-10 11:40:24 +02:00
|
|
|
Lex->exchange->skip_lines= atol($2.str);
|
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-03-16 02:32:47 +01:00
|
|
|
opt_field_or_var_spec:
|
|
|
|
/* empty */ { }
|
|
|
|
| '(' fields_or_vars ')' { }
|
|
|
|
| '(' ')' { };
|
|
|
|
|
|
|
|
fields_or_vars:
|
|
|
|
fields_or_vars ',' field_or_var
|
|
|
|
{ Lex->field_list.push_back($3); }
|
|
|
|
| field_or_var
|
|
|
|
{ Lex->field_list.push_back($1); }
|
|
|
|
;
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2005-03-16 02:32:47 +01:00
|
|
|
field_or_var:
|
|
|
|
simple_ident_nospvar {$$= $1;}
|
|
|
|
| '@' ident_or_text
|
|
|
|
{ $$= new Item_user_var_as_out_param($2); }
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_load_data_set_spec:
|
|
|
|
/* empty */ { }
|
|
|
|
| SET insert_update_list { };
|
|
|
|
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* Common definitions */
|
|
|
|
|
|
|
|
text_literal:
|
2003-04-08 11:38:17 +02:00
|
|
|
TEXT_STRING_literal
|
2003-03-17 18:56:34 +01:00
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
2003-04-23 15:19:22 +02:00
|
|
|
$$ = new Item_string($1.str,$1.length,thd->variables.collation_connection);
|
2003-03-17 18:56:34 +01:00
|
|
|
}
|
2003-03-20 19:01:03 +01:00
|
|
|
| NCHAR_STRING
|
2003-03-21 08:21:01 +01:00
|
|
|
{ $$= new Item_string($1.str,$1.length,national_charset_info); }
|
2003-02-12 20:55:37 +01:00
|
|
|
| UNDERSCORE_CHARSET TEXT_STRING
|
2006-08-15 12:24:07 +02:00
|
|
|
{ $$ = new Item_string($2.str,$2.length,Lex->underscore_charset); }
|
2003-04-08 11:38:17 +02:00
|
|
|
| text_literal TEXT_STRING_literal
|
2003-03-20 19:01:03 +01:00
|
|
|
{ ((Item_string*) $1)->append($2.str,$2.length); }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
text_string:
|
2003-04-08 11:38:17 +02:00
|
|
|
TEXT_STRING_literal
|
2004-11-08 00:13:54 +01:00
|
|
|
{ $$= new (YYTHD->mem_root) String($1.str,$1.length,YYTHD->variables.collation_connection); }
|
2000-07-31 21:29:14 +02:00
|
|
|
| HEX_NUM
|
|
|
|
{
|
2004-12-17 15:06:05 +01:00
|
|
|
Item *tmp= new Item_hex_string($1.str, $1.length);
|
2004-03-18 14:14:36 +01:00
|
|
|
/*
|
2004-12-17 15:06:05 +01:00
|
|
|
it is OK only emulate fix_fields, because we need only
|
2004-03-18 14:14:36 +01:00
|
|
|
value of constant
|
|
|
|
*/
|
|
|
|
$$= tmp ?
|
2004-03-20 12:36:26 +01:00
|
|
|
tmp->quick_fix_field(), tmp->val_str((String*) 0) :
|
2004-03-18 14:14:36 +01:00
|
|
|
(String*) 0;
|
2003-02-12 20:55:37 +01:00
|
|
|
}
|
2004-12-17 15:06:05 +01:00
|
|
|
| BIN_NUM
|
|
|
|
{
|
|
|
|
Item *tmp= new Item_bin_string($1.str, $1.length);
|
|
|
|
/*
|
|
|
|
it is OK only emulate fix_fields, because we need only
|
|
|
|
value of constant
|
|
|
|
*/
|
|
|
|
$$= tmp ? tmp->quick_fix_field(), tmp->val_str((String*) 0) :
|
|
|
|
(String*) 0;
|
|
|
|
}
|
2003-02-12 20:55:37 +01:00
|
|
|
;
|
|
|
|
|
2002-06-12 23:13:12 +02:00
|
|
|
param_marker:
|
2005-07-14 22:01:49 +02:00
|
|
|
PARAM_MARKER
|
2002-06-12 23:13:12 +02:00
|
|
|
{
|
2004-03-02 20:39:50 +01:00
|
|
|
THD *thd=YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
2006-10-12 16:02:57 +02:00
|
|
|
Item_param *item;
|
|
|
|
if (! lex->parsing_options.allows_variable)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
item= new Item_param((uint) (lex->tok_start - (uchar *) thd->query));
|
2005-07-14 22:01:49 +02:00
|
|
|
if (!($$= item) || lex->param_list.push_back(item))
|
2002-06-12 23:13:12 +02:00
|
|
|
{
|
2005-07-14 22:31:09 +02:00
|
|
|
my_message(ER_OUT_OF_RESOURCES, ER(ER_OUT_OF_RESOURCES), MYF(0));
|
2002-06-12 23:13:12 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2003-02-12 20:55:37 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-12-11 17:05:51 +01:00
|
|
|
signed_literal:
|
|
|
|
literal { $$ = $1; }
|
|
|
|
| '+' NUM_literal { $$ = $2; }
|
2004-03-18 14:14:36 +01:00
|
|
|
| '-' NUM_literal
|
|
|
|
{
|
2004-03-18 17:27:03 +01:00
|
|
|
$2->max_length++;
|
2004-03-20 12:36:26 +01:00
|
|
|
$$= $2->neg();
|
2004-03-18 14:14:36 +01:00
|
|
|
}
|
2003-12-11 17:05:51 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
literal:
|
|
|
|
text_literal { $$ = $1; }
|
2003-12-11 17:05:51 +01:00
|
|
|
| NUM_literal { $$ = $1; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| NULL_SYM { $$ = new Item_null();
|
2003-03-14 15:08:12 +01:00
|
|
|
Lex->next_state=MY_LEX_OPERATOR_OR_IDENT;}
|
2005-05-07 14:51:29 +02:00
|
|
|
| FALSE_SYM { $$= new Item_int((char*) "FALSE",0,1); }
|
|
|
|
| TRUE_SYM { $$= new Item_int((char*) "TRUE",1,1); }
|
2004-12-17 15:06:05 +01:00
|
|
|
| HEX_NUM { $$ = new Item_hex_string($1.str, $1.length);}
|
|
|
|
| BIN_NUM { $$= new Item_bin_string($1.str, $1.length); }
|
2003-03-20 16:11:15 +01:00
|
|
|
| UNDERSCORE_CHARSET HEX_NUM
|
2003-07-20 12:26:18 +02:00
|
|
|
{
|
2004-12-17 15:06:05 +01:00
|
|
|
Item *tmp= new Item_hex_string($2.str, $2.length);
|
2004-03-18 14:14:36 +01:00
|
|
|
/*
|
2004-03-20 12:36:26 +01:00
|
|
|
it is OK only emulate fix_fieds, because we need only
|
2004-03-18 14:14:36 +01:00
|
|
|
value of constant
|
|
|
|
*/
|
|
|
|
String *str= tmp ?
|
2004-03-20 12:36:26 +01:00
|
|
|
tmp->quick_fix_field(), tmp->val_str((String*) 0) :
|
2004-03-18 14:14:36 +01:00
|
|
|
(String*) 0;
|
2003-10-16 14:54:47 +02:00
|
|
|
$$= new Item_string(str ? str->ptr() : "",
|
|
|
|
str ? str->length() : 0,
|
2006-08-15 12:24:07 +02:00
|
|
|
Lex->underscore_charset);
|
2003-03-20 16:11:15 +01:00
|
|
|
}
|
2004-12-17 15:06:05 +01:00
|
|
|
| UNDERSCORE_CHARSET BIN_NUM
|
|
|
|
{
|
|
|
|
Item *tmp= new Item_bin_string($2.str, $2.length);
|
|
|
|
/*
|
|
|
|
it is OK only emulate fix_fieds, because we need only
|
|
|
|
value of constant
|
|
|
|
*/
|
|
|
|
String *str= tmp ?
|
|
|
|
tmp->quick_fix_field(), tmp->val_str((String*) 0) :
|
|
|
|
(String*) 0;
|
|
|
|
$$= new Item_string(str ? str->ptr() : "",
|
|
|
|
str ? str->length() : 0,
|
|
|
|
Lex->charset);
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DATE_SYM text_literal { $$ = $2; }
|
|
|
|
| TIME_SYM text_literal { $$ = $2; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| TIMESTAMP text_literal { $$ = $2; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-12-11 01:28:25 +01:00
|
|
|
NUM_literal:
|
2004-05-14 19:12:09 +02:00
|
|
|
NUM { int error; $$ = new Item_int($1.str, (longlong) my_strtoll10($1.str, NULL, &error), $1.length); }
|
|
|
|
| LONG_NUM { int error; $$ = new Item_int($1.str, (longlong) my_strtoll10($1.str, NULL, &error), $1.length); }
|
2003-12-11 01:28:25 +01:00
|
|
|
| ULONGLONG_NUM { $$ = new Item_uint($1.str, $1.length); }
|
2005-02-08 23:50:45 +01:00
|
|
|
| DECIMAL_NUM
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
2005-02-08 23:50:45 +01:00
|
|
|
$$= new Item_decimal($1.str, $1.length, YYTHD->charset());
|
2004-11-12 04:01:46 +01:00
|
|
|
if (YYTHD->net.report_error)
|
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| FLOAT_NUM
|
|
|
|
{
|
|
|
|
$$ = new Item_float($1.str, $1.length);
|
|
|
|
if (YYTHD->net.report_error)
|
|
|
|
{
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
2003-12-11 01:28:25 +01:00
|
|
|
;
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/**********************************************************************
|
2005-04-04 00:50:05 +02:00
|
|
|
** Creating different items.
|
2000-07-31 21:29:14 +02:00
|
|
|
**********************************************************************/
|
|
|
|
|
|
|
|
insert_ident:
|
2004-11-12 04:01:46 +01:00
|
|
|
simple_ident_nospvar { $$=$1; }
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_wild { $$=$1; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_wild:
|
2003-08-11 21:44:43 +02:00
|
|
|
ident '.' '*'
|
2003-01-25 01:25:52 +01:00
|
|
|
{
|
2005-07-01 06:05:42 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2005-08-12 16:57:19 +02:00
|
|
|
$$ = new Item_field(Lex->current_context(), NullS, $1.str, "*");
|
2005-07-01 06:05:42 +02:00
|
|
|
sel->with_wild++;
|
2003-01-25 01:25:52 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ident '.' ident '.' '*'
|
2003-01-25 01:25:52 +01:00
|
|
|
{
|
2005-07-01 06:05:42 +02:00
|
|
|
SELECT_LEX *sel= Select;
|
2005-08-12 16:57:19 +02:00
|
|
|
$$ = new Item_field(Lex->current_context(), (YYTHD->client_capabilities &
|
2005-04-04 00:50:05 +02:00
|
|
|
CLIENT_NO_SCHEMA ? NullS : $1.str),
|
|
|
|
$3.str,"*");
|
2005-07-01 06:05:42 +02:00
|
|
|
sel->with_wild++;
|
2003-01-25 01:25:52 +01:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
order_ident:
|
2002-04-16 01:09:30 +02:00
|
|
|
expr { $$=$1; };
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
simple_ident:
|
2004-11-12 04:01:46 +01:00
|
|
|
ident
|
|
|
|
{
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spv;
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex = Lex;
|
|
|
|
sp_pcontext *spc = lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc && (spv = spc->find_variable(&$1)))
|
2005-08-25 15:34:34 +02:00
|
|
|
{
|
|
|
|
/* We're compiling a stored procedure and found a variable */
|
2006-10-12 16:02:57 +02:00
|
|
|
if (! lex->parsing_options.allows_variable)
|
|
|
|
{
|
|
|
|
my_error(ER_VIEW_SELECT_VARIABLE, MYF(0));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2005-08-25 15:34:34 +02:00
|
|
|
Item_splocal *splocal;
|
2005-12-07 15:01:17 +01:00
|
|
|
splocal= new Item_splocal($1, spv->offset, spv->type,
|
|
|
|
lex->tok_start_prev -
|
2005-08-25 15:34:34 +02:00
|
|
|
lex->sphead->m_tmp_query);
|
2005-11-23 11:26:07 +01:00
|
|
|
#ifndef DBUG_OFF
|
2005-11-22 23:50:37 +01:00
|
|
|
if (splocal)
|
2005-12-07 15:01:17 +01:00
|
|
|
splocal->m_sp= lex->sphead;
|
2005-11-22 23:50:37 +01:00
|
|
|
#endif
|
2005-08-25 15:34:34 +02:00
|
|
|
$$ = (Item*) splocal;
|
2004-11-12 04:01:46 +01:00
|
|
|
lex->safe_to_cache_query=0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
SELECT_LEX *sel=Select;
|
|
|
|
$$= (sel->parsing_place != IN_HAVING ||
|
|
|
|
sel->get_in_sum_expr() > 0) ?
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_field(Lex->current_context(), NullS, NullS, $1.str) :
|
|
|
|
(Item*) new Item_ref(Lex->current_context(), NullS, NullS, $1.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
| simple_ident_q { $$= $1; }
|
|
|
|
;
|
|
|
|
|
|
|
|
simple_ident_nospvar:
|
2000-07-31 21:29:14 +02:00
|
|
|
ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel=Select;
|
2004-08-13 09:01:30 +02:00
|
|
|
$$= (sel->parsing_place != IN_HAVING ||
|
2003-05-17 09:05:07 +02:00
|
|
|
sel->get_in_sum_expr() > 0) ?
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_field(Lex->current_context(), NullS, NullS, $1.str) :
|
|
|
|
(Item*) new Item_ref(Lex->current_context(), NullS, NullS, $1.str);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
| simple_ident_q { $$= $1; }
|
2005-04-04 00:50:05 +02:00
|
|
|
;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
simple_ident_q:
|
|
|
|
ident '.' ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-01-14 17:00:34 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
LEX *lex= thd->lex;
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
/*
|
|
|
|
FIXME This will work ok in simple_ident_nospvar case because
|
|
|
|
we can't meet simple_ident_nospvar in trigger now. But it
|
|
|
|
should be changed in future.
|
|
|
|
*/
|
|
|
|
if (lex->sphead && lex->sphead->m_type == TYPE_ENUM_TRIGGER &&
|
2005-04-04 00:50:05 +02:00
|
|
|
(!my_strcasecmp(system_charset_info, $1.str, "NEW") ||
|
2004-11-12 04:01:46 +01:00
|
|
|
!my_strcasecmp(system_charset_info, $1.str, "OLD")))
|
|
|
|
{
|
2004-11-24 10:24:02 +01:00
|
|
|
Item_trigger_field *trg_fld;
|
2004-11-12 04:01:46 +01:00
|
|
|
bool new_row= ($1.str[0]=='N' || $1.str[0]=='n');
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->trg_chistics.event == TRG_EVENT_INSERT &&
|
|
|
|
!new_row)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "OLD", "on INSERT");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->trg_chistics.event == TRG_EVENT_DELETE &&
|
|
|
|
new_row)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW", "on DELETE");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2006-05-12 11:55:21 +02:00
|
|
|
DBUG_ASSERT(!new_row ||
|
|
|
|
(lex->trg_chistics.event == TRG_EVENT_INSERT ||
|
|
|
|
lex->trg_chistics.event == TRG_EVENT_UPDATE));
|
|
|
|
const bool read_only=
|
|
|
|
!(new_row && lex->trg_chistics.action_time == TRG_ACTION_BEFORE);
|
2005-08-12 16:57:19 +02:00
|
|
|
if (!(trg_fld= new Item_trigger_field(Lex->current_context(),
|
2005-07-01 06:05:42 +02:00
|
|
|
new_row ?
|
2004-11-24 10:24:02 +01:00
|
|
|
Item_trigger_field::NEW_ROW:
|
|
|
|
Item_trigger_field::OLD_ROW,
|
2006-01-24 18:15:12 +01:00
|
|
|
$3.str,
|
2006-05-12 11:55:21 +02:00
|
|
|
SELECT_ACL,
|
|
|
|
read_only)))
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2004-11-24 10:24:02 +01:00
|
|
|
/*
|
|
|
|
Let us add this item to list of all Item_trigger_field objects
|
|
|
|
in trigger.
|
|
|
|
*/
|
|
|
|
lex->trg_table_fields.link_in_list((byte *)trg_fld,
|
|
|
|
(byte**)&trg_fld->next_trg_field);
|
2005-04-04 00:50:05 +02:00
|
|
|
|
2004-11-12 04:01:46 +01:00
|
|
|
$$= (Item *)trg_fld;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
SELECT_LEX *sel= lex->current_select;
|
|
|
|
if (sel->no_table_names_allowed)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_TABLENAME_NOT_ALLOWED_HERE,
|
|
|
|
MYF(0), $1.str, thd->where);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
$$= (sel->parsing_place != IN_HAVING ||
|
|
|
|
sel->get_in_sum_expr() > 0) ?
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_field(Lex->current_context(), NullS, $1.str, $3.str) :
|
|
|
|
(Item*) new Item_ref(Lex->current_context(), NullS, $1.str, $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| '.' ident '.' ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-01-14 17:00:34 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
LEX *lex= thd->lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2003-01-14 17:00:34 +01:00
|
|
|
if (sel->no_table_names_allowed)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_TABLENAME_NOT_ALLOWED_HERE,
|
|
|
|
MYF(0), $2.str, thd->where);
|
2003-01-14 17:00:34 +01:00
|
|
|
}
|
2004-08-13 09:01:30 +02:00
|
|
|
$$= (sel->parsing_place != IN_HAVING ||
|
2003-05-17 09:05:07 +02:00
|
|
|
sel->get_in_sum_expr() > 0) ?
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_field(Lex->current_context(), NullS, $2.str, $4.str) :
|
|
|
|
(Item*) new Item_ref(Lex->current_context(), NullS, $2.str, $4.str);
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ident '.' ident '.' ident
|
2001-06-15 04:03:15 +02:00
|
|
|
{
|
2003-01-14 17:00:34 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
LEX *lex= thd->lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2003-01-14 17:00:34 +01:00
|
|
|
if (sel->no_table_names_allowed)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_TABLENAME_NOT_ALLOWED_HERE,
|
|
|
|
MYF(0), $3.str, thd->where);
|
2003-01-14 17:00:34 +01:00
|
|
|
}
|
2004-08-13 09:01:30 +02:00
|
|
|
$$= (sel->parsing_place != IN_HAVING ||
|
2003-05-17 09:05:07 +02:00
|
|
|
sel->get_in_sum_expr() > 0) ?
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_field(Lex->current_context(),
|
2005-07-01 06:05:42 +02:00
|
|
|
(YYTHD->client_capabilities &
|
2003-05-17 09:05:07 +02:00
|
|
|
CLIENT_NO_SCHEMA ? NullS : $1.str),
|
|
|
|
$3.str, $5.str) :
|
2005-08-12 16:57:19 +02:00
|
|
|
(Item*) new Item_ref(Lex->current_context(),
|
2005-07-01 06:05:42 +02:00
|
|
|
(YYTHD->client_capabilities &
|
2004-10-08 17:13:09 +02:00
|
|
|
CLIENT_NO_SCHEMA ? NullS : $1.str),
|
2003-05-17 09:05:07 +02:00
|
|
|
$3.str, $5.str);
|
2002-04-16 01:09:30 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
field_ident:
|
|
|
|
ident { $$=$1;}
|
2005-05-31 19:06:54 +02:00
|
|
|
| ident '.' ident '.' ident
|
|
|
|
{
|
|
|
|
TABLE_LIST *table= (TABLE_LIST*) Select->table_list.first;
|
|
|
|
if (my_strcasecmp(table_alias_charset, $1.str, table->db))
|
|
|
|
{
|
2005-06-01 13:22:17 +02:00
|
|
|
my_error(ER_WRONG_DB_NAME, MYF(0), $1.str);
|
2005-05-31 19:06:54 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-06-01 13:22:17 +02:00
|
|
|
if (my_strcasecmp(table_alias_charset, $3.str,
|
|
|
|
table->table_name))
|
2005-05-31 19:06:54 +02:00
|
|
|
{
|
2005-06-01 13:22:17 +02:00
|
|
|
my_error(ER_WRONG_TABLE_NAME, MYF(0), $3.str);
|
2005-05-31 19:06:54 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$=$5;
|
|
|
|
}
|
|
|
|
| ident '.' ident
|
|
|
|
{
|
|
|
|
TABLE_LIST *table= (TABLE_LIST*) Select->table_list.first;
|
|
|
|
if (my_strcasecmp(table_alias_charset, $1.str, table->alias))
|
|
|
|
{
|
2005-06-01 13:22:17 +02:00
|
|
|
my_error(ER_WRONG_TABLE_NAME, MYF(0), $1.str);
|
2005-05-31 19:06:54 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
$$=$3;
|
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
| '.' ident { $$=$2;} /* For Delphi */;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_ident:
|
|
|
|
ident { $$=new Table_ident($1); }
|
2003-03-17 14:05:04 +01:00
|
|
|
| ident '.' ident { $$=new Table_ident(YYTHD, $1,$3,0);}
|
2004-01-13 12:31:25 +01:00
|
|
|
| '.' ident { $$=new Table_ident($2);} /* For Delphi */
|
|
|
|
;
|
|
|
|
|
2004-06-26 14:21:32 +02:00
|
|
|
table_ident_nodb:
|
2004-02-16 09:03:25 +01:00
|
|
|
ident { LEX_STRING db={(char*) any_db,3}; $$=new Table_ident(YYTHD, db,$1,0); }
|
2004-01-13 12:31:25 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2003-03-17 18:56:34 +01:00
|
|
|
IDENT_sys:
|
2003-11-03 13:01:59 +01:00
|
|
|
IDENT { $$= $1; }
|
|
|
|
| IDENT_QUOTED
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
if (thd->charset_is_system_charset)
|
2004-07-07 13:39:43 +02:00
|
|
|
{
|
|
|
|
CHARSET_INFO *cs= system_charset_info;
|
2005-04-06 08:53:15 +02:00
|
|
|
int dummy_error;
|
2004-07-07 13:39:43 +02:00
|
|
|
uint wlen= cs->cset->well_formed_len(cs, $1.str,
|
|
|
|
$1.str+$1.length,
|
2005-04-06 08:53:15 +02:00
|
|
|
$1.length, &dummy_error);
|
2004-07-07 13:39:43 +02:00
|
|
|
if (wlen < $1.length)
|
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_INVALID_CHARACTER_STRING, MYF(0),
|
|
|
|
cs->csname, $1.str + wlen);
|
2004-07-07 13:39:43 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2003-11-03 13:01:59 +01:00
|
|
|
$$= $1;
|
2004-07-07 13:39:43 +02:00
|
|
|
}
|
2003-11-03 13:01:59 +01:00
|
|
|
else
|
|
|
|
thd->convert_string(&$$, system_charset_info,
|
|
|
|
$1.str, $1.length, thd->charset());
|
|
|
|
}
|
2003-03-17 18:56:34 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
TEXT_STRING_sys:
|
|
|
|
TEXT_STRING
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
2003-08-18 23:08:08 +02:00
|
|
|
if (thd->charset_is_system_charset)
|
|
|
|
$$= $1;
|
2003-03-17 18:56:34 +01:00
|
|
|
else
|
2003-08-18 23:08:08 +02:00
|
|
|
thd->convert_string(&$$, system_charset_info,
|
|
|
|
$1.str, $1.length, thd->charset());
|
2003-03-17 18:56:34 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-04-08 11:38:17 +02:00
|
|
|
TEXT_STRING_literal:
|
2003-03-17 18:56:34 +01:00
|
|
|
TEXT_STRING
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
2003-08-18 23:08:08 +02:00
|
|
|
if (thd->charset_is_collation_connection)
|
|
|
|
$$= $1;
|
2003-03-17 18:56:34 +01:00
|
|
|
else
|
2003-08-18 23:08:08 +02:00
|
|
|
thd->convert_string(&$$, thd->variables.collation_connection,
|
|
|
|
$1.str, $1.length, thd->charset());
|
2003-03-17 18:56:34 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
|
2006-02-14 05:24:01 +01:00
|
|
|
TEXT_STRING_filesystem:
|
|
|
|
TEXT_STRING
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
if (thd->charset_is_character_set_filesystem)
|
|
|
|
$$= $1;
|
|
|
|
else
|
|
|
|
thd->convert_string(&$$, thd->variables.character_set_filesystem,
|
|
|
|
$1.str, $1.length, thd->charset());
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
ident:
|
2003-03-17 18:56:34 +01:00
|
|
|
IDENT_sys { $$=$1; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| keyword
|
|
|
|
{
|
2003-08-18 23:08:08 +02:00
|
|
|
THD *thd= YYTHD;
|
|
|
|
$$.str= thd->strmake($1.str, $1.length);
|
|
|
|
$$.length= $1.length;
|
2002-11-20 21:56:57 +01:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-07-06 16:37:57 +02:00
|
|
|
label_ident:
|
|
|
|
IDENT_sys { $$=$1; }
|
|
|
|
| keyword_sp
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
$$.str= thd->strmake($1.str, $1.length);
|
|
|
|
$$.length= $1.length;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
ident_or_text:
|
2005-04-04 00:50:05 +02:00
|
|
|
ident { $$=$1;}
|
2003-03-17 18:56:34 +01:00
|
|
|
| TEXT_STRING_sys { $$=$1;}
|
|
|
|
| LEX_HOSTNAME { $$=$1;};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
user:
|
|
|
|
ident_or_text
|
|
|
|
{
|
2002-12-06 20:11:27 +01:00
|
|
|
THD *thd= YYTHD;
|
|
|
|
if (!($$=(LEX_USER*) thd->alloc(sizeof(st_lex_user))))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2003-06-06 14:43:23 +02:00
|
|
|
$$->user = $1;
|
|
|
|
$$->host.str= (char *) "%";
|
|
|
|
$$->host.length= 1;
|
2006-08-23 19:31:00 +02:00
|
|
|
|
2006-09-27 17:11:11 +02:00
|
|
|
if (check_string_length(&$$->user,
|
2006-09-08 13:16:39 +02:00
|
|
|
ER(ER_USERNAME), USERNAME_LENGTH))
|
2006-08-23 19:31:00 +02:00
|
|
|
YYABORT;
|
2003-06-06 14:43:23 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ident_or_text '@' ident_or_text
|
|
|
|
{
|
2002-12-06 20:11:27 +01:00
|
|
|
THD *thd= YYTHD;
|
|
|
|
if (!($$=(LEX_USER*) thd->alloc(sizeof(st_lex_user))))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
$$->user = $1; $$->host=$3;
|
2006-08-23 19:31:00 +02:00
|
|
|
|
2006-09-27 17:11:11 +02:00
|
|
|
if (check_string_length(&$$->user,
|
2006-09-08 13:16:39 +02:00
|
|
|
ER(ER_USERNAME), USERNAME_LENGTH) ||
|
2006-09-27 17:11:11 +02:00
|
|
|
check_string_length(&$$->host,
|
2006-09-08 13:16:39 +02:00
|
|
|
ER(ER_HOSTNAME), HOSTNAME_LENGTH))
|
2006-08-23 19:31:00 +02:00
|
|
|
YYABORT;
|
2004-04-05 14:55:26 +02:00
|
|
|
}
|
2004-04-06 12:00:51 +02:00
|
|
|
| CURRENT_USER optional_braces
|
2004-04-05 14:55:26 +02:00
|
|
|
{
|
2006-06-29 12:50:44 +02:00
|
|
|
if (!($$=(LEX_USER*) YYTHD->alloc(sizeof(st_lex_user))))
|
2004-04-05 14:55:26 +02:00
|
|
|
YYABORT;
|
2006-06-29 12:50:44 +02:00
|
|
|
/*
|
|
|
|
empty LEX_USER means current_user and
|
|
|
|
will be handled in the get_current_user() function
|
|
|
|
later
|
|
|
|
*/
|
|
|
|
bzero($$, sizeof(LEX_USER));
|
2004-04-05 14:55:26 +02:00
|
|
|
};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-07-06 16:37:57 +02:00
|
|
|
/* Keyword that we allow for identifiers (except SP labels) */
|
2000-07-31 21:29:14 +02:00
|
|
|
keyword:
|
2005-07-06 16:37:57 +02:00
|
|
|
keyword_sp {}
|
|
|
|
| ASCII_SYM {}
|
|
|
|
| BACKUP_SYM {}
|
|
|
|
| BEGIN_SYM {}
|
|
|
|
| BYTE_SYM {}
|
|
|
|
| CACHE_SYM {}
|
|
|
|
| CHARSET {}
|
|
|
|
| CHECKSUM_SYM {}
|
|
|
|
| CLOSE_SYM {}
|
|
|
|
| COMMENT_SYM {}
|
|
|
|
| COMMIT_SYM {}
|
|
|
|
| CONTAINS_SYM {}
|
|
|
|
| DEALLOCATE_SYM {}
|
|
|
|
| DO_SYM {}
|
|
|
|
| END {}
|
|
|
|
| EXECUTE_SYM {}
|
|
|
|
| FLUSH_SYM {}
|
|
|
|
| HANDLER_SYM {}
|
|
|
|
| HELP_SYM {}
|
|
|
|
| LANGUAGE_SYM {}
|
|
|
|
| NO_SYM {}
|
|
|
|
| OPEN_SYM {}
|
|
|
|
| PREPARE_SYM {}
|
|
|
|
| REPAIR {}
|
|
|
|
| RESET_SYM {}
|
|
|
|
| RESTORE_SYM {}
|
|
|
|
| ROLLBACK_SYM {}
|
|
|
|
| SAVEPOINT_SYM {}
|
|
|
|
| SECURITY_SYM {}
|
|
|
|
| SIGNED_SYM {}
|
|
|
|
| SLAVE {}
|
|
|
|
| START_SYM {}
|
|
|
|
| STOP_SYM {}
|
|
|
|
| TRUNCATE_SYM {}
|
|
|
|
| UNICODE_SYM {}
|
|
|
|
| XA_SYM {}
|
2006-09-08 12:10:14 +02:00
|
|
|
| UPGRADE_SYM {}
|
2005-07-06 16:37:57 +02:00
|
|
|
;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Keywords that we allow for labels in SPs.
|
2005-07-11 19:10:51 +02:00
|
|
|
* Anything that's the beginning of a statement or characteristics
|
|
|
|
* must be in keyword above, otherwise we get (harmful) shift/reduce
|
|
|
|
* conflicts.
|
2005-07-06 16:37:57 +02:00
|
|
|
*/
|
|
|
|
keyword_sp:
|
2000-07-31 21:29:14 +02:00
|
|
|
ACTION {}
|
2003-06-23 09:56:44 +02:00
|
|
|
| ADDDATE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| AFTER_SYM {}
|
2000-12-07 13:08:48 +01:00
|
|
|
| AGAINST {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| AGGREGATE_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| ALGORITHM_SYM {}
|
2002-11-07 22:45:19 +01:00
|
|
|
| ANY_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| AUTO_INC {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| AVG_ROW_LENGTH {}
|
|
|
|
| AVG_SYM {}
|
2000-10-20 16:39:23 +02:00
|
|
|
| BERKELEY_DB_SYM {}
|
2001-10-24 19:52:19 +02:00
|
|
|
| BINLOG_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| BIT_SYM {}
|
|
|
|
| BOOL_SYM {}
|
2001-10-09 14:53:54 +02:00
|
|
|
| BOOLEAN_SYM {}
|
2003-08-26 16:52:54 +02:00
|
|
|
| BTREE_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| CASCADED {}
|
2005-02-01 20:48:05 +01:00
|
|
|
| CHAIN_SYM {}
|
2000-08-17 00:05:02 +02:00
|
|
|
| CHANGED {}
|
2001-09-22 16:32:43 +02:00
|
|
|
| CIPHER_SYM {}
|
2002-06-12 14:04:18 +02:00
|
|
|
| CLIENT_SYM {}
|
2005-11-17 11:11:48 +01:00
|
|
|
| CODE_SYM {}
|
2003-02-26 14:02:36 +01:00
|
|
|
| COLLATION_SYM {}
|
2004-12-18 10:48:01 +01:00
|
|
|
| COLUMNS {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| COMMITTED_SYM {}
|
2005-01-07 15:43:27 +01:00
|
|
|
| COMPACT_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| COMPRESSED_SYM {}
|
2001-05-05 08:41:47 +02:00
|
|
|
| CONCURRENT {}
|
2004-11-10 17:56:45 +01:00
|
|
|
| CONSISTENT_SYM {}
|
2002-07-20 13:51:52 +02:00
|
|
|
| CUBE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DATA_SYM {}
|
|
|
|
| DATETIME {}
|
|
|
|
| DATE_SYM {}
|
|
|
|
| DAY_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| DEFINER_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DELAY_KEY_WRITE_SYM {}
|
2001-12-13 14:53:18 +01:00
|
|
|
| DES_KEY_FILE {}
|
|
|
|
| DIRECTORY_SYM {}
|
2003-10-14 00:52:03 +02:00
|
|
|
| DISCARD {}
|
2003-01-21 20:07:59 +01:00
|
|
|
| DUMPFILE {}
|
|
|
|
| DUPLICATE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| DYNAMIC_SYM {}
|
|
|
|
| ENUM {}
|
2003-12-10 05:31:42 +01:00
|
|
|
| ENGINE_SYM {}
|
2003-12-17 23:52:03 +01:00
|
|
|
| ENGINES_SYM {}
|
2003-08-27 21:30:50 +02:00
|
|
|
| ERRORS {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ESCAPE_SYM {}
|
2001-10-24 19:52:19 +02:00
|
|
|
| EVENTS_SYM {}
|
2003-10-23 15:21:06 +02:00
|
|
|
| EXPANSION_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| EXTENDED_SYM {}
|
2000-08-17 00:05:02 +02:00
|
|
|
| FAST_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| FOUND_SYM {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| DISABLE_SYM {}
|
|
|
|
| ENABLE_SYM {}
|
2000-09-07 03:55:17 +02:00
|
|
|
| FULL {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| FILE_SYM {}
|
|
|
|
| FIRST_SYM {}
|
|
|
|
| FIXED_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| FRAC_SECOND_SYM {}
|
2003-02-11 12:39:14 +01:00
|
|
|
| GEOMETRY_SYM {}
|
2003-02-28 18:17:08 +01:00
|
|
|
| GEOMETRYCOLLECTION {}
|
2003-10-20 10:24:18 +02:00
|
|
|
| GET_FORMAT {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| GRANTS {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| GLOBAL_SYM {}
|
2003-08-26 16:52:54 +02:00
|
|
|
| HASH_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| HOSTS_SYM {}
|
|
|
|
| HOUR_SYM {}
|
|
|
|
| IDENTIFIED_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| INVOKER_SYM {}
|
2003-10-14 00:52:03 +02:00
|
|
|
| IMPORT {}
|
2001-06-28 09:49:16 +02:00
|
|
|
| INDEXES {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| ISOLATION {}
|
2001-09-20 03:45:13 +02:00
|
|
|
| ISSUER_SYM {}
|
2000-10-20 16:39:23 +02:00
|
|
|
| INNOBASE_SYM {}
|
2001-09-22 16:40:57 +02:00
|
|
|
| INSERT_METHOD {}
|
2003-04-16 08:25:43 +02:00
|
|
|
| RELAY_THREAD {}
|
2001-04-07 00:18:33 +02:00
|
|
|
| LAST_SYM {}
|
2003-06-12 13:29:02 +02:00
|
|
|
| LEAVES {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| LEVEL_SYM {}
|
2003-02-11 12:39:14 +01:00
|
|
|
| LINESTRING {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| LOCAL_SYM {}
|
2001-08-21 19:06:00 +02:00
|
|
|
| LOCKS_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| LOGS_SYM {}
|
|
|
|
| MAX_ROWS {}
|
|
|
|
| MASTER_SYM {}
|
|
|
|
| MASTER_HOST_SYM {}
|
|
|
|
| MASTER_PORT_SYM {}
|
|
|
|
| MASTER_LOG_FILE_SYM {}
|
|
|
|
| MASTER_LOG_POS_SYM {}
|
|
|
|
| MASTER_USER_SYM {}
|
|
|
|
| MASTER_PASSWORD_SYM {}
|
2004-02-21 19:10:59 +01:00
|
|
|
| MASTER_SERVER_ID_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| MASTER_CONNECT_RETRY_SYM {}
|
2003-09-01 13:16:20 +02:00
|
|
|
| MASTER_SSL_SYM {}
|
|
|
|
| MASTER_SSL_CA_SYM {}
|
|
|
|
| MASTER_SSL_CAPATH_SYM {}
|
|
|
|
| MASTER_SSL_CERT_SYM {}
|
|
|
|
| MASTER_SSL_CIPHER_SYM {}
|
|
|
|
| MASTER_SSL_KEY_SYM {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| MAX_CONNECTIONS_PER_HOUR {}
|
|
|
|
| MAX_QUERIES_PER_HOUR {}
|
|
|
|
| MAX_UPDATES_PER_HOUR {}
|
2004-12-29 18:30:37 +01:00
|
|
|
| MAX_USER_CONNECTIONS_SYM {}
|
2001-01-16 14:02:25 +01:00
|
|
|
| MEDIUM_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| MERGE_SYM {}
|
2003-07-08 12:06:05 +02:00
|
|
|
| MICROSECOND_SYM {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| MIGRATE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| MINUTE_SYM {}
|
|
|
|
| MIN_ROWS {}
|
|
|
|
| MODIFY_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| MODE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| MONTH_SYM {}
|
2003-02-11 12:39:14 +01:00
|
|
|
| MULTILINESTRING {}
|
|
|
|
| MULTIPOINT {}
|
|
|
|
| MULTIPOLYGON {}
|
2005-04-12 17:15:54 +02:00
|
|
|
| MUTEX_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| NAME_SYM {}
|
2003-02-26 14:02:36 +01:00
|
|
|
| NAMES_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| NATIONAL_SYM {}
|
|
|
|
| NCHAR_SYM {}
|
2004-04-15 09:14:14 +02:00
|
|
|
| NDBCLUSTER_SYM {}
|
2001-04-07 00:18:33 +02:00
|
|
|
| NEXT_SYM {}
|
2001-09-20 03:45:13 +02:00
|
|
|
| NEW_SYM {}
|
2002-09-05 15:17:08 +02:00
|
|
|
| NONE_SYM {}
|
2003-09-15 07:26:48 +02:00
|
|
|
| NVARCHAR_SYM {}
|
2002-11-16 19:19:10 +01:00
|
|
|
| OFFSET_SYM {}
|
2003-07-04 18:52:04 +02:00
|
|
|
| OLD_PASSWORD {}
|
2004-06-03 23:17:18 +02:00
|
|
|
| ONE_SHOT_SYM {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| ONE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| PACK_KEYS_SYM {}
|
2002-06-02 20:22:20 +02:00
|
|
|
| PARTIAL {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| PASSWORD {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| PHASE_SYM {}
|
2003-02-20 23:14:37 +01:00
|
|
|
| POINT_SYM {}
|
2003-02-11 12:39:14 +01:00
|
|
|
| POLYGON {}
|
2001-04-07 00:18:33 +02:00
|
|
|
| PREV_SYM {}
|
2004-12-18 10:48:01 +01:00
|
|
|
| PRIVILEGES {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| PROCESS {}
|
|
|
|
| PROCESSLIST_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| QUARTER_SYM {}
|
2001-12-02 13:34:01 +01:00
|
|
|
| QUERY_SYM {}
|
2000-08-17 00:05:02 +02:00
|
|
|
| QUICK {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| RAID_0_SYM {}
|
2000-08-21 23:39:08 +02:00
|
|
|
| RAID_CHUNKS {}
|
|
|
|
| RAID_CHUNKSIZE {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| RAID_STRIPED_SYM {}
|
2000-08-21 23:39:08 +02:00
|
|
|
| RAID_TYPE {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| RECOVER_SYM {}
|
2005-02-14 21:50:09 +01:00
|
|
|
| REDUNDANT_SYM {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| RELAY_LOG_FILE_SYM {}
|
|
|
|
| RELAY_LOG_POS_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| RELOAD {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| REPEATABLE_SYM {}
|
2002-06-12 14:04:18 +02:00
|
|
|
| REPLICATION {}
|
2002-05-15 12:50:38 +02:00
|
|
|
| RESOURCES {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| RESUME_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| RETURNS_SYM {}
|
2002-07-20 13:51:52 +02:00
|
|
|
| ROLLUP_SYM {}
|
2004-12-23 11:46:24 +01:00
|
|
|
| ROUTINE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ROWS_SYM {}
|
|
|
|
| ROW_FORMAT_SYM {}
|
|
|
|
| ROW_SYM {}
|
2003-08-26 16:52:54 +02:00
|
|
|
| RTREE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| SECOND_SYM {}
|
2002-11-20 20:44:32 +01:00
|
|
|
| SERIAL_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| SERIALIZABLE_SYM {}
|
|
|
|
| SESSION_SYM {}
|
2002-06-02 20:22:20 +02:00
|
|
|
| SIMPLE_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| SHARE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| SHUTDOWN {}
|
2004-11-10 17:56:45 +01:00
|
|
|
| SNAPSHOT_SYM {}
|
2003-06-04 18:21:51 +02:00
|
|
|
| SOUNDS_SYM {}
|
2001-12-02 13:34:01 +01:00
|
|
|
| SQL_CACHE_SYM {}
|
2002-07-23 17:31:22 +02:00
|
|
|
| SQL_BUFFER_RESULT {}
|
2001-12-02 13:34:01 +01:00
|
|
|
| SQL_NO_CACHE_SYM {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| SQL_THREAD {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| STATUS_SYM {}
|
2003-12-17 23:52:03 +01:00
|
|
|
| STORAGE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| STRING_SYM {}
|
2003-06-23 09:56:44 +02:00
|
|
|
| SUBDATE_SYM {}
|
2001-09-20 03:45:13 +02:00
|
|
|
| SUBJECT_SYM {}
|
2002-06-12 14:04:18 +02:00
|
|
|
| SUPER_SYM {}
|
2005-01-16 13:16:23 +01:00
|
|
|
| SUSPEND_SYM {}
|
2004-12-18 10:48:01 +01:00
|
|
|
| TABLES {}
|
2003-10-14 00:52:03 +02:00
|
|
|
| TABLESPACE {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| TEMPORARY {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| TEMPTABLE_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| TEXT_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| TRANSACTION_SYM {}
|
2005-07-19 18:06:49 +02:00
|
|
|
| TRIGGERS_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| TIMESTAMP {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| TIMESTAMP_ADD {}
|
|
|
|
| TIMESTAMP_DIFF {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| TIME_SYM {}
|
2003-12-17 23:52:03 +01:00
|
|
|
| TYPES_SYM {}
|
2005-04-12 23:08:19 +02:00
|
|
|
| TYPE_SYM {}
|
2004-09-13 11:19:38 +02:00
|
|
|
| UDF_RETURNS_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| FUNCTION_SYM {}
|
2001-03-21 00:02:22 +01:00
|
|
|
| UNCOMMITTED_SYM {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| UNDEFINED_SYM {}
|
2004-11-17 16:49:10 +01:00
|
|
|
| UNKNOWN_SYM {}
|
2003-09-13 22:13:41 +02:00
|
|
|
| UNTIL_SYM {}
|
2003-06-06 14:43:23 +02:00
|
|
|
| USER {}
|
2002-03-13 18:20:17 +01:00
|
|
|
| USE_FRM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| VARIABLES {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| VIEW_SYM {}
|
2002-11-20 20:44:32 +01:00
|
|
|
| VALUE_SYM {}
|
2003-08-27 21:30:50 +02:00
|
|
|
| WARNINGS {}
|
2004-11-12 04:01:46 +01:00
|
|
|
| WEEK_SYM {}
|
2000-07-31 21:29:14 +02:00
|
|
|
| WORK_SYM {}
|
2003-05-29 11:52:25 +02:00
|
|
|
| X509_SYM {}
|
2002-08-30 11:40:40 +02:00
|
|
|
| YEAR_SYM {}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
/* Option functions */
|
|
|
|
|
|
|
|
set:
|
|
|
|
SET opt_option
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SET_OPTION;
|
2005-01-05 15:48:23 +01:00
|
|
|
mysql_init_select(lex);
|
2004-03-24 16:33:47 +01:00
|
|
|
lex->option_type=OPT_SESSION;
|
2002-07-23 17:31:22 +02:00
|
|
|
lex->var_list.empty();
|
2004-06-03 23:17:18 +02:00
|
|
|
lex->one_shot_set= 0;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
option_value_list
|
|
|
|
{}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_option:
|
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| OPTION {};
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
option_value_list:
|
2005-03-04 14:35:28 +01:00
|
|
|
option_type_value
|
|
|
|
| option_value_list ',' option_type_value;
|
|
|
|
|
|
|
|
option_type_value:
|
|
|
|
{
|
|
|
|
if (Lex->sphead)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
If we are in SP we want have own LEX for each assignment.
|
|
|
|
This is mostly because it is hard for several sp_instr_set
|
2005-05-17 17:08:43 +02:00
|
|
|
and sp_instr_set_trigger instructions share one LEX.
|
|
|
|
(Well, it is theoretically possible but adds some extra
|
2005-03-04 14:35:28 +01:00
|
|
|
overhead on preparation for execution stage and IMO less
|
|
|
|
robust).
|
|
|
|
|
|
|
|
QQ: May be we should simply prohibit group assignments in SP?
|
|
|
|
*/
|
|
|
|
LEX *lex;
|
|
|
|
Lex->sphead->reset_lex(YYTHD);
|
|
|
|
lex= Lex;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
/* Set new LEX as if we at start of set rule. */
|
|
|
|
lex->sql_command= SQLCOM_SET_OPTION;
|
|
|
|
mysql_init_select(lex);
|
|
|
|
lex->option_type=OPT_SESSION;
|
|
|
|
lex->var_list.empty();
|
|
|
|
lex->one_shot_set= 0;
|
|
|
|
lex->sphead->m_tmp_query= lex->tok_start;
|
|
|
|
}
|
|
|
|
}
|
2005-05-18 09:47:45 +02:00
|
|
|
ext_option_value
|
2005-03-04 14:35:28 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
sp_head *sp= lex->sphead;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
if (!lex->var_list.is_empty())
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We have assignment to user or system variable or
|
|
|
|
option setting, so we should construct sp_instr_stmt
|
|
|
|
for it.
|
|
|
|
*/
|
|
|
|
LEX_STRING qbuff;
|
|
|
|
sp_instr_stmt *i;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
if (!(i= new sp_instr_stmt(sp->instructions(), lex->spcont,
|
|
|
|
lex)))
|
|
|
|
YYABORT;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2006-07-07 19:24:54 +02:00
|
|
|
/*
|
|
|
|
Extract the query statement from the tokenizer. The
|
|
|
|
end is either lex->ptr, if there was no lookahead,
|
|
|
|
lex->tok_end otherwise.
|
|
|
|
*/
|
|
|
|
if (yychar == YYEMPTY)
|
2005-03-04 14:35:28 +01:00
|
|
|
qbuff.length= lex->ptr - sp->m_tmp_query;
|
|
|
|
else
|
|
|
|
qbuff.length= lex->tok_end - sp->m_tmp_query;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
if (!(qbuff.str= alloc_root(YYTHD->mem_root, qbuff.length + 5)))
|
|
|
|
YYABORT;
|
2005-05-17 17:08:43 +02:00
|
|
|
|
2005-03-04 14:35:28 +01:00
|
|
|
strmake(strmake(qbuff.str, "SET ", 4), (char *)sp->m_tmp_query,
|
|
|
|
qbuff.length);
|
|
|
|
qbuff.length+= 4;
|
|
|
|
i->m_query= qbuff;
|
|
|
|
sp->add_instr(i);
|
|
|
|
}
|
|
|
|
lex->sphead->restore_lex(YYTHD);
|
|
|
|
}
|
|
|
|
};
|
2002-07-23 17:31:22 +02:00
|
|
|
|
|
|
|
option_type:
|
2005-05-18 09:47:45 +02:00
|
|
|
option_type2 {}
|
|
|
|
| GLOBAL_SYM { $$=OPT_GLOBAL; }
|
|
|
|
| LOCAL_SYM { $$=OPT_SESSION; }
|
|
|
|
| SESSION_SYM { $$=OPT_SESSION; }
|
|
|
|
;
|
|
|
|
|
|
|
|
option_type2:
|
|
|
|
/* empty */ { $$= OPT_DEFAULT; }
|
|
|
|
| ONE_SHOT_SYM { Lex->one_shot_set= 1; $$= OPT_SESSION; }
|
2002-07-23 17:31:22 +02:00
|
|
|
;
|
|
|
|
|
|
|
|
opt_var_type:
|
|
|
|
/* empty */ { $$=OPT_SESSION; }
|
2002-08-30 11:40:40 +02:00
|
|
|
| GLOBAL_SYM { $$=OPT_GLOBAL; }
|
2002-07-23 17:31:22 +02:00
|
|
|
| LOCAL_SYM { $$=OPT_SESSION; }
|
|
|
|
| SESSION_SYM { $$=OPT_SESSION; }
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_var_ident_type:
|
|
|
|
/* empty */ { $$=OPT_DEFAULT; }
|
2002-08-30 11:40:40 +02:00
|
|
|
| GLOBAL_SYM '.' { $$=OPT_GLOBAL; }
|
2002-07-23 17:31:22 +02:00
|
|
|
| LOCAL_SYM '.' { $$=OPT_SESSION; }
|
|
|
|
| SESSION_SYM '.' { $$=OPT_SESSION; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-05-18 09:47:45 +02:00
|
|
|
ext_option_value:
|
|
|
|
sys_option_value
|
|
|
|
| option_type2 option_value;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-05-18 09:47:45 +02:00
|
|
|
sys_option_value:
|
|
|
|
option_type internal_variable_name equal set_expr_or_default
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2004-11-24 10:24:02 +01:00
|
|
|
|
2005-05-18 09:47:45 +02:00
|
|
|
if ($2.var == &trg_new_row_fake_var)
|
|
|
|
{
|
|
|
|
/* We are in trigger and assigning value to field of new row */
|
|
|
|
Item *it;
|
2005-05-27 12:15:17 +02:00
|
|
|
Item_trigger_field *trg_fld;
|
2005-08-12 12:54:42 +02:00
|
|
|
sp_instr_set_trigger_field *sp_fld;
|
|
|
|
LINT_INIT(sp_fld);
|
2005-05-18 09:47:45 +02:00
|
|
|
if ($1)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
2005-05-18 09:47:45 +02:00
|
|
|
if ($4)
|
|
|
|
it= $4;
|
2004-11-12 04:01:46 +01:00
|
|
|
else
|
2005-05-18 09:47:45 +02:00
|
|
|
{
|
|
|
|
/* QQ: Shouldn't this be field's default value ? */
|
|
|
|
it= new Item_null();
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2006-05-12 11:55:21 +02:00
|
|
|
DBUG_ASSERT(lex->trg_chistics.action_time == TRG_ACTION_BEFORE &&
|
|
|
|
(lex->trg_chistics.event == TRG_EVENT_INSERT ||
|
|
|
|
lex->trg_chistics.event == TRG_EVENT_UPDATE));
|
2005-08-12 16:57:19 +02:00
|
|
|
if (!(trg_fld= new Item_trigger_field(Lex->current_context(),
|
2005-07-01 06:05:42 +02:00
|
|
|
Item_trigger_field::NEW_ROW,
|
2006-01-24 18:15:12 +01:00
|
|
|
$2.base_name.str,
|
2006-05-12 11:55:21 +02:00
|
|
|
UPDATE_ACL, FALSE)) ||
|
2005-08-12 12:54:42 +02:00
|
|
|
!(sp_fld= new sp_instr_set_trigger_field(lex->sphead->
|
|
|
|
instructions(),
|
|
|
|
lex->spcont,
|
|
|
|
trg_fld,
|
|
|
|
it, lex)))
|
2005-05-18 09:47:45 +02:00
|
|
|
YYABORT;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-05-18 09:47:45 +02:00
|
|
|
/*
|
|
|
|
Let us add this item to list of all Item_trigger_field
|
|
|
|
objects in trigger.
|
|
|
|
*/
|
2005-05-27 12:15:17 +02:00
|
|
|
lex->trg_table_fields.link_in_list((byte *)trg_fld,
|
|
|
|
(byte **)&trg_fld->next_trg_field);
|
2005-05-18 09:47:45 +02:00
|
|
|
|
2005-08-12 12:54:42 +02:00
|
|
|
lex->sphead->add_instr(sp_fld);
|
2005-05-18 09:47:45 +02:00
|
|
|
}
|
|
|
|
else if ($2.var)
|
|
|
|
{ /* System variable */
|
|
|
|
if ($1)
|
2005-08-27 15:51:11 +02:00
|
|
|
lex->option_type= $1;
|
2005-05-18 09:47:45 +02:00
|
|
|
lex->var_list.push_back(new set_var(lex->option_type, $2.var,
|
|
|
|
&$2.base_name, $4));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* An SP local variable */
|
|
|
|
sp_pcontext *ctx= lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spv;
|
2005-08-12 12:54:42 +02:00
|
|
|
sp_instr_set *sp_set;
|
2005-05-18 09:47:45 +02:00
|
|
|
Item *it;
|
|
|
|
if ($1)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
|
2006-04-07 16:53:15 +02:00
|
|
|
spv= ctx->find_variable(&$2.base_name);
|
2005-05-18 09:47:45 +02:00
|
|
|
|
|
|
|
if ($4)
|
|
|
|
it= $4;
|
|
|
|
else if (spv->dflt)
|
|
|
|
it= spv->dflt;
|
|
|
|
else
|
|
|
|
it= new Item_null();
|
2005-08-12 12:54:42 +02:00
|
|
|
sp_set= new sp_instr_set(lex->sphead->instructions(), ctx,
|
|
|
|
spv->offset, it, spv->type, lex, TRUE);
|
|
|
|
lex->sphead->add_instr(sp_set);
|
2005-05-18 09:47:45 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
| option_type TRANSACTION_SYM ISOLATION LEVEL_SYM isolation_types
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2005-08-08 16:04:10 +02:00
|
|
|
if ($1)
|
2005-08-27 15:51:11 +02:00
|
|
|
lex->option_type= $1;
|
2005-05-18 09:47:45 +02:00
|
|
|
lex->var_list.push_back(new set_var(lex->option_type,
|
|
|
|
find_sys_var("tx_isolation"),
|
|
|
|
&null_lex_str,
|
|
|
|
new Item_int((int32) $5)));
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
option_value:
|
|
|
|
'@' ident_or_text equal expr
|
|
|
|
{
|
|
|
|
Lex->var_list.push_back(new set_var_user(new Item_func_set_user_var($2,$4)));
|
|
|
|
}
|
2002-07-25 00:00:56 +02:00
|
|
|
| '@' '@' opt_var_ident_type internal_variable_name equal set_expr_or_default
|
2002-07-23 17:31:22 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2005-08-27 15:51:11 +02:00
|
|
|
lex->var_list.push_back(new set_var($3, $4.var, &$4.base_name, $6));
|
2002-07-23 17:31:22 +02:00
|
|
|
}
|
2003-05-21 14:44:12 +02:00
|
|
|
| charset old_or_new_charset_name_or_default
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2003-03-18 14:01:32 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-04-05 15:56:15 +02:00
|
|
|
LEX *lex= Lex;
|
2003-05-21 14:44:12 +02:00
|
|
|
$2= $2 ? $2: global_system_variables.character_set_client;
|
2003-09-15 13:31:04 +02:00
|
|
|
lex->var_list.push_back(new set_var_collation_client($2,thd->variables.collation_database,$2));
|
2003-02-26 14:02:36 +01:00
|
|
|
}
|
2005-10-11 15:01:38 +02:00
|
|
|
| NAMES_SYM equal expr
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
LEX_STRING names;
|
|
|
|
|
|
|
|
names.str= (char *)"names";
|
|
|
|
names.length= 5;
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc && spc->find_variable(&names))
|
2005-10-11 15:01:38 +02:00
|
|
|
my_error(ER_SP_BAD_VAR_SHADOW, MYF(0), names.str);
|
2005-11-18 23:22:12 +01:00
|
|
|
else
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
|
2005-10-11 15:01:38 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2003-03-05 09:37:39 +01:00
|
|
|
| NAMES_SYM charset_name_or_default opt_collate
|
2003-03-07 08:54:26 +01:00
|
|
|
{
|
2003-04-05 15:56:15 +02:00
|
|
|
LEX *lex= Lex;
|
2003-05-21 14:44:12 +02:00
|
|
|
$2= $2 ? $2 : global_system_variables.character_set_client;
|
2003-04-08 11:38:17 +02:00
|
|
|
$3= $3 ? $3 : $2;
|
|
|
|
if (!my_charset_same($2,$3))
|
2003-03-07 08:54:26 +01:00
|
|
|
{
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_COLLATION_CHARSET_MISMATCH, MYF(0),
|
|
|
|
$3->name, $2->csname);
|
2003-04-23 15:19:22 +02:00
|
|
|
YYABORT;
|
2003-03-07 08:54:26 +01:00
|
|
|
}
|
2003-05-30 20:09:35 +02:00
|
|
|
lex->var_list.push_back(new set_var_collation_client($3,$3,$3));
|
2003-03-07 08:54:26 +01:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
| PASSWORD equal text_or_password
|
2001-06-28 09:49:16 +02:00
|
|
|
{
|
2002-11-26 14:18:16 +01:00
|
|
|
THD *thd=YYTHD;
|
2002-07-23 17:31:22 +02:00
|
|
|
LEX_USER *user;
|
2005-10-11 15:01:38 +02:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
|
|
|
LEX_STRING pw;
|
|
|
|
|
|
|
|
pw.str= (char *)"password";
|
|
|
|
pw.length= 8;
|
2006-04-07 16:53:15 +02:00
|
|
|
if (spc && spc->find_variable(&pw))
|
2005-10-11 15:01:38 +02:00
|
|
|
{
|
|
|
|
my_error(ER_SP_BAD_VAR_SHADOW, MYF(0), pw.str);
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!(user=(LEX_USER*) thd->alloc(sizeof(LEX_USER))))
|
2002-07-23 17:31:22 +02:00
|
|
|
YYABORT;
|
2005-01-16 13:16:23 +01:00
|
|
|
user->host=null_lex_str;
|
2005-09-15 21:29:07 +02:00
|
|
|
user->user.str=thd->security_ctx->priv_user;
|
2003-12-19 18:52:13 +01:00
|
|
|
thd->lex->var_list.push_back(new set_var_password(user, $3));
|
2002-07-23 17:31:22 +02:00
|
|
|
}
|
|
|
|
| PASSWORD FOR_SYM user equal text_or_password
|
2001-06-28 09:49:16 +02:00
|
|
|
{
|
2002-07-23 17:31:22 +02:00
|
|
|
Lex->var_list.push_back(new set_var_password($3,$5));
|
|
|
|
}
|
2002-10-12 11:07:54 +02:00
|
|
|
;
|
2001-06-28 09:49:16 +02:00
|
|
|
|
2002-07-23 17:31:22 +02:00
|
|
|
internal_variable_name:
|
|
|
|
ident
|
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_pcontext *spc= lex->spcont;
|
2006-04-07 16:53:15 +02:00
|
|
|
sp_variable_t *spv;
|
2004-11-12 04:01:46 +01:00
|
|
|
|
|
|
|
/* We have to lookup here since local vars can shadow sysvars */
|
2006-04-07 16:53:15 +02:00
|
|
|
if (!spc || !(spv = spc->find_variable(&$1)))
|
2004-11-12 04:01:46 +01:00
|
|
|
{
|
|
|
|
/* Not an SP local variable */
|
|
|
|
sys_var *tmp=find_sys_var($1.str, $1.length);
|
|
|
|
if (!tmp)
|
|
|
|
YYABORT;
|
|
|
|
$$.var= tmp;
|
2005-01-16 13:16:23 +01:00
|
|
|
$$.base_name= null_lex_str;
|
2004-11-12 04:01:46 +01:00
|
|
|
/*
|
|
|
|
If this is time_zone variable we should open time zone
|
|
|
|
describing tables
|
|
|
|
*/
|
2004-12-17 13:34:48 +01:00
|
|
|
if (tmp == &sys_time_zone &&
|
|
|
|
lex->add_time_zone_tables_to_query_tables(YYTHD))
|
|
|
|
YYABORT;
|
2005-09-14 10:54:02 +02:00
|
|
|
else if (spc && tmp == &sys_autocommit)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We don't allow setting AUTOCOMMIT from a stored function
|
|
|
|
or trigger.
|
|
|
|
*/
|
|
|
|
lex->sphead->m_flags|= sp_head::HAS_SET_AUTOCOMMIT_STMT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* An SP local variable */
|
|
|
|
$$.var= NULL;
|
|
|
|
$$.base_name= $1;
|
|
|
|
}
|
2002-07-23 17:31:22 +02:00
|
|
|
}
|
2003-07-06 18:09:57 +02:00
|
|
|
| ident '.' ident
|
|
|
|
{
|
2004-11-12 04:01:46 +01:00
|
|
|
LEX *lex= Lex;
|
2004-03-16 11:01:05 +01:00
|
|
|
if (check_reserved_words(&$1))
|
|
|
|
{
|
2004-03-16 16:35:47 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2004-03-16 11:01:05 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
if (lex->sphead && lex->sphead->m_type == TYPE_ENUM_TRIGGER &&
|
|
|
|
(!my_strcasecmp(system_charset_info, $1.str, "NEW") ||
|
|
|
|
!my_strcasecmp(system_charset_info, $1.str, "OLD")))
|
|
|
|
{
|
|
|
|
if ($1.str[0]=='O' || $1.str[0]=='o')
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "OLD", "");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
if (lex->trg_chistics.event == TRG_EVENT_DELETE)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0),
|
|
|
|
"NEW", "on DELETE");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
if (lex->trg_chistics.action_time == TRG_ACTION_AFTER)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "NEW", "after ");
|
2004-11-12 04:01:46 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
/* This special combination will denote field of NEW row */
|
|
|
|
$$.var= &trg_new_row_fake_var;
|
|
|
|
$$.base_name= $3;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sys_var *tmp=find_sys_var($3.str, $3.length);
|
|
|
|
if (!tmp)
|
|
|
|
YYABORT;
|
|
|
|
if (!tmp->is_struct())
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), $3.str);
|
2004-11-12 04:01:46 +01:00
|
|
|
$$.var= tmp;
|
|
|
|
$$.base_name= $1;
|
|
|
|
}
|
2003-07-06 18:09:57 +02:00
|
|
|
}
|
|
|
|
| DEFAULT '.' ident
|
|
|
|
{
|
|
|
|
sys_var *tmp=find_sys_var($3.str, $3.length);
|
|
|
|
if (!tmp)
|
|
|
|
YYABORT;
|
|
|
|
if (!tmp->is_struct())
|
2004-11-13 18:35:51 +01:00
|
|
|
my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), $3.str);
|
2003-08-18 23:08:08 +02:00
|
|
|
$$.var= tmp;
|
|
|
|
$$.base_name.str= (char*) "default";
|
|
|
|
$$.base_name.length= 7;
|
2003-07-06 18:09:57 +02:00
|
|
|
}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2002-07-23 17:31:22 +02:00
|
|
|
|
|
|
|
isolation_types:
|
|
|
|
READ_SYM UNCOMMITTED_SYM { $$= ISO_READ_UNCOMMITTED; }
|
|
|
|
| READ_SYM COMMITTED_SYM { $$= ISO_READ_COMMITTED; }
|
|
|
|
| REPEATABLE_SYM READ_SYM { $$= ISO_REPEATABLE_READ; }
|
|
|
|
| SERIALIZABLE_SYM { $$= ISO_SERIALIZABLE; }
|
|
|
|
;
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
text_or_password:
|
|
|
|
TEXT_STRING { $$=$1.str;}
|
|
|
|
| PASSWORD '(' TEXT_STRING ')'
|
|
|
|
{
|
2003-07-08 00:36:14 +02:00
|
|
|
$$= $3.length ? YYTHD->variables.old_passwords ?
|
2003-07-04 18:52:04 +02:00
|
|
|
Item_func_old_password::alloc(YYTHD, $3.str) :
|
|
|
|
Item_func_password::alloc(YYTHD, $3.str) :
|
|
|
|
$3.str;
|
|
|
|
}
|
|
|
|
| OLD_PASSWORD '(' TEXT_STRING ')'
|
|
|
|
{
|
|
|
|
$$= $3.length ? Item_func_old_password::alloc(YYTHD, $3.str) :
|
|
|
|
$3.str;
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-03-21 00:02:22 +01:00
|
|
|
|
2002-07-25 00:00:56 +02:00
|
|
|
set_expr_or_default:
|
2002-07-23 17:31:22 +02:00
|
|
|
expr { $$=$1; }
|
|
|
|
| DEFAULT { $$=0; }
|
2002-10-02 12:33:08 +02:00
|
|
|
| ON { $$=new Item_string("ON", 2, system_charset_info); }
|
|
|
|
| ALL { $$=new Item_string("ALL", 3, system_charset_info); }
|
2003-02-27 14:45:40 +01:00
|
|
|
| BINARY { $$=new Item_string("binary", 6, system_charset_info); }
|
2002-07-23 17:31:22 +02:00
|
|
|
;
|
2001-03-21 00:02:22 +01:00
|
|
|
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* Lock function */
|
|
|
|
|
|
|
|
lock:
|
|
|
|
LOCK_SYM table_or_tables
|
|
|
|
{
|
2005-02-08 20:52:50 +01:00
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
2005-03-30 17:43:52 +02:00
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "LOCK");
|
2005-02-08 20:52:50 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_LOCK_TABLES;
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
2004-12-27 12:08:22 +01:00
|
|
|
table_lock_list
|
|
|
|
{}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_or_tables:
|
|
|
|
TABLE_SYM
|
2002-04-16 01:09:30 +02:00
|
|
|
| TABLES;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_lock_list:
|
|
|
|
table_lock
|
2002-04-16 01:09:30 +02:00
|
|
|
| table_lock_list ',' table_lock;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
table_lock:
|
|
|
|
table_ident opt_table_alias lock_option
|
2002-10-30 12:18:52 +01:00
|
|
|
{
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!Select->add_table_to_list(YYTHD, $1, $2, 0, (thr_lock_type) $3))
|
2002-10-30 12:18:52 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
lock_option:
|
|
|
|
READ_SYM { $$=TL_READ_NO_INSERT; }
|
2002-11-26 14:18:16 +01:00
|
|
|
| WRITE_SYM { $$=YYTHD->update_lock_default; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| LOW_PRIORITY WRITE_SYM { $$=TL_WRITE_LOW_PRIORITY; }
|
2002-10-16 15:55:08 +02:00
|
|
|
| READ_SYM LOCAL_SYM { $$= TL_READ; }
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
unlock:
|
2005-02-08 20:52:50 +01:00
|
|
|
UNLOCK_SYM
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
2005-03-30 17:43:52 +02:00
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "UNLOCK");
|
2005-02-08 20:52:50 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_UNLOCK_TABLES;
|
|
|
|
}
|
|
|
|
table_or_tables
|
|
|
|
{}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
2001-04-07 00:18:33 +02:00
|
|
|
/*
|
2001-04-13 16:18:44 +02:00
|
|
|
** Handler: direct access to ISAM functions
|
2001-04-07 00:18:33 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
handler:
|
|
|
|
HANDLER_SYM table_ident OPEN_SYM opt_table_alias
|
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2005-09-07 21:03:56 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "HANDLER");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->sql_command = SQLCOM_HA_OPEN;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $2, $4, 0))
|
2001-04-07 00:18:33 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2004-06-26 14:21:32 +02:00
|
|
|
| HANDLER_SYM table_ident_nodb CLOSE_SYM
|
2001-04-07 00:18:33 +02:00
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2005-09-07 21:03:56 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "HANDLER");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->sql_command = SQLCOM_HA_CLOSE;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $2, 0, 0))
|
2001-04-07 00:18:33 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2004-06-26 14:21:32 +02:00
|
|
|
| HANDLER_SYM table_ident_nodb READ_SYM
|
2001-04-07 00:18:33 +02:00
|
|
|
{
|
2001-11-05 23:05:45 +01:00
|
|
|
LEX *lex=Lex;
|
2005-09-07 21:03:56 +02:00
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_BADSTATEMENT, MYF(0), "HANDLER");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2001-11-05 23:05:45 +01:00
|
|
|
lex->sql_command = SQLCOM_HA_READ;
|
|
|
|
lex->ha_rkey_mode= HA_READ_KEY_EXACT; /* Avoid purify warnings */
|
2005-06-08 08:37:43 +02:00
|
|
|
lex->current_select->select_limit= new Item_int((int32) 1);
|
2005-06-07 12:11:36 +02:00
|
|
|
lex->current_select->offset_limit= 0;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $2, 0, 0))
|
2001-04-07 00:18:33 +02:00
|
|
|
YYABORT;
|
2001-04-13 16:18:44 +02:00
|
|
|
}
|
2003-02-12 20:55:37 +01:00
|
|
|
handler_read_or_scan where_clause opt_limit_clause {}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2001-04-07 00:18:33 +02:00
|
|
|
|
2001-04-13 16:18:44 +02:00
|
|
|
handler_read_or_scan:
|
2005-01-16 13:16:23 +01:00
|
|
|
handler_scan_function { Lex->ident= null_lex_str; }
|
|
|
|
| ident handler_rkey_function { Lex->ident= $1; }
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2001-04-13 16:18:44 +02:00
|
|
|
|
|
|
|
handler_scan_function:
|
|
|
|
FIRST_SYM { Lex->ha_read_mode = RFIRST; }
|
2002-10-16 15:55:08 +02:00
|
|
|
| NEXT_SYM { Lex->ha_read_mode = RNEXT; }
|
|
|
|
;
|
2001-04-13 16:18:44 +02:00
|
|
|
|
|
|
|
handler_rkey_function:
|
|
|
|
FIRST_SYM { Lex->ha_read_mode = RFIRST; }
|
|
|
|
| NEXT_SYM { Lex->ha_read_mode = RNEXT; }
|
|
|
|
| PREV_SYM { Lex->ha_read_mode = RPREV; }
|
|
|
|
| LAST_SYM { Lex->ha_read_mode = RLAST; }
|
2001-04-07 00:18:33 +02:00
|
|
|
| handler_rkey_mode
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->ha_read_mode = RKEY;
|
2001-11-05 23:05:45 +01:00
|
|
|
lex->ha_rkey_mode=$1;
|
2001-06-15 04:03:15 +02:00
|
|
|
if (!(lex->insert_list = new List_item))
|
2001-04-07 00:18:33 +02:00
|
|
|
YYABORT;
|
2002-10-16 15:55:08 +02:00
|
|
|
} '(' values ')' { }
|
|
|
|
;
|
2001-04-07 00:18:33 +02:00
|
|
|
|
|
|
|
handler_rkey_mode:
|
2001-11-05 23:05:45 +01:00
|
|
|
EQ { $$=HA_READ_KEY_EXACT; }
|
|
|
|
| GE { $$=HA_READ_KEY_OR_NEXT; }
|
|
|
|
| LE { $$=HA_READ_KEY_OR_PREV; }
|
|
|
|
| GT_SYM { $$=HA_READ_AFTER_KEY; }
|
2002-10-16 15:55:08 +02:00
|
|
|
| LT { $$=HA_READ_BEFORE_KEY; }
|
|
|
|
;
|
2001-04-07 00:18:33 +02:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
/* GRANT / REVOKE */
|
|
|
|
|
|
|
|
revoke:
|
2004-11-25 21:55:49 +01:00
|
|
|
REVOKE clear_privileges revoke_command
|
2003-06-06 14:43:23 +02:00
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
revoke_command:
|
2005-05-17 20:54:20 +02:00
|
|
|
grant_privileges ON opt_table grant_ident FROM grant_list
|
2004-11-25 21:55:49 +01:00
|
|
|
{
|
2005-05-17 20:54:20 +02:00
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_REVOKE;
|
|
|
|
lex->type= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
grant_privileges ON FUNCTION_SYM grant_ident FROM grant_list
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->columns.elements)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_REVOKE;
|
|
|
|
lex->type= TYPE_ENUM_FUNCTION;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
grant_privileges ON PROCEDURE grant_ident FROM grant_list
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->columns.elements)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_REVOKE;
|
|
|
|
lex->type= TYPE_ENUM_PROCEDURE;
|
2004-11-25 21:55:49 +01:00
|
|
|
}
|
2003-06-06 14:43:23 +02:00
|
|
|
|
|
2004-11-25 21:55:49 +01:00
|
|
|
ALL opt_privileges ',' GRANT OPTION FROM grant_list
|
2003-06-06 14:43:23 +02:00
|
|
|
{
|
|
|
|
Lex->sql_command = SQLCOM_REVOKE_ALL;
|
|
|
|
}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
grant:
|
2005-05-17 20:54:20 +02:00
|
|
|
GRANT clear_privileges grant_command
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
grant_command:
|
|
|
|
grant_privileges ON opt_table grant_ident TO_SYM grant_list
|
2002-11-28 18:57:56 +01:00
|
|
|
require_clause grant_options
|
2005-05-17 20:54:20 +02:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->sql_command= SQLCOM_GRANT;
|
|
|
|
lex->type= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
grant_privileges ON FUNCTION_SYM grant_ident TO_SYM grant_list
|
|
|
|
require_clause grant_options
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->columns.elements)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_GRANT;
|
|
|
|
lex->type= TYPE_ENUM_FUNCTION;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
grant_privileges ON PROCEDURE grant_ident TO_SYM grant_list
|
|
|
|
require_clause grant_options
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
if (lex->columns.elements)
|
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->sql_command= SQLCOM_GRANT;
|
|
|
|
lex->type= TYPE_ENUM_PROCEDURE;
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-05-17 20:54:20 +02:00
|
|
|
opt_table:
|
|
|
|
/* Empty */
|
|
|
|
| TABLE_SYM ;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
grant_privileges:
|
2004-12-23 11:46:24 +01:00
|
|
|
object_privilege_list { }
|
|
|
|
| ALL opt_privileges
|
|
|
|
{
|
|
|
|
Lex->all_privileges= 1;
|
|
|
|
Lex->grant= GLOBAL_ACLS;
|
|
|
|
}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-11-10 19:53:16 +01:00
|
|
|
opt_privileges:
|
|
|
|
/* empty */
|
|
|
|
| PRIVILEGES
|
|
|
|
;
|
|
|
|
|
2004-12-23 11:46:24 +01:00
|
|
|
object_privilege_list:
|
|
|
|
object_privilege
|
|
|
|
| object_privilege_list ',' object_privilege;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2004-12-23 11:46:24 +01:00
|
|
|
object_privilege:
|
2003-08-05 21:14:15 +02:00
|
|
|
SELECT_SYM { Lex->which_columns = SELECT_ACL;} opt_column_list {}
|
2002-11-28 18:57:56 +01:00
|
|
|
| INSERT { Lex->which_columns = INSERT_ACL;} opt_column_list {}
|
|
|
|
| UPDATE_SYM { Lex->which_columns = UPDATE_ACL; } opt_column_list {}
|
|
|
|
| REFERENCES { Lex->which_columns = REFERENCES_ACL;} opt_column_list {}
|
2002-06-12 14:04:18 +02:00
|
|
|
| DELETE_SYM { Lex->grant |= DELETE_ACL;}
|
|
|
|
| USAGE {}
|
2004-06-23 12:29:05 +02:00
|
|
|
| INDEX_SYM { Lex->grant |= INDEX_ACL;}
|
2000-07-31 21:29:14 +02:00
|
|
|
| ALTER { Lex->grant |= ALTER_ACL;}
|
|
|
|
| CREATE { Lex->grant |= CREATE_ACL;}
|
|
|
|
| DROP { Lex->grant |= DROP_ACL;}
|
2002-06-12 14:04:18 +02:00
|
|
|
| EXECUTE_SYM { Lex->grant |= EXECUTE_ACL;}
|
2000-07-31 21:29:14 +02:00
|
|
|
| RELOAD { Lex->grant |= RELOAD_ACL;}
|
|
|
|
| SHUTDOWN { Lex->grant |= SHUTDOWN_ACL;}
|
|
|
|
| PROCESS { Lex->grant |= PROCESS_ACL;}
|
|
|
|
| FILE_SYM { Lex->grant |= FILE_ACL;}
|
2002-06-12 14:04:18 +02:00
|
|
|
| GRANT OPTION { Lex->grant |= GRANT_ACL;}
|
|
|
|
| SHOW DATABASES { Lex->grant |= SHOW_DB_ACL;}
|
|
|
|
| SUPER_SYM { Lex->grant |= SUPER_ACL;}
|
|
|
|
| CREATE TEMPORARY TABLES { Lex->grant |= CREATE_TMP_ACL;}
|
|
|
|
| LOCK_SYM TABLES { Lex->grant |= LOCK_TABLES_ACL; }
|
2004-11-12 04:01:46 +01:00
|
|
|
| REPLICATION SLAVE { Lex->grant |= REPL_SLAVE_ACL; }
|
|
|
|
| REPLICATION CLIENT_SYM { Lex->grant |= REPL_CLIENT_ACL; }
|
|
|
|
| CREATE VIEW_SYM { Lex->grant |= CREATE_VIEW_ACL; }
|
|
|
|
| SHOW VIEW_SYM { Lex->grant |= SHOW_VIEW_ACL; }
|
2004-12-23 11:46:24 +01:00
|
|
|
| CREATE ROUTINE_SYM { Lex->grant |= CREATE_PROC_ACL; }
|
|
|
|
| ALTER ROUTINE_SYM { Lex->grant |= ALTER_PROC_ACL; }
|
2005-03-22 15:54:18 +01:00
|
|
|
| CREATE USER { Lex->grant |= CREATE_USER_ACL; }
|
2002-06-12 14:04:18 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-09-20 03:45:13 +02:00
|
|
|
|
2002-09-05 15:17:08 +02:00
|
|
|
opt_and:
|
|
|
|
/* empty */ {}
|
2004-04-15 09:14:14 +02:00
|
|
|
| AND_SYM {}
|
2002-09-05 15:17:08 +02:00
|
|
|
;
|
|
|
|
|
|
|
|
require_list:
|
|
|
|
require_list_element opt_and require_list
|
|
|
|
| require_list_element
|
|
|
|
;
|
|
|
|
|
|
|
|
require_list_element:
|
|
|
|
SUBJECT_SYM TEXT_STRING
|
2002-06-12 14:04:18 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->x509_subject)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_DUP_ARGUMENT, MYF(0), "SUBJECT");
|
2002-06-12 14:04:18 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->x509_subject=$2.str;
|
|
|
|
}
|
|
|
|
| ISSUER_SYM TEXT_STRING
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->x509_issuer)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_DUP_ARGUMENT, MYF(0), "ISSUER");
|
2002-06-12 14:04:18 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->x509_issuer=$2.str;
|
|
|
|
}
|
|
|
|
| CIPHER_SYM TEXT_STRING
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->ssl_cipher)
|
|
|
|
{
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_DUP_ARGUMENT, MYF(0), "CIPHER");
|
2002-06-12 14:04:18 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
lex->ssl_cipher=$2.str;
|
|
|
|
}
|
|
|
|
;
|
2002-12-04 23:14:51 +01:00
|
|
|
|
2005-05-17 20:54:20 +02:00
|
|
|
grant_ident:
|
2000-07-31 21:29:14 +02:00
|
|
|
'*'
|
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
A fix and a test case for
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
2006-06-26 22:47:52 +02:00
|
|
|
THD *thd= lex->thd;
|
|
|
|
if (thd->copy_db_to(&lex->current_select->db, NULL))
|
|
|
|
YYABORT;
|
2002-06-12 14:04:18 +02:00
|
|
|
if (lex->grant == GLOBAL_ACLS)
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->grant = DB_ACLS & ~GRANT_ACL;
|
|
|
|
else if (lex->columns.elements)
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_ILLEGAL_GRANT_FOR_TABLE,
|
|
|
|
ER(ER_ILLEGAL_GRANT_FOR_TABLE), MYF(0));
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
2001-06-15 04:03:15 +02:00
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
| ident '.' '*'
|
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
lex->current_select->db = $1.str;
|
2002-06-12 14:04:18 +02:00
|
|
|
if (lex->grant == GLOBAL_ACLS)
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->grant = DB_ACLS & ~GRANT_ACL;
|
|
|
|
else if (lex->columns.elements)
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_ILLEGAL_GRANT_FOR_TABLE,
|
|
|
|
ER(ER_ILLEGAL_GRANT_FOR_TABLE), MYF(0));
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| '*' '.' '*'
|
|
|
|
{
|
2002-10-30 12:18:52 +01:00
|
|
|
LEX *lex= Lex;
|
2003-07-03 01:30:52 +02:00
|
|
|
lex->current_select->db = NULL;
|
2002-06-12 14:04:18 +02:00
|
|
|
if (lex->grant == GLOBAL_ACLS)
|
|
|
|
lex->grant= GLOBAL_ACLS & ~GRANT_ACL;
|
2001-06-15 04:03:15 +02:00
|
|
|
else if (lex->columns.elements)
|
2000-07-31 21:29:14 +02:00
|
|
|
{
|
2004-11-12 13:34:00 +01:00
|
|
|
my_message(ER_ILLEGAL_GRANT_FOR_TABLE,
|
|
|
|
ER(ER_ILLEGAL_GRANT_FOR_TABLE), MYF(0));
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
| table_ident
|
|
|
|
{
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2002-12-06 20:11:27 +01:00
|
|
|
if (!lex->current_select->add_table_to_list(lex->thd, $1,NULL,0))
|
2000-07-31 21:29:14 +02:00
|
|
|
YYABORT;
|
2002-06-12 14:04:18 +02:00
|
|
|
if (lex->grant == GLOBAL_ACLS)
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->grant = TABLE_ACLS & ~GRANT_ACL;
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
user_list:
|
2004-11-25 21:55:49 +01:00
|
|
|
user { if (Lex->users_list.push_back($1)) YYABORT;}
|
|
|
|
| user_list ',' user
|
|
|
|
{
|
|
|
|
if (Lex->users_list.push_back($3))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
|
|
grant_list:
|
2002-07-24 18:55:08 +02:00
|
|
|
grant_user { if (Lex->users_list.push_back($1)) YYABORT;}
|
2004-11-25 21:55:49 +01:00
|
|
|
| grant_list ',' grant_user
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
|
|
|
if (Lex->users_list.push_back($3))
|
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
grant_user:
|
|
|
|
user IDENTIFIED_SYM BY TEXT_STRING
|
|
|
|
{
|
|
|
|
$$=$1; $1->password=$4;
|
|
|
|
if ($4.length)
|
|
|
|
{
|
2003-07-08 00:36:14 +02:00
|
|
|
if (YYTHD->variables.old_passwords)
|
2003-07-01 21:40:59 +02:00
|
|
|
{
|
|
|
|
char *buff=
|
|
|
|
(char *) YYTHD->alloc(SCRAMBLED_PASSWORD_CHAR_LENGTH_323+1);
|
|
|
|
if (buff)
|
|
|
|
make_scrambled_password_323(buff, $4.str);
|
|
|
|
$1->password.str= buff;
|
|
|
|
$1->password.length= SCRAMBLED_PASSWORD_CHAR_LENGTH_323;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
char *buff=
|
|
|
|
(char *) YYTHD->alloc(SCRAMBLED_PASSWORD_CHAR_LENGTH+1);
|
|
|
|
if (buff)
|
|
|
|
make_scrambled_password(buff, $4.str);
|
|
|
|
$1->password.str= buff;
|
|
|
|
$1->password.length= SCRAMBLED_PASSWORD_CHAR_LENGTH;
|
|
|
|
}
|
2000-07-31 21:29:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
| user IDENTIFIED_SYM BY PASSWORD TEXT_STRING
|
2005-01-16 13:16:23 +01:00
|
|
|
{ $$= $1; $1->password= $5; }
|
2000-07-31 21:29:14 +02:00
|
|
|
| user
|
2005-01-16 13:16:23 +01:00
|
|
|
{ $$= $1; $1->password= null_lex_str; }
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
opt_column_list:
|
2001-06-15 04:03:15 +02:00
|
|
|
/* empty */
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->grant |= lex->which_columns;
|
|
|
|
}
|
2002-04-16 01:09:30 +02:00
|
|
|
| '(' column_list ')';
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
column_list:
|
|
|
|
column_list ',' column_list_id
|
2002-04-16 01:09:30 +02:00
|
|
|
| column_list_id;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
column_list_id:
|
|
|
|
ident
|
|
|
|
{
|
2004-11-08 00:13:54 +01:00
|
|
|
String *new_str = new (YYTHD->mem_root) String((const char*) $1.str,$1.length,system_charset_info);
|
2000-07-31 21:29:14 +02:00
|
|
|
List_iterator <LEX_COLUMN> iter(Lex->columns);
|
|
|
|
class LEX_COLUMN *point;
|
2001-06-15 04:03:15 +02:00
|
|
|
LEX *lex=Lex;
|
2000-07-31 21:29:14 +02:00
|
|
|
while ((point=iter++))
|
|
|
|
{
|
2002-03-12 18:37:58 +01:00
|
|
|
if (!my_strcasecmp(system_charset_info,
|
|
|
|
point->column.ptr(), new_str->ptr()))
|
2000-07-31 21:29:14 +02:00
|
|
|
break;
|
|
|
|
}
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->grant_tot_col|= lex->which_columns;
|
2000-07-31 21:29:14 +02:00
|
|
|
if (point)
|
2001-06-15 04:03:15 +02:00
|
|
|
point->rights |= lex->which_columns;
|
2000-07-31 21:29:14 +02:00
|
|
|
else
|
2001-06-15 04:03:15 +02:00
|
|
|
lex->columns.push_back(new LEX_COLUMN (*new_str,lex->which_columns));
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2001-09-01 10:29:37 +02:00
|
|
|
|
|
|
|
require_clause: /* empty */
|
2002-12-04 23:14:51 +01:00
|
|
|
| REQUIRE_SYM require_list
|
2002-09-05 15:17:08 +02:00
|
|
|
{
|
|
|
|
Lex->ssl_type=SSL_TYPE_SPECIFIED;
|
|
|
|
}
|
2001-09-30 04:46:20 +02:00
|
|
|
| REQUIRE_SYM SSL_SYM
|
2002-09-05 15:17:08 +02:00
|
|
|
{
|
|
|
|
Lex->ssl_type=SSL_TYPE_ANY;
|
|
|
|
}
|
2001-09-30 04:46:20 +02:00
|
|
|
| REQUIRE_SYM X509_SYM
|
2002-09-05 15:17:08 +02:00
|
|
|
{
|
|
|
|
Lex->ssl_type=SSL_TYPE_X509;
|
|
|
|
}
|
|
|
|
| REQUIRE_SYM NONE_SYM
|
|
|
|
{
|
|
|
|
Lex->ssl_type=SSL_TYPE_NONE;
|
|
|
|
}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2001-09-01 10:29:37 +02:00
|
|
|
|
2002-01-29 17:32:16 +01:00
|
|
|
grant_options:
|
2000-07-31 21:29:14 +02:00
|
|
|
/* empty */ {}
|
2002-04-16 01:09:30 +02:00
|
|
|
| WITH grant_option_list;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2002-01-29 17:32:16 +01:00
|
|
|
grant_option_list:
|
|
|
|
grant_option_list grant_option {}
|
2002-10-16 15:55:08 +02:00
|
|
|
| grant_option {}
|
|
|
|
;
|
2002-01-29 17:32:16 +01:00
|
|
|
|
|
|
|
grant_option:
|
|
|
|
GRANT OPTION { Lex->grant |= GRANT_ACL;}
|
2005-04-04 00:50:05 +02:00
|
|
|
| MAX_QUERIES_PER_HOUR ulong_num
|
2002-01-29 17:32:16 +01:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->mqh.questions=$2;
|
|
|
|
lex->mqh.specified_limits|= USER_RESOURCES::QUERIES_PER_HOUR;
|
2002-05-15 12:50:38 +02:00
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| MAX_UPDATES_PER_HOUR ulong_num
|
2002-05-15 12:50:38 +02:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->mqh.updates=$2;
|
|
|
|
lex->mqh.specified_limits|= USER_RESOURCES::UPDATES_PER_HOUR;
|
2002-05-15 12:50:38 +02:00
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| MAX_CONNECTIONS_PER_HOUR ulong_num
|
2002-05-15 12:50:38 +02:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->mqh.conn_per_hour= $2;
|
|
|
|
lex->mqh.specified_limits|= USER_RESOURCES::CONNECTIONS_PER_HOUR;
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
2005-04-04 00:50:05 +02:00
|
|
|
| MAX_USER_CONNECTIONS_SYM ulong_num
|
2004-12-29 18:30:37 +01:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->mqh.user_conn= $2;
|
|
|
|
lex->mqh.specified_limits|= USER_RESOURCES::USER_CONNECTIONS;
|
2002-10-16 15:55:08 +02:00
|
|
|
}
|
|
|
|
;
|
2001-12-26 15:49:10 +01:00
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
begin:
|
2005-02-14 21:50:09 +01:00
|
|
|
BEGIN_SYM
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command = SQLCOM_BEGIN;
|
|
|
|
lex->start_transaction_opt= 0;
|
|
|
|
}
|
|
|
|
opt_work {}
|
2002-11-28 18:57:56 +01:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
opt_work:
|
|
|
|
/* empty */ {}
|
2005-02-14 21:50:09 +01:00
|
|
|
| WORK_SYM {}
|
2002-10-16 15:55:08 +02:00
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
2005-02-01 20:48:05 +01:00
|
|
|
opt_chain:
|
2005-02-14 21:50:09 +01:00
|
|
|
/* empty */ { $$= (YYTHD->variables.completion_type == 1); }
|
2005-02-01 20:48:05 +01:00
|
|
|
| AND_SYM NO_SYM CHAIN_SYM { $$=0; }
|
|
|
|
| AND_SYM CHAIN_SYM { $$=1; }
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_release:
|
2005-02-14 21:50:09 +01:00
|
|
|
/* empty */ { $$= (YYTHD->variables.completion_type == 2); }
|
2005-02-01 20:48:05 +01:00
|
|
|
| RELEASE_SYM { $$=1; }
|
|
|
|
| NO_SYM RELEASE_SYM { $$=0; }
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_savepoint:
|
|
|
|
/* empty */ {}
|
|
|
|
| SAVEPOINT_SYM {}
|
|
|
|
;
|
|
|
|
|
2000-07-31 21:29:14 +02:00
|
|
|
commit:
|
2005-02-14 21:50:09 +01:00
|
|
|
COMMIT_SYM opt_work opt_chain opt_release
|
2005-02-01 20:48:05 +01:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_COMMIT;
|
|
|
|
lex->tx_chain= $3;
|
|
|
|
lex->tx_release= $4;
|
2005-02-01 20:48:05 +01:00
|
|
|
}
|
|
|
|
;
|
2000-07-31 21:29:14 +02:00
|
|
|
|
|
|
|
rollback:
|
2005-02-14 21:50:09 +01:00
|
|
|
ROLLBACK_SYM opt_work opt_chain opt_release
|
2003-06-06 03:18:58 +02:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_ROLLBACK;
|
|
|
|
lex->tx_chain= $3;
|
|
|
|
lex->tx_release= $4;
|
2003-06-06 03:18:58 +02:00
|
|
|
}
|
2005-02-01 20:48:05 +01:00
|
|
|
| ROLLBACK_SYM opt_work
|
|
|
|
TO_SYM opt_savepoint ident
|
2003-06-06 03:18:58 +02:00
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_ROLLBACK_TO_SAVEPOINT;
|
|
|
|
lex->ident= $5;
|
2005-02-01 20:48:05 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2003-06-06 03:18:58 +02:00
|
|
|
savepoint:
|
|
|
|
SAVEPOINT_SYM ident
|
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_SAVEPOINT;
|
|
|
|
lex->ident= $2;
|
2005-02-01 20:48:05 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
release:
|
|
|
|
RELEASE_SYM SAVEPOINT_SYM ident
|
|
|
|
{
|
2005-02-14 21:50:09 +01:00
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->sql_command= SQLCOM_RELEASE_SAVEPOINT;
|
|
|
|
lex->ident= $3;
|
2005-02-01 20:48:05 +01:00
|
|
|
}
|
|
|
|
;
|
2005-02-14 21:50:09 +01:00
|
|
|
|
2001-06-13 12:36:53 +02:00
|
|
|
/*
|
2002-08-30 11:40:40 +02:00
|
|
|
UNIONS : glue selects together
|
2001-06-13 12:36:53 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
2002-11-28 17:25:41 +01:00
|
|
|
union_clause:
|
2002-07-24 18:55:08 +02:00
|
|
|
/* empty */ {}
|
2002-11-21 21:25:53 +01:00
|
|
|
| union_list
|
|
|
|
;
|
2001-06-13 12:36:53 +02:00
|
|
|
|
|
|
|
union_list:
|
2004-03-23 14:43:24 +01:00
|
|
|
UNION_SYM union_option
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
if (lex->exchange)
|
|
|
|
{
|
|
|
|
/* Only the last SELECT can have INTO...... */
|
2004-10-20 03:04:37 +02:00
|
|
|
my_error(ER_WRONG_USAGE, MYF(0), "UNION", "INTO");
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
2002-12-04 23:14:51 +01:00
|
|
|
}
|
2002-10-30 12:18:52 +01:00
|
|
|
if (lex->current_select->linkage == GLOBAL_OPTIONS_TYPE)
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
2004-02-12 18:37:15 +01:00
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-06-15 20:09:58 +02:00
|
|
|
/* This counter shouldn't be incremented for UNION parts */
|
|
|
|
Lex->nest_level--;
|
2002-10-02 12:33:08 +02:00
|
|
|
if (mysql_new_select(lex, 0))
|
2002-07-24 18:55:08 +02:00
|
|
|
YYABORT;
|
2003-02-13 16:56:01 +01:00
|
|
|
mysql_init_select(lex);
|
2002-10-30 12:18:52 +01:00
|
|
|
lex->current_select->linkage=UNION_TYPE;
|
2004-03-23 14:43:24 +01:00
|
|
|
if ($2) /* UNION DISTINCT - remember position */
|
|
|
|
lex->current_select->master_unit()->union_distinct=
|
|
|
|
lex->current_select;
|
2002-08-30 11:40:40 +02:00
|
|
|
}
|
2005-08-12 16:57:19 +02:00
|
|
|
select_init
|
|
|
|
{
|
2005-08-18 02:12:42 +02:00
|
|
|
/*
|
|
|
|
Remove from the name resolution context stack the context of the
|
|
|
|
last select in the union.
|
|
|
|
*/
|
2005-08-12 16:57:19 +02:00
|
|
|
Lex->pop_context();
|
|
|
|
}
|
2002-07-24 18:55:08 +02:00
|
|
|
;
|
2001-10-25 13:41:49 +02:00
|
|
|
|
|
|
|
union_opt:
|
2005-03-16 01:13:23 +01:00
|
|
|
/* Empty */ { $$= 0; }
|
|
|
|
| union_list { $$= 1; }
|
|
|
|
| union_order_or_limit { $$= 1; }
|
2002-11-21 21:25:53 +01:00
|
|
|
;
|
2001-10-19 16:43:30 +02:00
|
|
|
|
2005-03-16 01:13:23 +01:00
|
|
|
union_order_or_limit:
|
2002-07-24 18:55:08 +02:00
|
|
|
{
|
2003-01-14 17:00:34 +01:00
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
LEX *lex= thd->lex;
|
2003-01-21 20:07:59 +01:00
|
|
|
DBUG_ASSERT(lex->current_select->linkage != GLOBAL_OPTIONS_TYPE);
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *sel= lex->current_select;
|
2003-03-07 20:47:04 +01:00
|
|
|
SELECT_LEX_UNIT *unit= sel->master_unit();
|
2003-07-03 01:30:52 +02:00
|
|
|
SELECT_LEX *fake= unit->fake_select_lex;
|
2003-09-12 18:17:30 +02:00
|
|
|
if (fake)
|
|
|
|
{
|
|
|
|
unit->global_parameters= fake;
|
|
|
|
fake->no_table_names_allowed= 1;
|
|
|
|
lex->current_select= fake;
|
|
|
|
}
|
2003-01-14 17:00:34 +01:00
|
|
|
thd->where= "global ORDER clause";
|
2002-07-24 18:55:08 +02:00
|
|
|
}
|
2002-12-01 17:10:13 +01:00
|
|
|
order_or_limit
|
2003-01-14 17:00:34 +01:00
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
2003-12-19 18:52:13 +01:00
|
|
|
thd->lex->current_select->no_table_names_allowed= 0;
|
2003-01-14 17:00:34 +01:00
|
|
|
thd->where= "";
|
|
|
|
}
|
2002-12-01 17:10:13 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
order_or_limit:
|
2003-02-12 20:55:37 +01:00
|
|
|
order_clause opt_limit_clause_init
|
|
|
|
| limit_clause
|
2002-07-24 18:55:08 +02:00
|
|
|
;
|
2001-07-22 12:25:56 +02:00
|
|
|
|
|
|
|
union_option:
|
2004-03-23 14:43:24 +01:00
|
|
|
/* empty */ { $$=1; }
|
|
|
|
| DISTINCT { $$=1; }
|
|
|
|
| ALL { $$=0; }
|
|
|
|
;
|
2002-05-12 22:46:42 +02:00
|
|
|
|
2006-08-31 17:00:25 +02:00
|
|
|
subselect:
|
|
|
|
SELECT_SYM subselect_start subselect_init subselect_end
|
|
|
|
{
|
|
|
|
$$= $3;
|
|
|
|
}
|
|
|
|
| '(' subselect_start subselect ')'
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
/*
|
|
|
|
note that a local variable can't be used for
|
|
|
|
$3 as it's used in local variable construction
|
|
|
|
and some compilers can't guarnatee the order
|
|
|
|
in which the local variables are initialized.
|
|
|
|
*/
|
|
|
|
List_iterator<Item> it($3->item_list);
|
|
|
|
Item *item;
|
|
|
|
/*
|
|
|
|
we must fill the items list for the "derived table".
|
|
|
|
*/
|
|
|
|
while ((item= it++))
|
|
|
|
add_item_to_list(thd, item);
|
|
|
|
}
|
|
|
|
union_clause subselect_end { $$= $3; };
|
2002-10-27 22:27:00 +01:00
|
|
|
|
2006-08-31 17:00:25 +02:00
|
|
|
subselect_init:
|
2002-11-28 16:10:29 +01:00
|
|
|
select_init2
|
2002-10-27 22:27:00 +01:00
|
|
|
{
|
2002-11-05 10:59:18 +01:00
|
|
|
$$= Lex->current_select->master_unit()->first_select();
|
2002-10-27 22:27:00 +01:00
|
|
|
};
|
|
|
|
|
2002-05-12 22:46:42 +02:00
|
|
|
subselect_start:
|
2002-08-30 11:40:40 +02:00
|
|
|
{
|
2003-01-09 21:17:16 +01:00
|
|
|
LEX *lex=Lex;
|
2006-03-06 18:26:39 +01:00
|
|
|
if (lex->sql_command == (int)SQLCOM_HA_READ ||
|
|
|
|
lex->sql_command == (int)SQLCOM_KILL)
|
2004-02-12 18:37:15 +01:00
|
|
|
{
|
|
|
|
yyerror(ER(ER_SYNTAX_ERROR));
|
2003-01-09 21:17:16 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2006-08-31 17:00:25 +02:00
|
|
|
/*
|
|
|
|
we are making a "derived table" for the parenthesis
|
|
|
|
as we need to have a lex level to fit the union
|
|
|
|
after the parenthesis, e.g.
|
|
|
|
(SELECT .. ) UNION ... becomes
|
|
|
|
SELECT * FROM ((SELECT ...) UNION ...)
|
|
|
|
*/
|
2002-08-30 11:40:40 +02:00
|
|
|
if (mysql_new_select(Lex, 1))
|
|
|
|
YYABORT;
|
|
|
|
};
|
2002-05-12 22:46:42 +02:00
|
|
|
|
|
|
|
subselect_end:
|
2002-08-30 11:40:40 +02:00
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
2005-08-12 16:57:19 +02:00
|
|
|
lex->pop_context();
|
2006-09-01 11:23:43 +02:00
|
|
|
SELECT_LEX *child= lex->current_select;
|
2003-03-11 00:06:28 +01:00
|
|
|
lex->current_select = lex->current_select->return_after_parsing();
|
2005-10-15 23:32:37 +02:00
|
|
|
lex->nest_level--;
|
2006-09-01 11:23:43 +02:00
|
|
|
lex->current_select->n_child_sum_items += child->n_sum_items;
|
2002-10-11 20:49:10 +02:00
|
|
|
};
|
2003-08-05 21:14:15 +02:00
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
/**************************************************************************
|
|
|
|
|
|
|
|
CREATE VIEW | TRIGGER | PROCEDURE statements.
|
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
view_or_trigger_or_sp:
|
|
|
|
definer view_or_trigger_or_sp_tail
|
|
|
|
{}
|
|
|
|
| view_replace_or_algorithm definer view_tail
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
view_or_trigger_or_sp_tail:
|
|
|
|
view_tail
|
|
|
|
{}
|
|
|
|
| trigger_tail
|
|
|
|
{}
|
|
|
|
| sp_tail
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
|
|
|
|
DEFINER clause support.
|
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
definer:
|
2006-03-01 12:13:07 +01:00
|
|
|
/* empty */
|
2005-11-10 20:25:03 +01:00
|
|
|
{
|
2006-03-01 12:13:07 +01:00
|
|
|
/*
|
|
|
|
We have to distinguish missing DEFINER-clause from case when
|
|
|
|
CURRENT_USER specified as definer explicitly in order to properly
|
|
|
|
handle CREATE TRIGGER statements which come to replication thread
|
|
|
|
from older master servers (i.e. to create non-suid trigger in this
|
|
|
|
case).
|
|
|
|
*/
|
|
|
|
YYTHD->lex->definer= 0;
|
2005-11-10 20:25:03 +01:00
|
|
|
}
|
2006-08-23 19:31:00 +02:00
|
|
|
| DEFINER_SYM EQ user
|
2005-11-10 20:25:03 +01:00
|
|
|
{
|
2006-08-23 19:31:00 +02:00
|
|
|
YYTHD->lex->definer= get_current_user(YYTHD, $3);
|
2005-11-10 20:25:03 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
CREATE VIEW statement parts.
|
2005-11-10 20:25:03 +01:00
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
view_replace_or_algorithm:
|
|
|
|
view_replace
|
|
|
|
{}
|
|
|
|
| view_replace view_algorithm
|
|
|
|
{}
|
|
|
|
| view_algorithm
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
view_replace:
|
|
|
|
OR_SYM REPLACE
|
|
|
|
{ Lex->create_view_mode= VIEW_CREATE_OR_REPLACE; }
|
|
|
|
;
|
|
|
|
|
|
|
|
view_algorithm:
|
|
|
|
ALGORITHM_SYM EQ UNDEFINED_SYM
|
|
|
|
{ Lex->create_view_algorithm= VIEW_ALGORITHM_UNDEFINED; }
|
|
|
|
| ALGORITHM_SYM EQ MERGE_SYM
|
|
|
|
{ Lex->create_view_algorithm= VIEW_ALGORITHM_MERGE; }
|
|
|
|
| ALGORITHM_SYM EQ TEMPTABLE_SYM
|
|
|
|
{ Lex->create_view_algorithm= VIEW_ALGORITHM_TMPTABLE; }
|
|
|
|
;
|
|
|
|
|
|
|
|
view_algorithm_opt:
|
|
|
|
/* empty */
|
|
|
|
{ Lex->create_view_algorithm= VIEW_ALGORITHM_UNDEFINED; }
|
|
|
|
| view_algorithm
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
view_suid:
|
|
|
|
/* empty */
|
2006-07-31 16:33:37 +02:00
|
|
|
{ Lex->create_view_suid= VIEW_SUID_DEFAULT; }
|
2005-11-10 20:25:03 +01:00
|
|
|
| SQL_SYM SECURITY_SYM DEFINER_SYM
|
2006-07-31 16:33:37 +02:00
|
|
|
{ Lex->create_view_suid= VIEW_SUID_DEFINER; }
|
2005-11-10 20:25:03 +01:00
|
|
|
| SQL_SYM SECURITY_SYM INVOKER_SYM
|
2006-07-31 16:33:37 +02:00
|
|
|
{ Lex->create_view_suid= VIEW_SUID_INVOKER; }
|
2005-11-10 20:25:03 +01:00
|
|
|
;
|
|
|
|
|
|
|
|
view_tail:
|
|
|
|
view_suid VIEW_SYM table_ident
|
|
|
|
{
|
|
|
|
THD *thd= YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
lex->sql_command= SQLCOM_CREATE_VIEW;
|
|
|
|
/* first table in list is target VIEW name */
|
2006-04-12 11:50:12 +02:00
|
|
|
if (!lex->select_lex.add_table_to_list(thd, $3, NULL, TL_OPTION_UPDATING))
|
2005-11-10 20:25:03 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
|
|
|
view_list_opt AS view_select view_check_option
|
|
|
|
{}
|
|
|
|
;
|
|
|
|
|
|
|
|
view_list_opt:
|
|
|
|
/* empty */
|
|
|
|
{}
|
2004-11-12 04:01:46 +01:00
|
|
|
| '(' view_list ')'
|
|
|
|
;
|
|
|
|
|
|
|
|
view_list:
|
|
|
|
ident
|
|
|
|
{
|
|
|
|
Lex->view_list.push_back((LEX_STRING*)
|
|
|
|
sql_memdup(&$1, sizeof(LEX_STRING)));
|
|
|
|
}
|
|
|
|
| view_list ',' ident
|
|
|
|
{
|
|
|
|
Lex->view_list.push_back((LEX_STRING*)
|
|
|
|
sql_memdup(&$3, sizeof(LEX_STRING)));
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
view_select:
|
2006-10-12 16:02:57 +02:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->parsing_options.allows_variable= FALSE;
|
|
|
|
lex->parsing_options.allows_select_into= FALSE;
|
|
|
|
lex->parsing_options.allows_select_procedure= FALSE;
|
|
|
|
lex->parsing_options.allows_derived= FALSE;
|
|
|
|
}
|
|
|
|
view_select_aux
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
lex->parsing_options.allows_variable= TRUE;
|
|
|
|
lex->parsing_options.allows_select_into= TRUE;
|
|
|
|
lex->parsing_options.allows_select_procedure= TRUE;
|
|
|
|
lex->parsing_options.allows_derived= TRUE;
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
|
|
|
view_select_aux:
|
2005-11-10 20:25:03 +01:00
|
|
|
SELECT_SYM remember_name select_init2
|
|
|
|
{
|
2005-12-02 20:18:12 +01:00
|
|
|
THD *thd=YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
char *stmt_beg= (lex->sphead ?
|
|
|
|
(char *)lex->sphead->m_tmp_query :
|
|
|
|
thd->query);
|
|
|
|
lex->create_view_select_start= $2 - stmt_beg;
|
2005-11-10 20:25:03 +01:00
|
|
|
}
|
|
|
|
| '(' remember_name select_paren ')' union_opt
|
|
|
|
{
|
2005-12-02 20:18:12 +01:00
|
|
|
THD *thd=YYTHD;
|
|
|
|
LEX *lex= thd->lex;
|
|
|
|
char *stmt_beg= (lex->sphead ?
|
|
|
|
(char *)lex->sphead->m_tmp_query :
|
|
|
|
thd->query);
|
|
|
|
lex->create_view_select_start= $2 - stmt_beg;
|
2005-11-10 20:25:03 +01:00
|
|
|
}
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
view_check_option:
|
2004-11-12 04:01:46 +01:00
|
|
|
/* empty */
|
2005-11-10 20:25:03 +01:00
|
|
|
{ Lex->create_view_check= VIEW_CHECK_NONE; }
|
|
|
|
| WITH CHECK_SYM OPTION
|
|
|
|
{ Lex->create_view_check= VIEW_CHECK_CASCADED; }
|
|
|
|
| WITH CASCADED CHECK_SYM OPTION
|
|
|
|
{ Lex->create_view_check= VIEW_CHECK_CASCADED; }
|
|
|
|
| WITH LOCAL_SYM CHECK_SYM OPTION
|
|
|
|
{ Lex->create_view_check= VIEW_CHECK_LOCAL; }
|
2004-11-12 04:01:46 +01:00
|
|
|
;
|
2005-09-14 09:53:09 +02:00
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
/**************************************************************************
|
|
|
|
|
|
|
|
CREATE TRIGGER statement parts.
|
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
trigger_tail:
|
2006-02-24 21:50:36 +01:00
|
|
|
TRIGGER_SYM remember_name sp_name trg_action_time trg_event
|
2006-03-04 14:55:06 +01:00
|
|
|
ON remember_name table_ident FOR_SYM remember_name EACH_SYM ROW_SYM
|
2005-11-10 20:25:03 +01:00
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp;
|
|
|
|
|
|
|
|
if (lex->sphead)
|
2005-09-14 09:53:09 +02:00
|
|
|
{
|
2005-11-10 20:25:03 +01:00
|
|
|
my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), "TRIGGER");
|
|
|
|
YYABORT;
|
2005-09-14 09:53:09 +02:00
|
|
|
}
|
2005-11-10 20:25:03 +01:00
|
|
|
|
|
|
|
if (!(sp= new sp_head()))
|
|
|
|
YYABORT;
|
|
|
|
sp->reset_thd_mem_root(YYTHD);
|
|
|
|
sp->init(lex);
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_sp_name(YYTHD, $3);
|
2005-11-10 20:25:03 +01:00
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
lex->stmt_definition_begin= $2;
|
2006-02-24 21:50:36 +01:00
|
|
|
lex->ident.str= $7;
|
2006-03-04 14:55:06 +01:00
|
|
|
lex->ident.length= $10 - $7;
|
2006-02-24 21:50:36 +01:00
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
sp->m_type= TYPE_ENUM_TRIGGER;
|
|
|
|
lex->sphead= sp;
|
|
|
|
lex->spname= $3;
|
|
|
|
/*
|
|
|
|
We have to turn of CLIENT_MULTI_QUERIES while parsing a
|
|
|
|
stored procedure, otherwise yylex will chop it into pieces
|
|
|
|
at each ';'.
|
|
|
|
*/
|
|
|
|
sp->m_old_cmq= YYTHD->client_capabilities & CLIENT_MULTI_QUERIES;
|
|
|
|
YYTHD->client_capabilities &= ~CLIENT_MULTI_QUERIES;
|
|
|
|
|
|
|
|
bzero((char *)&lex->sp_chistics, sizeof(st_sp_chistics));
|
|
|
|
lex->sphead->m_chistics= &lex->sp_chistics;
|
|
|
|
lex->sphead->m_body_begin= lex->ptr;
|
2006-01-12 01:02:52 +01:00
|
|
|
while (my_isspace(system_charset_info, lex->sphead->m_body_begin[0]))
|
|
|
|
++lex->sphead->m_body_begin;
|
2005-11-10 20:25:03 +01:00
|
|
|
}
|
|
|
|
sp_proc_stmt
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
|
|
|
|
lex->sql_command= SQLCOM_CREATE_TRIGGER;
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_strings(YYTHD, lex);
|
2005-11-10 20:25:03 +01:00
|
|
|
/* Restore flag if it was cleared above */
|
|
|
|
if (sp->m_old_cmq)
|
|
|
|
YYTHD->client_capabilities |= CLIENT_MULTI_QUERIES;
|
|
|
|
sp->restore_thd_mem_root(YYTHD);
|
|
|
|
|
|
|
|
if (sp->is_not_allowed_in_function("trigger"))
|
|
|
|
YYABORT;
|
|
|
|
|
|
|
|
/*
|
|
|
|
We have to do it after parsing trigger body, because some of
|
|
|
|
sp_proc_stmt alternatives are not saving/restoring LEX, so
|
|
|
|
lex->query_tables can be wiped out.
|
|
|
|
*/
|
2006-02-24 21:50:36 +01:00
|
|
|
if (!lex->select_lex.add_table_to_list(YYTHD, $8,
|
2005-11-10 20:25:03 +01:00
|
|
|
(LEX_STRING*) 0,
|
|
|
|
TL_OPTION_UPDATING,
|
2006-02-24 21:50:36 +01:00
|
|
|
TL_IGNORE))
|
2005-11-10 20:25:03 +01:00
|
|
|
YYABORT;
|
|
|
|
}
|
2005-09-14 09:53:09 +02:00
|
|
|
;
|
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
/**************************************************************************
|
|
|
|
|
|
|
|
CREATE FUNCTION | PROCEDURE statements parts.
|
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
sp_tail:
|
|
|
|
udf_func_type remember_name FUNCTION_SYM sp_name
|
|
|
|
{
|
|
|
|
LEX *lex=Lex;
|
|
|
|
lex->udf.type= $1;
|
|
|
|
lex->stmt_definition_begin= $2;
|
|
|
|
lex->spname= $4;
|
|
|
|
}
|
|
|
|
create_function_tail
|
|
|
|
{}
|
|
|
|
| PROCEDURE remember_name sp_name
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp;
|
|
|
|
|
|
|
|
if (lex->sphead)
|
|
|
|
{
|
|
|
|
my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), "PROCEDURE");
|
|
|
|
YYABORT;
|
|
|
|
}
|
2006-07-27 15:57:43 +02:00
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
lex->stmt_definition_begin= $2;
|
2006-07-27 15:57:43 +02:00
|
|
|
|
2006-03-02 13:18:49 +01:00
|
|
|
/* Order is important here: new - reset - init */
|
|
|
|
sp= new sp_head();
|
|
|
|
sp->reset_thd_mem_root(YYTHD);
|
|
|
|
sp->init(lex);
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_sp_name(YYTHD, $3);
|
2006-03-02 13:18:49 +01:00
|
|
|
|
|
|
|
sp->m_type= TYPE_ENUM_PROCEDURE;
|
|
|
|
lex->sphead= sp;
|
|
|
|
/*
|
|
|
|
* We have to turn of CLIENT_MULTI_QUERIES while parsing a
|
|
|
|
* stored procedure, otherwise yylex will chop it into pieces
|
|
|
|
* at each ';'.
|
|
|
|
*/
|
|
|
|
sp->m_old_cmq= YYTHD->client_capabilities & CLIENT_MULTI_QUERIES;
|
|
|
|
YYTHD->client_capabilities &= (~CLIENT_MULTI_QUERIES);
|
|
|
|
}
|
|
|
|
'('
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->m_param_begin= lex->tok_start+1;
|
|
|
|
}
|
|
|
|
sp_pdparam_list
|
|
|
|
')'
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->m_param_end= lex->tok_start;
|
|
|
|
bzero((char *)&lex->sp_chistics, sizeof(st_sp_chistics));
|
|
|
|
}
|
|
|
|
sp_c_chistics
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
|
|
|
|
lex->sphead->m_chistics= &lex->sp_chistics;
|
|
|
|
lex->sphead->m_body_begin= lex->tok_start;
|
|
|
|
}
|
|
|
|
sp_proc_stmt
|
|
|
|
{
|
|
|
|
LEX *lex= Lex;
|
|
|
|
sp_head *sp= lex->sphead;
|
|
|
|
|
2006-07-27 15:57:43 +02:00
|
|
|
sp->init_strings(YYTHD, lex);
|
2006-03-02 13:18:49 +01:00
|
|
|
lex->sql_command= SQLCOM_CREATE_PROCEDURE;
|
|
|
|
/* Restore flag if it was cleared above */
|
|
|
|
if (sp->m_old_cmq)
|
|
|
|
YYTHD->client_capabilities |= CLIENT_MULTI_QUERIES;
|
|
|
|
sp->restore_thd_mem_root(YYTHD);
|
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2005-11-10 20:25:03 +01:00
|
|
|
/*************************************************************************/
|
2004-11-12 04:01:46 +01:00
|
|
|
|
2005-01-16 13:16:23 +01:00
|
|
|
xa: XA_SYM begin_or_start xid opt_join_or_resume
|
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_START;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
2005-08-19 16:00:16 +02:00
|
|
|
| XA_SYM END xid opt_suspend
|
2005-01-16 13:16:23 +01:00
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_END;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
|
|
|
| XA_SYM PREPARE_SYM xid
|
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_PREPARE;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
|
|
|
| XA_SYM COMMIT_SYM xid opt_one_phase
|
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_COMMIT;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
|
|
|
| XA_SYM ROLLBACK_SYM xid
|
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_ROLLBACK;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
|
|
|
| XA_SYM RECOVER_SYM
|
|
|
|
{
|
2005-04-04 00:50:05 +02:00
|
|
|
Lex->sql_command = SQLCOM_XA_RECOVER;
|
2005-01-16 13:16:23 +01:00
|
|
|
}
|
|
|
|
;
|
|
|
|
|
2005-04-04 00:50:05 +02:00
|
|
|
xid: text_string
|
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1->length() <= MAXGTRIDSIZE);
|
2005-04-04 00:50:05 +02:00
|
|
|
if (!(Lex->xid=(XID *)YYTHD->alloc(sizeof(XID))))
|
|
|
|
YYABORT;
|
|
|
|
Lex->xid->set(1L, $1->ptr(), $1->length(), 0, 0);
|
|
|
|
}
|
|
|
|
| text_string ',' text_string
|
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1->length() <= MAXGTRIDSIZE && $3->length() <= MAXBQUALSIZE);
|
2005-04-04 00:50:05 +02:00
|
|
|
if (!(Lex->xid=(XID *)YYTHD->alloc(sizeof(XID))))
|
|
|
|
YYABORT;
|
|
|
|
Lex->xid->set(1L, $1->ptr(), $1->length(), $3->ptr(), $3->length());
|
|
|
|
}
|
|
|
|
| text_string ',' text_string ',' ulong_num
|
|
|
|
{
|
2005-06-15 19:58:35 +02:00
|
|
|
YYERROR_UNLESS($1->length() <= MAXGTRIDSIZE && $3->length() <= MAXBQUALSIZE);
|
2005-04-04 00:50:05 +02:00
|
|
|
if (!(Lex->xid=(XID *)YYTHD->alloc(sizeof(XID))))
|
|
|
|
YYABORT;
|
|
|
|
Lex->xid->set($5, $1->ptr(), $1->length(), $3->ptr(), $3->length());
|
|
|
|
}
|
|
|
|
;
|
2005-01-16 13:16:23 +01:00
|
|
|
|
|
|
|
begin_or_start: BEGIN_SYM {}
|
|
|
|
| START_SYM {}
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_join_or_resume:
|
|
|
|
/* nothing */ { Lex->xa_opt=XA_NONE; }
|
|
|
|
| JOIN_SYM { Lex->xa_opt=XA_JOIN; }
|
|
|
|
| RESUME_SYM { Lex->xa_opt=XA_RESUME; }
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_one_phase:
|
|
|
|
/* nothing */ { Lex->xa_opt=XA_NONE; }
|
|
|
|
| ONE_SYM PHASE_SYM { Lex->xa_opt=XA_ONE_PHASE; }
|
|
|
|
;
|
|
|
|
|
2005-08-19 16:00:16 +02:00
|
|
|
opt_suspend:
|
2005-01-16 13:16:23 +01:00
|
|
|
/* nothing */ { Lex->xa_opt=XA_NONE; }
|
|
|
|
| SUSPEND_SYM { Lex->xa_opt=XA_SUSPEND; }
|
2005-08-19 16:00:16 +02:00
|
|
|
opt_migrate
|
|
|
|
;
|
|
|
|
|
|
|
|
opt_migrate:
|
|
|
|
/* nothing */ { }
|
2005-01-16 13:16:23 +01:00
|
|
|
| FOR_SYM MIGRATE_SYM { Lex->xa_opt=XA_FOR_MIGRATE; }
|
|
|
|
;
|
|
|
|
|
|
|
|
|