mariadb/sql/slave.h

390 lines
13 KiB
C
Raw Normal View History

#ifndef SLAVE_H
#define SLAVE_H
#include "mysql.h"
#include "my_list.h"
2001-07-17 22:22:52 +02:00
#define SLAVE_NET_TIMEOUT 3600
#define MAX_SLAVE_ERRMSG 1024
#define MAX_SLAVE_ERROR 2000
/*
The replication is accomplished by starting two threads - I/O
thread, and SQL thread. I/O thread is associated with its
MASTER_INFO struct, so MASTER_INFO can be viewed as I/O thread
descriptor. SQL thread is associated with RELAY_LOG_INFO struct.
I/O thread reads maintains a connection to the master, and reads log
events from the master as they arrive, queueing them by writing them
out into the temporary slave binary log (relay log). The SQL thread,
in turn, reads the slave binary log executing each event.
Relay log is needed to be able to handle situations when there is a large
backlog of unprocessed events from the master (eg. one particular update
takes a day to finish), and to be able to restart the slave server without
having to re-read the master updates.
*/
2001-07-17 22:22:52 +02:00
extern ulong slave_net_timeout, master_retry_count;
extern MY_BITMAP slave_error_mask;
extern bool use_slave_mask;
extern char* slave_load_tmpdir;
extern my_string master_info_file,relay_log_info_file;
extern my_string opt_relay_logname, opt_relaylog_index_name;
extern bool opt_skip_slave_start;
struct st_master_info;
// TODO: this needs to be redone, but for now it does not matter since
// we do not have multi-master yet.
#define LOCK_ACTIVE_MI { pthread_mutex_lock(&LOCK_active_mi); \
++active_mi_in_use; \
pthread_mutex_unlock(&LOCK_active_mi);}
#define UNLOCK_ACTIVE_MI { pthread_mutex_lock(&LOCK_active_mi); \
--active_mi_in_use; \
pthread_mutex_unlock(&LOCK_active_mi); }
/*
st_relay_log_info contains information on the current relay log and
relay log offset, and master log name and log sequence corresponding to the
last update. Additionally, misc information specific to the SQL thread is
included.
st_relay_log_info is initialized from the slave.info file if such exists.
Otherwise, data members are intialized with defaults. The initialization is
done with init_relay_log_info() call.
The format of slave.info file:
relay_log_name
relay_log_pos
master_log_name
master_log_pos
To clean up, call end_relay_log_info()
*/
typedef struct st_relay_log_info
{
// info_fd - file descriptor of the info file. set only during
// initialization or clean up - safe to read anytime
// cur_log_fd - file descriptor of the current read relay log, protected by
// data_lock
File info_fd,cur_log_fd;
// IO_CACHE of the info file - set only during init or end, safe to read
// anytime
IO_CACHE info_file;
// name of current read relay log - protected by data_lock
char relay_log_name[FN_REFLEN];
// master log name corresponding to current read position - protected by
// data lock
char master_log_name[FN_REFLEN];
// original log position of last processed event - protected by data_lock
volatile uint32 master_log_pos;
// when we restart slave thread we need to have access to the previously
// created temporary tables. Modified only on init/end and by the SQL
// thread, read only by SQL thread, need no mutex
TABLE* save_temporary_tables;
// relay_log_pos - current offset in the relay log - protected by data_lock
// pending - in some cases we do not increment offset immediately after
// processing an event, because the following event needs to be processed
// atomically together with this one ( so far, there is only one type of
// such event - Intvar_event that sets auto_increment value). However, once
// both events have been processed, we need to increment by the cumulative
// offset. pending stored the extra offset to be added to the position.
ulonglong relay_log_pos,pending;
// standard lock acquistion order to avoid deadlocks:
// run_lock, data_lock, relay_log.LOCK_log,relay_log.LOCK_index
pthread_mutex_t data_lock,run_lock;
// start_cond is broadcast when SQL thread is started
// stop_cond - when stopped
// data_cond - when data protected by data_lock changes
pthread_cond_t start_cond,stop_cond,data_cond;
// if not set, the value of other members of the structure are undefined
bool inited;
// parent master info structure
struct st_master_info *mi;
// protected with internal locks
// must get data_lock when resetting the logs
MYSQL_LOG relay_log;
LOG_INFO linfo;
IO_CACHE cache_buf,*cur_log;
/* needed to deal properly with cur_log getting closed and re-opened with
a different log under our feet
*/
int cur_log_init_count;
volatile bool abort_slave, slave_running;
// needed for problems when slave stops and
// we want to restart it skipping one or more events in the master log that
// have caused errors, and have been manually applied by DBA already
volatile uint32 slave_skip_counter;
#ifndef DBUG_OFF
int events_till_abort;
#endif
int last_slave_errno;
char last_slave_error[MAX_SLAVE_ERRMSG];
THD* sql_thd;
bool log_pos_current;
st_relay_log_info():info_fd(-1),cur_log_fd(-1),inited(0),
cur_log_init_count(0),
log_pos_current(0)
{
relay_log_name[0] = master_log_name[0] = 0;
pthread_mutex_init(&run_lock, MY_MUTEX_INIT_FAST);
pthread_mutex_init(&data_lock, MY_MUTEX_INIT_FAST);
pthread_cond_init(&data_cond, NULL);
pthread_cond_init(&start_cond, NULL);
pthread_cond_init(&stop_cond, NULL);
}
~st_relay_log_info()
{
pthread_mutex_destroy(&run_lock);
pthread_mutex_destroy(&data_lock);
pthread_cond_destroy(&data_cond);
pthread_cond_destroy(&start_cond);
pthread_cond_destroy(&stop_cond);
}
inline void inc_pending(ulonglong val)
{
pending += val;
}
// TODO: this probably needs to be fixed
inline void inc_pos(ulonglong val, uint32 log_pos, bool skip_lock=0)
{
if (!skip_lock)
pthread_mutex_lock(&data_lock);
relay_log_pos += val+pending;
pending = 0;
if (log_pos)
master_log_pos = log_pos+val;
pthread_cond_broadcast(&data_cond);
if (!skip_lock)
pthread_mutex_unlock(&data_lock);
}
// thread safe read of position - not needed if we are in the slave thread,
// but required otherwise
inline void read_pos(ulonglong& var)
{
pthread_mutex_lock(&data_lock);
var = relay_log_pos;
pthread_mutex_unlock(&data_lock);
}
int wait_for_pos(THD* thd, String* log_name, ulonglong log_pos);
} RELAY_LOG_INFO;
// repopen_relay_log() is called when we notice that the current "hot" log
// got rotated under our feet
IO_CACHE* reopen_relay_log(RELAY_LOG_INFO* rli, const char** errmsg);
Log_event* next_event(RELAY_LOG_INFO* rli);
/* st_master_info contains information about how to connect to a master,
current master log name, and current log offset, as well as misc
control variables
st_master_info is initialized once from the master.info file if such
exists. Otherwise, data members corresponding to master.info fields are
initialized with defaults specified by master-* options. The initialization
is done through init_master_info() call.
The format of master.info file:
log_name
log_pos
master_host
master_user
master_pass
master_port
master_connect_retry
To write out the contents of master.info file to disk ( needed every
time we read and queue data from the master ), a call to
flush_master_info() is required.
To clean up, call end_master_info()
*/
typedef struct st_master_info
{
char master_log_name[FN_REFLEN];
ulonglong master_log_pos;
File fd;
IO_CACHE file;
// the variables below are needed because we can change masters on the fly
char host[HOSTNAME_LENGTH+1];
char user[USERNAME_LENGTH+1];
char password[HASH_PASSWORD_LENGTH+1];
uint port;
uint connect_retry;
pthread_mutex_t data_lock,run_lock;
pthread_cond_t data_cond,start_cond,stop_cond;
bool inited;
bool old_format; /* master binlog is in 3.23 format */
RELAY_LOG_INFO rli;
#ifndef DBUG_OFF
int events_till_abort;
#endif
volatile bool abort_slave, slave_running;
THD* io_thd;
st_master_info():fd(-1),inited(0),
old_format(0),io_thd(0)
{
host[0] = 0; user[0] = 0; password[0] = 0;
pthread_mutex_init(&run_lock, MY_MUTEX_INIT_FAST);
pthread_mutex_init(&data_lock, MY_MUTEX_INIT_FAST);
pthread_cond_init(&data_cond, NULL);
pthread_cond_init(&start_cond, NULL);
pthread_cond_init(&stop_cond, NULL);
}
~st_master_info()
{
pthread_mutex_destroy(&run_lock);
pthread_mutex_destroy(&data_lock);
pthread_cond_destroy(&data_cond);
pthread_cond_destroy(&start_cond);
pthread_cond_destroy(&stop_cond);
}
} MASTER_INFO;
int queue_event(MASTER_INFO* mi,const char* buf,uint event_len);
typedef struct st_table_rule_ent
{
char* db;
char* tbl_name;
uint key_len;
} TABLE_RULE_ENT;
#define TABLE_RULE_HASH_SIZE 16
#define TABLE_RULE_ARR_SIZE 16
#define MAX_SLAVE_ERRMSG 1024
#define RPL_LOG_NAME (rli->master_log_name[0] ? rli->master_log_name :\
"FIRST")
#define IO_RPL_LOG_NAME (mi->master_log_name[0] ? mi->master_log_name :\
"FIRST")
/* masks for start/stop operations on io and sql slave threads */
#define SLAVE_IO 1
#define SLAVE_SQL 2
#define SLAVE_FORCE_ALL 4 /* if this is set, if first gives an
error, second will be tried. Otherwise,
if first fails, we fail
*/
int init_slave();
void init_slave_skip_errors(char* arg);
int flush_master_info(MASTER_INFO* mi);
int flush_relay_log_info(RELAY_LOG_INFO* rli);
int register_slave_on_master(MYSQL* mysql);
int terminate_slave_threads(MASTER_INFO* mi, int thread_mask,
bool skip_lock = 0);
int terminate_slave_thread(THD* thd, pthread_mutex_t* term_mutex,
pthread_mutex_t* cond_lock,
pthread_cond_t* term_cond,
volatile bool* slave_running);
int start_slave_threads(bool need_slave_mutex, bool wait_for_start,
MASTER_INFO* mi, const char* master_info_fname,
const char* slave_info_fname, int thread_mask);
/* cond_lock is usually same as start_lock. It is needed for the case when
start_lock is 0 which happens if start_slave_thread() is called already
inside the start_lock section, but at the same time we want a
pthread_cond_wait() on start_cond,start_lock
*/
int start_slave_thread(pthread_handler h_func, pthread_mutex_t* start_lock,
pthread_mutex_t *cond_lock,
pthread_cond_t* start_cond,
volatile bool* slave_running,
MASTER_INFO* mi);
int mysql_table_dump(THD* thd, const char* db,
const char* tbl_name, int fd = -1);
// if fd is -1, dump to NET
int fetch_master_table(THD* thd, const char* db_name, const char* table_name,
MASTER_INFO* mi, MYSQL* mysql);
// retrieve non-exitent table from master
int show_master_info(THD* thd, MASTER_INFO* mi);
int show_binlog_info(THD* thd);
int tables_ok(THD* thd, TABLE_LIST* tables);
// see if the query uses any tables that should not be replicated
int db_ok(const char* db, I_List<i_string> &do_list,
I_List<i_string> &ignore_list );
// check to see if the database is ok to operate on with respect to the
// do and ignore lists - used in replication
int add_table_rule(HASH* h, const char* table_spec);
int add_wild_table_rule(DYNAMIC_ARRAY* a, const char* table_spec);
void init_table_rule_hash(HASH* h, bool* h_inited);
void init_table_rule_array(DYNAMIC_ARRAY* a, bool* a_inited);
char* rewrite_db(char* db);
int check_expected_error(THD* thd, RELAY_LOG_INFO* rli, int error_code);
void skip_load_data_infile(NET* net);
void slave_print_error(RELAY_LOG_INFO* rli,int err_code, const char* msg, ...);
void end_slave(); // clean up
int init_master_info(MASTER_INFO* mi, const char* master_info_fname,
const char* slave_info_fname);
void end_master_info(MASTER_INFO* mi);
int init_relay_log_info(RELAY_LOG_INFO* rli, const char* info_fname);
void end_relay_log_info(RELAY_LOG_INFO* rli);
void lock_slave_threads(MASTER_INFO* mi);
void unlock_slave_threads(MASTER_INFO* mi);
void init_thread_mask(int* mask,MASTER_INFO* mi,bool inverse);
int init_relay_log_pos(RELAY_LOG_INFO* rli,const char* log,ulonglong pos,
bool need_data_lock, const char** errmsg);
int purge_relay_logs(RELAY_LOG_INFO* rli,bool just_reset,const char** errmsg);
extern bool opt_log_slave_updates ;
pthread_handler_decl(handle_slave_io,arg);
pthread_handler_decl(handle_slave_sql,arg);
extern bool volatile abort_loop;
extern MASTER_INFO main_mi, *active_mi; // active_mi for multi-master
extern volatile int active_mi_in_use;
extern LIST master_list;
extern HASH replicate_do_table, replicate_ignore_table;
extern DYNAMIC_ARRAY replicate_wild_do_table, replicate_wild_ignore_table;
extern bool do_table_inited, ignore_table_inited,
wild_do_table_inited, wild_ignore_table_inited;
extern bool table_rules_on;
#ifndef DBUG_OFF
extern int disconnect_slave_event_count, abort_slave_event_count ;
#endif
// the master variables are defaults read from my.cnf or command line
extern uint master_port, master_connect_retry, report_port;
extern my_string master_user, master_password, master_host,
master_info_file, relay_log_info_file, report_user, report_host,
report_password;
extern I_List<i_string> replicate_do_db, replicate_ignore_db;
extern I_List<i_string_pair> replicate_rewrite_db;
extern I_List<THD> threads;
#endif