2010-01-17 17:51:10 +03:00
#
# Hash semi-join regression tests
# (WL#1110: Subquery optimization: materialization)
#
Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.
The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path(). TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.
The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.
When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.
To remedy the above, the following key & row fetch related costs
has been added:
- The cost of fetching and using a row is now split into different costs:
- key + Row fetch cost (as before) but multiplied with the variable
'optimizer_cache_cost' (default to 0.5). This allows the user to
tell the optimizer the likehood of finding the key and row in the
engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
sql layer or creating a row from the join_cache to the record
buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
the engine to the SQL layer. This is used when we calculate the cost
index only reads. It makes index scans more expensive than before if
they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
when doing a index scan and comparing the rowid to the filter.
Before this cost was assumed to be 0.
All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other. There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.
To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
into account. This is used with filesort where we don't need
to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
KEY_COPY_COST & TIME_FOR_COMPARE.
I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
table.
When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.
Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.
In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).
The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.
Detailed list of changes:
- Calculate index_only_cost consistently and correctly for all scan
and ref accesses. The row fetch_cost and index_only_cost now
takes into account clustered keys, covered keys and index
only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
similar costs. This is bases on the assumption that data is more
often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
TIME_FOR_COMPARE. Now all scan costs takes this into
account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
adjusting this on can reduce or increase the cost of index or direct
record lookups. The effect of the default is that key lookups is now
a bit cheaper than before. See usage of 'optimizer_cache_cost' in
handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
which produced a wrong cost when index scan was used. Changed
JOIN_TAB:::scan_time() to take into consideration clustered and
covered keys. The values are now cached and we only have to call
this function once. Other calls are changed to use the cached
values. Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
more close to 'range' calculations. The cost is now lower than
before for small data sets and higher for large data sets as we take
into account how many keys are read (main.opt_trace_selectivity,
main.limit_rows_examined).
- Ensured that index_scan_cost() ==
range(scan_of_all_rows_in_table_using_one_range) +
MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
is choice of doing a full index scan and a range-index scan over
almost the whole table then index scan will be preferred (no
range-read setup cost). (innodb.innodb, main.show_explain,
main.range)
- Fixed the EQ_REF and REF takes into account clustered and covered
keys. This changes some plans to use covered or clustered indexes
as these are much cheaper. (main.subselect_mat_cost,
main.state_tables_innodb, main.limit_rows_examined)
- Rowid filter setup cost and filter compare cost now takes into
account fetching and checking the rowid (KEY_NEXT_FIND_COST).
(main.partition_pruning heap.heap_btree main.log_state)
- Added KEY_NEXT_FIND_COST to
Range_rowid_filter_cost_info::lookup_cost to account of the time
to find and check the next key value against the container
- Introduced ha_keyread_time(rows) that takes into account finding
the next row and copying the key value to 'record'
(KEY_COPY_COST).
- Introduced ha_key_scan_time() for calculating an index scan over
all rows.
- Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
- Added index_only_fetch_cost() as a convenience function to
OPT_RANGE.
- keyread_time() cost is slightly reduced to prefer shorter keys.
(main.index_merge_myisam)
- All of the above caused some index_merge combinations to be
rejected because of cost (main.index_intersect). In some cases
'ref' where replaced with index_merge because of the low
cost calculation of get_sweep_read_cost().
- Some index usage moved from PRIMARY to a covering index.
(main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter().
filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
of filtered rows for ranges. The reason is that we want to ensure
that 'range' is calculated similar to 'ref'. There is also more work
needed to calculate the selectivity when using ranges and ranges and
filtering. This causes filtering column in EXPLAIN EXTENDED to be
100.00 for some cases where range cannot use filtering.
(main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
finding the next row and copying the row from the engine to
'record'. This causes costs of table scan to slightly increase and
some test to changed their plan from ALL to RANGE or ALL to ref.
(innodb.innodb_mysql, main.select_pkeycache)
In a few cases where scan time of very small tables have lower cost
than a ref or range, things changed from ref/range to ALL.
(main.myisam, main.func_group, main.limit_rows_examined,
main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
materialization. This causes some very small tables to use scan
instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
to ensure that the 'Last_query_cost' status variable contains the
same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
handler::read_time(). This should have no effect as it's 1.0 by
default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
preceding tables (as have to restore all fields for all previous
table combination when checking the where clause)
The new cost added is:
(row_combinations * ROW_COPY_COST * number_of_cached_tables).
This increases the cost of join buffering in proportion of the
number of tables in the join buffer. One effect is that full scans
are now done earlier as the cost is then smaller.
(main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
caused wrong plans to be created; It prefered JT_EQ_REF even if it
would be much more expensive than a full table scan. A related
issue was that worst_seeks only applied to full lookup, not to
clustered or index only lookups, which is not consistent. This
caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
- More costs, especially for materialization and index_merge.
- Make lables more uniform
- Fixed a lot of minor bugs
- Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
the cost did not take into account the number of row retrivals
that has to be done or the cost of comparing the rows with the
WHERE clause. The cost calculated would be just a fraction of
the real cost. Now we calculate the cost as we do for ranges
and 'ref'.
- 'Using index for group-by' is used a bit more than before as
now take into account the WHERE clause cost when comparing
with 'ref' and prefer the method with fewer row combinations.
(main.group_min_max).
Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
index when displaying 'Using index'. This caused some old plans to
show 'Using index'. (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
updated, and the cost we compared with was not the one that was
used.
- Fixed very wrong cost calculation for priority queues in
check_if_pq_applicable(). (main.order_by now correctly uses priority
queue)
- When calculating cost of EQ_REF or REF, we added the cost of
comparing the WHERE clause with the found rows, not all row
combinations. This made ref and eq_ref to be regarded way to cheap
compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
cost of a JT_REF key. This may be true for InnoDB primary key, but
not for other unique keys or other engines. Now we use handler
function to calculate the cost, which allows us to handle
consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
enabled but still changed the 'keyread' variable (which is wrong).
Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
means that the cost for hash_joins more expensive than calculated
in best_access_path (a difference of 10x * TIME_OF_COMPARE).
This is fixed in the new code thanks to that we now include
TIME_OF_COMPARE cost in 'read_time'.
Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
(No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h
Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
This is because the cost of doing a range fetch of lineitem(98 rows) is
almost as big as the whole join of order,lineitem. The filtering will
also ensure that we only have to do very small key fetches of the rows
in lineitem.
- main.index_merge_myisam had a few changes where we are now using
less keys for index_merge. This is because index scans are now more
expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
This ensures that it is up to date per statements.
Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
filesort into consideration when table scan is chosen.
(main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
on a table with 1 row will now use table scan instead of key lookup.
TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
when there is a ref access but scan is chosen.
For this we have to store the lowest known value for
'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
costs. This will fix tests like main.order_by_innodb,
main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
cost_for_index_read() if there where no quick keys. This will reduce
the computed cost for ORDER BY with LIMIT in some cases.
(main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
of rows we have to read when considering using a index table scan to
resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
--source include/have_sequence.inc
2010-01-17 17:51:10 +03:00
# force the use of materialization
2011-07-05 01:44:15 +04:00
set @subselect_mat_test_optimizer_switch_value='materialization=on,in_to_exists=off,semijoin=off';
2010-01-17 17:51:10 +03:00
2018-03-09 14:05:35 +02:00
--source subselect_sj_mat.test
2011-07-05 01:44:15 +04:00
set @subselect_mat_test_optimizer_switch_value=null;
2010-10-20 15:43:55 +03:00
set @@optimizer_switch='materialization=on,in_to_exists=off,semijoin=off';
2011-07-08 18:46:47 +04:00
set optimizer_switch='mrr=on,mrr_sort_keys=on,index_condition_pushdown=on';
2010-07-16 14:02:15 +03:00
#
# Test that the contents of the temp table of a materialized subquery is
# cleaned up between PS re-executions.
#
create table t0 (a int);
insert into t0 values (0),(1),(2);
create table t1 (a int);
insert into t1 values (0),(1),(2);
explain select a, a in (select a from t1) from t0;
select a, a in (select a from t1) from t0;
prepare s from 'select a, a in (select a from t1) from t0';
execute s;
update t1 set a=123;
execute s;
drop table t0, t1;
2010-10-25 23:48:43 +03:00
--echo #
--echo # LPBUG#609121: RQG: wrong result on aggregate + NOT IN + HAVING and
--echo # partial_match_table_scan=on
--echo #
create table t1 (c1 int);
create table t2 (c2 int);
insert into t1 values (1);
insert into t2 values (2);
set @@optimizer_switch='semijoin=off';
EXPLAIN
SELECT SUM(c1) c1_sum FROM t1 WHERE c1 IN (SELECT c2 FROM t2);
SELECT SUM(c1) c1_sum FROM t1 WHERE c1 IN (SELECT c2 FROM t2);
EXPLAIN
SELECT SUM(c1) c1_sum FROM t1 WHERE c1 IN (SELECT c2 FROM t2) HAVING c1_sum;
SELECT SUM(c1) c1_sum FROM t1 WHERE c1 IN (SELECT c2 FROM t2) HAVING c1_sum;
drop table t1, t2;
2010-11-25 11:43:23 +02:00
--echo #
--echo # BUG#52344 - Subquery materialization:
--echo # Assertion if subquery in on-clause of outer join
--echo #
set @@optimizer_switch='semijoin=off';
CREATE TABLE t1 (i INTEGER);
INSERT INTO t1 VALUES (10);
CREATE TABLE t2 (j INTEGER);
INSERT INTO t2 VALUES (5);
CREATE TABLE t3 (k INTEGER);
EXPLAIN
SELECT i FROM t1 LEFT JOIN t2 ON (j) IN (SELECT k FROM t3);
SELECT i FROM t1 LEFT JOIN t2 ON (j) IN (SELECT k FROM t3);
EXPLAIN
SELECT i FROM t1 LEFT JOIN t2 ON (j) IN (SELECT max(k) FROM t3);
SELECT i FROM t1 LEFT JOIN t2 ON (j) IN (SELECT max(k) FROM t3);
DROP TABLE t1, t2, t3;
--echo #
2011-05-16 22:39:43 -07:00
--echo # LPBUG#611622/BUG#52344: Subquery materialization: Assertion
--echo # if subquery in on-clause of outer join
2010-11-25 11:43:23 +02:00
--echo #
CREATE TABLE t1 (c1 int);
INSERT INTO t1 VALUES (1),(2);
CREATE TABLE t2 (c2 int);
INSERT INTO t2 VALUES (10);
PREPARE st1 FROM "
SELECT *
2011-05-16 22:39:43 -07:00
FROM t2 LEFT JOIN t2 t3 ON (8, 4) IN (SELECT c1, c1 FROM t1)";
2010-11-25 11:43:23 +02:00
EXECUTE st1;
EXECUTE st1;
DROP TABLE t1, t2;
2011-01-14 13:51:30 +03:00
--echo #
--echo # Testcase backport: BUG#46548 IN-subqueries return 0 rows with materialization=on
--echo #
CREATE TABLE t1 (
pk int,
a varchar(1),
b varchar(4),
c varchar(4),
d varchar(4),
PRIMARY KEY (pk)
);
INSERT INTO t1 VALUES (1,'o','ffff','ffff','ffoo'),(2,'f','ffff','ffff','ffff');
CREATE TABLE t2 LIKE t1;
INSERT INTO t2 VALUES (1,'i','iiii','iiii','iiii'),(2,'f','ffff','ffff','ffff');
Update row and key fetch cost models to take into account data copy costs
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.
The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path(). TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.
The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.
When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.
To remedy the above, the following key & row fetch related costs
has been added:
- The cost of fetching and using a row is now split into different costs:
- key + Row fetch cost (as before) but multiplied with the variable
'optimizer_cache_cost' (default to 0.5). This allows the user to
tell the optimizer the likehood of finding the key and row in the
engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
sql layer or creating a row from the join_cache to the record
buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
the engine to the SQL layer. This is used when we calculate the cost
index only reads. It makes index scans more expensive than before if
they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
when doing a index scan and comparing the rowid to the filter.
Before this cost was assumed to be 0.
All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other. There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.
To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
into account. This is used with filesort where we don't need
to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
KEY_COPY_COST & TIME_FOR_COMPARE.
I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
table.
When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.
Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.
In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).
The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.
Detailed list of changes:
- Calculate index_only_cost consistently and correctly for all scan
and ref accesses. The row fetch_cost and index_only_cost now
takes into account clustered keys, covered keys and index
only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
similar costs. This is bases on the assumption that data is more
often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
TIME_FOR_COMPARE. Now all scan costs takes this into
account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
adjusting this on can reduce or increase the cost of index or direct
record lookups. The effect of the default is that key lookups is now
a bit cheaper than before. See usage of 'optimizer_cache_cost' in
handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
which produced a wrong cost when index scan was used. Changed
JOIN_TAB:::scan_time() to take into consideration clustered and
covered keys. The values are now cached and we only have to call
this function once. Other calls are changed to use the cached
values. Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
more close to 'range' calculations. The cost is now lower than
before for small data sets and higher for large data sets as we take
into account how many keys are read (main.opt_trace_selectivity,
main.limit_rows_examined).
- Ensured that index_scan_cost() ==
range(scan_of_all_rows_in_table_using_one_range) +
MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
is choice of doing a full index scan and a range-index scan over
almost the whole table then index scan will be preferred (no
range-read setup cost). (innodb.innodb, main.show_explain,
main.range)
- Fixed the EQ_REF and REF takes into account clustered and covered
keys. This changes some plans to use covered or clustered indexes
as these are much cheaper. (main.subselect_mat_cost,
main.state_tables_innodb, main.limit_rows_examined)
- Rowid filter setup cost and filter compare cost now takes into
account fetching and checking the rowid (KEY_NEXT_FIND_COST).
(main.partition_pruning heap.heap_btree main.log_state)
- Added KEY_NEXT_FIND_COST to
Range_rowid_filter_cost_info::lookup_cost to account of the time
to find and check the next key value against the container
- Introduced ha_keyread_time(rows) that takes into account finding
the next row and copying the key value to 'record'
(KEY_COPY_COST).
- Introduced ha_key_scan_time() for calculating an index scan over
all rows.
- Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
- Added index_only_fetch_cost() as a convenience function to
OPT_RANGE.
- keyread_time() cost is slightly reduced to prefer shorter keys.
(main.index_merge_myisam)
- All of the above caused some index_merge combinations to be
rejected because of cost (main.index_intersect). In some cases
'ref' where replaced with index_merge because of the low
cost calculation of get_sweep_read_cost().
- Some index usage moved from PRIMARY to a covering index.
(main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter().
filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
of filtered rows for ranges. The reason is that we want to ensure
that 'range' is calculated similar to 'ref'. There is also more work
needed to calculate the selectivity when using ranges and ranges and
filtering. This causes filtering column in EXPLAIN EXTENDED to be
100.00 for some cases where range cannot use filtering.
(main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
finding the next row and copying the row from the engine to
'record'. This causes costs of table scan to slightly increase and
some test to changed their plan from ALL to RANGE or ALL to ref.
(innodb.innodb_mysql, main.select_pkeycache)
In a few cases where scan time of very small tables have lower cost
than a ref or range, things changed from ref/range to ALL.
(main.myisam, main.func_group, main.limit_rows_examined,
main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
materialization. This causes some very small tables to use scan
instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
to ensure that the 'Last_query_cost' status variable contains the
same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
handler::read_time(). This should have no effect as it's 1.0 by
default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
preceding tables (as have to restore all fields for all previous
table combination when checking the where clause)
The new cost added is:
(row_combinations * ROW_COPY_COST * number_of_cached_tables).
This increases the cost of join buffering in proportion of the
number of tables in the join buffer. One effect is that full scans
are now done earlier as the cost is then smaller.
(main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
caused wrong plans to be created; It prefered JT_EQ_REF even if it
would be much more expensive than a full table scan. A related
issue was that worst_seeks only applied to full lookup, not to
clustered or index only lookups, which is not consistent. This
caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
- More costs, especially for materialization and index_merge.
- Make lables more uniform
- Fixed a lot of minor bugs
- Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
the cost did not take into account the number of row retrivals
that has to be done or the cost of comparing the rows with the
WHERE clause. The cost calculated would be just a fraction of
the real cost. Now we calculate the cost as we do for ranges
and 'ref'.
- 'Using index for group-by' is used a bit more than before as
now take into account the WHERE clause cost when comparing
with 'ref' and prefer the method with fewer row combinations.
(main.group_min_max).
Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
index when displaying 'Using index'. This caused some old plans to
show 'Using index'. (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
updated, and the cost we compared with was not the one that was
used.
- Fixed very wrong cost calculation for priority queues in
check_if_pq_applicable(). (main.order_by now correctly uses priority
queue)
- When calculating cost of EQ_REF or REF, we added the cost of
comparing the WHERE clause with the found rows, not all row
combinations. This made ref and eq_ref to be regarded way to cheap
compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
cost of a JT_REF key. This may be true for InnoDB primary key, but
not for other unique keys or other engines. Now we use handler
function to calculate the cost, which allows us to handle
consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
enabled but still changed the 'keyread' variable (which is wrong).
Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
means that the cost for hash_joins more expensive than calculated
in best_access_path (a difference of 10x * TIME_OF_COMPARE).
This is fixed in the new code thanks to that we now include
TIME_OF_COMPARE cost in 'read_time'.
Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
(No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h
Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
This is because the cost of doing a range fetch of lineitem(98 rows) is
almost as big as the whole join of order,lineitem. The filtering will
also ensure that we only have to do very small key fetches of the rows
in lineitem.
- main.index_merge_myisam had a few changes where we are now using
less keys for index_merge. This is because index scans are now more
expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
This ensures that it is up to date per statements.
Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
filesort into consideration when table scan is chosen.
(main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
on a table with 1 row will now use table scan instead of key lookup.
TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
when there is a ref access but scan is chosen.
For this we have to store the lowest known value for
'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
costs. This will fix tests like main.order_by_innodb,
main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
cost_for_index_read() if there where no quick keys. This will reduce
the computed cost for ORDER BY with LIMIT in some cases.
(main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
of rows we have to read when considering using a index table scan to
resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
benefit of reading multiple rows from the same page.
2021-11-01 12:34:24 +02:00
insert into t2 select -seq,"","","","" from seq_1_to_10;
2011-01-14 13:51:30 +03:00
SET @@optimizer_switch='default,semijoin=on,materialization=on';
EXPLAIN SELECT pk FROM t1 WHERE (a) IN (SELECT a FROM t2 WHERE pk > 0);
SELECT pk FROM t1 WHERE (a) IN (SELECT a FROM t2 WHERE pk > 0);
SELECT pk FROM t1 WHERE (b,c,d) IN (SELECT b,c,d FROM t2 WHERE pk > 0);
DROP TABLE t1, t2;
2011-03-01 12:01:10 +03:00
-- echo #
-- echo # BUG#724228: Wrong result with materialization=on and three aggregates in maria-5.3-mwl90
-- echo #
CREATE TABLE t1 ( f2 int(11)) ;
INSERT IGNORE INTO t1 VALUES ('7'),('9'),('7'),('4'),('2'),('6'),('8'),('5'),('6'),('188'),('2'),('1'),('1'),('0'),('9'),('4');
CREATE TABLE t2 ( f1 int(11), f2 int(11)) ENGINE=MyISAM;
INSERT IGNORE INTO t2 VALUES ('1','1');
CREATE TABLE t3 ( f1 int(11), f2 int(11), f3 int(11), PRIMARY KEY (f1)) ;
INSERT IGNORE INTO t3 VALUES ('16','6','1'),('18','3','4'),('19',NULL,'9'),('20','0','6'),('41','2','0'),('42','2','5'),('43','9','6'),('44','7','4'),('45','1','4'),('46','222','238'),('47','3','6'),('48','6','6'),('49',NULL,'1'),('50','5','1');
SET @_save_join_cache_level = @@join_cache_level;
SET @_save_optimizer_switch = @@optimizer_switch;
SET join_cache_level = 1;
SET optimizer_switch='materialization=on';
SELECT f1 FROM t3
WHERE
f1 NOT IN (SELECT MAX(f2) FROM t1) AND
f3 IN (SELECT MIN(f1) FROM t2) AND
f1 IN (SELECT COUNT(f2) FROM t1);
SET @@join_cache_level = @_save_join_cache_level;
SET @@optimizer_switch = @_save_optimizer_switch;
drop table t1, t2, t3;
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
--echo #
--echo # LPBUG#719198 Ordered_key::cmp_key_with_search_key(rownum_t): Assertion `!compare_pred[i]->null_value'
--echo # failed with subquery on both sides of NOT IN and materialization
--echo #
CREATE TABLE t1 (f1a int, f1b int) ;
INSERT IGNORE INTO t1 VALUES (1,1),(2,2);
CREATE TABLE t2 ( f2 int);
INSERT IGNORE INTO t2 VALUES (3),(4);
CREATE TABLE t3 (f3a int, f3b int);
2011-03-30 10:10:59 +03:00
set @@optimizer_switch='materialization=on,partial_match_rowid_merge=on,partial_match_table_scan=off,in_to_exists=off';
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
EXPLAIN
SELECT * FROM t2 WHERE (SELECT f3a FROM t3) NOT IN (SELECT f1a FROM t1);
SELECT * FROM t2 WHERE (SELECT f3a FROM t3) NOT IN (SELECT f1a FROM t1);
2011-04-01 15:42:59 +03:00
EXPLAIN
SELECT (SELECT f3a FROM t3) NOT IN (SELECT f1a FROM t1);
SELECT (SELECT f3a FROM t3) NOT IN (SELECT f1a FROM t1);
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
EXPLAIN
SELECT * FROM t2 WHERE (SELECT f3a, f3b FROM t3) NOT IN (SELECT f1a, f1b FROM t1);
SELECT * FROM t2 WHERE (SELECT f3a, f3b FROM t3) NOT IN (SELECT f1a, f1b FROM t1);
EXPLAIN
2011-04-01 15:42:59 +03:00
SELECT (SELECT f3a, f3b FROM t3) NOT IN (SELECT f1a, f1b FROM t1);
SELECT (SELECT f3a, f3b FROM t3) NOT IN (SELECT f1a, f1b FROM t1);
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
drop table t1, t2, t3;
--echo #
--echo # LPBUG#730604 Assertion `bit < (map)->n_bits' failed in maria-5.3 with
--echo # partial_match_rowid_merge
--echo #
CREATE TABLE t1 (f1 int NOT NULL, f2 int, f3 int) ;
CREATE TABLE t2 (f1 int NOT NULL, f2 int, f3 int) ;
INSERT INTO t1 VALUES (60, 3, null), (61, null, 77);
INSERT INTO t2 VALUES (1000,6,2);
2011-03-30 10:10:59 +03:00
set @@optimizer_switch='materialization=on,partial_match_rowid_merge=on,partial_match_table_scan=off,in_to_exists=off';
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
2022-06-09 10:32:51 +07:00
#enable after fix MDEV-27871
--disable_view_protocol
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
EXPLAIN
SELECT (f1, f2, f3) NOT IN
(SELECT COUNT(DISTINCT f2), f1, f3 FROM t1 GROUP BY f1, f3)
FROM t2;
SELECT (f1, f2, f3) NOT IN
(SELECT COUNT(DISTINCT f2), f1, f3 FROM t1 GROUP BY f1, f3)
FROM t2;
2022-06-09 10:32:51 +07:00
--enable_view_protocol
Fix LP BUG#719198, LP BUG#730604
Analysis (BUG#719198):
The assert failed because the execution code for
partial matching is designed with the assumption that
NULLs on the left side are detected as early as possible,
and a NULL result is returned before any lookups are
performed at all.
However, in the case of an Item_cache object on the left
side, null was not detected properly, because detection
was done via Item::is_null(), which is not implemented at
all for Item_cache, and resolved to the default Item::is_null()
which always returns FALSE.
Solution:
Imlpement Item::is_null().
******
Analysis (BUG#730604):
The method Item_field::is_null() determines if an item is NULL from its
Item_field::field object. However, for Item_fields that represent internal
temporary tables, Item_field::field represents the field of the original
table that was the source for the temporary table (in this case t1.f3).
Both in the committed test case, and in the original bug report the current
value of t1.f3 is not NULL. This results in an incorrect count of NULLs
for this column. As a consequence, all related Ordered_key buffers are
allocated with incorrect sizes. Depending on the exact query and data,
these incorrect sizes result in various crashes or failed asserts.
Solution:
The correct value of the current field of the internal temp table is
in Item_field::result_field. This value is determined by
Item::is_null_result().
2011-03-13 15:03:26 +00:00
drop table t1, t2;
2011-07-20 16:09:28 -07:00
--echo #
--echo # LPBUG#702301: MAX in select + always false WHERE with SQ
--echo #
CREATE TABLE t1 (a int, b int, KEY (b));
INSERT INTO t1 VALUES (3,1), (4,2);
CREATE TABLE t2 (a int);
INSERT INTO t2 VALUES (7), (8);
set @@optimizer_switch='materialization=on,in_to_exists=off,semijoin=off';
SELECT MAX(t1.b) AS max_res FROM t1 WHERE (9) IN (SELECT a FROM t2);
EXPLAIN EXTENDED
SELECT MAX(t1.b) AS max_res FROM t1 WHERE (9) IN (SELECT a FROM t2);
set @@optimizer_switch='materialization=off,in_to_exists=on,semijoin=off';
SELECT MAX(t1.b) AS max_res FROM t1 WHERE (9) IN (SELECT a FROM t2);
EXPLAIN EXTENDED
SELECT MAX(t1.b) AS max_res FROM t1 WHERE (9) IN (SELECT a FROM t2);
DROP TABLE t1,t2;
2011-08-23 00:00:13 +03:00
--echo #
--echo # LPBUG#825095: Wrong result with materialization and NOT IN with 2 expressions
--echo #
CREATE TABLE t1 (a int,b int);
INSERT INTO t1 VALUES (4,4),(4,2);
CREATE TABLE t2 (b int, a int);
INSERT INTO t2 VALUES (4,3),(8,4);
set @@optimizer_switch='semijoin=off,in_to_exists=off,materialization=on,partial_match_rowid_merge=on,partial_match_table_scan=off';
EXPLAIN SELECT *
FROM t1
WHERE (a, b) NOT IN (SELECT a, b FROM t2);
SELECT *
FROM t1
WHERE (a, b) NOT IN (SELECT a, b FROM t2);
EXPLAIN
SELECT a, b, (a, b) NOT IN (SELECT a, b FROM t2) as sq
FROM t1;
SELECT a, b, (a, b) NOT IN (SELECT a, b FROM t2) as sq
FROM t1;
drop table t1, t2;
2016-02-18 17:20:48 +01:00
2018-03-06 19:59:57 +05:30
--echo #
--echo # MDEV-15235: Assertion `length > 0' failed in create_ref_for_key
--echo #
CREATE TABLE t1 (i INT);
INSERT INTO t1 VALUES (1),(2);
CREATE TABLE t2 (f CHAR(1));
INSERT INTO t2 VALUES ('a'),('b');
explain
SELECT * FROM t2 WHERE f IN ( SELECT LEFT('foo',0) FROM t1 ORDER BY 1 );
SELECT * FROM t2 WHERE f IN ( SELECT LEFT('foo',0) FROM t1 ORDER BY 1 );
DROP TABLE t1, t2;
2018-03-15 03:45:28 +02:00
2019-01-24 20:47:46 +05:30
--echo #
--echo # MDEV-18255: Server crashes in Bitmap<64u>::intersect
--echo #
create table t1 (v1 varchar(1)) engine=myisam ;
create table t2 (v1 varchar(1)) engine=myisam ;
explain
select 1 from t1 where exists
(select 1 from t1 where t1.v1 in (select t2.v1 from t2 having t2.v1 < 'j')) ;
select 1 from t1 where exists
(select 1 from t1 where t1.v1 in (select t2.v1 from t2 having t2.v1 < 'j')) ;
drop table t1,t2;
2019-02-02 13:00:15 +02:00
2016-02-18 17:20:48 +01:00
--echo #
--echo # MDEV-9489: Assertion `0' failed in Protocol::end_statement() on
--echo # UNION ALL
--echo #
CREATE TABLE t1 (f1 INT);
CREATE TABLE t2 (f2 INT);
INSERT INTO t1 VALUES (1),(2);
( SELECT 1 FROM t1 WHERE f1 NOT IN ( SELECT f2 FROM t2 ) LIMIT 0 )
UNION ALL
( SELECT 1 FROM t1 WHERE f1 NOT IN ( SELECT f2 FROM t2 ) )
;
drop table t1, t2;