2013-03-11 16:02:40 +01:00
|
|
|
/* Copyright (c) 2013, Kristian Nielsen and MariaDB Services Ab.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
|
|
|
|
|
|
|
/* Definitions for MariaDB global transaction ID (GTID). */
|
|
|
|
|
2014-09-30 19:31:14 +02:00
|
|
|
#include <my_global.h>
|
2013-03-11 16:02:40 +01:00
|
|
|
#include "sql_priv.h"
|
|
|
|
#include "my_sys.h"
|
|
|
|
#include "unireg.h"
|
|
|
|
#include "my_global.h"
|
|
|
|
#include "sql_base.h"
|
|
|
|
#include "sql_parse.h"
|
|
|
|
#include "key.h"
|
|
|
|
#include "rpl_gtid.h"
|
|
|
|
#include "rpl_rli.h"
|
|
|
|
|
|
|
|
|
|
|
|
const LEX_STRING rpl_gtid_slave_state_table_name=
|
2013-05-22 17:36:48 +02:00
|
|
|
{ C_STRING_WITH_LEN("gtid_slave_pos") };
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
|
|
|
|
void
|
2014-03-09 10:27:38 +01:00
|
|
|
rpl_slave_state::update_state_hash(uint64 sub_id, rpl_gtid *gtid,
|
2014-03-12 00:14:49 +01:00
|
|
|
rpl_group_info *rgi)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
int err;
|
|
|
|
/*
|
|
|
|
Add the gtid to the HASH in the replication slave state.
|
|
|
|
|
|
|
|
We must do this only _after_ commit, so that for parallel replication,
|
|
|
|
there will not be an attempt to delete the corresponding table row before
|
|
|
|
it is even committed.
|
|
|
|
*/
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2014-03-12 00:14:49 +01:00
|
|
|
err= update(gtid->domain_id, gtid->server_id, sub_id, gtid->seq_no, rgi);
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
if (err)
|
|
|
|
{
|
|
|
|
sql_print_warning("Slave: Out of memory during slave state maintenance. "
|
|
|
|
"Some no longer necessary rows in table "
|
2013-03-11 16:16:55 +01:00
|
|
|
"mysql.%s may be left undeleted.",
|
|
|
|
rpl_gtid_slave_state_table_name.str);
|
2013-03-11 16:02:40 +01:00
|
|
|
/*
|
|
|
|
Such failure is not fatal. We will fail to delete the row for this
|
|
|
|
GTID, but it will do no harm and will be removed automatically on next
|
|
|
|
server restart.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
2013-09-13 15:09:57 +02:00
|
|
|
rpl_slave_state::record_and_update_gtid(THD *thd, rpl_group_info *rgi)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_ENTER("rpl_slave_state::record_and_update_gtid");
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Update the GTID position, if we have it and did not already update
|
|
|
|
it in a GTID transaction.
|
|
|
|
*/
|
MDEV-5262, MDEV-5914, MDEV-5941, MDEV-6020: Deadlocks during parallel
replication causing replication to fail.
Remove the temporary fix for MDEV-5914, which used READ COMMITTED for parallel
replication worker threads. Replace it with a better, more selective solution.
The issue is with certain edge cases of InnoDB gap locks, for example between
INSERT and ranged DELETE. It is possible for the gap lock set by the DELETE to
block the INSERT, if the DELETE runs first, while the record lock set by
INSERT does not block the DELETE, if the INSERT runs first. This can cause a
conflict between the two in parallel replication on the slave even though they
ran without conflicts on the master.
With this patch, InnoDB will ask the server layer about the two involved
transactions before blocking on a gap lock. If the server layer tells InnoDB
that the transactions are already fixed wrt. commit order, as they are in
parallel replication, InnoDB will ignore the gap lock and allow the two
transactions to proceed in parallel, avoiding the conflict.
Improve the fix for MDEV-6020. When InnoDB itself detects a deadlock, it now
asks the server layer for any preferences about which transaction to roll
back. In case of parallel replication with two transactions T1 and T2 fixed to
commit T1 before T2, the server layer will ask InnoDB to roll back T2 as the
deadlock victim, not T1. This helps in some cases to avoid excessive deadlock
rollback, as T2 will in any case need to wait for T1 to complete before it can
itself commit.
Also some misc. fixes found during development and testing:
- Remove thd_rpl_is_parallel(), it is not used or needed.
- Use KILL_CONNECTION instead of KILL_QUERY when a parallel replication
worker thread is killed to resolve a deadlock with fixed commit
ordering. There are some cases, eg. in sql/sql_parse.cc, where a KILL_QUERY
can be ignored if the query otherwise completed successfully, and this
could cause the deadlock kill to be lost, so that the deadlock was not
correctly resolved.
- Fix random test failure due to missing wait_for_binlog_checkpoint.inc.
- Make sure that deadlock or other temporary errors during parallel
replication are not printed to the the error log; there were some places
around the replication code with extra error logging. These conditions can
occur occasionally and are handled automatically without breaking
replication, so they should not pollute the error log.
- Fix handling of rgi->gtid_sub_id. We need to be able to access this also at
the end of a transaction, to be able to detect and resolve deadlocks due to
commit ordering. But this value was also used as a flag to mark whether
record_gtid() had been called, by being set to zero, losing the value. Now,
introduce a separate flag rgi->gtid_pending, so rgi->gtid_sub_id remains
valid for the entire duration of the transaction.
- Fix one place where the code to handle ignored errors called reset_killed()
unconditionally, even if no error was caught that should be ignored. This
could cause loss of a deadlock kill signal, breaking deadlock detection and
resolution.
- Fix a couple of missing mysql_reset_thd_for_next_command(). This could
cause a prior error condition to remain for the next event executed,
causing assertions about errors already being set and possibly giving
incorrect error handling for following event executions.
- Fix code that cleared thd->rgi_slave in the parallel replication worker
threads after each event execution; this caused the deadlock detection and
handling code to not be able to correctly process the associated
transactions as belonging to replication worker threads.
- Remove useless error code in slave_background_kill_request().
- Fix bug where wfc->wakeup_error was not cleared at
wait_for_commit::unregister_wait_for_prior_commit(). This could cause the
error condition to wrongly propagate to a later wait_for_prior_commit(),
causing spurious ER_PRIOR_COMMIT_FAILED errors.
- Do not put the binlog background thread into the processlist. It causes
too many result differences in mtr, but also it probably is not useful
for users to pollute the process list with a system thread that does not
really perform any user-visible tasks...
2014-06-10 10:13:15 +02:00
|
|
|
if (rgi->gtid_pending)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
MDEV-5262, MDEV-5914, MDEV-5941, MDEV-6020: Deadlocks during parallel
replication causing replication to fail.
Remove the temporary fix for MDEV-5914, which used READ COMMITTED for parallel
replication worker threads. Replace it with a better, more selective solution.
The issue is with certain edge cases of InnoDB gap locks, for example between
INSERT and ranged DELETE. It is possible for the gap lock set by the DELETE to
block the INSERT, if the DELETE runs first, while the record lock set by
INSERT does not block the DELETE, if the INSERT runs first. This can cause a
conflict between the two in parallel replication on the slave even though they
ran without conflicts on the master.
With this patch, InnoDB will ask the server layer about the two involved
transactions before blocking on a gap lock. If the server layer tells InnoDB
that the transactions are already fixed wrt. commit order, as they are in
parallel replication, InnoDB will ignore the gap lock and allow the two
transactions to proceed in parallel, avoiding the conflict.
Improve the fix for MDEV-6020. When InnoDB itself detects a deadlock, it now
asks the server layer for any preferences about which transaction to roll
back. In case of parallel replication with two transactions T1 and T2 fixed to
commit T1 before T2, the server layer will ask InnoDB to roll back T2 as the
deadlock victim, not T1. This helps in some cases to avoid excessive deadlock
rollback, as T2 will in any case need to wait for T1 to complete before it can
itself commit.
Also some misc. fixes found during development and testing:
- Remove thd_rpl_is_parallel(), it is not used or needed.
- Use KILL_CONNECTION instead of KILL_QUERY when a parallel replication
worker thread is killed to resolve a deadlock with fixed commit
ordering. There are some cases, eg. in sql/sql_parse.cc, where a KILL_QUERY
can be ignored if the query otherwise completed successfully, and this
could cause the deadlock kill to be lost, so that the deadlock was not
correctly resolved.
- Fix random test failure due to missing wait_for_binlog_checkpoint.inc.
- Make sure that deadlock or other temporary errors during parallel
replication are not printed to the the error log; there were some places
around the replication code with extra error logging. These conditions can
occur occasionally and are handled automatically without breaking
replication, so they should not pollute the error log.
- Fix handling of rgi->gtid_sub_id. We need to be able to access this also at
the end of a transaction, to be able to detect and resolve deadlocks due to
commit ordering. But this value was also used as a flag to mark whether
record_gtid() had been called, by being set to zero, losing the value. Now,
introduce a separate flag rgi->gtid_pending, so rgi->gtid_sub_id remains
valid for the entire duration of the transaction.
- Fix one place where the code to handle ignored errors called reset_killed()
unconditionally, even if no error was caught that should be ignored. This
could cause loss of a deadlock kill signal, breaking deadlock detection and
resolution.
- Fix a couple of missing mysql_reset_thd_for_next_command(). This could
cause a prior error condition to remain for the next event executed,
causing assertions about errors already being set and possibly giving
incorrect error handling for following event executions.
- Fix code that cleared thd->rgi_slave in the parallel replication worker
threads after each event execution; this caused the deadlock detection and
handling code to not be able to correctly process the associated
transactions as belonging to replication worker threads.
- Remove useless error code in slave_background_kill_request().
- Fix bug where wfc->wakeup_error was not cleared at
wait_for_commit::unregister_wait_for_prior_commit(). This could cause the
error condition to wrongly propagate to a later wait_for_prior_commit(),
causing spurious ER_PRIOR_COMMIT_FAILED errors.
- Do not put the binlog background thread into the processlist. It causes
too many result differences in mtr, but also it probably is not useful
for users to pollute the process list with a system thread that does not
really perform any user-visible tasks...
2014-06-10 10:13:15 +02:00
|
|
|
uint64 sub_id= rgi->gtid_sub_id;
|
|
|
|
rgi->gtid_pending= false;
|
2014-03-12 00:14:49 +01:00
|
|
|
if (rgi->gtid_ignore_duplicate_state!=rpl_group_info::GTID_DUPLICATE_IGNORE)
|
|
|
|
{
|
|
|
|
if (record_gtid(thd, &rgi->current_gtid, sub_id, false, false))
|
|
|
|
DBUG_RETURN(1);
|
|
|
|
update_state_hash(sub_id, &rgi->current_gtid, rgi);
|
|
|
|
}
|
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_NULL;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_RETURN(0);
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-03-09 10:27:38 +01:00
|
|
|
/*
|
|
|
|
Check GTID event execution when --gtid-ignore-duplicates.
|
|
|
|
|
|
|
|
The idea with --gtid-ignore-duplicates is that we allow multiple master
|
|
|
|
connections (in multi-source replication) to all receive the same GTIDs and
|
|
|
|
event groups. Only one instance of each is applied; we use the sequence
|
|
|
|
number in the GTID to decide whether a GTID has already been applied.
|
|
|
|
|
|
|
|
So if the seq_no of a GTID (or a higher sequence number) has already been
|
|
|
|
applied, then the event should be skipped. If not then the event should be
|
|
|
|
applied.
|
|
|
|
|
|
|
|
To avoid two master connections tring to apply the same event
|
|
|
|
simultaneously, only one is allowed to work in any given domain at any point
|
|
|
|
in time. The associated Relay_log_info object is called the owner of the
|
|
|
|
domain (and there can be multiple parallel worker threads working in that
|
|
|
|
domain for that Relay_log_info). Any other Relay_log_info/master connection
|
|
|
|
must wait for the domain to become free, or for their GTID to have been
|
|
|
|
applied, before being allowed to proceed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
0 This GTID is already applied, it should be skipped.
|
|
|
|
1 The GTID is not yet applied; this rli is now the owner, and must apply
|
|
|
|
the event and release the domain afterwards.
|
|
|
|
-1 Error (out of memory to allocate a new element for the domain).
|
|
|
|
*/
|
|
|
|
int
|
2014-03-12 00:14:49 +01:00
|
|
|
rpl_slave_state::check_duplicate_gtid(rpl_gtid *gtid, rpl_group_info *rgi)
|
2014-03-09 10:27:38 +01:00
|
|
|
{
|
|
|
|
uint32 domain_id= gtid->domain_id;
|
2015-07-19 09:28:22 +02:00
|
|
|
uint64 seq_no= gtid->seq_no;
|
2014-03-09 10:27:38 +01:00
|
|
|
rpl_slave_state::element *elem;
|
|
|
|
int res;
|
2014-06-10 20:20:33 +02:00
|
|
|
bool did_enter_cond= false;
|
2014-03-12 00:14:49 +01:00
|
|
|
PSI_stage_info old_stage;
|
2015-11-23 18:56:03 +01:00
|
|
|
THD *UNINIT_VAR(thd);
|
2014-03-12 00:14:49 +01:00
|
|
|
Relay_log_info *rli= rgi->rli;
|
2014-03-09 10:27:38 +01:00
|
|
|
|
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
|
|
|
if (!(elem= get_element(domain_id)))
|
|
|
|
{
|
2014-03-12 00:14:49 +01:00
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
2014-03-09 10:27:38 +01:00
|
|
|
res= -1;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Note that the elem pointer does not change once inserted in the hash. So
|
|
|
|
we can re-use the pointer without looking it up again in the hash after
|
|
|
|
each lock release and re-take.
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
if (elem->highest_seq_no >= seq_no)
|
|
|
|
{
|
|
|
|
/* This sequence number is already applied, ignore it. */
|
|
|
|
res= 0;
|
2014-03-12 00:14:49 +01:00
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_IGNORE;
|
2014-03-09 10:27:38 +01:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!elem->owner_rli)
|
|
|
|
{
|
|
|
|
/* The domain became free, grab it and apply the event. */
|
|
|
|
elem->owner_rli= rli;
|
|
|
|
elem->owner_count= 1;
|
2014-03-12 00:14:49 +01:00
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_OWNER;
|
2014-03-09 10:27:38 +01:00
|
|
|
res= 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (elem->owner_rli == rli)
|
|
|
|
{
|
|
|
|
/* Already own this domain, increment reference count and apply event. */
|
|
|
|
++elem->owner_count;
|
2014-03-12 00:14:49 +01:00
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_OWNER;
|
2014-03-09 10:27:38 +01:00
|
|
|
res= 1;
|
|
|
|
break;
|
|
|
|
}
|
2014-03-12 00:14:49 +01:00
|
|
|
thd= rgi->thd;
|
|
|
|
if (thd->check_killed())
|
|
|
|
{
|
|
|
|
thd->send_kill_message();
|
|
|
|
res= -1;
|
|
|
|
break;
|
|
|
|
}
|
2014-03-09 10:27:38 +01:00
|
|
|
/*
|
|
|
|
Someone else is currently processing this GTID (or an earlier one).
|
|
|
|
Wait for them to complete (or fail), and then check again.
|
|
|
|
*/
|
2014-03-12 00:14:49 +01:00
|
|
|
if (!did_enter_cond)
|
|
|
|
{
|
|
|
|
thd->ENTER_COND(&elem->COND_gtid_ignore_duplicates, &LOCK_slave_state,
|
|
|
|
&stage_gtid_wait_other_connection, &old_stage);
|
|
|
|
did_enter_cond= true;
|
|
|
|
}
|
2014-03-09 10:27:38 +01:00
|
|
|
mysql_cond_wait(&elem->COND_gtid_ignore_duplicates,
|
|
|
|
&LOCK_slave_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
err:
|
2014-03-12 00:14:49 +01:00
|
|
|
if (did_enter_cond)
|
|
|
|
thd->EXIT_COND(&old_stage);
|
|
|
|
else
|
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2014-03-09 10:27:38 +01:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-03-12 00:14:49 +01:00
|
|
|
void
|
|
|
|
rpl_slave_state::release_domain_owner(rpl_group_info *rgi)
|
|
|
|
{
|
|
|
|
element *elem= NULL;
|
|
|
|
|
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
|
|
|
if (!(elem= get_element(rgi->current_gtid.domain_id)))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
We cannot really deal with error here, as we are already called in an
|
|
|
|
error handling case (transaction failure and rollback).
|
|
|
|
|
|
|
|
However, get_element() only fails if the element did not exist already
|
|
|
|
and could not be allocated due to out-of-memory - and if it did not
|
|
|
|
exist, then we would not get here in the first place.
|
|
|
|
*/
|
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rgi->gtid_ignore_duplicate_state == rpl_group_info::GTID_DUPLICATE_OWNER)
|
|
|
|
{
|
|
|
|
uint32 count= elem->owner_count;
|
|
|
|
DBUG_ASSERT(count > 0);
|
|
|
|
DBUG_ASSERT(elem->owner_rli == rgi->rli);
|
|
|
|
--count;
|
|
|
|
elem->owner_count= count;
|
|
|
|
if (count == 0)
|
|
|
|
{
|
|
|
|
elem->owner_rli= NULL;
|
|
|
|
mysql_cond_broadcast(&elem->COND_gtid_ignore_duplicates);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_NULL;
|
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
static void
|
|
|
|
rpl_slave_state_free_element(void *arg)
|
|
|
|
{
|
|
|
|
struct rpl_slave_state::element *elem= (struct rpl_slave_state::element *)arg;
|
|
|
|
mysql_cond_destroy(&elem->COND_wait_gtid);
|
2014-03-09 10:27:38 +01:00
|
|
|
mysql_cond_destroy(&elem->COND_gtid_ignore_duplicates);
|
2014-02-07 19:15:28 +01:00
|
|
|
my_free(elem);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
rpl_slave_state::rpl_slave_state()
|
2015-11-29 16:51:23 +01:00
|
|
|
: last_sub_id(0), loaded(false)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_init(key_LOCK_slave_state, &LOCK_slave_state,
|
|
|
|
MY_MUTEX_INIT_SLOW);
|
2013-03-11 16:02:40 +01:00
|
|
|
my_hash_init(&hash, &my_charset_bin, 32, offsetof(element, domain_id),
|
2014-02-07 19:15:28 +01:00
|
|
|
sizeof(uint32), NULL, rpl_slave_state_free_element, HASH_UNIQUE);
|
2015-02-28 05:33:22 +01:00
|
|
|
my_init_dynamic_array(>id_sort_array, sizeof(rpl_gtid), 8, 8, MYF(0));
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
rpl_slave_state::~rpl_slave_state()
|
|
|
|
{
|
2015-11-29 16:51:23 +01:00
|
|
|
truncate_hash();
|
|
|
|
my_hash_free(&hash);
|
2015-12-21 21:24:22 +01:00
|
|
|
delete_dynamic(>id_sort_array);
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_destroy(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
rpl_slave_state::truncate_hash()
|
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
|
|
|
list_element *l= e->list;
|
|
|
|
list_element *next;
|
|
|
|
while (l)
|
|
|
|
{
|
|
|
|
next= l->next;
|
|
|
|
my_free(l);
|
|
|
|
l= next;
|
|
|
|
}
|
|
|
|
/* The element itself is freed by the hash element free function. */
|
|
|
|
}
|
|
|
|
my_hash_reset(&hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
rpl_slave_state::update(uint32 domain_id, uint32 server_id, uint64 sub_id,
|
2014-03-12 00:14:49 +01:00
|
|
|
uint64 seq_no, rpl_group_info *rgi)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
element *elem= NULL;
|
|
|
|
list_element *list_elem= NULL;
|
|
|
|
|
|
|
|
if (!(elem= get_element(domain_id)))
|
|
|
|
return 1;
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
if (seq_no > elem->highest_seq_no)
|
|
|
|
elem->highest_seq_no= seq_no;
|
2014-02-08 22:28:41 +01:00
|
|
|
if (elem->gtid_waiter && elem->min_wait_seq_no <= seq_no)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
Someone was waiting in MASTER_GTID_WAIT() for this GTID to appear.
|
|
|
|
Signal (and remove) them. The waiter will handle all the processing
|
|
|
|
of all pending MASTER_GTID_WAIT(), so we do not slow down the
|
|
|
|
replication SQL thread.
|
|
|
|
*/
|
|
|
|
mysql_mutex_assert_owner(&LOCK_slave_state);
|
2014-02-08 22:28:41 +01:00
|
|
|
elem->gtid_waiter= NULL;
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_cond_broadcast(&elem->COND_wait_gtid);
|
|
|
|
}
|
|
|
|
|
2014-03-12 00:14:49 +01:00
|
|
|
if (rgi)
|
2014-03-09 10:27:38 +01:00
|
|
|
{
|
2014-03-12 00:14:49 +01:00
|
|
|
if (rgi->gtid_ignore_duplicate_state==rpl_group_info::GTID_DUPLICATE_OWNER)
|
2014-03-09 10:27:38 +01:00
|
|
|
{
|
2014-06-04 12:23:00 +02:00
|
|
|
#ifndef DBUG_OFF
|
2014-03-12 00:14:49 +01:00
|
|
|
Relay_log_info *rli= rgi->rli;
|
2014-06-04 12:23:00 +02:00
|
|
|
#endif
|
2014-03-12 00:14:49 +01:00
|
|
|
uint32 count= elem->owner_count;
|
|
|
|
DBUG_ASSERT(count > 0);
|
|
|
|
DBUG_ASSERT(elem->owner_rli == rli);
|
|
|
|
--count;
|
|
|
|
elem->owner_count= count;
|
|
|
|
if (count == 0)
|
|
|
|
{
|
|
|
|
elem->owner_rli= NULL;
|
|
|
|
mysql_cond_broadcast(&elem->COND_gtid_ignore_duplicates);
|
|
|
|
}
|
2014-03-09 10:27:38 +01:00
|
|
|
}
|
2014-03-12 00:14:49 +01:00
|
|
|
rgi->gtid_ignore_duplicate_state= rpl_group_info::GTID_DUPLICATE_NULL;
|
2014-03-09 10:27:38 +01:00
|
|
|
}
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
if (!(list_elem= (list_element *)my_malloc(sizeof(*list_elem), MYF(MY_WME))))
|
|
|
|
return 1;
|
|
|
|
list_elem->server_id= server_id;
|
|
|
|
list_elem->sub_id= sub_id;
|
|
|
|
list_elem->seq_no= seq_no;
|
|
|
|
|
|
|
|
elem->add(list_elem);
|
2013-10-25 21:17:14 +02:00
|
|
|
if (last_sub_id < sub_id)
|
|
|
|
last_sub_id= sub_id;
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct rpl_slave_state::element *
|
|
|
|
rpl_slave_state::get_element(uint32 domain_id)
|
|
|
|
{
|
|
|
|
struct element *elem;
|
|
|
|
|
|
|
|
elem= (element *)my_hash_search(&hash, (const uchar *)&domain_id, 0);
|
|
|
|
if (elem)
|
|
|
|
return elem;
|
|
|
|
|
|
|
|
if (!(elem= (element *)my_malloc(sizeof(*elem), MYF(MY_WME))))
|
|
|
|
return NULL;
|
|
|
|
elem->list= NULL;
|
|
|
|
elem->domain_id= domain_id;
|
2014-02-07 19:15:28 +01:00
|
|
|
elem->highest_seq_no= 0;
|
2014-02-08 22:28:41 +01:00
|
|
|
elem->gtid_waiter= NULL;
|
2014-03-09 10:27:38 +01:00
|
|
|
elem->owner_rli= NULL;
|
|
|
|
elem->owner_count= 0;
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_cond_init(key_COND_wait_gtid, &elem->COND_wait_gtid, 0);
|
2014-03-09 10:27:38 +01:00
|
|
|
mysql_cond_init(key_COND_gtid_ignore_duplicates,
|
|
|
|
&elem->COND_gtid_ignore_duplicates, 0);
|
2013-03-11 16:02:40 +01:00
|
|
|
if (my_hash_insert(&hash, (uchar *)elem))
|
|
|
|
{
|
|
|
|
my_free(elem);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return elem;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-05-29 14:23:40 +02:00
|
|
|
int
|
|
|
|
rpl_slave_state::put_back_list(uint32 domain_id, list_element *list)
|
|
|
|
{
|
|
|
|
element *e;
|
|
|
|
if (!(e= (element *)my_hash_search(&hash, (const uchar *)&domain_id, 0)))
|
|
|
|
return 1;
|
|
|
|
while (list)
|
|
|
|
{
|
|
|
|
list_element *next= list->next;
|
|
|
|
e->add(list);
|
|
|
|
list= next;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
int
|
|
|
|
rpl_slave_state::truncate_state_table(THD *thd)
|
|
|
|
{
|
|
|
|
TABLE_LIST tlist;
|
|
|
|
int err= 0;
|
|
|
|
|
2013-11-27 11:02:08 +01:00
|
|
|
tmp_disable_binlog(thd);
|
2013-03-11 16:02:40 +01:00
|
|
|
tlist.init_one_table(STRING_WITH_LEN("mysql"),
|
|
|
|
rpl_gtid_slave_state_table_name.str,
|
|
|
|
rpl_gtid_slave_state_table_name.length,
|
|
|
|
NULL, TL_WRITE);
|
|
|
|
if (!(err= open_and_lock_tables(thd, &tlist, FALSE, 0)))
|
|
|
|
{
|
2013-11-27 11:02:08 +01:00
|
|
|
err= tlist.table->file->ha_truncate();
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
if (err)
|
|
|
|
{
|
|
|
|
ha_rollback_trans(thd, FALSE);
|
|
|
|
close_thread_tables(thd);
|
|
|
|
ha_rollback_trans(thd, TRUE);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ha_commit_trans(thd, FALSE);
|
|
|
|
close_thread_tables(thd);
|
|
|
|
ha_commit_trans(thd, TRUE);
|
|
|
|
}
|
2013-03-18 15:09:36 +01:00
|
|
|
thd->mdl_context.release_transactional_locks();
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
2013-11-27 11:02:08 +01:00
|
|
|
reenable_binlog(thd);
|
2013-03-11 16:02:40 +01:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const TABLE_FIELD_TYPE mysql_rpl_slave_state_coltypes[4]= {
|
|
|
|
{ { C_STRING_WITH_LEN("domain_id") },
|
|
|
|
{ C_STRING_WITH_LEN("int(10) unsigned") },
|
|
|
|
{NULL, 0} },
|
|
|
|
{ { C_STRING_WITH_LEN("sub_id") },
|
|
|
|
{ C_STRING_WITH_LEN("bigint(20) unsigned") },
|
|
|
|
{NULL, 0} },
|
|
|
|
{ { C_STRING_WITH_LEN("server_id") },
|
|
|
|
{ C_STRING_WITH_LEN("int(10) unsigned") },
|
|
|
|
{NULL, 0} },
|
|
|
|
{ { C_STRING_WITH_LEN("seq_no") },
|
|
|
|
{ C_STRING_WITH_LEN("bigint(20) unsigned") },
|
|
|
|
{NULL, 0} },
|
|
|
|
};
|
|
|
|
|
|
|
|
static const uint mysql_rpl_slave_state_pk_parts[]= {0, 1};
|
|
|
|
|
2013-05-22 17:36:48 +02:00
|
|
|
static const TABLE_FIELD_DEF mysql_gtid_slave_pos_tabledef= {
|
2013-03-11 16:02:40 +01:00
|
|
|
array_elements(mysql_rpl_slave_state_coltypes),
|
|
|
|
mysql_rpl_slave_state_coltypes,
|
|
|
|
array_elements(mysql_rpl_slave_state_pk_parts),
|
|
|
|
mysql_rpl_slave_state_pk_parts
|
|
|
|
};
|
|
|
|
|
|
|
|
class Gtid_db_intact : public Table_check_intact
|
|
|
|
{
|
|
|
|
protected:
|
|
|
|
void report_error(uint, const char *fmt, ...)
|
|
|
|
{
|
|
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
error_log_print(ERROR_LEVEL, fmt, args);
|
|
|
|
va_end(args);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static Gtid_db_intact gtid_table_intact;
|
|
|
|
|
2013-03-11 16:16:55 +01:00
|
|
|
/*
|
2013-05-22 17:36:48 +02:00
|
|
|
Check that the mysql.gtid_slave_pos table has the correct definition.
|
2013-03-11 16:16:55 +01:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
gtid_check_rpl_slave_state_table(TABLE *table)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
2013-05-22 17:36:48 +02:00
|
|
|
if ((err= gtid_table_intact.check(table, &mysql_gtid_slave_pos_tabledef)))
|
2013-03-11 16:16:55 +01:00
|
|
|
my_error(ER_GTID_OPEN_TABLE_FAILED, MYF(0), "mysql",
|
|
|
|
rpl_gtid_slave_state_table_name.str);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
/*
|
|
|
|
Write a gtid to the replication slave state table.
|
|
|
|
|
|
|
|
Do it as part of the transaction, to get slave crash safety, or as a separate
|
|
|
|
transaction if !in_transaction (eg. MyISAM or DDL).
|
|
|
|
|
|
|
|
gtid The global transaction id for this event group.
|
|
|
|
sub_id Value allocated within the sub_id when the event group was
|
|
|
|
read (sub_id must be consistent with commit order in master binlog).
|
|
|
|
|
|
|
|
Note that caller must later ensure that the new gtid and sub_id is inserted
|
|
|
|
into the appropriate HASH element with rpl_slave_state.add(), so that it can
|
|
|
|
be deleted later. But this must only be done after COMMIT if in transaction.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_slave_state::record_gtid(THD *thd, const rpl_gtid *gtid, uint64 sub_id,
|
2013-05-22 17:36:48 +02:00
|
|
|
bool in_transaction, bool in_statement)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
TABLE_LIST tlist;
|
|
|
|
int err= 0;
|
|
|
|
bool table_opened= false;
|
|
|
|
TABLE *table;
|
|
|
|
list_element *elist= 0, *next;
|
|
|
|
element *elem;
|
|
|
|
ulonglong thd_saved_option= thd->variables.option_bits;
|
2013-03-22 08:11:37 +01:00
|
|
|
Query_tables_list lex_backup;
|
2015-04-08 11:01:18 +02:00
|
|
|
wait_for_commit* suspended_wfc;
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_ENTER("record_gtid");
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-06-07 10:58:34 +02:00
|
|
|
if (unlikely(!loaded))
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
Probably the mysql.gtid_slave_pos table is missing (eg. upgrade) or
|
|
|
|
corrupt.
|
|
|
|
|
|
|
|
We already complained loudly about this, but we can try to continue
|
|
|
|
until the DBA fixes it.
|
|
|
|
*/
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_RETURN(0);
|
2013-06-07 10:58:34 +02:00
|
|
|
}
|
|
|
|
|
2013-05-22 17:36:48 +02:00
|
|
|
if (!in_statement)
|
2015-04-15 16:32:34 +02:00
|
|
|
thd->reset_for_next_command();
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-03-21 17:33:29 +01:00
|
|
|
DBUG_EXECUTE_IF("gtid_inject_record_gtid",
|
|
|
|
{
|
|
|
|
my_error(ER_CANNOT_UPDATE_GTID_STATE, MYF(0));
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_RETURN(1);
|
2013-03-21 17:33:29 +01:00
|
|
|
} );
|
|
|
|
|
2015-04-08 11:01:18 +02:00
|
|
|
/*
|
|
|
|
If we are applying a non-transactional event group, we will be committing
|
|
|
|
here a transaction, but that does not imply that the event group has
|
|
|
|
completed or has been binlogged. So we should not trigger
|
|
|
|
wakeup_subsequent_commits() here.
|
|
|
|
|
|
|
|
Note: An alternative here could be to put a call to mark_start_commit() in
|
|
|
|
stmt_done() before the call to record_and_update_gtid(). This would
|
|
|
|
prevent later calling mark_start_commit() after we have run
|
|
|
|
wakeup_subsequent_commits() from committing the GTID update transaction
|
|
|
|
(which must be avoided to avoid accessing freed group_commit_orderer
|
|
|
|
object). It would also allow following event groups to start slightly
|
|
|
|
earlier. And in the cases where record_gtid() is called without an active
|
|
|
|
transaction, the current statement should have been binlogged already, so
|
|
|
|
binlog order is preserved.
|
|
|
|
|
|
|
|
But this is rather subtle, and potentially fragile. And it does not really
|
|
|
|
seem worth it; non-transactional loads are unlikely to benefit much from
|
|
|
|
parallel replication in any case. So for now, we go with the simple
|
|
|
|
suspend/resume of wakeup_subsequent_commits() here in record_gtid().
|
|
|
|
*/
|
|
|
|
suspended_wfc= thd->suspend_subsequent_commits();
|
2013-03-22 08:11:37 +01:00
|
|
|
thd->lex->reset_n_backup_query_tables_list(&lex_backup);
|
2013-03-11 16:02:40 +01:00
|
|
|
tlist.init_one_table(STRING_WITH_LEN("mysql"),
|
|
|
|
rpl_gtid_slave_state_table_name.str,
|
|
|
|
rpl_gtid_slave_state_table_name.length,
|
|
|
|
NULL, TL_WRITE);
|
|
|
|
if ((err= open_and_lock_tables(thd, &tlist, FALSE, 0)))
|
|
|
|
goto end;
|
|
|
|
table_opened= true;
|
|
|
|
table= tlist.table;
|
|
|
|
|
2013-03-11 16:16:55 +01:00
|
|
|
if ((err= gtid_check_rpl_slave_state_table(table)))
|
2013-03-11 16:02:40 +01:00
|
|
|
goto end;
|
|
|
|
|
2015-12-14 17:33:52 +01:00
|
|
|
#ifdef WITH_WSREP
|
|
|
|
/*
|
|
|
|
Updates in slave state table should not be appended to galera transaction
|
|
|
|
writeset.
|
|
|
|
*/
|
2016-02-25 05:32:37 +01:00
|
|
|
thd->wsrep_ignore_table= true;
|
2015-12-14 17:33:52 +01:00
|
|
|
#endif
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
if (!in_transaction)
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
{
|
|
|
|
DBUG_PRINT("info", ("resetting OPTION_BEGIN"));
|
2013-03-11 16:02:40 +01:00
|
|
|
thd->variables.option_bits&=
|
2014-02-05 18:01:59 +01:00
|
|
|
~(ulonglong)(OPTION_NOT_AUTOCOMMIT |OPTION_BEGIN |OPTION_BIN_LOG |
|
|
|
|
OPTION_GTID_BEGIN);
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
}
|
2013-11-27 11:02:08 +01:00
|
|
|
else
|
|
|
|
thd->variables.option_bits&= ~(ulonglong)OPTION_BIN_LOG;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
bitmap_set_all(table->write_set);
|
2015-12-10 11:39:54 +01:00
|
|
|
table->rpl_write_set= table->write_set;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
table->field[0]->store((ulonglong)gtid->domain_id, true);
|
|
|
|
table->field[1]->store(sub_id, true);
|
|
|
|
table->field[2]->store((ulonglong)gtid->server_id, true);
|
|
|
|
table->field[3]->store(gtid->seq_no, true);
|
2013-03-28 13:03:51 +01:00
|
|
|
DBUG_EXECUTE_IF("inject_crash_before_write_rpl_slave_state", DBUG_SUICIDE(););
|
2013-03-11 16:02:40 +01:00
|
|
|
if ((err= table->file->ha_write_row(table->record[0])))
|
2013-05-29 14:23:40 +02:00
|
|
|
{
|
|
|
|
table->file->print_error(err, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-06-21 11:53:46 +02:00
|
|
|
if(opt_bin_log &&
|
|
|
|
(err= mysql_bin_log.bump_seq_no_counter_if_needed(gtid->domain_id,
|
|
|
|
gtid->seq_no)))
|
|
|
|
{
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
if ((elem= get_element(gtid->domain_id)) == NULL)
|
|
|
|
{
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-21 17:33:29 +01:00
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
2013-03-11 16:02:40 +01:00
|
|
|
err= 1;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-06-21 11:53:46 +02:00
|
|
|
if ((elist= elem->grab_list()) != NULL)
|
|
|
|
{
|
|
|
|
/* Delete any old stuff, but keep around the most recent one. */
|
|
|
|
list_element *cur= elist;
|
|
|
|
uint64 best_sub_id= cur->sub_id;
|
|
|
|
list_element **best_ptr_ptr= &elist;
|
|
|
|
while ((next= cur->next))
|
|
|
|
{
|
|
|
|
if (next->sub_id > best_sub_id)
|
|
|
|
{
|
|
|
|
best_sub_id= next->sub_id;
|
|
|
|
best_ptr_ptr= &cur->next;
|
|
|
|
}
|
|
|
|
cur= next;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Delete the highest sub_id element from the old list, and put it back as
|
|
|
|
the single-element new list.
|
|
|
|
*/
|
|
|
|
cur= *best_ptr_ptr;
|
|
|
|
*best_ptr_ptr= cur->next;
|
|
|
|
cur->next= NULL;
|
|
|
|
elem->list= cur;
|
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
if (!elist)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
/* Now delete any already committed rows. */
|
|
|
|
bitmap_set_bit(table->read_set, table->field[0]->field_index);
|
|
|
|
bitmap_set_bit(table->read_set, table->field[1]->field_index);
|
|
|
|
|
|
|
|
if ((err= table->file->ha_index_init(0, 0)))
|
2013-05-29 14:23:40 +02:00
|
|
|
{
|
|
|
|
table->file->print_error(err, MYF(0));
|
2013-03-11 16:02:40 +01:00
|
|
|
goto end;
|
2013-05-29 14:23:40 +02:00
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
while (elist)
|
|
|
|
{
|
|
|
|
uchar key_buffer[4+8];
|
|
|
|
|
2013-05-29 14:23:40 +02:00
|
|
|
DBUG_EXECUTE_IF("gtid_slave_pos_simulate_failed_delete",
|
|
|
|
{ err= ENOENT;
|
|
|
|
table->file->print_error(err, MYF(0));
|
2013-06-21 11:53:46 +02:00
|
|
|
/* `break' does not work inside DBUG_EXECUTE_IF */
|
2013-05-29 14:23:40 +02:00
|
|
|
goto dbug_break; });
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
next= elist->next;
|
|
|
|
|
|
|
|
table->field[1]->store(elist->sub_id, true);
|
|
|
|
/* domain_id is already set in table->record[0] from write_row() above. */
|
|
|
|
key_copy(key_buffer, table->record[0], &table->key_info[0], 0, false);
|
2013-05-29 14:23:40 +02:00
|
|
|
if (table->file->ha_index_read_map(table->record[1], key_buffer,
|
|
|
|
HA_WHOLE_KEY, HA_READ_KEY_EXACT))
|
|
|
|
/* We cannot find the row, assume it is already deleted. */
|
|
|
|
;
|
|
|
|
else if ((err= table->file->ha_delete_row(table->record[1])))
|
|
|
|
table->file->print_error(err, MYF(0));
|
|
|
|
/*
|
|
|
|
In case of error, we still discard the element from the list. We do
|
|
|
|
not want to endlessly error on the same element in case of table
|
|
|
|
corruption or such.
|
|
|
|
*/
|
2013-03-11 16:02:40 +01:00
|
|
|
my_free(elist);
|
|
|
|
elist= next;
|
2013-05-29 14:23:40 +02:00
|
|
|
if (err)
|
|
|
|
break;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
2013-05-29 14:23:40 +02:00
|
|
|
IF_DBUG(dbug_break:, )
|
2013-03-11 16:02:40 +01:00
|
|
|
table->file->ha_index_end();
|
|
|
|
|
|
|
|
end:
|
|
|
|
|
2015-12-14 17:33:52 +01:00
|
|
|
#ifdef WITH_WSREP
|
2016-02-25 05:32:37 +01:00
|
|
|
thd->wsrep_ignore_table= false;
|
2015-12-14 17:33:52 +01:00
|
|
|
#endif
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
if (table_opened)
|
|
|
|
{
|
2014-06-27 13:34:29 +02:00
|
|
|
if (err || (err= ha_commit_trans(thd, FALSE)))
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
/*
|
2013-05-29 14:23:40 +02:00
|
|
|
If error, we need to put any remaining elist back into the HASH so we
|
|
|
|
can do another delete attempt later.
|
2013-03-11 16:02:40 +01:00
|
|
|
*/
|
2013-05-29 14:23:40 +02:00
|
|
|
if (elist)
|
|
|
|
{
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2013-05-29 14:23:40 +02:00
|
|
|
put_back_list(gtid->domain_id, elist);
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-05-29 14:23:40 +02:00
|
|
|
}
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
ha_rollback_trans(thd, FALSE);
|
|
|
|
}
|
2014-06-27 13:34:29 +02:00
|
|
|
close_thread_tables(thd);
|
2013-03-18 15:09:36 +01:00
|
|
|
if (in_transaction)
|
|
|
|
thd->mdl_context.release_statement_locks();
|
|
|
|
else
|
|
|
|
thd->mdl_context.release_transactional_locks();
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
2013-03-22 08:11:37 +01:00
|
|
|
thd->lex->restore_backup_query_tables_list(&lex_backup);
|
2013-03-11 16:02:40 +01:00
|
|
|
thd->variables.option_bits= thd_saved_option;
|
2015-04-08 11:01:18 +02:00
|
|
|
thd->resume_subsequent_commits(suspended_wfc);
|
|
|
|
DBUG_EXECUTE_IF("inject_record_gtid_serverid_100_sleep",
|
|
|
|
{
|
|
|
|
if (gtid->server_id == 100)
|
|
|
|
my_sleep(500000);
|
|
|
|
});
|
Fixes for parallel slave:
- Made slaves temporary table multi-thread slave safe by adding mutex around save_temporary_table usage.
- rli->save_temporary_tables is the active list of all used temporary tables
- This is copied to THD->temporary_tables when temporary tables are opened and updated when temporary tables are closed
- Added THD->lock_temporary_tables() and THD->unlock_temporary_tables() to simplify this.
- Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code.
- Added is_part_of_group() to mark functions that are part of the next function. This replaces setting IN_STMT when events are executed.
- Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
- If slave_skip_counter is set run things in single threaded mode. This simplifies code for skipping events.
- Updating state of relay log (IN_STMT and IN_TRANSACTION) is moved to one single function: update_state_of_relay_log()
We can't use OPTION_BEGIN to check for the state anymore as the sql_driver and sql execution threads may be different.
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts
is_in_group() is now independent of state of executed transaction.
- Reset thd->transaction.all.modified_non_trans_table() if we did set it for single table row events.
This was mainly for keeping the flag as documented.
- Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
- Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
- Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
- Changed some functions to take rpl_group_info instead of Relay_log_info to make them multi-slave safe and to simplify usage
- do_shall_skip()
- continue_group()
- sql_slave_killed()
- next_event()
- Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
- set_thd_in_use_temporary_tables() removed as in_use is set on usage
- Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
- In open_table() reuse code from find_temporary_table()
Other things:
- More DBUG statements
- Fixed the rpl_incident.test can be run with --debug
- More comments
- Disabled not used function rpl_connect_master()
mysql-test/suite/perfschema/r/all_instances.result:
Moved sleep_lock and sleep_cond to rpl_group_info
mysql-test/suite/rpl/r/rpl_incident.result:
Updated result
mysql-test/suite/rpl/t/rpl_incident-master.opt:
Not needed anymore
mysql-test/suite/rpl/t/rpl_incident.test:
Fixed that test can be run with --debug
sql/handler.cc:
More DBUG_PRINT
sql/log.cc:
More comments
sql/log_event.cc:
Added DBUG statements
do_shall_skip(), continue_group() now takes rpl_group_info param
Use is_begin(), is_commit() and is_rollback() functions instead of inspecting query string
We don't have set slaves temporary tables 'in_use' as this is now done when tables are opened.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
Use IN_TRANSACTION flag to test state of relay log.
In rows_event_stmt_cleanup() reset thd->transaction.all.modified_non_trans_table if we had set this before.
sql/log_event.h:
do_shall_skip(), continue_group() now takes rpl_group_info param
Added is_part_of_group() to mark events that are part of the next event. This replaces setting IN_STMT when events are executed.
Added is_begin(), is_commit() and is_rollback() functions to Query_log_event to simplify code.
sql/log_event_old.cc:
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/log_event_old.h:
Added is_part_of_group() to mark events that are part of the next event.
do_shall_skip(), continue_group() now takes rpl_group_info param
sql/mysqld.cc:
Changed slave_open_temp_tables to uint32 to be able to use atomic operators on it.
Relay_log_info::sleep_lock -> Rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> Rpl_group_info::sleep_cond
sql/mysqld.h:
Updated types and names
sql/rpl_gtid.cc:
More DBUG
sql/rpl_parallel.cc:
Updated TODO section
Set thd for event that is execution
Use new is_begin(), is_commit() and is_rollback() functions.
More comments
sql/rpl_rli.cc:
sql_thd -> sql_driver_thd
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Clear IN_STMT and IN_TRANSACTION in init_relay_log_pos() and Relay_log_info::cleanup_context() to ensure the flags doesn't survive slave restarts.
Reset table->in_use for temporary tables as the table may have been used by another THD.
Use IN_TRANSACTION instead of OPTION_BEGIN to check state of relay log.
Removed IN_STMT flag setting. This is now done in update_state_of_relay_log()
sql/rpl_rli.h:
Changed relay log state flags to bit masks instead of bit positions (most other code we have uses bit masks)
Added IN_TRANSACTION to mark if we are in a BEGIN ... COMMIT section.
save_temporary_tables is now thread safe
Relay_log_info::sleep_lock -> rpl_group_info::sleep_lock
Relay_log_info::sleep_cond -> rpl_group_info::sleep_cond
Relay_log_info->sql_thd renamed to Relay_log_info->sql_driver_thd to avoid wrong usage for merged code
is_in_group() is now independent of state of executed transaction.
sql/slave.cc:
Simplifed arguments to io_salve_killed(), sql_slave_killed() and check_io_slave_killed(); No reason to supply THD as this is part of the given structure.
set_thd_in_use_temporary_tables() removed as in_use is set on usage in sql_base.cc
sql_thd -> sql_driver_thd
More DBUG
Added update_state_of_relay_log() which will calculate the IN_STMT and IN_TRANSACTION state of the relay log after the current element is executed.
If slave_skip_counter is set run things in single threaded mode.
Simplifed arguments to io_salve_killed(), check_io_slave_killed() and sql_slave_killed(); No reason to supply THD as this is part of the given structure.
Added information to thd_proc_info() which thread is waiting for slave mutex to exit.
Disabled not used function rpl_connect_master()
Updated argument to next_event()
sql/sql_base.cc:
Added mutex around usage of slave's temporary tables. The active list is always kept up to date in sql->rgi_slave->save_temporary_tables.
Clear thd->temporary_tables after query (safety)
More DBUG
When using temporary table, set table->in_use to current thd as the THD may be different for slave threads.
Some code is ifdef:ed with REMOVE_AFTER_MERGE_WITH_10 as the given code in 10.0 is not yet in this tree.
In open_table() reuse code from find_temporary_table()
sql/sql_binlog.cc:
rli->sql_thd -> rli->sql_driver_thd
Remove duplicate setting of rgi->rli
sql/sql_class.cc:
Added helper functions rgi_lock_temporary_tables() and rgi_unlock_temporary_tables()
Would have been nicer to have these inline, but there was no easy way to do that
sql/sql_class.h:
Added functions to protect slaves temporary tables
sql/sql_parse.cc:
Added DBUG_PRINT
sql/transaction.cc:
Added comment
2013-10-13 23:24:05 +02:00
|
|
|
DBUG_RETURN(err);
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint64
|
2013-06-20 09:04:44 +02:00
|
|
|
rpl_slave_state::next_sub_id(uint32 domain_id)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-06-20 09:04:44 +02:00
|
|
|
uint64 sub_id= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2013-10-25 21:17:14 +02:00
|
|
|
sub_id= ++last_sub_id;
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
return sub_id;
|
|
|
|
}
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
/* A callback used in sorting of gtid list based on domain_id. */
|
|
|
|
static int rpl_gtid_cmp_cb(const void *id1, const void *id2)
|
|
|
|
{
|
|
|
|
uint32 d1= ((rpl_gtid *)id1)->domain_id;
|
|
|
|
uint32 d2= ((rpl_gtid *)id2)->domain_id;
|
|
|
|
|
|
|
|
if (d1 < d2)
|
|
|
|
return -1;
|
|
|
|
else if (d1 > d2)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
/* Format the specified gtid and store it in the given string buffer. */
|
2013-03-11 16:02:40 +01:00
|
|
|
bool
|
|
|
|
rpl_slave_state_tostring_helper(String *dest, const rpl_gtid *gtid, bool *first)
|
|
|
|
{
|
|
|
|
if (*first)
|
|
|
|
*first= false;
|
|
|
|
else
|
|
|
|
if (dest->append(",",1))
|
|
|
|
return true;
|
|
|
|
return
|
|
|
|
dest->append_ulonglong(gtid->domain_id) ||
|
|
|
|
dest->append("-",1) ||
|
|
|
|
dest->append_ulonglong(gtid->server_id) ||
|
|
|
|
dest->append("-",1) ||
|
|
|
|
dest->append_ulonglong(gtid->seq_no);
|
|
|
|
}
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
/*
|
|
|
|
Sort the given gtid list based on domain_id and store them in the specified
|
|
|
|
string.
|
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
rpl_slave_state_tostring_helper(DYNAMIC_ARRAY *gtid_dynarr, String *str)
|
|
|
|
{
|
|
|
|
bool first= true, res= true;
|
|
|
|
|
|
|
|
sort_dynamic(gtid_dynarr, rpl_gtid_cmp_cb);
|
|
|
|
|
|
|
|
for (uint i= 0; i < gtid_dynarr->elements; i ++)
|
|
|
|
{
|
|
|
|
rpl_gtid *gtid= dynamic_element(gtid_dynarr, i, rpl_gtid *);
|
|
|
|
if (rpl_slave_state_tostring_helper(str, gtid, &first))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
res= false;
|
|
|
|
|
|
|
|
err:
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Sort the given gtid list based on domain_id and call cb for each gtid. */
|
|
|
|
static bool
|
|
|
|
rpl_slave_state_tostring_helper(DYNAMIC_ARRAY *gtid_dynarr,
|
|
|
|
int (*cb)(rpl_gtid *, void *),
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
rpl_gtid *gtid;
|
|
|
|
bool res= true;
|
|
|
|
|
|
|
|
sort_dynamic(gtid_dynarr, rpl_gtid_cmp_cb);
|
|
|
|
|
|
|
|
for (uint i= 0; i < gtid_dynarr->elements; i ++)
|
|
|
|
{
|
|
|
|
gtid= dynamic_element(gtid_dynarr, i, rpl_gtid *);
|
|
|
|
if ((*cb)(gtid, data))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
res= false;
|
|
|
|
|
|
|
|
err:
|
|
|
|
return res;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
int
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
rpl_slave_state::iterate(int (*cb)(rpl_gtid *, void *), void *data,
|
2015-02-28 05:33:22 +01:00
|
|
|
rpl_gtid *extra_gtids, uint32 num_extra,
|
|
|
|
bool sort)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
HASH gtid_hash;
|
|
|
|
uchar *rec;
|
|
|
|
rpl_gtid *gtid;
|
|
|
|
int res= 1;
|
2015-02-28 05:33:22 +01:00
|
|
|
bool locked= false;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
my_hash_init(>id_hash, &my_charset_bin, 32, offsetof(rpl_gtid, domain_id),
|
|
|
|
sizeof(uint32), NULL, NULL, HASH_UNIQUE);
|
|
|
|
for (i= 0; i < num_extra; ++i)
|
2013-03-18 15:09:36 +01:00
|
|
|
if (extra_gtids[i].server_id == global_system_variables.server_id &&
|
|
|
|
my_hash_insert(>id_hash, (uchar *)(&extra_gtids[i])))
|
2013-03-11 16:02:40 +01:00
|
|
|
goto err;
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2015-02-28 05:33:22 +01:00
|
|
|
locked= true;
|
|
|
|
reset_dynamic(>id_sort_array);
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
uint64 best_sub_id;
|
|
|
|
rpl_gtid best_gtid;
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
|
|
|
list_element *l= e->list;
|
|
|
|
|
|
|
|
if (!l)
|
|
|
|
continue; /* Nothing here */
|
|
|
|
|
|
|
|
best_gtid.domain_id= e->domain_id;
|
|
|
|
best_gtid.server_id= l->server_id;
|
|
|
|
best_gtid.seq_no= l->seq_no;
|
|
|
|
best_sub_id= l->sub_id;
|
|
|
|
while ((l= l->next))
|
|
|
|
{
|
|
|
|
if (l->sub_id > best_sub_id)
|
|
|
|
{
|
|
|
|
best_sub_id= l->sub_id;
|
|
|
|
best_gtid.server_id= l->server_id;
|
|
|
|
best_gtid.seq_no= l->seq_no;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if we have something newer in the extra list. */
|
|
|
|
rec= my_hash_search(>id_hash, (const uchar *)&best_gtid.domain_id, 0);
|
|
|
|
if (rec)
|
|
|
|
{
|
|
|
|
gtid= (rpl_gtid *)rec;
|
|
|
|
if (gtid->seq_no > best_gtid.seq_no)
|
|
|
|
memcpy(&best_gtid, gtid, sizeof(best_gtid));
|
|
|
|
if (my_hash_delete(>id_hash, rec))
|
|
|
|
{
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
if ((res= sort ? insert_dynamic(>id_sort_array,
|
|
|
|
(const void *) &best_gtid) :
|
|
|
|
(*cb)(&best_gtid, data)))
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Also add any remaining extra domain_ids. */
|
|
|
|
for (i= 0; i < gtid_hash.records; ++i)
|
|
|
|
{
|
|
|
|
gtid= (rpl_gtid *)my_hash_element(>id_hash, i);
|
2015-02-28 05:33:22 +01:00
|
|
|
if ((res= sort ? insert_dynamic(>id_sort_array, (const void *) gtid) :
|
|
|
|
(*cb)(gtid, data)))
|
|
|
|
{
|
2013-03-11 16:02:40 +01:00
|
|
|
goto err;
|
2015-02-28 05:33:22 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sort && rpl_slave_state_tostring_helper(>id_sort_array, cb, data))
|
|
|
|
{
|
|
|
|
goto err;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
res= 0;
|
|
|
|
|
|
|
|
err:
|
2015-02-28 05:33:22 +01:00
|
|
|
if (locked) mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
my_hash_free(>id_hash);
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
struct rpl_slave_state_tostring_data {
|
|
|
|
String *dest;
|
|
|
|
bool first;
|
|
|
|
};
|
|
|
|
static int
|
|
|
|
rpl_slave_state_tostring_cb(rpl_gtid *gtid, void *data)
|
|
|
|
{
|
|
|
|
rpl_slave_state_tostring_data *p= (rpl_slave_state_tostring_data *)data;
|
|
|
|
return rpl_slave_state_tostring_helper(p->dest, gtid, &p->first);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Prepare the current slave state as a string, suitable for sending to the
|
|
|
|
master to request to receive binlog events starting from that GTID state.
|
|
|
|
|
|
|
|
The state consists of the most recently applied GTID for each domain_id,
|
|
|
|
ie. the one with the highest sub_id within each domain_id.
|
|
|
|
|
|
|
|
Optinally, extra_gtids is a list of GTIDs from the binlog. This is used when
|
|
|
|
a server was previously a master and now needs to connect to a new master as
|
|
|
|
a slave. For each domain_id, if the GTID in the binlog was logged with our
|
|
|
|
own server_id _and_ has a higher seq_no than what is in the slave state,
|
|
|
|
then this should be used as the position to start replicating at. This
|
|
|
|
allows to promote a slave as new master, and connect the old master as a
|
|
|
|
slave with MASTER_GTID_POS=AUTO.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_slave_state::tostring(String *dest, rpl_gtid *extra_gtids, uint32 num_extra)
|
|
|
|
{
|
|
|
|
struct rpl_slave_state_tostring_data data;
|
|
|
|
data.first= true;
|
|
|
|
data.dest= dest;
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
return iterate(rpl_slave_state_tostring_cb, &data, extra_gtids,
|
|
|
|
num_extra, true);
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-18 15:09:36 +01:00
|
|
|
/*
|
|
|
|
Lookup a domain_id in the current replication slave state.
|
|
|
|
|
|
|
|
Returns false if the domain_id has no entries in the slave state.
|
|
|
|
Otherwise returns true, and fills in out_gtid with the corresponding
|
|
|
|
GTID.
|
|
|
|
*/
|
|
|
|
bool
|
|
|
|
rpl_slave_state::domain_to_gtid(uint32 domain_id, rpl_gtid *out_gtid)
|
|
|
|
{
|
|
|
|
element *elem;
|
|
|
|
list_element *list;
|
|
|
|
uint64 best_sub_id;
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2013-03-18 15:09:36 +01:00
|
|
|
elem= (element *)my_hash_search(&hash, (const uchar *)&domain_id, 0);
|
|
|
|
if (!elem || !(list= elem->list))
|
|
|
|
{
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-18 15:09:36 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
out_gtid->domain_id= domain_id;
|
|
|
|
out_gtid->server_id= list->server_id;
|
|
|
|
out_gtid->seq_no= list->seq_no;
|
|
|
|
best_sub_id= list->sub_id;
|
|
|
|
|
|
|
|
while ((list= list->next))
|
|
|
|
{
|
|
|
|
if (best_sub_id > list->sub_id)
|
|
|
|
continue;
|
|
|
|
best_sub_id= list->sub_id;
|
|
|
|
out_gtid->server_id= list->server_id;
|
|
|
|
out_gtid->seq_no= list->seq_no;
|
|
|
|
}
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-18 15:09:36 +01:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
/*
|
|
|
|
Parse a GTID at the start of a string, and update the pointer to point
|
|
|
|
at the first character after the parsed GTID.
|
|
|
|
|
|
|
|
Returns 0 on ok, non-zero on parse error.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
gtid_parser_helper(char **ptr, char *end, rpl_gtid *out_gtid)
|
|
|
|
{
|
|
|
|
char *q;
|
|
|
|
char *p= *ptr;
|
|
|
|
uint64 v1, v2, v3;
|
|
|
|
int err= 0;
|
|
|
|
|
|
|
|
q= end;
|
|
|
|
v1= (uint64)my_strtoll10(p, &q, &err);
|
|
|
|
if (err != 0 || v1 > (uint32)0xffffffff || q == end || *q != '-')
|
|
|
|
return 1;
|
|
|
|
p= q+1;
|
|
|
|
q= end;
|
|
|
|
v2= (uint64)my_strtoll10(p, &q, &err);
|
|
|
|
if (err != 0 || v2 > (uint32)0xffffffff || q == end || *q != '-')
|
|
|
|
return 1;
|
|
|
|
p= q+1;
|
|
|
|
q= end;
|
|
|
|
v3= (uint64)my_strtoll10(p, &q, &err);
|
|
|
|
if (err != 0)
|
|
|
|
return 1;
|
|
|
|
|
2016-06-24 01:25:14 +02:00
|
|
|
out_gtid->domain_id= (uint32) v1;
|
|
|
|
out_gtid->server_id= (uint32) v2;
|
2013-03-11 16:02:40 +01:00
|
|
|
out_gtid->seq_no= v3;
|
|
|
|
*ptr= q;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-08-23 14:02:13 +02:00
|
|
|
rpl_gtid *
|
|
|
|
gtid_parse_string_to_list(const char *str, size_t str_len, uint32 *out_len)
|
|
|
|
{
|
|
|
|
char *p= const_cast<char *>(str);
|
|
|
|
char *end= p + str_len;
|
|
|
|
uint32 len= 0, alloc_len= 5;
|
|
|
|
rpl_gtid *list= NULL;
|
|
|
|
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
rpl_gtid gtid;
|
|
|
|
|
|
|
|
if (len >= (((uint32)1 << 28)-1) || gtid_parser_helper(&p, end, >id))
|
|
|
|
{
|
|
|
|
my_free(list);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
if ((!list || len >= alloc_len) &&
|
|
|
|
!(list=
|
|
|
|
(rpl_gtid *)my_realloc(list,
|
|
|
|
(alloc_len= alloc_len*2) * sizeof(rpl_gtid),
|
|
|
|
MYF(MY_FREE_ON_ERROR|MY_ALLOW_ZERO_PTR))))
|
|
|
|
return NULL;
|
|
|
|
list[len++]= gtid;
|
|
|
|
|
|
|
|
if (p == end)
|
|
|
|
break;
|
|
|
|
if (*p != ',')
|
|
|
|
{
|
|
|
|
my_free(list);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
*out_len= len;
|
|
|
|
return list;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
/*
|
|
|
|
Update the slave replication state with the GTID position obtained from
|
|
|
|
master when connecting with old-style (filename,offset) position.
|
|
|
|
|
|
|
|
If RESET is true then all existing entries are removed. Otherwise only
|
|
|
|
domain_ids mentioned in the STATE_FROM_MASTER are changed.
|
|
|
|
|
|
|
|
Returns 0 if ok, non-zero if error.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_slave_state::load(THD *thd, char *state_from_master, size_t len,
|
2013-05-22 17:36:48 +02:00
|
|
|
bool reset, bool in_statement)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
char *end= state_from_master + len;
|
|
|
|
|
|
|
|
if (reset)
|
|
|
|
{
|
|
|
|
if (truncate_state_table(thd))
|
|
|
|
return 1;
|
|
|
|
truncate_hash();
|
|
|
|
}
|
|
|
|
if (state_from_master == end)
|
|
|
|
return 0;
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
rpl_gtid gtid;
|
|
|
|
uint64 sub_id;
|
|
|
|
|
|
|
|
if (gtid_parser_helper(&state_from_master, end, >id) ||
|
2013-06-20 09:04:44 +02:00
|
|
|
!(sub_id= next_sub_id(gtid.domain_id)) ||
|
2013-05-22 17:36:48 +02:00
|
|
|
record_gtid(thd, >id, sub_id, false, in_statement) ||
|
2014-03-09 10:27:38 +01:00
|
|
|
update(gtid.domain_id, gtid.server_id, sub_id, gtid.seq_no, NULL))
|
2013-03-11 16:02:40 +01:00
|
|
|
return 1;
|
|
|
|
if (state_from_master == end)
|
|
|
|
break;
|
|
|
|
if (*state_from_master != ',')
|
|
|
|
return 1;
|
|
|
|
++state_from_master;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
rpl_slave_state::is_empty()
|
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
bool result= true;
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
|
|
|
if (e->list)
|
|
|
|
{
|
|
|
|
result= false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_slave_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-04-28 16:15:38 +02:00
|
|
|
void rpl_binlog_state::init()
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
my_hash_init(&hash, &my_charset_bin, 32, offsetof(element, domain_id),
|
|
|
|
sizeof(uint32), NULL, my_free, HASH_UNIQUE);
|
2015-02-28 05:33:22 +01:00
|
|
|
my_init_dynamic_array(>id_sort_array, sizeof(rpl_gtid), 8, 8, MYF(0));
|
2013-03-11 16:02:40 +01:00
|
|
|
mysql_mutex_init(key_LOCK_binlog_state, &LOCK_binlog_state,
|
|
|
|
MY_MUTEX_INIT_SLOW);
|
2013-05-05 20:39:31 +02:00
|
|
|
initialized= 1;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_binlog_state::reset_nolock()
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
my_hash_free(&((element *)my_hash_element(&hash, i))->hash);
|
|
|
|
my_hash_reset(&hash);
|
|
|
|
}
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
|
|
|
|
void
|
|
|
|
rpl_binlog_state::reset()
|
|
|
|
{
|
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
reset_nolock();
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-05-05 20:39:31 +02:00
|
|
|
void rpl_binlog_state::free()
|
|
|
|
{
|
|
|
|
if (initialized)
|
|
|
|
{
|
|
|
|
initialized= 0;
|
2013-11-18 15:22:50 +01:00
|
|
|
reset_nolock();
|
2013-05-05 20:39:31 +02:00
|
|
|
my_hash_free(&hash);
|
2015-02-28 05:33:22 +01:00
|
|
|
delete_dynamic(>id_sort_array);
|
2013-05-05 20:39:31 +02:00
|
|
|
mysql_mutex_destroy(&LOCK_binlog_state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-15 19:52:21 +02:00
|
|
|
|
|
|
|
bool
|
|
|
|
rpl_binlog_state::load(struct rpl_gtid *list, uint32 count)
|
|
|
|
{
|
|
|
|
uint32 i;
|
2013-11-18 15:22:50 +01:00
|
|
|
bool res= false;
|
2013-05-15 19:52:21 +02:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
reset_nolock();
|
2013-05-15 19:52:21 +02:00
|
|
|
for (i= 0; i < count; ++i)
|
|
|
|
{
|
2013-11-18 15:22:50 +01:00
|
|
|
if (update_nolock(&(list[i]), false))
|
|
|
|
{
|
|
|
|
res= true;
|
|
|
|
break;
|
|
|
|
}
|
2013-05-15 19:52:21 +02:00
|
|
|
}
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-05-15 19:52:21 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
MDEV-6589: Incorrect relay log start position when restarting SQL thread after error in parallel replication
The problem occurs in parallel replication in GTID mode, when we are using
multiple replication domains. In this case, if the SQL thread stops, the
slave GTID position may refer to a different point in the relay log for each
domain.
The bug was that when the SQL thread was stopped and restarted (but the IO
thread was kept running), the SQL thread would resume applying the relay log
from the point of the most advanced replication domain, silently skipping all
earlier events within other domains. This caused replication corruption.
This patch solves the problem by storing, when the SQL thread stops with
multiple parallel replication domains active, the current GTID
position. Additionally, the current position in the relay logs is moved back
to a point known to be earlier than the current position of any replication
domain. Then when the SQL thread restarts from the earlier position, GTIDs
encountered are compared against the stored GTID position. Any GTID that was
already applied before the stop is skipped to avoid duplicate apply.
This patch should have no effect if multi-domain GTID parallel replication is
not used. Similarly, if both SQL and IO thread are stopped and restarted, the
patch has no effect, as in this case the existing relay logs are removed and
re-fetched from the master at the current global @@gtid_slave_pos.
2015-02-18 12:22:50 +01:00
|
|
|
static int rpl_binlog_state_load_cb(rpl_gtid *gtid, void *data)
|
|
|
|
{
|
|
|
|
rpl_binlog_state *self= (rpl_binlog_state *)data;
|
|
|
|
return self->update_nolock(gtid, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
rpl_binlog_state::load(rpl_slave_state *slave_pos)
|
|
|
|
{
|
|
|
|
bool res= false;
|
|
|
|
|
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
reset_nolock();
|
2015-03-04 14:06:44 +01:00
|
|
|
if (slave_pos->iterate(rpl_binlog_state_load_cb, this, NULL, 0, false))
|
MDEV-6589: Incorrect relay log start position when restarting SQL thread after error in parallel replication
The problem occurs in parallel replication in GTID mode, when we are using
multiple replication domains. In this case, if the SQL thread stops, the
slave GTID position may refer to a different point in the relay log for each
domain.
The bug was that when the SQL thread was stopped and restarted (but the IO
thread was kept running), the SQL thread would resume applying the relay log
from the point of the most advanced replication domain, silently skipping all
earlier events within other domains. This caused replication corruption.
This patch solves the problem by storing, when the SQL thread stops with
multiple parallel replication domains active, the current GTID
position. Additionally, the current position in the relay logs is moved back
to a point known to be earlier than the current position of any replication
domain. Then when the SQL thread restarts from the earlier position, GTIDs
encountered are compared against the stored GTID position. Any GTID that was
already applied before the stop is skipped to avoid duplicate apply.
This patch should have no effect if multi-domain GTID parallel replication is
not used. Similarly, if both SQL and IO thread are stopped and restarted, the
patch has no effect, as in this case the existing relay logs are removed and
re-fetched from the master at the current global @@gtid_slave_pos.
2015-02-18 12:22:50 +01:00
|
|
|
res= true;
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
rpl_binlog_state::~rpl_binlog_state()
|
|
|
|
{
|
2013-05-05 20:39:31 +02:00
|
|
|
free();
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Update replication state with a new GTID.
|
|
|
|
|
|
|
|
If the (domain_id, server_id) pair already exists, then the new GTID replaces
|
|
|
|
the old one for that domain id. Else a new entry is inserted.
|
|
|
|
|
|
|
|
Returns 0 for ok, 1 for error.
|
|
|
|
*/
|
|
|
|
int
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_binlog_state::update_nolock(const struct rpl_gtid *gtid, bool strict)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
element *elem;
|
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
if ((elem= (element *)my_hash_search(&hash,
|
|
|
|
(const uchar *)(>id->domain_id), 0)))
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-05-28 13:28:31 +02:00
|
|
|
if (strict && elem->last_gtid && elem->last_gtid->seq_no >= gtid->seq_no)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-05-28 13:28:31 +02:00
|
|
|
my_error(ER_GTID_STRICT_OUT_OF_ORDER, MYF(0), gtid->domain_id,
|
|
|
|
gtid->server_id, gtid->seq_no, elem->last_gtid->domain_id,
|
|
|
|
elem->last_gtid->server_id, elem->last_gtid->seq_no);
|
|
|
|
return 1;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
2013-05-28 13:28:31 +02:00
|
|
|
if (elem->seq_no_counter < gtid->seq_no)
|
|
|
|
elem->seq_no_counter= gtid->seq_no;
|
|
|
|
if (!elem->update_element(gtid))
|
|
|
|
return 0;
|
|
|
|
}
|
2013-11-18 15:22:50 +01:00
|
|
|
else if (!alloc_element_nolock(gtid))
|
2013-05-28 13:28:31 +02:00
|
|
|
return 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
int
|
|
|
|
rpl_binlog_state::update(const struct rpl_gtid *gtid, bool strict)
|
|
|
|
{
|
|
|
|
int res;
|
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
res= update_nolock(gtid, strict);
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
/*
|
|
|
|
Fill in a new GTID, allocating next sequence number, and update state
|
|
|
|
accordingly.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_binlog_state::update_with_next_gtid(uint32 domain_id, uint32 server_id,
|
|
|
|
rpl_gtid *gtid)
|
|
|
|
{
|
|
|
|
element *elem;
|
2013-11-18 15:22:50 +01:00
|
|
|
int res= 0;
|
2013-05-28 13:28:31 +02:00
|
|
|
|
|
|
|
gtid->domain_id= domain_id;
|
|
|
|
gtid->server_id= server_id;
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
if ((elem= (element *)my_hash_search(&hash, (const uchar *)(&domain_id), 0)))
|
|
|
|
{
|
|
|
|
gtid->seq_no= ++elem->seq_no_counter;
|
|
|
|
if (!elem->update_element(gtid))
|
2013-11-18 15:22:50 +01:00
|
|
|
goto end;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
gtid->seq_no= 1;
|
2013-11-18 15:22:50 +01:00
|
|
|
if (!alloc_element_nolock(gtid))
|
|
|
|
goto end;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
2013-11-18 15:22:50 +01:00
|
|
|
res= 1;
|
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Helper functions for update. */
|
|
|
|
int
|
|
|
|
rpl_binlog_state::element::update_element(const rpl_gtid *gtid)
|
|
|
|
{
|
|
|
|
rpl_gtid *lookup_gtid;
|
|
|
|
|
|
|
|
/*
|
|
|
|
By far the most common case is that successive events within same
|
|
|
|
replication domain have the same server id (it changes only when
|
|
|
|
switching to a new master). So save a hash lookup in this case.
|
|
|
|
*/
|
|
|
|
if (likely(last_gtid && last_gtid->server_id == gtid->server_id))
|
|
|
|
{
|
|
|
|
last_gtid->seq_no= gtid->seq_no;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
lookup_gtid= (rpl_gtid *)
|
|
|
|
my_hash_search(&hash, (const uchar *)>id->server_id, 0);
|
|
|
|
if (lookup_gtid)
|
|
|
|
{
|
|
|
|
lookup_gtid->seq_no= gtid->seq_no;
|
|
|
|
last_gtid= lookup_gtid;
|
2013-03-11 16:02:40 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
/* Allocate a new GTID and insert it. */
|
|
|
|
lookup_gtid= (rpl_gtid *)my_malloc(sizeof(*lookup_gtid), MYF(MY_WME));
|
|
|
|
if (!lookup_gtid)
|
|
|
|
return 1;
|
|
|
|
memcpy(lookup_gtid, gtid, sizeof(*lookup_gtid));
|
|
|
|
if (my_hash_insert(&hash, (const uchar *)lookup_gtid))
|
|
|
|
{
|
|
|
|
my_free(lookup_gtid);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
last_gtid= lookup_gtid;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_binlog_state::alloc_element_nolock(const rpl_gtid *gtid)
|
2013-05-28 13:28:31 +02:00
|
|
|
{
|
|
|
|
element *elem;
|
|
|
|
rpl_gtid *lookup_gtid;
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
/* First time we see this domain_id; allocate a new element. */
|
|
|
|
elem= (element *)my_malloc(sizeof(*elem), MYF(MY_WME));
|
|
|
|
lookup_gtid= (rpl_gtid *)my_malloc(sizeof(*lookup_gtid), MYF(MY_WME));
|
|
|
|
if (elem && lookup_gtid)
|
|
|
|
{
|
|
|
|
elem->domain_id= gtid->domain_id;
|
|
|
|
my_hash_init(&elem->hash, &my_charset_bin, 32,
|
|
|
|
offsetof(rpl_gtid, server_id), sizeof(uint32), NULL, my_free,
|
|
|
|
HASH_UNIQUE);
|
|
|
|
elem->last_gtid= lookup_gtid;
|
2013-05-28 13:28:31 +02:00
|
|
|
elem->seq_no_counter= gtid->seq_no;
|
2013-03-11 16:02:40 +01:00
|
|
|
memcpy(lookup_gtid, gtid, sizeof(*lookup_gtid));
|
|
|
|
if (0 == my_hash_insert(&elem->hash, (const uchar *)lookup_gtid))
|
|
|
|
{
|
|
|
|
lookup_gtid= NULL; /* Do not free. */
|
|
|
|
if (0 == my_hash_insert(&hash, (const uchar *)elem))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
my_hash_free(&elem->hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* An error. */
|
|
|
|
if (elem)
|
|
|
|
my_free(elem);
|
|
|
|
if (lookup_gtid)
|
|
|
|
my_free(lookup_gtid);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
/*
|
|
|
|
Check that a new GTID can be logged without creating an out-of-order
|
|
|
|
sequence number with existing GTIDs.
|
|
|
|
*/
|
|
|
|
bool
|
|
|
|
rpl_binlog_state::check_strict_sequence(uint32 domain_id, uint32 server_id,
|
|
|
|
uint64 seq_no)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-05-28 13:28:31 +02:00
|
|
|
element *elem;
|
2013-11-18 15:22:50 +01:00
|
|
|
bool res= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
if ((elem= (element *)my_hash_search(&hash,
|
|
|
|
(const uchar *)(&domain_id), 0)) &&
|
|
|
|
elem->last_gtid && elem->last_gtid->seq_no >= seq_no)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-05-28 13:28:31 +02:00
|
|
|
my_error(ER_GTID_STRICT_OUT_OF_ORDER, MYF(0), domain_id, server_id, seq_no,
|
|
|
|
elem->last_gtid->domain_id, elem->last_gtid->server_id,
|
|
|
|
elem->last_gtid->seq_no);
|
2013-11-18 15:22:50 +01:00
|
|
|
res= 1;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
When we see a new GTID that will not be binlogged (eg. slave thread
|
|
|
|
with --log-slave-updates=0), then we need to remember to allocate any
|
|
|
|
GTID seq_no of our own within that domain starting from there.
|
|
|
|
|
|
|
|
Returns 0 if ok, non-zero if out-of-memory.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_binlog_state::bump_seq_no_if_needed(uint32 domain_id, uint64 seq_no)
|
|
|
|
{
|
|
|
|
element *elem;
|
2013-11-18 15:22:50 +01:00
|
|
|
int res;
|
2013-05-28 13:28:31 +02:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
if ((elem= (element *)my_hash_search(&hash, (const uchar *)(&domain_id), 0)))
|
|
|
|
{
|
|
|
|
if (elem->seq_no_counter < seq_no)
|
|
|
|
elem->seq_no_counter= seq_no;
|
2013-11-18 15:22:50 +01:00
|
|
|
res= 0;
|
|
|
|
goto end;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* We need to allocate a new, empty element to remember the next seq_no. */
|
|
|
|
if (!(elem= (element *)my_malloc(sizeof(*elem), MYF(MY_WME))))
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= 1;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-05-28 13:28:31 +02:00
|
|
|
|
|
|
|
elem->domain_id= domain_id;
|
|
|
|
my_hash_init(&elem->hash, &my_charset_bin, 32,
|
|
|
|
offsetof(rpl_gtid, server_id), sizeof(uint32), NULL, my_free,
|
|
|
|
HASH_UNIQUE);
|
|
|
|
elem->last_gtid= NULL;
|
|
|
|
elem->seq_no_counter= seq_no;
|
|
|
|
if (0 == my_hash_insert(&hash, (const uchar *)elem))
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= 0;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-05-28 13:28:31 +02:00
|
|
|
|
|
|
|
my_hash_free(&elem->hash);
|
|
|
|
my_free(elem);
|
2013-11-18 15:22:50 +01:00
|
|
|
res= 1;
|
|
|
|
|
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Write binlog state to text file, so we can read it in again without having
|
|
|
|
to scan last binlog file (normal shutdown/startup, not crash recovery).
|
|
|
|
|
|
|
|
The most recent GTID within each domain_id is written after any other GTID
|
|
|
|
within this domain.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_binlog_state::write_to_iocache(IO_CACHE *dest)
|
|
|
|
{
|
|
|
|
ulong i, j;
|
|
|
|
char buf[21];
|
2013-11-18 15:22:50 +01:00
|
|
|
int res= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
size_t res;
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
2013-05-28 13:28:31 +02:00
|
|
|
if (!e->last_gtid)
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(e->hash.records == 0);
|
|
|
|
continue;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
for (j= 0; j <= e->hash.records; ++j)
|
|
|
|
{
|
|
|
|
const rpl_gtid *gtid;
|
|
|
|
if (j < e->hash.records)
|
|
|
|
{
|
|
|
|
gtid= (const rpl_gtid *)my_hash_element(&e->hash, j);
|
|
|
|
if (gtid == e->last_gtid)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
gtid= e->last_gtid;
|
|
|
|
|
|
|
|
longlong10_to_str(gtid->seq_no, buf, 10);
|
|
|
|
res= my_b_printf(dest, "%u-%u-%s\n", gtid->domain_id, gtid->server_id, buf);
|
|
|
|
if (res == (size_t) -1)
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= 1;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
rpl_binlog_state::read_from_iocache(IO_CACHE *src)
|
|
|
|
{
|
|
|
|
/* 10-digit - 10-digit - 20-digit \n \0 */
|
|
|
|
char buf[10+1+10+1+20+1+1];
|
|
|
|
char *p, *end;
|
|
|
|
rpl_gtid gtid;
|
2013-11-18 15:22:50 +01:00
|
|
|
int res= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
reset_nolock();
|
2013-03-11 16:02:40 +01:00
|
|
|
for (;;)
|
|
|
|
{
|
2013-11-18 15:22:50 +01:00
|
|
|
size_t len= my_b_gets(src, buf, sizeof(buf));
|
|
|
|
if (!len)
|
2013-03-11 16:02:40 +01:00
|
|
|
break;
|
|
|
|
p= buf;
|
2013-11-18 15:22:50 +01:00
|
|
|
end= buf + len;
|
|
|
|
if (gtid_parser_helper(&p, end, >id) ||
|
|
|
|
update_nolock(>id, false))
|
|
|
|
{
|
|
|
|
res= 1;
|
|
|
|
break;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-18 15:09:36 +01:00
|
|
|
rpl_gtid *
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_binlog_state::find_nolock(uint32 domain_id, uint32 server_id)
|
2013-03-18 15:09:36 +01:00
|
|
|
{
|
|
|
|
element *elem;
|
|
|
|
if (!(elem= (element *)my_hash_search(&hash, (const uchar *)&domain_id, 0)))
|
|
|
|
return NULL;
|
|
|
|
return (rpl_gtid *)my_hash_search(&elem->hash, (const uchar *)&server_id, 0);
|
|
|
|
}
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_gtid *
|
|
|
|
rpl_binlog_state::find(uint32 domain_id, uint32 server_id)
|
|
|
|
{
|
|
|
|
rpl_gtid *p;
|
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
|
|
|
p= find_nolock(domain_id, server_id);
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2013-05-28 13:28:31 +02:00
|
|
|
rpl_gtid *
|
|
|
|
rpl_binlog_state::find_most_recent(uint32 domain_id)
|
|
|
|
{
|
|
|
|
element *elem;
|
2013-11-18 15:22:50 +01:00
|
|
|
rpl_gtid *gtid= NULL;
|
2013-05-28 13:28:31 +02:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
elem= (element *)my_hash_search(&hash, (const uchar *)&domain_id, 0);
|
|
|
|
if (elem && elem->last_gtid)
|
2013-11-18 15:22:50 +01:00
|
|
|
gtid= elem->last_gtid;
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
|
|
|
|
return gtid;
|
2013-05-28 13:28:31 +02:00
|
|
|
}
|
|
|
|
|
2013-03-18 15:09:36 +01:00
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
uint32
|
|
|
|
rpl_binlog_state::count()
|
|
|
|
{
|
|
|
|
uint32 c= 0;
|
|
|
|
uint32 i;
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
c+= ((element *)my_hash_element(&hash, i))->hash.records;
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
rpl_binlog_state::get_gtid_list(rpl_gtid *gtid_list, uint32 list_size)
|
|
|
|
{
|
|
|
|
uint32 i, j, pos;
|
2013-11-18 15:22:50 +01:00
|
|
|
int res= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-03-11 16:02:40 +01:00
|
|
|
pos= 0;
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
2013-05-28 13:28:31 +02:00
|
|
|
if (!e->last_gtid)
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(e->hash.records==0);
|
|
|
|
continue;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
for (j= 0; j <= e->hash.records; ++j)
|
|
|
|
{
|
|
|
|
const rpl_gtid *gtid;
|
|
|
|
if (j < e->hash.records)
|
|
|
|
{
|
|
|
|
gtid= (rpl_gtid *)my_hash_element(&e->hash, j);
|
|
|
|
if (gtid == e->last_gtid)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
gtid= e->last_gtid;
|
|
|
|
|
|
|
|
if (pos >= list_size)
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= 1;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-03-11 16:02:40 +01:00
|
|
|
memcpy(>id_list[pos++], gtid, sizeof(*gtid));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Get a list of the most recently binlogged GTID, for each domain_id.
|
|
|
|
|
|
|
|
This can be used when switching from being a master to being a slave,
|
|
|
|
to know where to start replicating from the new master.
|
|
|
|
|
|
|
|
The returned list must be de-allocated with my_free().
|
|
|
|
|
|
|
|
Returns 0 for ok, non-zero for out-of-memory.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rpl_binlog_state::get_most_recent_gtid_list(rpl_gtid **list, uint32 *size)
|
|
|
|
{
|
|
|
|
uint32 i;
|
2013-05-28 13:28:31 +02:00
|
|
|
uint32 alloc_size, out_size;
|
2013-11-18 15:22:50 +01:00
|
|
|
int res= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
out_size= 0;
|
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
alloc_size= hash.records;
|
|
|
|
if (!(*list= (rpl_gtid *)my_malloc(alloc_size * sizeof(rpl_gtid),
|
|
|
|
MYF(MY_WME))))
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= 1;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-05-28 13:28:31 +02:00
|
|
|
for (i= 0; i < alloc_size; ++i)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
2013-05-28 13:28:31 +02:00
|
|
|
if (!e->last_gtid)
|
|
|
|
continue;
|
|
|
|
memcpy(&((*list)[out_size++]), e->last_gtid, sizeof(rpl_gtid));
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
2013-05-28 13:28:31 +02:00
|
|
|
*size= out_size;
|
2013-11-18 15:22:50 +01:00
|
|
|
return res;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
2013-05-22 17:36:48 +02:00
|
|
|
bool
|
|
|
|
rpl_binlog_state::append_pos(String *str)
|
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2015-02-28 05:33:22 +01:00
|
|
|
reset_dynamic(>id_sort_array);
|
|
|
|
|
2013-05-22 17:36:48 +02:00
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
2013-05-28 13:28:31 +02:00
|
|
|
if (e->last_gtid &&
|
2015-02-28 05:33:22 +01:00
|
|
|
insert_dynamic(>id_sort_array, (const void *) e->last_gtid))
|
|
|
|
{
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
2013-05-22 17:36:48 +02:00
|
|
|
return true;
|
2015-02-28 05:33:22 +01:00
|
|
|
}
|
2013-05-22 17:36:48 +02:00
|
|
|
}
|
2015-02-28 05:33:22 +01:00
|
|
|
rpl_slave_state_tostring_helper(>id_sort_array, str);
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
2013-05-22 17:36:48 +02:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-08-23 14:02:13 +02:00
|
|
|
bool
|
|
|
|
rpl_binlog_state::append_state(String *str)
|
|
|
|
{
|
|
|
|
uint32 i, j;
|
2013-11-18 15:22:50 +01:00
|
|
|
bool res= false;
|
2013-08-23 14:02:13 +02:00
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
mysql_mutex_lock(&LOCK_binlog_state);
|
2015-02-28 05:33:22 +01:00
|
|
|
reset_dynamic(>id_sort_array);
|
|
|
|
|
2013-08-23 14:02:13 +02:00
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
element *e= (element *)my_hash_element(&hash, i);
|
|
|
|
if (!e->last_gtid)
|
|
|
|
{
|
|
|
|
DBUG_ASSERT(e->hash.records==0);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (j= 0; j <= e->hash.records; ++j)
|
|
|
|
{
|
|
|
|
const rpl_gtid *gtid;
|
|
|
|
if (j < e->hash.records)
|
|
|
|
{
|
|
|
|
gtid= (rpl_gtid *)my_hash_element(&e->hash, j);
|
|
|
|
if (gtid == e->last_gtid)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
gtid= e->last_gtid;
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
if (insert_dynamic(>id_sort_array, (const void *) gtid))
|
2013-11-18 15:22:50 +01:00
|
|
|
{
|
|
|
|
res= true;
|
|
|
|
goto end;
|
|
|
|
}
|
2013-08-23 14:02:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-28 05:33:22 +01:00
|
|
|
rpl_slave_state_tostring_helper(>id_sort_array, str);
|
|
|
|
|
2013-11-18 15:22:50 +01:00
|
|
|
end:
|
|
|
|
mysql_mutex_unlock(&LOCK_binlog_state);
|
|
|
|
return res;
|
2013-08-23 14:02:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-27 16:06:45 +01:00
|
|
|
slave_connection_state::slave_connection_state()
|
|
|
|
{
|
|
|
|
my_hash_init(&hash, &my_charset_bin, 32,
|
2013-08-16 15:10:25 +02:00
|
|
|
offsetof(entry, gtid) + offsetof(rpl_gtid, domain_id),
|
|
|
|
sizeof(uint32), NULL, my_free, HASH_UNIQUE);
|
2015-02-28 05:33:22 +01:00
|
|
|
my_init_dynamic_array(>id_sort_array, sizeof(rpl_gtid), 8, 8, MYF(0));
|
2013-03-27 16:06:45 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
slave_connection_state::~slave_connection_state()
|
|
|
|
{
|
|
|
|
my_hash_free(&hash);
|
2015-02-28 05:33:22 +01:00
|
|
|
delete_dynamic(>id_sort_array);
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Create a hash from the slave GTID state that is sent to master when slave
|
|
|
|
connects to start replication.
|
|
|
|
|
|
|
|
The state is sent as <GTID>,<GTID>,...,<GTID>, for example:
|
|
|
|
|
|
|
|
0-2-112,1-4-1022
|
|
|
|
|
|
|
|
The state gives for each domain_id the GTID to start replication from for
|
|
|
|
the corresponding replication stream. So domain_id must be unique.
|
|
|
|
|
|
|
|
Returns 0 if ok, non-zero if error due to malformed input.
|
|
|
|
|
|
|
|
Note that input string is built by slave server, so it will not be incorrect
|
|
|
|
unless bug/corruption/malicious server. So we just need basic sanity check,
|
|
|
|
not fancy user-friendly error message.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
slave_connection_state::load(char *slave_request, size_t len)
|
|
|
|
{
|
|
|
|
char *p, *end;
|
|
|
|
uchar *rec;
|
|
|
|
rpl_gtid *gtid;
|
2013-08-16 15:10:25 +02:00
|
|
|
const entry *e;
|
2013-03-11 16:02:40 +01:00
|
|
|
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
reset();
|
2013-03-11 16:02:40 +01:00
|
|
|
p= slave_request;
|
|
|
|
end= slave_request + len;
|
|
|
|
if (p == end)
|
|
|
|
return 0;
|
|
|
|
for (;;)
|
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
if (!(rec= (uchar *)my_malloc(sizeof(entry), MYF(MY_WME))))
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(*gtid));
|
|
|
|
return 1;
|
|
|
|
}
|
2013-08-16 15:10:25 +02:00
|
|
|
gtid= &((entry *)rec)->gtid;
|
2013-03-11 16:02:40 +01:00
|
|
|
if (gtid_parser_helper(&p, end, gtid))
|
|
|
|
{
|
|
|
|
my_free(rec);
|
|
|
|
my_error(ER_INCORRECT_GTID_STATE, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
2013-08-16 15:10:25 +02:00
|
|
|
if ((e= (const entry *)
|
2013-03-11 16:02:40 +01:00
|
|
|
my_hash_search(&hash, (const uchar *)(>id->domain_id), 0)))
|
|
|
|
{
|
|
|
|
my_error(ER_DUPLICATE_GTID_DOMAIN, MYF(0), gtid->domain_id,
|
2013-08-16 15:10:25 +02:00
|
|
|
gtid->server_id, (ulonglong)gtid->seq_no, e->gtid.domain_id,
|
|
|
|
e->gtid.server_id, (ulonglong)e->gtid.seq_no, gtid->domain_id);
|
2013-03-11 16:02:40 +01:00
|
|
|
my_free(rec);
|
|
|
|
return 1;
|
|
|
|
}
|
2013-08-16 15:10:25 +02:00
|
|
|
((entry *)rec)->flags= 0;
|
2013-03-11 16:02:40 +01:00
|
|
|
if (my_hash_insert(&hash, rec))
|
|
|
|
{
|
|
|
|
my_free(rec);
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (p == end)
|
|
|
|
break; /* Finished. */
|
|
|
|
if (*p != ',')
|
|
|
|
{
|
|
|
|
my_error(ER_INCORRECT_GTID_STATE, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
slave_connection_state::load(const rpl_gtid *gtid_list, uint32 count)
|
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
reset();
|
2013-03-11 16:02:40 +01:00
|
|
|
for (i= 0; i < count; ++i)
|
|
|
|
if (update(>id_list[i]))
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
static int
|
|
|
|
slave_connection_state_load_cb(rpl_gtid *gtid, void *data)
|
|
|
|
{
|
|
|
|
slave_connection_state *state= (slave_connection_state *)data;
|
|
|
|
return state->update(gtid);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Same as rpl_slave_state::tostring(), but populates a slave_connection_state
|
|
|
|
instead.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
slave_connection_state::load(rpl_slave_state *state,
|
|
|
|
rpl_gtid *extra_gtids, uint32 num_extra)
|
|
|
|
{
|
|
|
|
reset();
|
|
|
|
return state->iterate(slave_connection_state_load_cb, this,
|
2015-02-28 05:33:22 +01:00
|
|
|
extra_gtids, num_extra, false);
|
MDEV-26: Global transaction ID.
Fix problems related to reconnect. When we need to reconnect (ie. explict
stop/start of just the IO thread by user, or automatic reconnect due to
loosing network connection with the master), it is a bit complex to correctly
resume at the right point without causing duplicate or missing events in the
relay log. The previous code had multiple problems in this regard.
With this patch, the problem is solved as follows. The IO thread keeps track
(in memory) of which GTID was last queued to the relay log. If it needs to
reconnect, it resumes at that GTID position. It also counts number of events
received within the last, possibly partial, event group, and skips the same
number of events after a reconnect, so that events already enqueued before the
reconnect are not duplicated.
(There is no need to keep any persistent state; whenever we restart slave
threads after both of them being stopped (such as after server restart), we
erase the relay logs and start over from the last GTID applied by SQL thread.
But while the SQL thread is running, this patch is needed to get correct relay
log).
2013-06-05 14:32:47 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-08-16 15:10:25 +02:00
|
|
|
slave_connection_state::entry *
|
|
|
|
slave_connection_state::find_entry(uint32 domain_id)
|
|
|
|
{
|
|
|
|
return (entry *) my_hash_search(&hash, (const uchar *)(&domain_id), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
rpl_gtid *
|
|
|
|
slave_connection_state::find(uint32 domain_id)
|
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
entry *e= find_entry(domain_id);
|
|
|
|
if (!e)
|
|
|
|
return NULL;
|
|
|
|
return &e->gtid;
|
2013-03-11 16:02:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
slave_connection_state::update(const rpl_gtid *in_gtid)
|
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
entry *e;
|
2013-03-11 16:02:40 +01:00
|
|
|
uchar *rec= my_hash_search(&hash, (const uchar *)(&in_gtid->domain_id), 0);
|
|
|
|
if (rec)
|
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
e= (entry *)rec;
|
|
|
|
e->gtid= *in_gtid;
|
2013-03-11 16:02:40 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-08-16 15:10:25 +02:00
|
|
|
if (!(e= (entry *)my_malloc(sizeof(*e), MYF(MY_WME))))
|
2013-03-11 16:02:40 +01:00
|
|
|
return 1;
|
2013-08-16 15:10:25 +02:00
|
|
|
e->gtid= *in_gtid;
|
|
|
|
e->flags= 0;
|
|
|
|
if (my_hash_insert(&hash, (uchar *)e))
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
my_free(e);
|
2013-03-11 16:02:40 +01:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
slave_connection_state::remove(const rpl_gtid *in_gtid)
|
|
|
|
{
|
|
|
|
uchar *rec= my_hash_search(&hash, (const uchar *)(&in_gtid->domain_id), 0);
|
|
|
|
#ifndef DBUG_OFF
|
2013-03-26 14:58:14 +01:00
|
|
|
bool err;
|
2013-08-16 15:10:25 +02:00
|
|
|
rpl_gtid *slave_gtid= &((entry *)rec)->gtid;
|
2013-03-11 16:02:40 +01:00
|
|
|
DBUG_ASSERT(rec /* We should never try to remove not present domain_id. */);
|
|
|
|
DBUG_ASSERT(slave_gtid->server_id == in_gtid->server_id);
|
|
|
|
DBUG_ASSERT(slave_gtid->seq_no == in_gtid->seq_no);
|
|
|
|
#endif
|
|
|
|
|
2013-03-26 14:58:14 +01:00
|
|
|
IF_DBUG(err=, )
|
|
|
|
my_hash_delete(&hash, rec);
|
2013-03-11 16:02:40 +01:00
|
|
|
DBUG_ASSERT(!err);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-08-22 12:36:42 +02:00
|
|
|
void
|
|
|
|
slave_connection_state::remove_if_present(const rpl_gtid *in_gtid)
|
|
|
|
{
|
|
|
|
uchar *rec= my_hash_search(&hash, (const uchar *)(&in_gtid->domain_id), 0);
|
|
|
|
if (rec)
|
|
|
|
my_hash_delete(&hash, rec);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2013-03-11 16:02:40 +01:00
|
|
|
int
|
|
|
|
slave_connection_state::to_string(String *out_str)
|
2013-05-15 19:52:21 +02:00
|
|
|
{
|
|
|
|
out_str->length(0);
|
|
|
|
return append_to_string(out_str);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
slave_connection_state::append_to_string(String *out_str)
|
2013-03-11 16:02:40 +01:00
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
bool first;
|
|
|
|
|
|
|
|
first= true;
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
2013-08-16 15:10:25 +02:00
|
|
|
const entry *e= (const entry *)my_hash_element(&hash, i);
|
|
|
|
if (rpl_slave_state_tostring_helper(out_str, &e->gtid, &first))
|
2013-03-11 16:02:40 +01:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2013-08-22 12:36:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
slave_connection_state::get_gtid_list(rpl_gtid *gtid_list, uint32 list_size)
|
|
|
|
{
|
|
|
|
uint32 i, pos;
|
|
|
|
|
|
|
|
pos= 0;
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
entry *e;
|
|
|
|
if (pos >= list_size)
|
|
|
|
return 1;
|
|
|
|
e= (entry *)my_hash_element(&hash, i);
|
|
|
|
memcpy(>id_list[pos++], &e->gtid, sizeof(e->gtid));
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
|
2015-03-04 13:10:37 +01:00
|
|
|
/*
|
|
|
|
Check if the GTID position has been reached, for mysql_binlog_send().
|
|
|
|
|
|
|
|
The position has not been reached if we have anything in the state, unless
|
|
|
|
it has either the START_ON_EMPTY_DOMAIN flag set (which means it does not
|
|
|
|
belong to this master at all), or the START_OWN_SLAVE_POS (which means that
|
|
|
|
we start on an old position from when the server was a slave with
|
|
|
|
--log-slave-updates=0).
|
|
|
|
*/
|
|
|
|
bool
|
|
|
|
slave_connection_state::is_pos_reached()
|
|
|
|
{
|
|
|
|
uint32 i;
|
|
|
|
|
|
|
|
for (i= 0; i < hash.records; ++i)
|
|
|
|
{
|
|
|
|
entry *e= (entry *)my_hash_element(&hash, i);
|
|
|
|
if (!(e->flags & (START_OWN_SLAVE_POS|START_ON_EMPTY_DOMAIN)))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
/*
|
|
|
|
Execute a MASTER_GTID_WAIT().
|
|
|
|
The position to wait for is in gtid_str in string form.
|
|
|
|
The timeout in microseconds is in timeout_us, zero means no timeout.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
1 for error.
|
|
|
|
0 for wait completed.
|
|
|
|
-1 for wait timed out.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
gtid_waiting::wait_for_pos(THD *thd, String *gtid_str, longlong timeout_us)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
rpl_gtid *wait_pos;
|
|
|
|
uint32 count, i;
|
|
|
|
struct timespec wait_until, *wait_until_ptr;
|
2015-03-11 20:43:38 +01:00
|
|
|
ulonglong before;
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
/* Wait for the empty position returns immediately. */
|
|
|
|
if (gtid_str->length() == 0)
|
2015-03-11 20:43:38 +01:00
|
|
|
{
|
|
|
|
status_var_increment(thd->status_var.master_gtid_wait_count);
|
2014-02-07 19:15:28 +01:00
|
|
|
return 0;
|
2015-03-11 20:43:38 +01:00
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
if (!(wait_pos= gtid_parse_string_to_list(gtid_str->ptr(), gtid_str->length(),
|
|
|
|
&count)))
|
|
|
|
{
|
|
|
|
my_error(ER_INCORRECT_GTID_STATE, MYF(0));
|
|
|
|
return 1;
|
|
|
|
}
|
2015-03-11 20:43:38 +01:00
|
|
|
status_var_increment(thd->status_var.master_gtid_wait_count);
|
2015-03-16 14:40:29 +01:00
|
|
|
before= microsecond_interval_timer();
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
if (timeout_us >= 0)
|
|
|
|
{
|
|
|
|
set_timespec_nsec(wait_until, (ulonglong)1000*timeout_us);
|
|
|
|
wait_until_ptr= &wait_until;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
wait_until_ptr= NULL;
|
|
|
|
err= 0;
|
|
|
|
for (i= 0; i < count; ++i)
|
|
|
|
{
|
|
|
|
if ((err= wait_for_gtid(thd, &wait_pos[i], wait_until_ptr)))
|
|
|
|
break;
|
|
|
|
}
|
2015-03-11 20:43:38 +01:00
|
|
|
switch (err)
|
|
|
|
{
|
|
|
|
case -1:
|
|
|
|
status_var_increment(thd->status_var.master_gtid_wait_timeouts);
|
2015-03-16 14:40:29 +01:00
|
|
|
/* Deliberate fall through. */
|
|
|
|
case 0:
|
|
|
|
status_var_add(thd->status_var.master_gtid_wait_time,
|
|
|
|
microsecond_interval_timer() - before);
|
2015-03-11 20:43:38 +01:00
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
my_free(wait_pos);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
gtid_waiting::promote_new_waiter(gtid_waiting::hash_element *he)
|
|
|
|
{
|
|
|
|
queue_element *qe;
|
|
|
|
|
|
|
|
mysql_mutex_assert_owner(&LOCK_gtid_waiting);
|
|
|
|
if (queue_empty(&he->queue))
|
|
|
|
return;
|
|
|
|
qe= (queue_element *)queue_top(&he->queue);
|
2014-02-08 22:28:41 +01:00
|
|
|
qe->do_small_wait= true;
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_cond_signal(&qe->thd->COND_wakeup_ready);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
gtid_waiting::process_wait_hash(uint64 wakeup_seq_no,
|
|
|
|
gtid_waiting::hash_element *he)
|
|
|
|
{
|
|
|
|
mysql_mutex_assert_owner(&LOCK_gtid_waiting);
|
|
|
|
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
queue_element *qe;
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
if (queue_empty(&he->queue))
|
2014-02-07 19:15:28 +01:00
|
|
|
break;
|
|
|
|
qe= (queue_element *)queue_top(&he->queue);
|
|
|
|
if (qe->wait_seq_no > wakeup_seq_no)
|
|
|
|
break;
|
2014-02-08 22:28:41 +01:00
|
|
|
DBUG_ASSERT(!qe->done);
|
2014-02-07 19:15:28 +01:00
|
|
|
queue_remove_top(&he->queue);
|
2014-02-08 22:28:41 +01:00
|
|
|
qe->done= true;;
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_cond_signal(&qe->thd->COND_wakeup_ready);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Execute a MASTER_GTID_WAIT() for one specific domain.
|
|
|
|
|
|
|
|
The implementation is optimised primarily for (1) minimal performance impact
|
|
|
|
on the slave replication threads, and secondarily for (2) quick performance
|
|
|
|
of MASTER_GTID_WAIT() on a single GTID, which can be useful for consistent
|
|
|
|
read to clients in an async replication read-scaleout scenario.
|
|
|
|
|
|
|
|
To achieve (1), we have a "small" wait and a "large" wait. The small wait
|
|
|
|
contends with the replication threads on the lock on the gtid_slave_pos, so
|
|
|
|
only minimal processing is done under that lock, and only a single waiter at
|
|
|
|
a time does the small wait.
|
|
|
|
|
|
|
|
If there is already a small waiter, a new thread will either replace the
|
|
|
|
small waiter (if it needs to wait for an earlier sequence number), or
|
2014-02-08 22:28:41 +01:00
|
|
|
instead do a "large" wait.
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
Once awoken on the small wait, the waiting thread releases the lock shared
|
|
|
|
with the SQL threads quickly, and then processes all waiters currently doing
|
2014-02-08 22:28:41 +01:00
|
|
|
the large wait using a different lock that does not impact replication.
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
This way, the SQL threads only need to do a single check + possibly a
|
|
|
|
pthread_cond_signal() when updating the gtid_slave_state, and the time that
|
2014-02-08 22:28:41 +01:00
|
|
|
non-SQL threads contend for the lock on gtid_slave_state is minimized.
|
|
|
|
|
|
|
|
There is always at least one thread that has the responsibility to ensure
|
|
|
|
that there is a small waiter; this thread has queue_element::do_small_wait
|
|
|
|
set to true. This thread will do the small wait until it is done, at which
|
|
|
|
point it will make sure to pass on the responsibility to another thread.
|
|
|
|
Normally only one thread has do_small_wait==true, but it can occasionally
|
|
|
|
happen that there is more than one, when threads race one another for the
|
|
|
|
lock on the small wait (this results in slightly increased activity on the
|
|
|
|
small lock but is otherwise harmless).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
0 Wait completed normally
|
|
|
|
-1 Wait completed due to timeout
|
|
|
|
1 An error (my_error() will have been called to set the error in the da)
|
2014-02-07 19:15:28 +01:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
gtid_waiting::wait_for_gtid(THD *thd, rpl_gtid *wait_gtid,
|
|
|
|
struct timespec *wait_until)
|
|
|
|
{
|
|
|
|
bool timed_out= false;
|
|
|
|
#ifdef HAVE_REPLICATION
|
|
|
|
queue_element elem;
|
2014-02-08 01:16:45 +01:00
|
|
|
uint32 domain_id= wait_gtid->domain_id;
|
2014-02-07 19:15:28 +01:00
|
|
|
uint64 seq_no= wait_gtid->seq_no;
|
|
|
|
hash_element *he;
|
|
|
|
rpl_slave_state::element *slave_state_elem= NULL;
|
2014-02-10 15:12:17 +01:00
|
|
|
PSI_stage_info old_stage;
|
2014-02-07 19:15:28 +01:00
|
|
|
bool did_enter_cond= false;
|
|
|
|
|
|
|
|
elem.wait_seq_no= seq_no;
|
|
|
|
elem.thd= thd;
|
2014-02-08 22:28:41 +01:00
|
|
|
elem.done= false;
|
|
|
|
|
2014-02-07 19:15:28 +01:00
|
|
|
mysql_mutex_lock(&LOCK_gtid_waiting);
|
2014-02-08 22:28:41 +01:00
|
|
|
if (!(he= get_entry(wait_gtid->domain_id)))
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
mysql_mutex_unlock(&LOCK_gtid_waiting);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
2014-02-08 22:28:41 +01:00
|
|
|
If there is already another waiter with seq_no no larger than our own,
|
|
|
|
we are sure that there is already a small waiter that will wake us up
|
|
|
|
(or later pass the small wait responsibility to us). So in this case, we
|
|
|
|
do not need to touch the small wait lock at all.
|
|
|
|
*/
|
|
|
|
elem.do_small_wait=
|
|
|
|
(queue_empty(&he->queue) ||
|
|
|
|
((queue_element *)queue_top(&he->queue))->wait_seq_no > seq_no);
|
2014-02-07 19:15:28 +01:00
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
if (register_in_wait_queue(thd, wait_gtid, he, &elem))
|
|
|
|
{
|
|
|
|
mysql_mutex_unlock(&LOCK_gtid_waiting);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
Loop, doing either the small or large wait as appropriate, until either
|
|
|
|
the position waited for is reached, or we get a kill or timeout.
|
2014-02-07 19:15:28 +01:00
|
|
|
*/
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
mysql_mutex_assert_owner(&LOCK_gtid_waiting);
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
if (elem.do_small_wait)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
uint64 wakeup_seq_no;
|
|
|
|
queue_element *cur_waiter;
|
|
|
|
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_lock(&rpl_global_gtid_slave_state->LOCK_slave_state);
|
2014-02-07 19:15:28 +01:00
|
|
|
/*
|
2014-02-08 22:28:41 +01:00
|
|
|
The elements in the gtid_slave_state_hash are never re-allocated once
|
|
|
|
they enter the hash, so we do not need to re-do the lookup after releasing
|
|
|
|
and re-aquiring the lock.
|
2014-02-07 19:15:28 +01:00
|
|
|
*/
|
2014-02-08 22:28:41 +01:00
|
|
|
if (!slave_state_elem &&
|
2015-11-29 16:51:23 +01:00
|
|
|
!(slave_state_elem= rpl_global_gtid_slave_state->get_element(domain_id)))
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_unlock(&rpl_global_gtid_slave_state->LOCK_slave_state);
|
2014-02-08 22:28:41 +01:00
|
|
|
remove_from_wait_queue(he, &elem);
|
|
|
|
promote_new_waiter(he);
|
|
|
|
if (did_enter_cond)
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->EXIT_COND(&old_stage);
|
2014-02-08 22:28:41 +01:00
|
|
|
else
|
|
|
|
mysql_mutex_unlock(&LOCK_gtid_waiting);
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
return 1;
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
2014-02-08 22:28:41 +01:00
|
|
|
|
|
|
|
if ((wakeup_seq_no= slave_state_elem->highest_seq_no) >= seq_no)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
/*
|
|
|
|
We do not have to wait. (We will be removed from the wait queue when
|
|
|
|
we call process_wait_hash() below.
|
|
|
|
*/
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_unlock(&rpl_global_gtid_slave_state->LOCK_slave_state);
|
2014-02-08 22:28:41 +01:00
|
|
|
}
|
|
|
|
else if ((cur_waiter= slave_state_elem->gtid_waiter) &&
|
|
|
|
slave_state_elem->min_wait_seq_no <= seq_no)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
There is already a suitable small waiter, go do the large wait.
|
|
|
|
(Normally we would not have needed to check the small wait in this
|
|
|
|
case, but it can happen if we race with another thread for the small
|
|
|
|
lock).
|
|
|
|
*/
|
|
|
|
elem.do_small_wait= false;
|
2015-11-29 16:51:23 +01:00
|
|
|
mysql_mutex_unlock(&rpl_global_gtid_slave_state->LOCK_slave_state);
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
/*
|
|
|
|
We have to do the small wait ourselves (stealing it from any thread
|
|
|
|
that might already be waiting for a later seq_no).
|
|
|
|
*/
|
|
|
|
slave_state_elem->gtid_waiter= &elem;
|
|
|
|
slave_state_elem->min_wait_seq_no= seq_no;
|
|
|
|
if (cur_waiter)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
/* We stole the wait, so wake up the old waiting thread. */
|
|
|
|
mysql_cond_signal(&slave_state_elem->COND_wait_gtid);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Release the large lock, and do the small wait. */
|
|
|
|
if (did_enter_cond)
|
|
|
|
{
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->EXIT_COND(&old_stage);
|
2014-02-08 22:28:41 +01:00
|
|
|
did_enter_cond= false;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
mysql_mutex_unlock(&LOCK_gtid_waiting);
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->ENTER_COND(&slave_state_elem->COND_wait_gtid,
|
2015-11-29 16:51:23 +01:00
|
|
|
&rpl_global_gtid_slave_state->LOCK_slave_state,
|
2014-02-10 15:12:17 +01:00
|
|
|
&stage_master_gtid_wait_primary, &old_stage);
|
2014-02-08 22:28:41 +01:00
|
|
|
do
|
|
|
|
{
|
|
|
|
if (thd->check_killed())
|
|
|
|
break;
|
|
|
|
else if (wait_until)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
int err=
|
|
|
|
mysql_cond_timedwait(&slave_state_elem->COND_wait_gtid,
|
2015-11-29 16:51:23 +01:00
|
|
|
&rpl_global_gtid_slave_state->LOCK_slave_state,
|
2014-02-08 22:28:41 +01:00
|
|
|
wait_until);
|
|
|
|
if (err == ETIMEDOUT || err == ETIME)
|
|
|
|
{
|
|
|
|
timed_out= true;
|
|
|
|
break;
|
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
2014-02-08 22:28:41 +01:00
|
|
|
else
|
|
|
|
mysql_cond_wait(&slave_state_elem->COND_wait_gtid,
|
2015-11-29 16:51:23 +01:00
|
|
|
&rpl_global_gtid_slave_state->LOCK_slave_state);
|
2014-02-08 22:28:41 +01:00
|
|
|
} while (slave_state_elem->gtid_waiter == &elem);
|
|
|
|
wakeup_seq_no= slave_state_elem->highest_seq_no;
|
|
|
|
/*
|
|
|
|
If we aborted due to timeout or kill, remove us as waiter.
|
|
|
|
|
|
|
|
If we were replaced by another waiter with a smaller seq_no, then we
|
|
|
|
no longer have responsibility for the small wait.
|
|
|
|
*/
|
|
|
|
if ((cur_waiter= slave_state_elem->gtid_waiter))
|
|
|
|
{
|
|
|
|
if (cur_waiter == &elem)
|
|
|
|
slave_state_elem->gtid_waiter= NULL;
|
|
|
|
else if (slave_state_elem->min_wait_seq_no <= seq_no)
|
|
|
|
elem.do_small_wait= false;
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->EXIT_COND(&old_stage);
|
2014-02-08 22:28:41 +01:00
|
|
|
|
|
|
|
mysql_mutex_lock(&LOCK_gtid_waiting);
|
|
|
|
}
|
2014-02-07 19:15:28 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
Note that hash_entry pointers do not change once allocated, so we do
|
2014-02-08 22:28:41 +01:00
|
|
|
not need to lookup `he' again after re-aquiring LOCK_gtid_waiting.
|
2014-02-07 19:15:28 +01:00
|
|
|
*/
|
|
|
|
process_wait_hash(wakeup_seq_no, he);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2014-02-08 22:28:41 +01:00
|
|
|
/* Do the large wait. */
|
|
|
|
if (!did_enter_cond)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->ENTER_COND(&thd->COND_wakeup_ready, &LOCK_gtid_waiting,
|
|
|
|
&stage_master_gtid_wait, &old_stage);
|
2014-02-08 22:28:41 +01:00
|
|
|
did_enter_cond= true;
|
|
|
|
}
|
|
|
|
while (!elem.done && !thd->check_killed())
|
|
|
|
{
|
|
|
|
thd_wait_begin(thd, THD_WAIT_BINLOG);
|
|
|
|
if (wait_until)
|
|
|
|
{
|
|
|
|
int err= mysql_cond_timedwait(&thd->COND_wakeup_ready,
|
|
|
|
&LOCK_gtid_waiting, wait_until);
|
|
|
|
if (err == ETIMEDOUT || err == ETIME)
|
|
|
|
timed_out= true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
mysql_cond_wait(&thd->COND_wakeup_ready, &LOCK_gtid_waiting);
|
|
|
|
thd_wait_end(thd);
|
|
|
|
if (elem.do_small_wait || timed_out)
|
|
|
|
break;
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
if ((thd->killed || timed_out) && !elem.done)
|
|
|
|
{
|
|
|
|
/* Aborted, so remove ourselves from the hash. */
|
|
|
|
remove_from_wait_queue(he, &elem);
|
|
|
|
elem.done= true;
|
|
|
|
}
|
|
|
|
if (elem.done)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
/*
|
2014-02-08 22:28:41 +01:00
|
|
|
If our wait is done, but we have (or were passed) responsibility for
|
|
|
|
the small wait, then we need to pass on that task to someone else.
|
2014-02-07 19:15:28 +01:00
|
|
|
*/
|
2014-02-08 22:28:41 +01:00
|
|
|
if (elem.do_small_wait)
|
2014-02-07 19:15:28 +01:00
|
|
|
promote_new_waiter(he);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (did_enter_cond)
|
2014-02-10 15:12:17 +01:00
|
|
|
thd->EXIT_COND(&old_stage);
|
2014-02-07 19:15:28 +01:00
|
|
|
else
|
|
|
|
mysql_mutex_unlock(&LOCK_gtid_waiting);
|
2014-02-08 22:28:41 +01:00
|
|
|
if (thd->killed)
|
|
|
|
thd->send_kill_message();
|
2014-02-07 19:15:28 +01:00
|
|
|
#endif /* HAVE_REPLICATION */
|
|
|
|
return timed_out ? -1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
free_hash_element(void *p)
|
|
|
|
{
|
|
|
|
gtid_waiting::hash_element *e= (gtid_waiting::hash_element *)p;
|
|
|
|
delete_queue(&e->queue);
|
|
|
|
my_free(e);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
gtid_waiting::init()
|
|
|
|
{
|
|
|
|
my_hash_init(&hash, &my_charset_bin, 32,
|
|
|
|
offsetof(hash_element, domain_id), sizeof(uint32), NULL,
|
|
|
|
free_hash_element, HASH_UNIQUE);
|
|
|
|
mysql_mutex_init(key_LOCK_gtid_waiting, &LOCK_gtid_waiting, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
gtid_waiting::destroy()
|
|
|
|
{
|
|
|
|
mysql_mutex_destroy(&LOCK_gtid_waiting);
|
|
|
|
my_hash_free(&hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
cmp_queue_elem(void *, uchar *a, uchar *b)
|
|
|
|
{
|
|
|
|
uint64 seq_no_a= *(uint64 *)a;
|
|
|
|
uint64 seq_no_b= *(uint64 *)b;
|
|
|
|
if (seq_no_a < seq_no_b)
|
|
|
|
return -1;
|
|
|
|
else if (seq_no_a == seq_no_b)
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
gtid_waiting::hash_element *
|
|
|
|
gtid_waiting::get_entry(uint32 domain_id)
|
|
|
|
{
|
|
|
|
hash_element *e;
|
|
|
|
|
|
|
|
if ((e= (hash_element *)my_hash_search(&hash, (const uchar *)&domain_id, 0)))
|
|
|
|
return e;
|
|
|
|
|
|
|
|
if (!(e= (hash_element *)my_malloc(sizeof(*e), MYF(MY_WME))))
|
|
|
|
{
|
|
|
|
my_error(ER_OUTOFMEMORY, MYF(0), sizeof(*e));
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (init_queue(&e->queue, 8, offsetof(queue_element, wait_seq_no), 0,
|
|
|
|
cmp_queue_elem, NULL, 1+offsetof(queue_element, queue_idx), 1))
|
|
|
|
{
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
my_free(e);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
e->domain_id= domain_id;
|
|
|
|
if (my_hash_insert(&hash, (uchar *)e))
|
|
|
|
{
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
|
|
|
delete_queue(&e->queue);
|
|
|
|
my_free(e);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
int
|
|
|
|
gtid_waiting::register_in_wait_queue(THD *thd, rpl_gtid *wait_gtid,
|
|
|
|
gtid_waiting::hash_element *he,
|
|
|
|
gtid_waiting::queue_element *elem)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
mysql_mutex_assert_owner(&LOCK_gtid_waiting);
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
if (queue_insert_safe(&he->queue, (uchar *)elem))
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0));
|
2014-02-08 22:28:41 +01:00
|
|
|
return 1;
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
return 0;
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
2014-02-08 22:28:41 +01:00
|
|
|
gtid_waiting::remove_from_wait_queue(gtid_waiting::hash_element *he,
|
|
|
|
gtid_waiting::queue_element *elem)
|
2014-02-07 19:15:28 +01:00
|
|
|
{
|
|
|
|
mysql_mutex_assert_owner(&LOCK_gtid_waiting);
|
|
|
|
|
2014-02-08 22:28:41 +01:00
|
|
|
queue_remove(&he->queue, elem->queue_idx);
|
2014-02-07 19:15:28 +01:00
|
|
|
}
|