mariadb/newbrt/brt.c

3886 lines
145 KiB
C
Raw Normal View History

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
/* Buffered repository tree.
* Observation: The in-memory representation of a node doesn't have to be the same as the on-disk representation.
* Goal for the in-memory representation: fast
* Goal for on-disk: small
*
* So to get this running fast, I'll make a version that doesn't do range queries:
* use a hash table for in-memory
* simply write the strings on disk.
* Later I'll do a PMA or a skiplist for the in-memory version.
* Also, later I'll convert the format to network order fromn host order.
* Later, for on disk, I'll compress it (perhaps with gzip, perhaps with the bzip2 algorithm.)
*
* The collection of nodes forms a data structure like a B-tree. The complexities of keeping it balanced apply.
*
* We always write nodes to a new location on disk.
* The nodes themselves contain the information about the tree structure.
* Q: During recovery, how do we find the root node without looking at every block on disk?
* A: The root node is either the designated root near the front of the freelist.
* The freelist is updated infrequently. Before updating the stable copy of the freelist, we make sure that
* the root is up-to-date. We can make the freelist-and-root update be an arbitrarily small fraction of disk bandwidth.
*
*/
#include <arpa/inet.h>
#include <errno.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include "block_allocator.h"
#include "toku_assert.h"
#include "brt-internal.h"
#include "key.h"
#include "log_header.h"
#include "kv-pair.h"
#include "mempool.h"
#include "leafentry.h"
//#define SLOW
#ifdef SLOW
#define VERIFY_NODE(n) (toku_verify_counts(n), verify_all_in_mempool(n))
#else
#define VERIFY_NODE(n) ((void)0)
#endif
extern long long n_items_malloced;
static void verify_local_fingerprint_nonleaf (BRTNODE node);
// We invalidate all the OMTCURSORS any time we push into the root of the BRT for that OMT.
// We keep a counter on each brt header, but if the brt header is evicted from the cachetable
// then we lose that counter. So we also keep a global counter.
// An alternative would be to keep only the global counter. But that would invalidate all OMTCURSORS
// even from unrelated BRTs. This way we only invalidate an OMTCURSOR if
static u_int64_t global_root_put_counter = 0;
/* Frees a node, including all the stuff in the hash table. */
void toku_brtnode_free (BRTNODE *nodep) {
BRTNODE node=*nodep;
int i;
//printf("%s:%d %p->mdict[0]=%p\n", __FILE__, __LINE__, node, node->mdicts[0]);
if (node->height>0) {
for (i=0; i<node->u.n.n_children-1; i++) {
toku_free(node->u.n.childkeys[i]);
}
for (i=0; i<node->u.n.n_children; i++) {
if (BNC_BUFFER(node,i)) {
toku_fifo_free(&BNC_BUFFER(node,i));
}
}
toku_free(node->u.n.childkeys);
toku_free(node->u.n.childinfos);
} else {
if (node->u.l.buffer) // The buffer may have been freed already, in some cases.
toku_omt_destroy(&node->u.l.buffer);
void *mpbase = toku_mempool_get_base(&node->u.l.buffer_mempool);
toku_mempool_fini(&node->u.l.buffer_mempool);
toku_free(mpbase);
}
toku_free(node);
*nodep=0;
}
static long brtnode_memory_size(BRTNODE node) {
if (node->height>0) {
#if 0
return toku_serialize_brtnode_size(node);
#else
int n_children = node->u.n.n_children;
int fifo_sum=0;
int i;
for (i=0; i<n_children; i++) {
fifo_sum+=toku_fifo_memory_size(node->u.n.childinfos[i].buffer);
}
return sizeof(*node)
+(1+n_children)*(sizeof(node->u.n.childinfos[0]))
+(n_children)+(sizeof(node->u.n.childkeys[0]))
+node->u.n.totalchildkeylens
+fifo_sum;
#endif
} else {
return sizeof(*node)+toku_omt_memory_size(node->u.l.buffer)+toku_mempool_get_size(&node->u.l.buffer_mempool);
}
}
static int verify_in_mempool(OMTVALUE lev, u_int32_t UU(idx), void *vmp) {
LEAFENTRY le=lev;
struct mempool *mp=vmp;
assert(toku_mempool_inrange(mp, le, leafentry_memsize(le)));
return 0;
}
void toku_verify_all_in_mempool(BRTNODE node) {
if (node->height==0) {
toku_omt_iterate(node->u.l.buffer, verify_in_mempool, &node->u.l.buffer_mempool);
}
}
static void fixup_child_fingerprint(BRTNODE node, int childnum_of_node, BRTNODE child, BRT UU(brt), TOKULOGGER UU(logger)) {
u_int64_t leafentry_estimate = 0;
u_int32_t sum = child->local_fingerprint;
if (child->height>0) {
int i;
for (i=0; i<child->u.n.n_children; i++) {
sum += BNC_SUBTREE_FINGERPRINT(child,i);
leafentry_estimate += BNC_SUBTREE_LEAFENTRY_ESTIMATE(child,i);
}
} else {
leafentry_estimate = toku_omt_size(child->u.l.buffer);
}
// Don't try to get fancy about not modifying the fingerprint if it didn't change.
// We only call this function if we have reason to believe that the child's fingerprint did change.
BNC_SUBTREE_FINGERPRINT(node,childnum_of_node)=sum;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(node,childnum_of_node)=leafentry_estimate;
node->dirty=1;
}
// If you pass in data==0 then it only compares the key, not the data (even if is a DUPSORT database)
static int brt_compare_pivot(BRT brt, DBT *key, DBT *data, bytevec ck) {
int cmp;
DBT mydbt;
struct kv_pair *kv = (struct kv_pair *) ck;
if (brt->flags & TOKU_DB_DUPSORT) {
cmp = brt->compare_fun(brt->db, key, toku_fill_dbt(&mydbt, kv_pair_key(kv), kv_pair_keylen(kv)));
if (cmp == 0 && data != 0)
cmp = brt->dup_compare(brt->db, data, toku_fill_dbt(&mydbt, kv_pair_val(kv), kv_pair_vallen(kv)));
} else {
cmp = brt->compare_fun(brt->db, key, toku_fill_dbt(&mydbt, kv_pair_key(kv), kv_pair_keylen(kv)));
}
return cmp;
}
void toku_brtnode_flush_callback (CACHEFILE cachefile, BLOCKNUM nodename, void *brtnode_v, void *extraargs, long size __attribute((unused)), BOOL write_me, BOOL keep_me, LSN modified_lsn __attribute__((__unused__)) , BOOL rename_p __attribute__((__unused__))) {
struct brt_header *h = extraargs;
BRTNODE brtnode = brtnode_v;
// if ((write_me || keep_me) && (brtnode->height==0)) {
// toku_pma_verify_fingerprint(brtnode->u.l.buffer, brtnode->rand4fingerprint, brtnode->subtree_fingerprint);
// }
if (0) {
printf("%s:%d toku_brtnode_flush_callback %p thisnodename=%" PRId64 " keep_me=%d height=%d", __FILE__, __LINE__, brtnode, brtnode->thisnodename.b, keep_me, brtnode->height);
if (brtnode->height==0) printf(" buf=%p mempool-base=%p", brtnode->u.l.buffer, brtnode->u.l.buffer_mempool.base);
printf("\n");
}
//if (modified_lsn.lsn > brtnode->lsn.lsn) brtnode->lsn=modified_lsn;
assert(brtnode->thisnodename.b==nodename.b);
//printf("%s:%d %p->mdict[0]=%p\n", __FILE__, __LINE__, brtnode, brtnode->mdicts[0]);
if (write_me) {
toku_serialize_brtnode_to(toku_cachefile_fd(cachefile), brtnode->thisnodename, brtnode, h);
}
//printf("%s:%d %p->mdict[0]=%p\n", __FILE__, __LINE__, brtnode, brtnode->mdicts[0]);
if (!keep_me) {
toku_brtnode_free(&brtnode);
}
//printf("%s:%d n_items_malloced=%lld\n", __FILE__, __LINE__, n_items_malloced);
}
int toku_brtnode_fetch_callback (CACHEFILE cachefile, BLOCKNUM nodename, u_int32_t fullhash, void **brtnode_pv, long *sizep, void*extraargs, LSN *written_lsn) {
assert(extraargs);
struct brt_header *h = extraargs;
BRTNODE *result=(BRTNODE*)brtnode_pv;
int r = toku_deserialize_brtnode_from(toku_cachefile_fd(cachefile), nodename, fullhash, result, h);
if (r == 0) {
*sizep = brtnode_memory_size(*result);
*written_lsn = (*result)->disk_lsn;
}
//(*result)->parent_brtnode = 0; /* Don't know it right now. */
//printf("%s:%d installed %p (offset=%lld)\n", __FILE__, __LINE__, *result, nodename);
return r;
}
void toku_brtheader_free (struct brt_header *h) {
if (h->n_named_roots>0) {
int i;
for (i=0; i<h->n_named_roots; i++) {
toku_free(h->names[i]);
}
toku_free(h->names);
}
toku_fifo_free(&h->fifo);
toku_free(h->roots);
toku_free(h->root_hashes);
toku_free(h->flags_array);
toku_free(h->block_translation);
destroy_block_allocator(&h->block_allocator);
toku_free(h);
}
int toku_brtheader_close (CACHEFILE cachefile, void *header_v) {
struct brt_header *h = header_v;
//printf("%s:%d allocated_limit=%lu writing queue to %lu\n", __FILE__, __LINE__,
// block_allocator_allocated_limit(h->block_allocator), h->unused_blocks.b*h->nodesize);
if (h->dirty) {
toku_serialize_brt_header_to(toku_cachefile_fd(cachefile), h);
u_int64_t write_to = block_allocator_allocated_limit(h->block_allocator); // Must compute this after writing the header.
//printf("%s:%d fifo written to %lu\n", __FILE__, __LINE__, write_to);
toku_serialize_fifo_at(toku_cachefile_fd(cachefile), write_to, h->fifo);
}
toku_brtheader_free(h);
return 0;
}
#if 0
static int toku_brtheader_fetch_callback (CACHEFILE cachefile, BLOCKNUM nodename, u_int32_t fullhash, void **headerp_v, long *sizep __attribute__((unused)), void*extraargs __attribute__((__unused__)), LSN *written_lsn) {
int r;
struct brt_header **h = (struct brt_header **)headerp_v;
assert(nodename.b==0);
if ((r = toku_deserialize_brtheader_from(toku_cachefile_fd(cachefile), nodename, fullhash, h))) return r;
//printf("%s:%d fifo=%p\nn", __FILE__, __LINE__, (*h)->fifo);
written_lsn->lsn = 0; // !!! WRONG. This should be stored or kept redundantly or something.
assert((*h)->free_blocks.b==-1);
return 0;
}
#endif
int toku_read_brt_header_and_store_in_cachefile (CACHEFILE cf, struct brt_header **header)
// If the cachefile already has the header, then just get it.
// If the cachefile has not been initialized, then don't modify anything.
{
{
struct brt_header *h;
if ((h=toku_cachefile_get_userdata(cf))!=0) {
*header = h;
return 0;
}
}
struct brt_header *h;
int r = toku_deserialize_brtheader_from(toku_cachefile_fd(cf), make_blocknum(0), &h);
if (r!=0) return r;
h->root_put_counter = global_root_put_counter++;
toku_cachefile_set_userdata(cf, (void*)h, toku_brtheader_close);
*header = h;
return 0;
}
int toku_unpin_brtnode (BRT brt, BRTNODE node) {
// if (node->dirty && txn) {
// // For now just update the log_lsn. Later we'll have to deal with the checksums.
// node->log_lsn = toku_txn_get_last_lsn(txn);
// //if (node->log_lsn.lsn>33320) printf("%s:%d node%lld lsn=%lld\n", __FILE__, __LINE__, node->thisnodename, node->log_lsn.lsn);
// }
VERIFY_NODE(node);
return toku_cachetable_unpin(brt->cf, node->thisnodename, node->fullhash, node->dirty, brtnode_memory_size(node));
}
typedef struct kvpair {
bytevec key;
unsigned int keylen;
bytevec val;
unsigned int vallen;
} *KVPAIR;
int allocate_diskblocknumber (BLOCKNUM *res, BRT brt, TOKULOGGER logger __attribute__((__unused__))) {
assert(brt->h->free_blocks.b == -1); // no blocks in the free list
BLOCKNUM result = brt->h->unused_blocks;
brt->h->unused_blocks.b++;
brt->h->dirty = 1;
*res = result;
return 0;
}
u_int32_t mp_pool_size_for_nodesize (u_int32_t nodesize) {
#if 1
return nodesize+nodesize/4;
#else
return nodesize;
#endif
}
// Simple LCG random number generator. Not high quality, but good enough.
static int r_seeded=0;
static u_int32_t rstate=1;
static inline void mysrandom (int s) {
rstate=s;
r_seeded=1;
}
static inline u_int32_t myrandom (void) {
if (!r_seeded) {
struct timeval tv;
gettimeofday(&tv, 0);
mysrandom(tv.tv_sec);
}
rstate = (279470275ull*(u_int64_t)rstate)%4294967291ull;
return rstate;
}
static void initialize_brtnode (BRT t, BRTNODE n, BLOCKNUM nodename, int height) {
n->tag = TYP_BRTNODE;
n->nodesize = t->h->nodesize;
n->flags = t->flags;
n->thisnodename = nodename;
n->disk_lsn.lsn = 0; // a new one can always be 0.
n->log_lsn = n->disk_lsn;
n->layout_version = BRT_LAYOUT_VERSION;
n->height = height;
n->rand4fingerprint = random();
n->local_fingerprint = 0;
n->dirty = 1;
assert(height>=0);
if (height>0) {
n->u.n.n_children = 0;
n->u.n.totalchildkeylens = 0;
n->u.n.n_bytes_in_buffers = 0;
n->u.n.childinfos=0;
n->u.n.childkeys=0;
} else {
int r = toku_omt_create(&n->u.l.buffer);
assert(r==0);
{
u_int32_t mpsize = mp_pool_size_for_nodesize(n->nodesize);
void *mp = toku_malloc(mpsize);
assert(mp);
toku_mempool_init(&n->u.l.buffer_mempool, mp, mpsize);
}
static int rcount=0;
//printf("%s:%d n PMA= %p (rcount=%d)\n", __FILE__, __LINE__, n->u.l.buffer, rcount);
rcount++;
n->u.l.n_bytes_in_buffer = 0;
n->u.l.seqinsert = 0;
}
}
// logs the memory allocation, but not the creation of the new node
int toku_create_new_brtnode (BRT t, BRTNODE *result, int height, TOKULOGGER logger) {
TAGMALLOC(BRTNODE, n);
int r;
BLOCKNUM name;
r = allocate_diskblocknumber (&name, t, logger);
assert(r==0);
assert(n);
assert(t->h->nodesize>0);
n->ever_been_written = 0;
initialize_brtnode(t, n, name, height);
*result = n;
assert(n->nodesize>0);
// n->brt = t;
//printf("%s:%d putting %p (%lld)\n", __FILE__, __LINE__, n, n->thisnodename);
u_int32_t fullhash = toku_cachetable_hash(t->cf, n->thisnodename);
n->fullhash = fullhash;
r=toku_cachetable_put(t->cf, n->thisnodename, fullhash,
n, brtnode_memory_size(n),
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, t->h);
2008-01-22 16:27:54 +00:00
assert(r==0);
return 0;
}
static int insert_to_buffer_in_nonleaf (BRTNODE node, int childnum, DBT *k, DBT *v, int type, TXNID xid) {
unsigned int n_bytes_added = BRT_CMD_OVERHEAD + KEY_VALUE_OVERHEAD + k->size + v->size;
int r = toku_fifo_enq(BNC_BUFFER(node,childnum), k->data, k->size, v->data, v->size, type, xid);
if (r!=0) return r;
// printf("%s:%d fingerprint %08x -> ", __FILE__, __LINE__, node->local_fingerprint);
node->local_fingerprint += node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xid, k->data, k->size, v->data, v->size);
// printf(" %08x\n", node->local_fingerprint);
BNC_NBYTESINBUF(node,childnum) += n_bytes_added;
node->u.n.n_bytes_in_buffers += n_bytes_added;
node->dirty = 1;
return 0;
}
static int fill_buf (OMTVALUE lev, u_int32_t idx, void *varray) {
LEAFENTRY le=lev;
LEAFENTRY *array=varray;
array[idx]=le;
return 0;
}
static int brtleaf_split (TOKULOGGER logger, FILENUM filenum, BRT t, BRTNODE node, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk) {
2008-01-22 16:27:54 +00:00
BRTNODE B;
int r;
assert(node->height==0);
assert(t->h->nodesize>=node->nodesize); /* otherwise we might be in trouble because the nodesize shrank. */
toku_create_new_brtnode(t, &B, 0, logger);
//printf("leaf_split %lld - %lld %lld\n", node->thisnodename, A->thisnodename, B->thisnodename);
//printf("%s:%d A PMA= %p\n", __FILE__, __LINE__, A->u.l.buffer);
//printf("%s:%d B PMA= %p\n", __FILE__, __LINE__, A->u.l.buffer);
assert(B->nodesize>0);
assert(node->nodesize>0);
//printf("%s:%d A is at %lld\n", __FILE__, __LINE__, A->thisnodename);
//printf("%s:%d B is at %lld nodesize=%d\n", __FILE__, __LINE__, B->thisnodename, B->nodesize);
assert(node->height>0 || node->u.l.buffer!=0);
toku_verify_all_in_mempool(node);
u_int32_t n_leafentries = toku_omt_size(node->u.l.buffer);
u_int32_t break_at = 0;
unsigned int seqinsert = node->u.l.seqinsert;
node->u.l.seqinsert = 0;
if (seqinsert >= n_leafentries/2) {
u_int32_t node_size = toku_serialize_brtnode_size(node);
break_at = n_leafentries - 1;
OMTVALUE v;
while (1) {
r = toku_omt_fetch(node->u.l.buffer, break_at, &v, NULL);
assert(r == 0);
LEAFENTRY le = v;
node_size -= OMT_ITEM_OVERHEAD + leafentry_disksize(le);
if (node_size <= node->nodesize && (n_leafentries - break_at) >= 2)
break;
break_at -= 1;
}
u_int32_t i;
for (i=0; break_at < toku_omt_size(node->u.l.buffer); i++) {
// fetch the max from the node and delete it
if (i > 0) {
r = toku_omt_fetch(node->u.l.buffer, break_at, &v, NULL);
assert(r == 0);
}
LEAFENTRY oldle = v;
u_int32_t diff_fp = toku_le_crc(oldle);
u_int32_t diff_size = OMT_ITEM_OVERHEAD + leafentry_disksize(oldle);
r = toku_omt_delete_at(node->u.l.buffer, break_at);
assert(r == 0);
LEAFENTRY newle = toku_mempool_malloc(&B->u.l.buffer_mempool, leafentry_memsize(oldle), 1);
assert(newle!=0); // it's a fresh mpool, so this should always work.
memcpy(newle, oldle, leafentry_memsize(oldle));
toku_mempool_mfree(&node->u.l.buffer_mempool, oldle, leafentry_memsize(oldle));
node->local_fingerprint -= node->rand4fingerprint * diff_fp;
B ->local_fingerprint += B ->rand4fingerprint * diff_fp;
node->u.l.n_bytes_in_buffer -= diff_size;
B ->u.l.n_bytes_in_buffer += diff_size;
// insert into B
r = toku_omt_insert_at(B->u.l.buffer, newle, i);
assert(r == 0);
toku_verify_all_in_mempool(node);
toku_verify_all_in_mempool(B);
}
} else {
OMTVALUE *MALLOC_N(n_leafentries, leafentries);
assert(leafentries);
toku_omt_iterate(node->u.l.buffer, fill_buf, leafentries);
break_at = 0;
{
u_int32_t i;
u_int32_t sumlesizes=0;
for (i=0; i<n_leafentries; i++) sumlesizes += leafentry_disksize(leafentries[i]);
u_int32_t sumsofar=0;
for (i=0; i<n_leafentries; i++) {
assert(toku_mempool_inrange(&node->u.l.buffer_mempool, leafentries[i], leafentry_memsize(leafentries[i])));
sumsofar += leafentry_disksize(leafentries[i]);
if (sumsofar*2 >= sumlesizes) {
break_at = i;
break;
}
}
}
// Now we know where we are going to break it
OMT old_omt = node->u.l.buffer;
toku_omt_destroy(&B->u.l.buffer); // Destroy B's empty OMT, so I can rebuild it from an array
{
u_int32_t i;
u_int32_t diff_fp = 0;
u_int32_t diff_size = 0;
for (i=break_at; i<n_leafentries; i++) {
LEAFENTRY oldle = leafentries[i];
LEAFENTRY newle = toku_mempool_malloc(&B->u.l.buffer_mempool, leafentry_memsize(oldle), 1);
assert(newle!=0); // it's a fresh mpool, so this should always work.
diff_fp += toku_le_crc(oldle);
diff_size += OMT_ITEM_OVERHEAD + leafentry_disksize(oldle);
memcpy(newle, oldle, leafentry_memsize(oldle));
toku_mempool_mfree(&node->u.l.buffer_mempool, oldle, leafentry_memsize(oldle));
leafentries[i] = newle;
}
node->local_fingerprint -= node->rand4fingerprint * diff_fp;
B ->local_fingerprint += B ->rand4fingerprint * diff_fp;
node->u.l.n_bytes_in_buffer -= diff_size;
B ->u.l.n_bytes_in_buffer += diff_size;
}
if ((r = toku_omt_create_from_sorted_array(&B->u.l.buffer, leafentries+break_at, n_leafentries-break_at))) return r;
if ((r = toku_omt_create_from_sorted_array(&node->u.l.buffer, leafentries, break_at))) return r;
toku_free(leafentries);
toku_verify_all_in_mempool(node);
toku_verify_all_in_mempool(B);
toku_omt_destroy(&old_omt);
}
LSN lsn={0};
r = toku_log_leafsplit(logger, &lsn, 0, filenum, node->thisnodename, B->thisnodename, n_leafentries, break_at, node->nodesize, B->rand4fingerprint, (t->flags&TOKU_DB_DUPSORT)!=0);
if (logger) {
node->log_lsn = lsn;
B->log_lsn = lsn;
}
//toku_verify_gpma(node->u.l.buffer);
//toku_verify_gpma(B->u.l.buffer);
if (splitk) {
memset(splitk, 0, sizeof *splitk);
OMTVALUE lev;
r=toku_omt_fetch(node->u.l.buffer, toku_omt_size(node->u.l.buffer)-1, &lev, NULL);
assert(r==0); // that fetch should have worked.
LEAFENTRY le=lev;
if (node->flags&TOKU_DB_DUPSORT) {
splitk->size = le_any_keylen(le)+le_any_vallen(le);
splitk->data = kv_pair_malloc(le_any_key(le), le_any_keylen(le), le_any_val(le), le_any_vallen(le));
} else {
splitk->size = le_any_keylen(le);
splitk->data = kv_pair_malloc(le_any_key(le), le_any_keylen(le), 0, 0);
}
splitk->flags=0;
}
assert(r == 0);
assert(node->height>0 || node->u.l.buffer!=0);
/* Remove it from the cache table, and free its storage. */
//printf("%s:%d old pma = %p\n", __FILE__, __LINE__, node->u.l.buffer);
2008-01-22 16:27:54 +00:00
*nodea = node;
*nodeb = B;
assert(toku_serialize_brtnode_size(node) <= node->nodesize);
assert(toku_serialize_brtnode_size(B) <= B->nodesize);
return 0;
}
//#define MAX_PATHLEN_TO_ROOT 40
static int log_and_save_brtenq(TOKULOGGER logger, BRT t, BRTNODE node, int childnum, TXNID xid, int type, const char *key, int keylen, const char *data, int datalen, u_int32_t *fingerprint) {
BYTESTRING keybs = {.len=keylen, .data=(char*)key};
BYTESTRING databs = {.len=datalen, .data=(char*)data};
u_int32_t old_fingerprint = *fingerprint;
u_int32_t fdiff=node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xid, key, keylen, data, datalen);
u_int32_t new_fingerprint = old_fingerprint + fdiff;
//printf("%s:%d node=%lld fingerprint old=%08x new=%08x diff=%08x xid=%lld\n", __FILE__, __LINE__, node->thisnodename, old_fingerprint, new_fingerprint, fdiff, (long long)xid);
*fingerprint = new_fingerprint;
if (t->txn_that_created != xid) {
int r = toku_log_brtenq(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), node->thisnodename, childnum, xid, type, keybs, databs);
if (r!=0) return r;
}
return 0;
}
/* Side effect: sets splitk->data pointer to a malloc'd value */
static int brt_nonleaf_split (BRT t, BRTNODE node, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk, TOKULOGGER logger) {
int old_n_children = node->u.n.n_children;
int n_children_in_a = old_n_children/2;
int n_children_in_b = old_n_children-n_children_in_a;
BRTNODE B;
FILENUM fnum = toku_cachefile_filenum(t->cf);
assert(node->height>0);
assert(node->u.n.n_children>=2); // Otherwise, how do we split? We need at least two children to split. */
assert(t->h->nodesize>=node->nodesize); /* otherwise we might be in trouble because the nodesize shrank. */
toku_create_new_brtnode(t, &B, node->height, logger);
MALLOC_N(n_children_in_b+1, B->u.n.childinfos);
MALLOC_N(n_children_in_b, B->u.n.childkeys);
B->u.n.n_children =n_children_in_b;
//printf("%s:%d %p (%lld) becomes %p and %p\n", __FILE__, __LINE__, node, node->thisnodename, A, B);
//printf("%s:%d A is at %lld\n", __FILE__, __LINE__, A->thisnodename);
{
/* The first n_children_in_a go into node a.
* That means that the first n_children_in_a-1 keys go into node a.
* The splitter key is key number n_children_in_a */
int i;
for (i=0; i<n_children_in_b; i++) {
int r = toku_fifo_create(&BNC_BUFFER(B,i));
if (r!=0) return r;
BNC_NBYTESINBUF(B,i)=0;
BNC_SUBTREE_FINGERPRINT(B,i)=0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(B,i)=0;
}
for (i=n_children_in_a; i<old_n_children; i++) {
int targchild = i-n_children_in_a;
FIFO from_htab = BNC_BUFFER(node,i);
FIFO to_htab = BNC_BUFFER(B, targchild);
BLOCKNUM thischildblocknum = BNC_BLOCKNUM(node, i);
BNC_BLOCKNUM(B, targchild) = thischildblocknum;
BNC_HAVE_FULLHASH(B,targchild) = BNC_HAVE_FULLHASH(node,i);
BNC_FULLHASH(B,targchild) = BNC_FULLHASH(node, i);
int r = toku_log_addchild(logger, (LSN*)0, 0, fnum, B->thisnodename, targchild, thischildblocknum, BNC_SUBTREE_FINGERPRINT(node, i));
if (r!=0) return r;
while (1) {
bytevec key, data;
unsigned int keylen, datalen;
u_int32_t type;
TXNID xid;
int fr = toku_fifo_peek(from_htab, &key, &keylen, &data, &datalen, &type, &xid);
if (fr!=0) break;
int n_bytes_moved = keylen+datalen + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD;
u_int32_t old_from_fingerprint = node->local_fingerprint;
u_int32_t delta = toku_calc_fingerprint_cmd(type, xid, key, keylen, data, datalen);
u_int32_t new_from_fingerprint = old_from_fingerprint - node->rand4fingerprint*delta;
if (r!=0) return r;
if (t->txn_that_created != xid) {
r = toku_log_brtdeq(logger, &node->log_lsn, 0, fnum, node->thisnodename, n_children_in_a);
if (r!=0) return r;
}
r = log_and_save_brtenq(logger, t, B, targchild, xid, type, key, keylen, data, datalen, &B->local_fingerprint);
r = toku_fifo_enq(to_htab, key, keylen, data, datalen, type, xid);
if (r!=0) return r;
toku_fifo_deq(from_htab);
// key and data will no longer be valid
node->local_fingerprint = new_from_fingerprint;
B->u.n.n_bytes_in_buffers += n_bytes_moved;
BNC_NBYTESINBUF(B, targchild) += n_bytes_moved;
node->u.n.n_bytes_in_buffers -= n_bytes_moved;
BNC_NBYTESINBUF(node, i) -= n_bytes_moved;
// verify_local_fingerprint_nonleaf(B);
// verify_local_fingerprint_nonleaf(node);
}
// Delete a child, removing it's fingerprint, and also the preceeding pivot key. The child number must be > 0
{
BYTESTRING bs = { .len = kv_pair_keylen(node->u.n.childkeys[i-1]),
.data = kv_pair_key(node->u.n.childkeys[i-1]) };
assert(i>0);
r = toku_log_delchild(logger, (LSN*)0, 0, fnum, node->thisnodename, n_children_in_a, thischildblocknum, BNC_SUBTREE_FINGERPRINT(node, i), bs);
if (r!=0) return r;
if (i>n_children_in_a) {
r = toku_log_setpivot(logger, (LSN*)0, 0, fnum, B->thisnodename, targchild-1, bs);
if (r!=0) return r;
B->u.n.childkeys[targchild-1] = node->u.n.childkeys[i-1];
B->u.n.totalchildkeylens += toku_brt_pivot_key_len(t, node->u.n.childkeys[i-1]);
node->u.n.totalchildkeylens -= toku_brt_pivot_key_len(t, node->u.n.childkeys[i-1]);
node->u.n.childkeys[i-1] = 0;
}
}
BNC_BLOCKNUM(node, i) = make_blocknum(0);
BNC_HAVE_FULLHASH(node, i) = FALSE;
BNC_SUBTREE_FINGERPRINT(B, targchild) = BNC_SUBTREE_FINGERPRINT(node, i);
BNC_SUBTREE_FINGERPRINT(node, i) = 0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(B, targchild) = BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, i);
BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, i) = 0;
assert(BNC_NBYTESINBUF(node, i) == 0);
}
// Drop the n_children now (not earlier) so that we can do the fingerprint verification at any time.
node->u.n.n_children=n_children_in_a;
for (i=n_children_in_a; i<old_n_children; i++) {
toku_fifo_free(&BNC_BUFFER(node,i));
}
splitk->data = (void*)(node->u.n.childkeys[n_children_in_a-1]);
splitk->size = toku_brt_pivot_key_len(t, node->u.n.childkeys[n_children_in_a-1]);
node->u.n.totalchildkeylens -= toku_brt_pivot_key_len(t, node->u.n.childkeys[n_children_in_a-1]);
REALLOC_N(n_children_in_a+1, node->u.n.childinfos);
REALLOC_N(n_children_in_a, node->u.n.childkeys);
verify_local_fingerprint_nonleaf(node);
verify_local_fingerprint_nonleaf(B);
}
*nodea = node;
*nodeb = B;
assert(toku_serialize_brtnode_size(node) <= node->nodesize);
assert(toku_serialize_brtnode_size(B) <= B->nodesize);
return 0;
}
static void find_heaviest_child (BRTNODE node, int *childnum) {
int max_child = 0;
int max_weight = BNC_NBYTESINBUF(node, 0);
int i;
if (0) printf("%s:%d weights: %d", __FILE__, __LINE__, max_weight);
assert(node->u.n.n_children>0);
for (i=1; i<node->u.n.n_children; i++) {
int this_weight = BNC_NBYTESINBUF(node,i);
if (0) printf(" %d", this_weight);
if (max_weight < this_weight) {
max_child = i;
max_weight = this_weight;
}
}
*childnum = max_child;
if (0) printf("\n");
}
static const char *unparse_cmd_type (enum brt_cmd_type typ) __attribute__((__unused__));
static const char *unparse_cmd_type (enum brt_cmd_type typ) {
switch (typ) {
case BRT_NONE: return "NONE";
case BRT_INSERT: return "INSERT";
case BRT_DELETE_ANY: return "DELETE_ANY";
case BRT_DELETE_BOTH: return "DELETE_BOTH";
case BRT_ABORT_ANY: return "ABORT_ANY";
case BRT_ABORT_BOTH: return "ABORT_BOTH";
case BRT_COMMIT_ANY: return "COMMIT_ANY";
case BRT_COMMIT_BOTH: return "COMMIT_BOTH";
}
return "?";
}
static int brtnode_put_cmd (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb,
DBT *split,
TOKULOGGER);
// The maximum row size is 16KB according to the PRD. That means the max pivot key size is 16KB.
#define MAX_PIVOT_KEY_SIZE (1<<14)
/* key is not in the buffer. Either put the key-value pair in the child, or put it in the node. */
static int push_brt_cmd_down_only_if_it_wont_push_more_else_put_here (BRT t, BRTNODE node, BRTNODE child,
BRT_CMD cmd,
int childnum_of_node,
TOKULOGGER logger) {
assert(node->height>0); /* Not a leaf. */
DBT *k = cmd->u.id.key;
DBT *v = cmd->u.id.val;
unsigned int oldsize = toku_serialize_brtnode_size(child);
unsigned int newsize_bounded = oldsize + k->size + v->size + KEY_VALUE_OVERHEAD + LE_OVERHEAD_BOUND + MAX_PIVOT_KEY_SIZE;
newsize_bounded += (child->height > 0) ? BRT_CMD_OVERHEAD : OMT_ITEM_OVERHEAD;
int to_child = newsize_bounded <= child->nodesize;
if (0) {
printf("%s:%d pushing %s to %s %d", __FILE__, __LINE__, (char*)k->data, to_child? "child" : "hash", childnum_of_node);
if (childnum_of_node+1<node->u.n.n_children) {
DBT k2;
printf(" nextsplitkey=%s\n", (char*)node->u.n.childkeys[childnum_of_node]);
assert(t->compare_fun(t->db, k, toku_fill_dbt(&k2, node->u.n.childkeys[childnum_of_node], toku_brt_pivot_key_len(t, node->u.n.childkeys[childnum_of_node])))<=0);
} else {
printf("\n");
}
}
int r;
if (to_child) {
int again_split=-1; BRTNODE againa,againb;
DBT againk;
toku_init_dbt(&againk);
//printf("%s:%d hello!\n", __FILE__, __LINE__);
r = brtnode_put_cmd(t, child, cmd,
&again_split, &againa, &againb, &againk,
logger);
if (r!=0) return r;
assert(again_split==0); /* I only did the insert if I knew it wouldn't push down, and hence wouldn't split. */
} else {
r=insert_to_buffer_in_nonleaf(node, childnum_of_node, k, v, cmd->type, cmd->xid);
}
if (newsize_bounded < toku_serialize_brtnode_size(child)) {
fprintf(stderr, "%s:%d size estimate is messed up. newsize_bounded=%d actual_size=%d child_height=%d to_child=%d\n",
__FILE__, __LINE__, newsize_bounded, toku_serialize_brtnode_size(child), child->height, to_child);
fprintf(stderr, " cmd->type=%s cmd->xid=%lld\n", unparse_cmd_type(cmd->type), (unsigned long long)cmd->xid);
fprintf(stderr, " oldsize=%d k->size=%d v->size=%d\n", oldsize, k->size, v->size);
assert(toku_serialize_brtnode_size(child)<=child->nodesize);
//assert(newsize_bounded >= toku_serialize_brtnode_size(child)); // Don't abort on this
}
fixup_child_fingerprint(node, childnum_of_node, child, t, logger);
return r;
}
static int push_a_brt_cmd_down (BRT t, BRTNODE node, BRTNODE child, int childnum,
BRT_CMD cmd,
int *child_did_split, BRTNODE *childa, BRTNODE *childb,
DBT *childsplitk,
TOKULOGGER logger) {
//if (debug) printf("%s:%d %*sinserting down\n", __FILE__, __LINE__, debug, "");
//printf("%s:%d hello!\n", __FILE__, __LINE__);
assert(node->height>0);
{
int r = brtnode_put_cmd(t, child, cmd,
child_did_split, childa, childb, childsplitk,
logger);
if (r!=0) return r;
}
DBT *k = cmd->u.id.key;
DBT *v = cmd->u.id.val;
//if (debug) printf("%s:%d %*sinserted down child_did_split=%d\n", __FILE__, __LINE__, debug, "", child_did_split);
u_int32_t old_fingerprint = node->local_fingerprint;
u_int32_t new_fingerprint = old_fingerprint - node->rand4fingerprint*toku_calc_fingerprint_cmdstruct(cmd);
node->local_fingerprint = new_fingerprint;
if (t->txn_that_created != cmd->xid) {
int r = toku_log_brtdeq(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), node->thisnodename, childnum);
assert(r==0);
}
{
int r = toku_fifo_deq(BNC_BUFFER(node,childnum));
//printf("%s:%d deleted status=%d\n", __FILE__, __LINE__, r);
if (r!=0) return r;
}
{
int n_bytes_removed = (k->size + v->size + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD);
node->u.n.n_bytes_in_buffers -= n_bytes_removed;
BNC_NBYTESINBUF(node, childnum) -= n_bytes_removed;
node->dirty = 1;
}
if (*child_did_split) {
// Don't try to fix these up.
//fixup_child_fingerprint(node, childnum, *childa, t, logger);
//fixup_child_fingerprint(node, childnum+1, *childb, t, logger);
} else {
fixup_child_fingerprint(node, childnum, child, t, logger);
}
return 0;
}
static int brtnode_maybe_push_down(BRT t, BRTNODE node, int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk, TOKULOGGER logger);
static int split_count=0;
/* NODE is a node with a child.
* childnum was split into two nodes childa, and childb. childa is the same as the original child. childb is a new child.
* We must slide things around, & move things from the old table to the new tables.
* We also move things to the new children as much as we can without doing any pushdowns or splitting of the child.
* We must delete the old buffer (but the old child is already deleted.)
* We also unpin the new children.
*/
static int handle_split_of_child (BRT t, BRTNODE node, int childnum,
BRTNODE childa, BRTNODE childb,
DBT *childsplitk, /* the data in the childsplitk is alloc'd and is consumed by this call. */
int *did_split, BRTNODE *nodea, BRTNODE *nodeb,
DBT *splitk,
TOKULOGGER logger) {
assert(node->height>0);
assert(0 <= childnum && childnum < node->u.n.n_children);
FIFO old_h = BNC_BUFFER(node,childnum);
int old_count = BNC_NBYTESINBUF(node, childnum);
int cnum;
int r;
assert(node->u.n.n_children<=TREE_FANOUT);
if (toku_brt_debug_mode) {
int i;
printf("%s:%d Child %d did split on %s\n", __FILE__, __LINE__, childnum, (char*)childsplitk->data);
printf("%s:%d oldsplitkeys:", __FILE__, __LINE__);
for(i=0; i<node->u.n.n_children-1; i++) printf(" %s", (char*)node->u.n.childkeys[i]);
printf("\n");
}
node->dirty = 1;
//verify_local_fingerprint_nonleaf(node);
REALLOC_N(node->u.n.n_children+2, node->u.n.childinfos);
REALLOC_N(node->u.n.n_children+1, node->u.n.childkeys);
// Slide the children over.
BNC_SUBTREE_FINGERPRINT (node, node->u.n.n_children+1)=0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, node->u.n.n_children+1)=0;
for (cnum=node->u.n.n_children; cnum>childnum+1; cnum--) {
node->u.n.childinfos[cnum] = node->u.n.childinfos[cnum-1];
}
r = toku_log_addchild(logger, (LSN*)0, 0, toku_cachefile_filenum(t->cf), node->thisnodename, childnum+1, childb->thisnodename, 0);
node->u.n.n_children++;
assert(BNC_BLOCKNUM(node, childnum).b==childa->thisnodename.b); // use the same child
BNC_BLOCKNUM(node, childnum+1) = childb->thisnodename;
BNC_HAVE_FULLHASH(node, childnum+1) = TRUE;
BNC_FULLHASH(node, childnum+1) = childb->fullhash;
// BNC_SUBTREE_FINGERPRINT(node, childnum)=0; // leave the subtreefingerprint alone for the child, so we can log the change
BNC_SUBTREE_FINGERPRINT (node, childnum+1)=0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, childnum+1)=0;
fixup_child_fingerprint(node, childnum, childa, t, logger);
fixup_child_fingerprint(node, childnum+1, childb, t, logger);
r=toku_fifo_create(&BNC_BUFFER(node,childnum+1)); assert(r==0);
//verify_local_fingerprint_nonleaf(node); // The fingerprint hasn't changed and everhything is still there.
r=toku_fifo_create(&BNC_BUFFER(node,childnum)); assert(r==0); // ??? SHould handle this error case
BNC_NBYTESINBUF(node, childnum) = 0;
BNC_NBYTESINBUF(node, childnum+1) = 0;
// Remove all the cmds from the local fingerprint. Some may get added in again when we try to push to the child.
FIFO_ITERATE(old_h, skey, skeylen, sval, svallen, type, xid,
({
u_int32_t old_fingerprint = node->local_fingerprint;
u_int32_t new_fingerprint = old_fingerprint - node->rand4fingerprint*toku_calc_fingerprint_cmd(type, xid, skey, skeylen, sval, svallen);
if (t->txn_that_created != xid) {
r = toku_log_brtdeq(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), node->thisnodename, childnum);
assert(r==0);
}
node->local_fingerprint = new_fingerprint;
}));
//verify_local_fingerprint_nonleaf(node);
// Slide the keys over
{
struct kv_pair *pivot = childsplitk->data;
BYTESTRING bs = { .len = childsplitk->size,
.data = kv_pair_key(pivot) };
r = toku_log_setpivot(logger, (LSN*)0, 0, toku_cachefile_filenum(t->cf), node->thisnodename, childnum, bs);
if (r!=0) return r;
for (cnum=node->u.n.n_children-2; cnum>childnum; cnum--) {
node->u.n.childkeys[cnum] = node->u.n.childkeys[cnum-1];
}
//if (logger) assert((t->flags&TOKU_DB_DUPSORT)==0); // the setpivot is wrong for TOKU_DB_DUPSORT, so recovery will be broken.
node->u.n.childkeys[childnum]= pivot;
node->u.n.totalchildkeylens += toku_brt_pivot_key_len(t, pivot);
}
if (toku_brt_debug_mode) {
int i;
printf("%s:%d splitkeys:", __FILE__, __LINE__);
for(i=0; i<node->u.n.n_children-2; i++) printf(" %s", (char*)node->u.n.childkeys[i]);
printf("\n");
}
//verify_local_fingerprint_nonleaf(node);
node->u.n.n_bytes_in_buffers -= old_count; /* By default, they are all removed. We might add them back in. */
/* Keep pushing to the children, but not if the children would require a pushdown */
FIFO_ITERATE(old_h, skey, skeylen, sval, svallen, type, xid, ({
DBT skd, svd;
BRT_CMD_S brtcmd = { type, xid, .u.id= {toku_fill_dbt(&skd, skey, skeylen),
toku_fill_dbt(&svd, sval, svallen)} };
//verify_local_fingerprint_nonleaf(childa); verify_local_fingerprint_nonleaf(childb);
int pusha = 0, pushb = 0;
switch (type) {
case BRT_INSERT:
case BRT_DELETE_BOTH:
case BRT_DELETE_ANY:
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
case BRT_COMMIT_BOTH:
case BRT_COMMIT_ANY:
if ((type!=BRT_DELETE_ANY && type!=BRT_ABORT_ANY && type!=BRT_COMMIT_ANY) || 0==(t->flags&TOKU_DB_DUPSORT)) {
// If it's an INSERT or DELETE_BOTH or there are no duplicates then we just put the command into one subtree
int cmp = brt_compare_pivot(t, &skd, &svd, childsplitk->data);
if (cmp <= 0) pusha = 1;
else pushb = 1;
} else {
assert((type==BRT_DELETE_ANY || type==BRT_ABORT_ANY || type==BRT_COMMIT_ANY) && t->flags&TOKU_DB_DUPSORT);
// It is a DELETE or ABORT_ANY and it's a DUPSORT database,
// in which case if the comparison function comes up 0 we must write the command to both children. (See #201)
int cmp = brt_compare_pivot(t, &skd, 0, childsplitk->data);
if (cmp<=0) pusha=1;
if (cmp>=0) pushb=1; // Could be that both pusha and pushb are set
}
if (pusha) {
// If we already have something in the buffer, we must add the new command to the buffer so that commands don't get out of order.
if (toku_fifo_n_entries(BNC_BUFFER(node,childnum))==0) {
r=push_brt_cmd_down_only_if_it_wont_push_more_else_put_here(t, node, childa, &brtcmd, childnum, logger);
} else {
r=insert_to_buffer_in_nonleaf(node, childnum, &skd, &svd, type, xid);
}
}
if (pushb) {
// If we already have something in the buffer, we must add the new command to the buffer so that commands don't get out of order.
if (toku_fifo_n_entries(BNC_BUFFER(node,childnum+1))==0) {
r=push_brt_cmd_down_only_if_it_wont_push_more_else_put_here(t, node, childb, &brtcmd, childnum+1, logger);
} else {
r=insert_to_buffer_in_nonleaf(node, childnum+1, &skd, &svd, type, xid);
}
}
//verify_local_fingerprint_nonleaf(childa); verify_local_fingerprint_nonleaf(childb);
if (r!=0) printf("r=%d\n", r);
assert(r==0);
goto ok;
case BRT_NONE:
// Don't have to do anything in this case, can just drop the command
goto ok;
}
printf("Bad type %d\n", type); // Don't use default: because I want a compiler warning if I forget a enum case, and I want a runtime error if the type isn't one of the expected ones.
assert(0);
ok: /*nothing*/;
}));
toku_fifo_free(&old_h);
//verify_local_fingerprint_nonleaf(childa);
//verify_local_fingerprint_nonleaf(childb);
//verify_local_fingerprint_nonleaf(node);
VERIFY_NODE(node);
VERIFY_NODE(childa);
VERIFY_NODE(childb);
r=toku_unpin_brtnode(t, childa);
assert(r==0);
r=toku_unpin_brtnode(t, childb);
assert(r==0);
if (node->u.n.n_children>TREE_FANOUT) {
//printf("%s:%d about to split having pushed %d out of %d keys\n", __FILE__, __LINE__, i, n_pairs);
r=brt_nonleaf_split(t, node, nodea, nodeb, splitk, logger);
if (r!=0) return r;
//printf("%s:%d did split\n", __FILE__, __LINE__);
split_count++;
*did_split=1;
assert((*nodea)->height>0);
assert((*nodeb)->height>0);
assert((*nodea)->u.n.n_children>0);
assert((*nodeb)->u.n.n_children>0);
assert(BNC_BLOCKNUM(*nodea, (*nodea)->u.n.n_children-1).b!=0);
assert(BNC_BLOCKNUM(*nodeb, (*nodeb)->u.n.n_children-1).b!=0);
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
//verify_local_fingerprint_nonleaf(*nodea);
//verify_local_fingerprint_nonleaf(*nodeb);
} else {
*did_split=0;
if (toku_serialize_brtnode_size(node) > node->nodesize) {
/* lighten the node by pushing down its buffers. this may cause
the current node to split and go away */
r = brtnode_maybe_push_down(t, node, did_split, nodea, nodeb, splitk, logger);
assert(r == 0);
}
if (*did_split == 0) assert(toku_serialize_brtnode_size(node)<=node->nodesize);
}
return 0;
}
static u_int32_t compute_child_fullhash (CACHEFILE cf, BRTNODE node, int childnum) {
switch (BNC_HAVE_FULLHASH(node, childnum)) {
case TRUE:
{
assert(BNC_FULLHASH(node, childnum)==toku_cachetable_hash(cf, BNC_BLOCKNUM(node, childnum)));
return BNC_FULLHASH(node, childnum);
}
case FALSE:
{
u_int32_t child_fullhash = toku_cachetable_hash(cf, BNC_BLOCKNUM(node, childnum));
BNC_HAVE_FULLHASH(node, childnum) = TRUE;
BNC_FULLHASH(node, childnum) = child_fullhash;
return child_fullhash;
}
}
assert(0);
return 0;
}
static int push_some_brt_cmds_down (BRT t, BRTNODE node, int childnum,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb,
DBT *splitk,
TOKULOGGER logger) {
void *childnode_v;
BRTNODE child;
int r;
assert(node->height>0);
BLOCKNUM targetchild = BNC_BLOCKNUM(node, childnum);
assert(targetchild.b>=0 && targetchild.b<t->h->unused_blocks.b); // This assertion could fail in a concurrent setting since another process might have bumped unused memory.
u_int32_t childfullhash = compute_child_fullhash(t->cf, node, childnum);
r = toku_cachetable_get_and_pin(t->cf, targetchild, childfullhash, &childnode_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, t->h);
if (r!=0) return r;
//printf("%s:%d pin %p\n", __FILE__, __LINE__, childnode_v);
child=childnode_v;
assert(child->thisnodename.b!=0);
//verify_local_fingerprint_nonleaf(child);
VERIFY_NODE(child);
//printf("%s:%d height=%d n_bytes_in_buffer = {%d, %d, %d, ...}\n", __FILE__, __LINE__, child->height, child->n_bytes_in_buffer[0], child->n_bytes_in_buffer[1], child->n_bytes_in_buffer[2]);
if (child->height>0 && child->u.n.n_children>0) assert(BNC_BLOCKNUM(child, child->u.n.n_children-1).b!=0);
if (0) {
static int count=0;
count++;
printf("%s:%d pushing %d count=%d\n", __FILE__, __LINE__, childnum, count);
}
{
bytevec key,val;
ITEMLEN keylen, vallen;
//printf("%s:%d Try random_pick, weight=%d \n", __FILE__, __LINE__, BNC_NBYTESINBUF(node, childnum));
assert(toku_fifo_n_entries(BNC_BUFFER(node,childnum))>0);
u_int32_t type;
TXNID xid;
while(0==toku_fifo_peek(BNC_BUFFER(node,childnum), &key, &keylen, &val, &vallen, &type, &xid)) {
int child_did_split=0; BRTNODE childa, childb;
DBT hk,hv;
DBT childsplitk;
BRT_CMD_S brtcmd = { type, xid, .u.id= {toku_fill_dbt(&hk, key, keylen),
toku_fill_dbt(&hv, val, vallen)} };
//printf("%s:%d random_picked\n", __FILE__, __LINE__);
toku_init_dbt(&childsplitk);
r = push_a_brt_cmd_down (t, node, child, childnum,
&brtcmd,
&child_did_split, &childa, &childb,
&childsplitk,
logger);
if (0){
unsigned int sum=0;
FIFO_ITERATE(BNC_BUFFER(node,childnum), subhk __attribute__((__unused__)), hkl, hd __attribute__((__unused__)), hdl, subtype __attribute__((__unused__)), subxid __attribute__((__unused__)),
sum+=hkl+hdl+KEY_VALUE_OVERHEAD+BRT_CMD_OVERHEAD);
printf("%s:%d sum=%d\n", __FILE__, __LINE__, sum);
assert(sum==BNC_NBYTESINBUF(node, childnum));
}
if (BNC_NBYTESINBUF(node, childnum)>0) assert(toku_fifo_n_entries(BNC_BUFFER(node,childnum))>0);
//printf("%s:%d %d=push_a_brt_cmd_down=(); child_did_split=%d (weight=%d)\n", __FILE__, __LINE__, r, child_did_split, BNC_NBYTESINBUF(node, childnum));
if (r!=0) return r;
if (child_did_split) {
// If the child splits, we don't push down any further.
r=handle_split_of_child (t, node, childnum,
childa, childb, &childsplitk,
did_split, nodea, nodeb, splitk,
logger);
//if (*did_split) {
// verify_local_fingerprint_nonleaf(*nodea);
// verify_local_fingerprint_nonleaf(*nodeb);
//}
return r; /* Don't do any more pushing if the child splits. */
}
}
if (0) printf("%s:%d done random picking\n", __FILE__, __LINE__);
}
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
//verify_local_fingerprint_nonleaf(node);
r=toku_unpin_brtnode(t, child);
if (r!=0) return r;
*did_split=0;
return 0;
}
static int brtnode_maybe_push_down(BRT t, BRTNODE node, int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk, TOKULOGGER logger)
/* If the buffer is too full, then push down. Possibly the child will split. That may make us split. */
{
assert(node->height>0);
if (toku_serialize_brtnode_size(node) > node->nodesize ) {
{
/* Push to a child. */
/* Find the heaviest child, and push stuff to it. Keep pushing to the child until we run out.
* But if the child pushes something to its child and our buffer has gotten small enough, then we stop pushing. */
int childnum;
find_heaviest_child(node, &childnum);
assert(BNC_BLOCKNUM(node, childnum).b!=0);
int r = push_some_brt_cmds_down(t, node, childnum, did_split, nodea, nodeb, splitk, logger);
if (r!=0) return r;
assert(*did_split==0 || *did_split==1);
if (*did_split) {
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
assert((*nodea)->u.n.n_children>0);
assert((*nodeb)->u.n.n_children>0);
assert(BNC_BLOCKNUM(*nodea, (*nodea)->u.n.n_children-1).b!=0);
assert(BNC_BLOCKNUM(*nodeb, (*nodeb)->u.n.n_children-1).b!=0);
//verify_local_fingerprint_nonleaf(*nodea);
//verify_local_fingerprint_nonleaf(*nodeb);
} else {
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
}
}
} else {
*did_split=0;
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
}
//if (*did_split) {
// verify_local_fingerprint_nonleaf(*nodea);
// verify_local_fingerprint_nonleaf(*nodeb);
//} else {
// verify_local_fingerprint_nonleaf(node);
//}
return 0;
}
int leafval_bessel_le_committed (u_int32_t klen, void *kval,
u_int32_t dlen, void *dval,
struct cmd_leafval_bessel_extra *be) {
BRT t = be->t;
DBT dbt;
int cmp = t->compare_fun(t->db,
toku_fill_dbt(&dbt, kval, klen),
be->cmd->u.id.key);
if (cmp == 0 && be->compare_both_keys && be->cmd->u.id.val->data) {
return t->dup_compare(t->db,
toku_fill_dbt(&dbt, dval, dlen),
be->cmd->u.id.val);
} else {
return cmp;
}
}
int leafval_bessel_le_both (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t clen __attribute__((__unused__)), void *cval __attribute__((__unused__)),
u_int32_t plen, void *pval,
struct cmd_leafval_bessel_extra *be) {
return leafval_bessel_le_committed(klen, kval, plen, pval, be);
}
int leafval_bessel_le_provdel (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t clen, void *cval,
struct cmd_leafval_bessel_extra *be) {
return leafval_bessel_le_committed(klen, kval, clen, cval, be);
}
int leafval_bessel_le_provpair (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t plen, void *pval,
struct cmd_leafval_bessel_extra *be) {
return leafval_bessel_le_committed(klen, kval, plen, pval, be);
}
int toku_cmd_leafval_bessel (OMTVALUE lev, void *extra) {
LEAFENTRY le=lev;
struct cmd_leafval_bessel_extra *be = extra;
LESWITCHCALL(le, leafval_bessel, be);
}
// Whenever anything provisional is happening, it's XID must match the cmd's.
static int apply_cmd_to_le_committed (u_int32_t klen, void *kval,
u_int32_t dlen, void *dval,
BRT_CMD cmd,
u_int32_t *newlen, u_int32_t *disksize, LEAFENTRY *new_data) {
//assert(cmd->u.id.key->size == klen);
//assert(memcmp(cmd->u.id.key->data, kval, klen)==0);
switch (cmd->type) {
case BRT_INSERT:
return le_both(cmd->xid,
klen, kval,
dlen, dval,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
case BRT_DELETE_ANY:
case BRT_DELETE_BOTH:
return le_provdel(cmd->xid,
klen, kval,
dlen, dval,
newlen, disksize, new_data);
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
case BRT_COMMIT_BOTH:
case BRT_COMMIT_ANY:
// Just return the original committed record
return le_committed(klen, kval, dlen, dval,
newlen, disksize, new_data);
case BRT_NONE: break;
}
assert(0);
return 0;
}
static int apply_cmd_to_le_both (TXNID xid,
u_int32_t klen, void *kval,
u_int32_t clen, void *cval,
u_int32_t plen, void *pval,
BRT_CMD cmd,
u_int32_t *newlen, u_int32_t *disksize, LEAFENTRY *new_data) {
u_int32_t prev_len;
void *prev_val;
if (xid==cmd->xid) {
// The xids match, so throw away the provisional value.
prev_len = clen; prev_val = cval;
} else {
// If the xids don't match, then we are moving the provisional value to committed status.
prev_len = plen; prev_val = pval;
}
// keep the committed value for rollback.
//assert(cmd->u.id.key->size == klen);
//assert(memcmp(cmd->u.id.key->data, kval, klen)==0);
switch (cmd->type) {
case BRT_INSERT:
return le_both(cmd->xid,
klen, kval,
prev_len, prev_val,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
case BRT_DELETE_ANY:
case BRT_DELETE_BOTH:
return le_provdel(cmd->xid,
klen, kval,
prev_len, prev_val,
newlen, disksize, new_data);
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
// I don't see how you could have an abort where the xids don't match. But do it anyway.
return le_committed(klen, kval,
prev_len, prev_val,
newlen, disksize, new_data);
case BRT_COMMIT_BOTH:
case BRT_COMMIT_ANY:
// In the future we won't even have these commit messages.
return le_committed(klen, kval,
plen, pval,
newlen, disksize, new_data);
case BRT_NONE: break;
}
assert(0);
return 0;
}
static int apply_cmd_to_le_provdel (TXNID xid,
u_int32_t klen, void *kval,
u_int32_t clen, void *cval,
BRT_CMD cmd,
u_int32_t *newlen, u_int32_t *disksize, LEAFENTRY *new_data) {
// keep the committed value for rollback
//assert(cmd->u.id.key->size == klen);
//assert(memcmp(cmd->u.id.key->data, kval, klen)==0);
switch (cmd->type) {
case BRT_INSERT:
if (cmd->xid == xid) {
return le_both(cmd->xid,
klen, kval,
clen, cval,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
} else {
// It's an insert, but the committed value is deleted (since the xids don't match, we assume the delete took effect)
return le_provpair(cmd->xid,
klen, kval,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
}
case BRT_DELETE_ANY:
case BRT_DELETE_BOTH:
if (cmd->xid == xid) {
// A delete of a delete could conceivably return the identical value, saving a malloc and a free, but to simplify things we just reallocate it
// because othewise we have to notice not to free() the olditem.
return le_provdel(cmd->xid,
klen, kval,
clen, cval,
newlen, disksize, new_data);
} else {
// The commited value is deleted, and we are deleting, so treat as a delete.
*new_data = 0;
return 0;
}
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
// I don't see how the xids could not match...
return le_committed(klen, kval,
clen, cval,
newlen, disksize, new_data);
case BRT_COMMIT_BOTH:
case BRT_COMMIT_ANY:
*new_data = 0;
return 0;
case BRT_NONE: break;
}
assert(0);
return 0;
}
static int apply_cmd_to_le_provpair (TXNID xid,
u_int32_t klen, void *kval,
u_int32_t plen , void *pval,
BRT_CMD cmd,
u_int32_t *newlen, u_int32_t *disksize, LEAFENTRY *new_data) {
//assert(cmd->u.id.key->size == klen);
//assert(memcmp(cmd->u.id.key->data, kval, klen)==0);
switch (cmd->type) {
case BRT_INSERT:
if (cmd->xid == xid) {
// it's still a provpair (the old prov value is lost)
return le_provpair(cmd->xid,
klen, kval,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
} else {
// the old prov was actually committed.
return le_both(cmd->xid,
klen, kval,
plen, pval,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, new_data);
}
case BRT_DELETE_BOTH:
case BRT_DELETE_ANY:
if (cmd->xid == xid) {
// A delete of a provisional pair is nothign
*new_data = 0;
return 0;
} else {
// The prov pair is actually a committed value.
return le_provdel(cmd->xid,
klen, kval,
plen, pval,
newlen, disksize, new_data);
}
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
// An abort of a provisional pair is nothing.
*new_data = 0;
return 0;
case BRT_COMMIT_ANY:
case BRT_COMMIT_BOTH:
return le_committed(klen, kval,
plen, pval,
newlen, disksize, new_data);
case BRT_NONE: break;
}
assert(0);
return 0;
}
static int apply_cmd_to_leaf (BRT_CMD cmd,
void *stored_data, // NULL if there was no stored data.
u_int32_t *newlen, u_int32_t *disksize, LEAFENTRY *new_data) {
if (stored_data==0) {
switch (cmd->type) {
case BRT_INSERT:
{
LEAFENTRY le;
int r = le_provpair(cmd->xid,
cmd->u.id.key->size, cmd->u.id.key->data,
cmd->u.id.val->size, cmd->u.id.val->data,
newlen, disksize, &le);
if (r==0) *new_data=le;
return r;
}
case BRT_DELETE_BOTH:
case BRT_DELETE_ANY:
case BRT_ABORT_BOTH:
case BRT_ABORT_ANY:
case BRT_COMMIT_BOTH:
case BRT_COMMIT_ANY:
*new_data = 0;
return 0; // Don't have to insert anything.
case BRT_NONE:
break;
}
assert(0);
return 0;
} else {
LESWITCHCALL(stored_data, apply_cmd_to, cmd,
newlen, disksize, new_data);
}
}
int should_compare_both_keys (BRTNODE node, BRT_CMD cmd) {
switch (cmd->type) {
case BRT_INSERT:
return node->flags & TOKU_DB_DUPSORT;
case BRT_DELETE_BOTH:
case BRT_ABORT_BOTH:
case BRT_COMMIT_BOTH:
return 1;
case BRT_DELETE_ANY:
case BRT_ABORT_ANY:
case BRT_COMMIT_ANY:
return 0;
case BRT_NONE:
break;
}
assert(0);
return 0;
}
static int brt_leaf_apply_cmd_once (BRT t, BRTNODE node, BRT_CMD cmd, TOKULOGGER logger,
u_int32_t idx, LEAFENTRY le) {
FILENUM filenum = toku_cachefile_filenum(t->cf);
u_int32_t newlen=0, newdisksize=0;
LEAFENTRY newdata=0;
int r = apply_cmd_to_leaf(cmd, le, &newlen, &newdisksize, &newdata);
if (r!=0) return r;
if (newdata) assert(newdisksize == leafentry_disksize(newdata));
//printf("Applying command: %s xid=%lld ", unparse_cmd_type(cmd->type), (long long)cmd->xid);
//toku_print_BYTESTRING(stdout, cmd->u.id.key->size, cmd->u.id.key->data);
//printf(" ");
//toku_print_BYTESTRING(stdout, cmd->u.id.val->size, cmd->u.id.val->data);
//printf(" to \n");
//print_leafentry(stdout, le); printf("\n");
//printf(" got "); print_leafentry(stdout, newdata); printf("\n");
if (le && newdata) {
if (t->txn_that_created != cmd->xid) {
if ((r = toku_log_deleteleafentry(logger, &node->log_lsn, 0, filenum, node->thisnodename, idx))) return r;
if ((r = toku_log_insertleafentry(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), node->thisnodename, idx, newdata))) return r;
}
node->u.l.n_bytes_in_buffer -= OMT_ITEM_OVERHEAD + leafentry_disksize(le);
node->local_fingerprint -= node->rand4fingerprint * toku_le_crc(le);
u_int32_t size = leafentry_memsize(le);
LEAFENTRY new_le = mempool_malloc_from_omt(node->u.l.buffer, &node->u.l.buffer_mempool, newlen);
assert(new_le);
memcpy(new_le, newdata, newlen);
// This mfree must occur after the mempool_malloc so that when the mempool is compressed everything is accounted for.
// But we must compute the size before doing the mempool malloc because otherwise the le pointer is no good.
toku_mempool_mfree(&node->u.l.buffer_mempool, 0, size); // Must pass 0, since le may be no good any more.
node->u.l.n_bytes_in_buffer += OMT_ITEM_OVERHEAD + newdisksize;
node->local_fingerprint += node->rand4fingerprint*toku_le_crc(newdata);
toku_free(newdata);
if ((r = toku_omt_set_at(node->u.l.buffer, new_le, idx))) return r;
} else {
if (le) {
// It's there, note that it's gone and remove it from the mempool
if (t->txn_that_created != cmd->xid) {
if ((r = toku_log_deleteleafentry(logger, &node->log_lsn, 0, filenum, node->thisnodename, idx))) return r;
}
if ((r = toku_omt_delete_at(node->u.l.buffer, idx))) return r;
node->u.l.n_bytes_in_buffer -= OMT_ITEM_OVERHEAD + leafentry_disksize(le);
node->local_fingerprint -= node->rand4fingerprint * toku_le_crc(le);
toku_mempool_mfree(&node->u.l.buffer_mempool, 0, leafentry_memsize(le)); // Must pass 0, since le may be no good any more.
}
if (newdata) {
LEAFENTRY new_le = mempool_malloc_from_omt(node->u.l.buffer, &node->u.l.buffer_mempool, newlen);
assert(new_le);
memcpy(new_le, newdata, newlen);
if ((r = toku_omt_insert_at(node->u.l.buffer, new_le, idx))) return r;
if (t->txn_that_created != cmd->xid) {
if ((r = toku_log_insertleafentry(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), node->thisnodename, idx, newdata))) return r;
}
node->u.l.n_bytes_in_buffer += OMT_ITEM_OVERHEAD + newdisksize;
node->local_fingerprint += node->rand4fingerprint*toku_le_crc(newdata);
toku_free(newdata);
}
}
// printf("%s:%d rand4=%08x local_fingerprint=%08x this=%08x\n", __FILE__, __LINE__, node->rand4fingerprint, node->local_fingerprint, toku_calccrc32_kvpair_struct(kv));
return 0;
}
static int brt_leaf_put_cmd (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger) {
// toku_pma_verify_fingerprint(node->u.l.buffer, node->rand4fingerprint, node->subtree_fingerprint);
VERIFY_NODE(node);
assert(node->height==0);
FILENUM filenum = toku_cachefile_filenum(t->cf);
LEAFENTRY storeddata;
OMTVALUE storeddatav=NULL;
u_int32_t idx;
int r;
int compare_both = should_compare_both_keys(node, cmd);
struct cmd_leafval_bessel_extra be = {t, cmd, compare_both};
//static int counter=0;
//counter++;
//printf("counter=%d\n", counter);
switch (cmd->type) {
case BRT_INSERT:
if (node->u.l.seqinsert) {
idx = toku_omt_size(node->u.l.buffer);
r = toku_omt_fetch(node->u.l.buffer, idx-1, &storeddatav, NULL);
if (r != 0) goto fz;
storeddata = storeddatav;
int cmp = toku_cmd_leafval_bessel(storeddata, &be);
if (cmp >= 0) goto fz;
r = DB_NOTFOUND;
} else {
fz:
r = toku_omt_find_zero(node->u.l.buffer, toku_cmd_leafval_bessel, &be,
&storeddatav, &idx, NULL);
}
if (r==DB_NOTFOUND) {
storeddata = 0;
} else if (r!=0) {
return r;
} else {
storeddata=storeddatav;
}
r = brt_leaf_apply_cmd_once(t, node, cmd, logger, idx, storeddata);
if (r!=0) return r;
// if the insertion point is within a window of the right edge of
// the leaf then it is sequential
// window = min(32, number of leaf entries/16)
u_int32_t s = toku_omt_size(node->u.l.buffer);
u_int32_t w = s / 16;
if (w == 0) w = 1;
if (w > 32) w = 32;
// within the window?
if (s - idx <= w) {
node->u.l.seqinsert += 1;
} else {
node->u.l.seqinsert = 0;
}
break;
case BRT_DELETE_BOTH:
case BRT_ABORT_BOTH:
case BRT_COMMIT_BOTH:
// Delete the one item
r = toku_omt_find_zero(node->u.l.buffer, toku_cmd_leafval_bessel, &be,
&storeddatav, &idx, NULL);
if (r == DB_NOTFOUND) break;
if (r != 0) return r;
storeddata=storeddatav;
VERIFY_NODE(node);
static int count=0;
count++;
r = brt_leaf_apply_cmd_once(t, node, cmd, logger, idx, storeddata);
if (r!=0) return r;
VERIFY_NODE(node);
break;
case BRT_DELETE_ANY:
case BRT_ABORT_ANY:
case BRT_COMMIT_ANY:
// Delete all the matches
r = toku_omt_find_zero(node->u.l.buffer, toku_cmd_leafval_bessel, &be,
&storeddatav, &idx, NULL);
if (r == DB_NOTFOUND) break;
if (r != 0) return r;
storeddata=storeddatav;
while (1) {
int vallen = le_any_vallen(storeddata);
void *save_val = toku_memdup(le_any_val(storeddata), vallen);
r = brt_leaf_apply_cmd_once(t, node, cmd, logger, idx, storeddata);
if (r!=0) return r;
// Now we must find the next one.
DBT valdbt;
BRT_CMD_S ncmd = { cmd->type, cmd->xid, .u.id={cmd->u.id.key, toku_fill_dbt(&valdbt, save_val, vallen)}};
struct cmd_leafval_bessel_extra nbe = {t, &ncmd, 1};
r = toku_omt_find(node->u.l.buffer, toku_cmd_leafval_bessel, &nbe, +1,
&storeddatav, &idx, NULL);
toku_free(save_val);
if (r!=0) break;
storeddata=storeddatav;
{ // Continue only if the next record that we found has the same key.
DBT adbt;
if (t->compare_fun(t->db,
toku_fill_dbt(&adbt, le_any_key(storeddata), le_any_keylen(storeddata)),
cmd->u.id.key) != 0)
break;
}
}
break;
case BRT_NONE: return EINVAL;
}
/// All done doing the work
node->dirty = 1;
// toku_pma_verify_fingerprint(node->u.l.buffer, node->rand4fingerprint, node->subtree_fingerprint);
VERIFY_NODE(node);
// If it doesn't fit, then split the leaf.
if (toku_serialize_brtnode_size(node) > node->nodesize) {
r = brtleaf_split (logger, filenum, t, node, nodea, nodeb, splitk);
if (r!=0) return r;
//printf("%s:%d splitkey=%s\n", __FILE__, __LINE__, (char*)*splitkey);
split_count++;
*did_split = 1;
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
VERIFY_NODE(*nodea);
VERIFY_NODE(*nodeb);
} else {
*did_split = 0;
}
return 0;
}
/* find the leftmost child that may contain the key */
unsigned int toku_brtnode_which_child (BRTNODE node , DBT *k, DBT *d, BRT t) {
int i;
assert(node->height>0);
#define DO_PIVOT_SEARCH_LR 0
#if DO_PIVOT_SEARCH_LR
for (i=0; i<node->u.n.n_children-1; i++) {
int cmp = brt_compare_pivot(t, k, d, node->u.n.childkeys[i]);
if (cmp > 0) continue;
if (cmp < 0) return i;
return i;
}
return node->u.n.n_children-1;
#else
// give preference for appending to the dictionary. no change for
// random keys
for (i = node->u.n.n_children-2; i >= 0; i--) {
int cmp = brt_compare_pivot(t, k, d, node->u.n.childkeys[i]);
if (cmp > 0) return i+1;
}
return 0;
#endif
}
/* put a cmd into a nodes child */
static int brt_nonleaf_put_cmd_child_node (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger, int childnum, int maybe) {
int r;
void *child_v;
BRTNODE child;
int child_did_split;
BRTNODE childa, childb;
DBT childsplitk;
*did_split = 0;
BLOCKNUM childblocknum=BNC_BLOCKNUM(node, childnum);
u_int32_t fullhash = compute_child_fullhash(t->cf, node, childnum);
if (maybe)
r = toku_cachetable_maybe_get_and_pin(t->cf, childblocknum, fullhash, &child_v);
else
r = toku_cachetable_get_and_pin(t->cf, childblocknum, fullhash, &child_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, t->h);
if (r != 0)
return r;
child = child_v;
child_did_split = 0;
r = brtnode_put_cmd(t, child, cmd,
&child_did_split, &childa, &childb, &childsplitk, logger);
if (r != 0) {
/* putting to the child failed for some reason, so unpin the child and return the error code */
int rr = toku_unpin_brtnode(t, child);
assert(rr == 0);
return r;
}
if (child_did_split) {
if (0) printf("brt_nonleaf_insert child_split %p\n", child);
r = handle_split_of_child(t, node, childnum,
childa, childb, &childsplitk,
did_split, nodea, nodeb, splitk,
logger);
assert(r == 0);
} else {
//verify_local_fingerprint_nonleaf(child);
fixup_child_fingerprint(node, childnum, child, t, logger);
int rr = toku_unpin_brtnode(t, child);
assert(rr == 0);
}
return r;
}
int toku_brt_do_push_cmd = 1;
/* put a cmd into a node at childnum */
static int brt_nonleaf_put_cmd_child (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger, unsigned int childnum, int can_push, int *do_push_down) {
//verify_local_fingerprint_nonleaf(node);
/* try to push the cmd to the subtree if the buffer is empty and pushes are enabled */
if (BNC_NBYTESINBUF(node, childnum) == 0 && can_push && toku_brt_do_push_cmd) {
int r = brt_nonleaf_put_cmd_child_node(t, node, cmd, did_split, nodea, nodeb, splitk, logger, childnum, 1);
if (r == 0)
return r;
}
//verify_local_fingerprint_nonleaf(node);
/* append the cmd to the child buffer */
{
int type = cmd->type;
DBT *k = cmd->u.id.key;
DBT *v = cmd->u.id.val;
int r = log_and_save_brtenq(logger, t, node, childnum, cmd->xid, type, k->data, k->size, v->data, v->size, &node->local_fingerprint);
if (r!=0) return r;
int diff = k->size + v->size + KEY_VALUE_OVERHEAD + BRT_CMD_OVERHEAD;
r=toku_fifo_enq(BNC_BUFFER(node,childnum), k->data, k->size, v->data, v->size, type, cmd->xid);
assert(r==0);
node->u.n.n_bytes_in_buffers += diff;
BNC_NBYTESINBUF(node, childnum) += diff;
node->dirty = 1;
}
*do_push_down = 1;
return 0;
}
static int brt_nonleaf_cmd_once (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger) {
//verify_local_fingerprint_nonleaf(node);
unsigned int childnum;
int r;
/* find the right subtree */
childnum = toku_brtnode_which_child(node, cmd->u.id.key, cmd->u.id.val, t);
/* put the cmd in the subtree */
int do_push_down = 0;
r = brt_nonleaf_put_cmd_child(t, node, cmd, did_split, nodea, nodeb, splitk, logger, childnum, 1, &do_push_down);
if (r != 0) return r;
/* maybe push down */
if (do_push_down) {
//if (debug) printf("%s:%d %*sDoing maybe_push_down\n", __FILE__, __LINE__, debug, "");
//verify_local_fingerprint_nonleaf(node);
r = brtnode_maybe_push_down(t, node, did_split, nodea, nodeb, splitk, logger);
if (r!=0) return r;
//if (debug) printf("%s:%d %*sDid maybe_push_down\n", __FILE__, __LINE__, debug, "");
if (*did_split) {
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
assert((*nodea)->u.n.n_children>0);
assert((*nodeb)->u.n.n_children>0);
assert(BNC_BLOCKNUM(*nodea, (*nodea)->u.n.n_children-1).b!=0);
assert(BNC_BLOCKNUM(*nodeb, (*nodeb)->u.n.n_children-1).b!=0);
} else {
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
}
//if (*did_split) {
// verify_local_fingerprint_nonleaf(*nodea);
// verify_local_fingerprint_nonleaf(*nodeb);
//} else {
// verify_local_fingerprint_nonleaf(node);
//}
}
return 0;
}
/* delete in all subtrees starting from the left most one which contains the key */
static int brt_nonleaf_cmd_many (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger) {
int r;
/* find all children that need a copy of the command */
int sendchild[TREE_FANOUT], delidx = 0;
#define sendchild_append(i) \
if (delidx == 0 || sendchild[delidx-1] != i) sendchild[delidx++] = i;
int i;
for (i = 0; i < node->u.n.n_children-1; i++) {
int cmp = brt_compare_pivot(t, cmd->u.id.key, 0, node->u.n.childkeys[i]);
if (cmp > 0) {
continue;
} else if (cmp < 0) {
sendchild_append(i);
break;
} else if (t->flags & TOKU_DB_DUPSORT) {
sendchild_append(i);
sendchild_append(i+1);
} else {
sendchild_append(i);
break;
}
}
if (delidx == 0)
sendchild_append(node->u.n.n_children-1);
/* issue the to all of the children found previously */
int do_push_down = 0;
for (i=0; i<delidx; i++) {
r = brt_nonleaf_put_cmd_child(t, node, cmd, did_split, nodea, nodeb, splitk, logger, sendchild[i], delidx == 1, &do_push_down);
assert(r == 0);
}
if (do_push_down) {
/* maybe push down */
//verify_local_fingerprint_nonleaf(node);
r = brtnode_maybe_push_down(t, node, did_split, nodea, nodeb, splitk, logger);
if (r!=0) return r;
if (*did_split) {
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
assert((*nodea)->u.n.n_children>0);
assert((*nodeb)->u.n.n_children>0);
assert(BNC_BLOCKNUM(*nodea,(*nodea)->u.n.n_children-1).b!=0);
assert(BNC_BLOCKNUM(*nodeb,(*nodeb)->u.n.n_children-1).b!=0);
} else {
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
}
//if (*did_split) {
// verify_local_fingerprint_nonleaf(*nodea);
// verify_local_fingerprint_nonleaf(*nodeb);
//} else {
// verify_local_fingerprint_nonleaf(node);
//}
}
return 0;
}
static int brt_nonleaf_put_cmd (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb,
DBT *splitk,
TOKULOGGER logger) {
switch (cmd->type) {
case BRT_INSERT:
case BRT_DELETE_BOTH:
case BRT_ABORT_BOTH:
case BRT_COMMIT_BOTH:
do_once:
return brt_nonleaf_cmd_once(t, node, cmd, did_split, nodea, nodeb, splitk, logger);
case BRT_DELETE_ANY:
case BRT_ABORT_ANY:
case BRT_COMMIT_ANY:
if (0 == (node->flags & TOKU_DB_DUPSORT)) goto do_once; // nondupsort delete_any is just do once.
return brt_nonleaf_cmd_many(t, node, cmd, did_split, nodea, nodeb, splitk, logger);
case BRT_NONE:
break;
}
return EINVAL;
}
static void verify_local_fingerprint_nonleaf (BRTNODE node) {
u_int32_t fp=0;
int i;
if (node->height==0) return;
for (i=0; i<node->u.n.n_children; i++)
FIFO_ITERATE(BNC_BUFFER(node,i), key, keylen, data, datalen, type, xid,
({
fp += node->rand4fingerprint * toku_calc_fingerprint_cmd(type, xid, key, keylen, data, datalen);
}));
assert(fp==node->local_fingerprint);
}
static int brtnode_put_cmd (BRT t, BRTNODE node, BRT_CMD cmd,
int *did_split, BRTNODE *nodea, BRTNODE *nodeb, DBT *splitk,
TOKULOGGER logger) {
//static int counter=0; // FOO
//static int oldcounter=0;
//int tmpcounter;
//u_int32_t oldfingerprint=node->local_fingerprint;
int r;
//counter++; tmpcounter=counter;
if (node->height==0) {
// toku_pma_verify_fingerprint(node->u.l.buffer, node->rand4fingerprint, node->subtree_fingerprint);
r = brt_leaf_put_cmd(t, node, cmd,
did_split, nodea, nodeb, splitk,
logger);
} else {
r = brt_nonleaf_put_cmd(t, node, cmd,
did_split, nodea, nodeb, splitk,
logger);
}
//oldcounter=tmpcounter;
// Watch out. If did_split then the original node is no longer allocated.
if (*did_split) {
assert(toku_serialize_brtnode_size(*nodea)<=(*nodea)->nodesize);
assert(toku_serialize_brtnode_size(*nodeb)<=(*nodeb)->nodesize);
// if ((*nodea)->height==0) {
// toku_pma_verify_fingerprint((*nodea)->u.l.buffer, (*nodea)->rand4fingerprint, (*nodea)->subtree_fingerprint);
// toku_pma_verify_fingerprint((*nodeb)->u.l.buffer, (*nodeb)->rand4fingerprint, (*nodeb)->subtree_fingerprint);
// }
} else {
assert(toku_serialize_brtnode_size(node)<=node->nodesize);
// if (node->height==0) {
// toku_pma_verify_fingerprint(node->u.l.buffer, node->rand4fingerprint, node->local_fingerprint);
// } else {
// verify_local_fingerprint_nonleaf(node);
// }
}
//if (node->local_fingerprint==3522421844U) {
// if (*did_split) {
// verify_local_fingerprint_nonleaf(*nodea);
// verify_local_fingerprint_nonleaf(*nodeb);
// }
return r;
}
int toku_brt_create_cachetable(CACHETABLE *ct, long cachesize, LSN initial_lsn, TOKULOGGER logger) {
if (cachesize == 0)
cachesize = 128*1024*1024;
return toku_create_cachetable(ct, cachesize, initial_lsn, logger);
}
static int setup_initial_brt_root_node (BRT t, BLOCKNUM blocknum, TOKULOGGER logger) {
int r;
TAGMALLOC(BRTNODE, node);
assert(node);
node->ever_been_written = 0;
//printf("%s:%d\n", __FILE__, __LINE__);
initialize_brtnode(t, node, blocknum, 0);
// node->brt = t;
if (0) {
printf("%s:%d for tree %p node %p mdict_create--> %p\n", __FILE__, __LINE__, t, node, node->u.l.buffer);
printf("%s:%d put root at %" PRId64 "\n", __FILE__, __LINE__, blocknum.b);
}
//printf("%s:%d putting %p (%lld)\n", __FILE__, __LINE__, node, node->thisnodename);
u_int32_t fullhash = toku_cachetable_hash(t->cf, blocknum);
node->fullhash = fullhash;
r=toku_cachetable_put(t->cf, blocknum, fullhash,
node, brtnode_memory_size(node),
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, t->h);
if (r!=0) {
toku_free(node);
return r;
}
// verify_local_fingerprint_nonleaf(node);
toku_log_newbrtnode(logger, &node->log_lsn, 0, toku_cachefile_filenum(t->cf), blocknum, 0, t->h->nodesize, (t->flags&TOKU_DB_DUPSORT)!=0, node->rand4fingerprint);
r = toku_unpin_brtnode(t, node);
if (r!=0) {
toku_free(node);
return r;
}
return 0;
}
//#define BRT_TRACE
#ifdef BRT_TRACE
#define WHEN_BRTTRACE(x) x
#else
#define WHEN_BRTTRACE(x) ((void)0)
#endif
int toku_brt_create(BRT *brt_ptr) {
BRT brt = toku_malloc(sizeof *brt);
if (brt == 0)
return ENOMEM;
memset(brt, 0, sizeof *brt);
list_init(&brt->cursors);
brt->flags = 0;
brt->did_set_flags = 0;
brt->nodesize = BRT_DEFAULT_NODE_SIZE;
brt->compare_fun = toku_default_compare_fun;
brt->dup_compare = toku_default_compare_fun;
int r = toku_omt_create(&brt->txns);
if (r!=0) { toku_free(brt); return r; }
*brt_ptr = brt;
return 0;
}
int toku_brt_set_flags(BRT brt, unsigned int flags) {
brt->did_set_flags = 1;
brt->flags = flags;
return 0;
}
int toku_brt_get_flags(BRT brt, unsigned int *flags) {
*flags = brt->flags;
return 0;
}
int toku_brt_set_nodesize(BRT brt, unsigned int nodesize) {
brt->nodesize = nodesize;
return 0;
}
int toku_brt_get_nodesize(BRT brt, unsigned int *nodesize) {
*nodesize = brt->nodesize;
return 0;
}
int toku_brt_set_bt_compare(BRT brt, int (*bt_compare)(DB *, const DBT*, const DBT*)) {
brt->compare_fun = bt_compare;
return 0;
}
int toku_brt_set_dup_compare(BRT brt, int (*dup_compare)(DB *, const DBT*, const DBT*)) {
brt->dup_compare = dup_compare;
return 0;
}
int toku_brt_get_fd(BRT brt, int *fdp) {
*fdp = toku_cachefile_fd(brt->cf);
return 0;
}
static void compute_and_fill_remembered_hash (BRT brt, int rootnum) {
struct remembered_hash *rh = &brt->h->root_hashes[rootnum];
assert(brt->cf); // if cf is null, we'll be hosed.
rh->valid = TRUE;
rh->fnum=toku_cachefile_filenum(brt->cf);
rh->root=brt->h->roots[rootnum];
rh->fullhash = toku_cachetable_hash(brt->cf, rh->root);
}
static u_int32_t get_roothash (BRT brt, int rootnum) {
struct remembered_hash *rh = &brt->h->root_hashes[rootnum];
BLOCKNUM root = brt->h->roots[rootnum];
// compare cf first, since cf is NULL for invalid entries.
assert(rh);
//printf("v=%d\n", rh->valid);
if (rh->valid) {
//printf("f=%d\n", rh->fnum.fileid);
//printf("cf=%d\n", toku_cachefile_filenum(brt->cf).fileid);
if (rh->fnum.fileid == toku_cachefile_filenum(brt->cf).fileid)
if (rh->root.b == root.b)
return rh->fullhash;
}
compute_and_fill_remembered_hash(brt, rootnum);
return rh->fullhash;
}
// open a file for use by the brt. if the file does not exist, create it.
static int brt_open_file(BRT brt, const char *fname, const char *fname_in_env, int is_create, TOKUTXN txn, int *fdp) {
brt = brt;
mode_t mode = 0777;
int r;
int fd = open(fname, O_RDWR, mode);
if (fd==-1) {
r = errno;
if (errno == ENOENT) {
if (!is_create) {
return r;
}
fd = open(fname, O_RDWR | O_CREAT, mode);
if (fd == -1) {
r = errno; return r;
}
r = toku_logger_log_fcreate(txn, fname_in_env, mode);
if (r != 0) {
close(fd); return r;
}
} else
return r;
}
*fdp = fd;
return 0;
}
// allocate and initialize a brt header.
// t->cf is not set to anything.
static int brt_alloc_init_header(BRT t, const char *dbname, TOKUTXN txn) {
int r;
BLOCKNUM root = make_blocknum(1);
assert(t->h == 0);
if ((MALLOC(t->h))==0) {
assert(errno==ENOMEM);
r = ENOMEM;
if (0) { died2: toku_free(t->h); }
t->h=0;
return r;
}
t->h->dirty=1;
if ((MALLOC_N(1, t->h->flags_array))==0) { r = errno; if (0) { died3: toku_free(t->h->flags_array); } goto died2; }
t->h->flags_array[0] = t->flags;
t->h->nodesize=t->nodesize;
t->h->free_blocks = make_blocknum(-1);
t->h->unused_blocks=make_blocknum(2);
t->h->translated_blocknum_limit = 0;
t->h->block_translation = 0;
t->h->block_translation_size_on_disk = 0;
t->h->block_translation_address_on_disk = 0;
// printf("%s:%d translated_blocknum_limit=%ld, block_translation_address_on_disk=%ld\n", __FILE__, __LINE__, t->h->translated_blocknum_limit, t->h->block_translation_address_on_disk);
create_block_allocator(&t->h->block_allocator, t->nodesize, BLOCK_ALLOCATOR_ALIGNMENT);
toku_fifo_create(&t->h->fifo);
t->h->root_put_counter = global_root_put_counter++;
if (dbname) {
t->h->n_named_roots = 1;
if ((MALLOC_N(1, t->h->names))==0) { assert(errno==ENOMEM); r=ENOMEM; if (0) { died4: if (dbname) toku_free(t->h->names); } goto died3; }
if ((MALLOC_N(1, t->h->roots))==0) { assert(errno==ENOMEM); r=ENOMEM; if (0) { died5: if (dbname) toku_free(t->h->roots); } goto died4; }
if ((MALLOC_N(1, t->h->root_hashes))==0) { assert(errno==ENOMEM); r=ENOMEM; if (0) { died6: if (dbname) toku_free(t->h->root_hashes); } goto died5; }
if ((t->h->names[0] = toku_strdup(dbname))==0) { assert(errno==ENOMEM); r=ENOMEM; if (0) { died7: if (dbname) toku_free(t->h->names[0]); } goto died6; }
t->h->roots[0] = root; // Block 0 is the header. Block 1 is the root.
compute_and_fill_remembered_hash(t, 0);
} else {
MALLOC_N(1, t->h->roots); assert(t->h->roots);
MALLOC_N(1, t->h->root_hashes); assert(t->h->root_hashes);
t->h->roots[0] = root;
compute_and_fill_remembered_hash(t, 0);
t->h->n_named_roots = -1;
t->h->names=0;
}
{
LOGGEDBRTHEADER lh = {.size= toku_serialize_brt_header_size(t->h),
.flags = t->flags,
.nodesize = t->h->nodesize,
.free_blocks = t->h->free_blocks,
.unused_blocks = t->h->unused_blocks,
.n_named_roots = t->h->n_named_roots };
if (t->h->n_named_roots>=0) {
lh.u.many.names = t->h->names;
lh.u.many.roots = t->h->roots;
} else {
lh.u.one.root = t->h->roots[0];
}
if ((r=toku_log_fheader(toku_txn_logger(txn), (LSN*)0, 0, toku_txn_get_txnid(txn), toku_cachefile_filenum(t->cf), lh))) { goto died7; }
}
if ((r=setup_initial_brt_root_node(t, root, toku_txn_logger(txn)))!=0) { goto died7; }
//printf("%s:%d putting %p (%d)\n", __FILE__, __LINE__, t->h, 0);
assert(t->h->free_blocks.b==-1);
toku_cachefile_set_userdata(t->cf, t->h, toku_brtheader_close);
return r;
}
int toku_brt_open(BRT t, const char *fname, const char *fname_in_env, const char *dbname, int is_create, int only_create, CACHETABLE cachetable, TOKUTXN txn, DB *db) {
/* If dbname is NULL then we setup to hold a single tree. Otherwise we setup an array. */
int r;
char *malloced_name=0;
int db_index;
//printf("%s:%d %d alloced\n", __FILE__, __LINE__, get_n_items_malloced()); toku_print_malloced_items();
WHEN_BRTTRACE(fprintf(stderr, "BRTTRACE: %s:%d toku_brt_open(%s, \"%s\", %d, %p, %d, %p)\n",
__FILE__, __LINE__, fname, dbname, is_create, newbrt, nodesize, cachetable));
if (0) { died0: assert(r); return r; }
assert(is_create || !only_create);
t->fname = toku_strdup(fname_in_env);
if (t->fname==0) {
r = errno;
if (0) { died00: if (t->fname) toku_free(t->fname); t->fname=0; }
goto died0;
}
if (dbname) {
malloced_name = toku_strdup(dbname);
if (malloced_name==0) {
r = ENOMEM;
if (0) { died0a: if(malloced_name) toku_free(malloced_name); }
goto died00;
}
}
t->database_name = malloced_name;
t->db = db;
t->txn_that_created = 0; // Uses 0 for no transaction.
{
int fd = -1;
r = brt_open_file(t, fname, fname_in_env, is_create, txn, &fd);
if (r != 0) {
t->database_name = 0; goto died0a;
}
r=toku_cachetable_openfd(&t->cf, cachetable, fd, fname_in_env);
if (r != 0) goto died0a;
toku_logger_log_fopen(txn, fname_in_env, toku_cachefile_filenum(t->cf));
}
if (r!=0) {
if (0) { died_after_open: toku_cachefile_close(&t->cf, toku_txn_logger(txn)); }
t->database_name = 0;
goto died0a;
}
assert(t->nodesize>0);
//printf("%s:%d %d alloced\n", __FILE__, __LINE__, get_n_items_malloced()); toku_print_malloced_items();
if (0) {
died_after_read_and_pin:
goto died_after_open;
}
if (is_create) {
r = toku_read_brt_header_and_store_in_cachefile(t->cf, &t->h);
if (r==-1) {
r = brt_alloc_init_header(t, dbname, txn);
if (r != 0) goto died_after_read_and_pin;
}
else if (r!=0) {
goto died_after_read_and_pin;
}
else {
int i;
assert(r==0);
assert(dbname);
if (t->h->n_named_roots<0) { r=EINVAL; goto died_after_read_and_pin; } // Cannot create a subdb in a file that is not enabled for subdbs
assert(t->h->n_named_roots>=0);
for (i=0; i<t->h->n_named_roots; i++) {
if (strcmp(t->h->names[i], dbname)==0) {
if (only_create) {
r = EEXIST;
goto died_after_read_and_pin;
}
else {
db_index = i;
goto found_it;
}
}
}
if ((t->h->names = toku_realloc(t->h->names, (1+t->h->n_named_roots)*sizeof(*t->h->names))) == 0) { assert(errno==ENOMEM); r=ENOMEM; goto died_after_read_and_pin; }
if ((t->h->roots = toku_realloc(t->h->roots, (1+t->h->n_named_roots)*sizeof(*t->h->roots))) == 0) { assert(errno==ENOMEM); r=ENOMEM; goto died_after_read_and_pin; }
if ((t->h->root_hashes = toku_realloc(t->h->root_hashes, (1+t->h->n_named_roots)*sizeof(*t->h->root_hashes))) == 0) { assert(errno==ENOMEM); r=ENOMEM; goto died_after_read_and_pin; }
if ((t->h->flags_array = toku_realloc(t->h->flags_array, (1+t->h->n_named_roots)*sizeof(*t->h->flags_array))) == 0) { assert(errno==ENOMEM); r=ENOMEM; goto died_after_read_and_pin; }
t->h->flags_array[t->h->n_named_roots] = t->flags;
t->h->n_named_roots++;
if ((t->h->names[t->h->n_named_roots-1] = toku_strdup(dbname)) == 0) { assert(errno==ENOMEM); r=ENOMEM; goto died_after_read_and_pin; }
//printf("%s:%d t=%p\n", __FILE__, __LINE__, t);
r = allocate_diskblocknumber(&t->h->roots[t->h->n_named_roots-1], t, toku_txn_logger(txn));
if (r!=0) goto died_after_read_and_pin;
t->h->dirty = 1;
compute_and_fill_remembered_hash(t, t->h->n_named_roots-1);
if ((r=setup_initial_brt_root_node(t, t->h->roots[t->h->n_named_roots-1], toku_txn_logger(txn)))!=0) goto died_after_read_and_pin;
}
} else {
if ((r = toku_read_brt_header_and_store_in_cachefile(t->cf, &t->h))!=0) goto died_after_open;
if (!dbname) {
if (t->h->n_named_roots!=-1) { r = EINVAL; goto died_after_read_and_pin; } // requires a subdb
db_index=0;
} else {
int i;
if (t->h->n_named_roots==-1) { r = EINVAL; goto died_after_read_and_pin; } // no suddbs in the db
// printf("%s:%d n_roots=%d\n", __FILE__, __LINE__, t->h->n_named_roots);
for (i=0; i<t->h->n_named_roots; i++) {
if (strcmp(t->h->names[i], dbname)==0) {
db_index=i;
goto found_it;
}
}
r=ENOENT; /* the database doesn't exist */
goto died_after_read_and_pin;
}
found_it:
t->nodesize = t->h->nodesize; /* inherit the pagesize from the file */
if (!t->did_set_flags) {
t->flags = t->h->flags_array[db_index];
} else {
if (t->flags != t->h->flags_array[db_index]) { /* if flags have been set then flags must match */
r = EINVAL; goto died_after_read_and_pin;
}
}
}
assert(t->h);
WHEN_BRTTRACE(fprintf(stderr, "BRTTRACE -> %p\n", t));
return 0;
}
int toku_brt_reopen(BRT brt, const char *fname, const char *fname_in_env, TOKUTXN txn) {
int r;
// create a new file
int fd = -1;
r = brt_open_file(brt, fname, fname_in_env, TRUE, txn, &fd);
if (r != 0) return r;
// set the cachefile
r = toku_cachefile_set_fd(brt->cf, fd, fname_in_env);
assert(r == 0);
brt->h = 0; // set_fd should close the header
toku_logger_log_fopen(txn, fname_in_env, toku_cachefile_filenum(brt->cf));
// init the tree header
r = toku_read_brt_header_and_store_in_cachefile(brt->cf, &brt->h);
if (r == -1) {
r = brt_alloc_init_header(brt, NULL, txn);
}
return r;
}
int toku_brt_remove_subdb(BRT brt, const char *dbname, u_int32_t flags) {
int i;
int found = -1;
assert(flags == 0);
assert(brt->h);
assert(brt->h->n_named_roots>=0);
for (i = 0; i < brt->h->n_named_roots; i++) {
if (strcmp(brt->h->names[i], dbname) == 0) {
found = i;
break;
}
}
if (found == -1) {
//Should not be possible.
return ENOENT;
}
//Free old db name
toku_free(brt->h->names[found]);
//TODO: Free Diskblocks including root
for (i = found + 1; i < brt->h->n_named_roots; i++) {
brt->h->names[i - 1] = brt->h->names[i];
brt->h->roots[i - 1] = brt->h->roots[i];
brt->h->root_hashes[i - 1] = brt->h->root_hashes[i];
}
brt->h->n_named_roots--;
brt->h->dirty = 1;
// Q: What if n_named_roots becomes 0? A: Don't do anything. an empty list of named roots is OK.
XREALLOC_N(brt->h->n_named_roots, brt->h->names);
XREALLOC_N(brt->h->n_named_roots, brt->h->roots);
XREALLOC_N(brt->h->n_named_roots, brt->h->root_hashes);
return 0;
}
// This one has no env
int toku_open_brt (const char *fname, const char *dbname, int is_create, BRT *newbrt, int nodesize, CACHETABLE cachetable, TOKUTXN txn,
int (*compare_fun)(DB*,const DBT*,const DBT*), DB *db) {
BRT brt;
int r;
const int only_create = 0;
r = toku_brt_create(&brt);
if (r != 0)
return r;
toku_brt_set_nodesize(brt, nodesize);
toku_brt_set_bt_compare(brt, compare_fun);
r = toku_brt_open(brt, fname, fname, dbname, is_create, only_create, cachetable, txn, db);
if (r != 0) {
return r;
}
*newbrt = brt;
return r;
}
int toku_close_brt (BRT brt, TOKULOGGER logger) {
int r;
while (!list_empty(&brt->cursors)) {
BRT_CURSOR c = list_struct(list_pop(&brt->cursors), struct brt_cursor, cursors_link);
r=toku_brt_cursor_close(c);
if (r!=0) return r;
}
// Must do this work before closing the cf
r=toku_txn_note_close_brt(brt);
assert(r==0);
toku_omt_destroy(&brt->txns);
if (brt->cf) {
if (logger) {
assert(brt->fname);
BYTESTRING bs = {.len=strlen(brt->fname), .data=brt->fname};
LSN lsn;
r = toku_log_brtclose(logger, &lsn, 1, bs, toku_cachefile_filenum(brt->cf)); // flush the log on close, otherwise it might not make it out.
if (r!=0) return r;
}
assert(0==toku_cachefile_count_pinned(brt->cf, 1)); // For the brt, the pinned count should be zero.
//printf("%s:%d closing cachetable\n", __FILE__, __LINE__);
// printf("%s:%d brt=%p ,brt->h=%p\n", __FILE__, __LINE__, brt, brt->h);
if ((r = toku_cachefile_close(&brt->cf, logger))!=0) return r;
}
if (brt->database_name) toku_free(brt->database_name);
if (brt->fname) toku_free(brt->fname);
if (brt->skey) { toku_free(brt->skey); }
if (brt->sval) { toku_free(brt->sval); }
toku_free(brt);
return 0;
}
int toku_brt_flush (BRT brt) {
return toku_cachefile_flush(brt->cf);
}
int toku_brt_debug_mode = 0;//strcmp(key,"hello387")==0;
CACHEKEY* toku_calculate_root_offset_pointer (BRT brt, u_int32_t *roothash) {
if (brt->database_name==0) {
assert(brt->h->n_named_roots==-1);
*roothash = get_roothash(brt, 0);
return &brt->h->roots[0];
} else {
int i;
for (i=0; i<brt->h->n_named_roots; i++) {
if (strcmp(brt->database_name, brt->h->names[i])==0) {
*roothash = get_roothash(brt, i);
return &brt->h->roots[i];
}
}
}
abort();
}
static int brt_init_new_root(BRT brt, BRTNODE nodea, BRTNODE nodeb, DBT splitk, CACHEKEY *rootp, TOKULOGGER logger, BRTNODE *newrootp) {
TAGMALLOC(BRTNODE, newroot);
int r;
int new_height = nodea->height+1;
int new_nodesize = brt->h->nodesize;
BLOCKNUM newroot_diskoff;
r = allocate_diskblocknumber(&newroot_diskoff, brt, logger);
assert(r==0);
assert(newroot);
newroot->ever_been_written = 0;
if (brt->database_name==0) {
toku_log_changeunnamedroot(logger, (LSN*)0, 0, toku_cachefile_filenum(brt->cf), *rootp, newroot_diskoff);
} else {
BYTESTRING bs;
bs.len = 1+strlen(brt->database_name);
bs.data = brt->database_name;
toku_log_changenamedroot(logger, (LSN*)0, 0, toku_cachefile_filenum(brt->cf), bs, *rootp, newroot_diskoff);
}
*rootp=newroot_diskoff;
brt->h->dirty=1;
initialize_brtnode (brt, newroot, newroot_diskoff, new_height);
//printf("new_root %lld %d %lld %lld\n", newroot_diskoff, newroot->height, nodea->thisnodename, nodeb->thisnodename);
newroot->u.n.n_children=2;
MALLOC_N(3, newroot->u.n.childinfos);
MALLOC_N(2, newroot->u.n.childkeys);
//printf("%s:%d Splitkey=%p %s\n", __FILE__, __LINE__, splitkey, splitkey);
newroot->u.n.childkeys[0] = splitk.data;
newroot->u.n.totalchildkeylens=splitk.size;
BNC_BLOCKNUM(newroot,0)=nodea->thisnodename;
BNC_BLOCKNUM(newroot,1)=nodeb->thisnodename;
BNC_HAVE_FULLHASH(newroot, 0) = FALSE;
BNC_HAVE_FULLHASH(newroot, 1) = FALSE;
r=toku_fifo_create(&BNC_BUFFER(newroot,0)); if (r!=0) return r;
r=toku_fifo_create(&BNC_BUFFER(newroot,1)); if (r!=0) return r;
BNC_NBYTESINBUF(newroot, 0)=0;
BNC_NBYTESINBUF(newroot, 1)=0;
BNC_SUBTREE_FINGERPRINT(newroot, 0)=0;
BNC_SUBTREE_FINGERPRINT(newroot, 1)=0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(newroot, 0)=0;
BNC_SUBTREE_LEAFENTRY_ESTIMATE(newroot, 1)=0;
//verify_local_fingerprint_nonleaf(nodea);
//verify_local_fingerprint_nonleaf(nodeb);
r=toku_log_newbrtnode(logger, (LSN*)0, 0, toku_cachefile_filenum(brt->cf), newroot_diskoff, new_height, new_nodesize, (brt->flags&TOKU_DB_DUPSORT)!=0, newroot->rand4fingerprint);
if (r!=0) return r;
r=toku_log_addchild(logger, (LSN*)0, 0, toku_cachefile_filenum(brt->cf), newroot_diskoff, 0, nodea->thisnodename, 0);
if (r!=0) return r;
r=toku_log_addchild(logger, (LSN*)0, 0, toku_cachefile_filenum(brt->cf), newroot_diskoff, 1, nodeb->thisnodename, 0);
if (r!=0) return r;
fixup_child_fingerprint(newroot, 0, nodea, brt, logger);
fixup_child_fingerprint(newroot, 1, nodeb, brt, logger);
{
BYTESTRING bs = { .len = kv_pair_keylen(newroot->u.n.childkeys[0]),
.data = kv_pair_key(newroot->u.n.childkeys[0]) };
r=toku_log_setpivot(logger, &newroot->log_lsn, 0, toku_cachefile_filenum(brt->cf), newroot_diskoff, 0, bs);
if (r!=0) return r;
}
r = toku_unpin_brtnode(brt, nodea);
if (r!=0) return r;
r = toku_unpin_brtnode(brt, nodeb);
if (r!=0) return r;
//printf("%s:%d put %lld\n", __FILE__, __LINE__, newroot_diskoff);
u_int32_t fullhash = toku_cachetable_hash(brt->cf, newroot_diskoff);
newroot->fullhash = fullhash;
toku_cachetable_put(brt->cf, newroot_diskoff, fullhash, newroot, brtnode_memory_size(newroot),
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h);
*newrootp = newroot;
return 0;
}
int toku_cachefile_root_put_cmd (CACHEFILE cf, BRT_CMD cmd, TOKULOGGER logger) {
int r;
struct brt_header *h = toku_cachefile_get_userdata(cf);
assert(h);
r = toku_fifo_enq_cmdstruct(h->fifo, cmd);
if (r!=0) return r;
{
BYTESTRING keybs = {.len=cmd->u.id.key->size, .data=cmd->u.id.key->data};
BYTESTRING valbs = {.len=cmd->u.id.val->size, .data=cmd->u.id.val->data};
r = toku_log_enqrootentry(logger, (LSN*)0, 0, toku_cachefile_filenum(cf), cmd->xid, cmd->type, keybs, valbs);
if (r!=0) return r;
}
return 0;
}
static int push_something(BRT brt, BRTNODE *nodep, CACHEKEY *rootp, BRT_CMD cmd, TOKULOGGER logger) {
int did_split = 0;
BRTNODE nodea=0, nodeb=0;
DBT splitk;
int result = brtnode_put_cmd(brt, *nodep, cmd,
&did_split, &nodea, &nodeb, &splitk,
logger);
int r;
if (did_split) {
// node is unpinned, so now we have to proceed to update the root with a new node.
//printf("%s:%d did_split=%d nodeb=%p nodeb->thisnodename=%lld nodeb->nodesize=%d\n", __FILE__, __LINE__, did_split, nodeb, nodeb->thisnodename, nodeb->nodesize);
//printf("Did split, splitkey=%s\n", splitkey);
if (nodeb->height>0) assert(BNC_BLOCKNUM(nodeb,nodeb->u.n.n_children-1).b!=0);
assert(nodeb->nodesize>0);
r = brt_init_new_root(brt, nodea, nodeb, splitk, rootp, logger, nodep);
assert(r == 0);
} else {
if ((*nodep)->height>0)
assert((*nodep)->u.n.n_children<=TREE_FANOUT);
}
//assert(0==toku_cachetable_assert_all_unpinned(brt->cachetable));
return result;
}
int toku_brt_root_put_cmd(BRT brt, BRT_CMD cmd, TOKULOGGER logger) {
void *node_v;
BRTNODE node;
CACHEKEY *rootp;
int r;
//assert(0==toku_cachetable_assert_all_unpinned(brt->cachetable));
assert(brt->h);
brt->h->root_put_counter = global_root_put_counter++;
u_int32_t fullhash;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
//assert(fullhash==toku_cachetable_hash(brt->cf, *rootp));
if ((r=toku_cachetable_get_and_pin(brt->cf, *rootp, fullhash, &node_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h))) {
return r;
}
//printf("%s:%d pin %p\n", __FILE__, __LINE__, node_v);
node=node_v;
assert(node->fullhash==fullhash);
// push the fifo stuff
{
DBT okey,odata;
BRT_CMD_S ocmd;
while (0==toku_fifo_peek_cmdstruct(brt->h->fifo, &ocmd, &okey, &odata)) {
if ((r = push_something(brt, &node, rootp, &ocmd, logger))) return r;
r = toku_fifo_deq(brt->h->fifo);
assert(r==0);
}
}
if ((r = push_something(brt, &node, rootp, cmd, logger))) return r;
r = toku_unpin_brtnode(brt, node);
assert(r == 0);
return 0;
}
int toku_brt_insert (BRT brt, DBT *key, DBT *val, TOKUTXN txn) {
int r;
if (txn && (brt->txn_that_created != toku_txn_get_txnid(txn))) {
toku_cachefile_refup(brt->cf);
BYTESTRING keybs = {key->size, toku_memdup_in_rollback(txn, key->data, key->size)};
BYTESTRING databs = {val->size, toku_memdup_in_rollback(txn, val->data, val->size)};
r = toku_logger_save_rollback_cmdinsert(txn, toku_txn_get_txnid(txn), toku_cachefile_filenum(brt->cf), keybs, databs);
if (r!=0) return r;
r = toku_txn_note_brt(txn, brt);
if (r!=0) return r;
}
BRT_CMD_S brtcmd = { BRT_INSERT, toku_txn_get_txnid(txn), .u.id={key,val}};
r = toku_brt_root_put_cmd(brt, &brtcmd, toku_txn_logger(txn));
if (r!=0) return r;
return r;
}
int toku_brt_lookup (BRT brt, DBT *k, DBT *v) {
int r, rr;
BRT_CURSOR cursor;
rr = toku_brt_cursor(brt, &cursor, 1);
if (rr != 0) return rr;
int op = brt->flags & TOKU_DB_DUPSORT ? DB_GET_BOTH : DB_SET;
r = toku_brt_cursor_get(cursor, k, v, op, 0);
rr = toku_brt_cursor_close(cursor); assert(rr == 0);
return r;
}
int toku_brt_delete(BRT brt, DBT *key, TOKUTXN txn) {
int r;
if (txn && (brt->txn_that_created != toku_txn_get_txnid(txn))) {
BYTESTRING keybs = {key->size, toku_memdup_in_rollback(txn, key->data, key->size)};
toku_cachefile_refup(brt->cf);
r = toku_logger_save_rollback_cmddelete(txn, toku_txn_get_txnid(txn), toku_cachefile_filenum(brt->cf), keybs);
if (r!=0) return r;
r = toku_txn_note_brt(txn, brt);
if (r!=0) return r;
}
DBT val;
BRT_CMD_S brtcmd = { BRT_DELETE_ANY, toku_txn_get_txnid(txn), .u.id={key, toku_init_dbt(&val)}};
r = toku_brt_root_put_cmd(brt, &brtcmd, toku_txn_logger(txn));
return r;
}
int toku_brt_delete_both(BRT brt, DBT *key, DBT *val, TOKUTXN txn) {
//{ unsigned i; printf("del %p keylen=%d key={", brt->db, key->size); for(i=0; i<key->size; i++) printf("%d,", ((char*)key->data)[i]); printf("} datalen=%d data={", val->size); for(i=0; i<val->size; i++) printf("%d,", ((char*)val->data)[i]); printf("}\n"); }
int r;
if (txn && (brt->txn_that_created != toku_txn_get_txnid(txn))) {
BYTESTRING keybs = {key->size, toku_memdup_in_rollback(txn, key->data, key->size)};
BYTESTRING databs = {val->size, toku_memdup_in_rollback(txn, val->data, val->size)};
toku_cachefile_refup(brt->cf);
r = toku_logger_save_rollback_cmddeleteboth(txn, toku_txn_get_txnid(txn), toku_cachefile_filenum(brt->cf), keybs, databs);
if (r!=0) return r;
r = toku_txn_note_brt(txn, brt);
if (r!=0) return r;
}
BRT_CMD_S brtcmd = { BRT_DELETE_BOTH, toku_txn_get_txnid(txn), .u.id={key,val}};
r = toku_brt_root_put_cmd(brt, &brtcmd, toku_txn_logger(txn));
return r;
}
int toku_dump_brtnode (BRT brt, BLOCKNUM blocknum, int depth, bytevec lorange, ITEMLEN lolen, bytevec hirange, ITEMLEN hilen) {
int result=0;
BRTNODE node;
void *node_v;
u_int32_t fullhash = toku_cachetable_hash(brt->cf, blocknum);
int r = toku_cachetable_get_and_pin(brt->cf, blocknum, fullhash,
&node_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h);
assert(r==0);
printf("%s:%d pin %p\n", __FILE__, __LINE__, node_v);
node=node_v;
assert(node->fullhash==fullhash);
result=toku_verify_brtnode(brt, blocknum, lorange, lolen, hirange, hilen, 0);
printf("%*sNode=%p\n", depth, "", node);
if (node->height>0) {
printf("%*sNode %"PRId64" nodesize=%d height=%d n_children=%d n_bytes_in_buffers=%d keyrange=%s %s\n",
depth, "", blocknum.b, node->nodesize, node->height, node->u.n.n_children, node->u.n.n_bytes_in_buffers, (char*)lorange, (char*)hirange);
//printf("%s %s\n", lorange ? lorange : "NULL", hirange ? hirange : "NULL");
{
int i;
for (i=0; i< node->u.n.n_children; i++) {
printf("%*schild %d buffered (%d entries):\n", depth+1, "", i, toku_fifo_n_entries(BNC_BUFFER(node,i)));
FIFO_ITERATE(BNC_BUFFER(node,i), key, keylen, data, datalen, type, xid,
({
data=data; datalen=datalen; keylen=keylen;
printf("%*s xid=%"PRId64" %d (type=%d)\n", depth+2, "", xid, ntohl(*(int*)key), type);
//assert(strlen((char*)key)+1==keylen);
//assert(strlen((char*)data)+1==datalen);
}));
}
for (i=0; i<node->u.n.n_children; i++) {
printf("%*schild %d\n", depth, "", i);
if (i>0) {
printf("%*spivot %d len=%d %d\n", depth+1, "", i-1, node->u.n.childkeys[i-1]->keylen, ntohl(*(int*)&node->u.n.childkeys[i-1]->key));
}
toku_dump_brtnode(brt, BNC_BLOCKNUM(node, i), depth+4,
(i==0) ? lorange : node->u.n.childkeys[i-1],
(i==0) ? lolen : toku_brt_pivot_key_len(brt, node->u.n.childkeys[i-1]),
(i==node->u.n.n_children-1) ? hirange : node->u.n.childkeys[i],
(i==node->u.n.n_children-1) ? hilen : toku_brt_pivot_key_len(brt, node->u.n.childkeys[i])
);
}
}
} else {
printf("%*sNode %" PRId64 " nodesize=%d height=%d n_bytes_in_buffer=%d keyrange=%d %d\n",
depth, "", blocknum.b, node->nodesize, node->height, node->u.l.n_bytes_in_buffer, lorange ? ntohl(*(int*)lorange) : 0, hirange ? ntohl(*(int*)hirange) : 0);
//GPMA_ITERATE(node->u.l.buffer, idx, len, data,
// printf(" (%d)%u ", len, *(int*)le_any_key(data)));
printf("\n");
}
r = toku_cachetable_unpin(brt->cf, blocknum, fullhash, 0, 0);
assert(r==0);
return result;
}
int toku_dump_brt (BRT brt) {
CACHEKEY *rootp;
assert(brt->h);
u_int32_t fullhash;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
printf("split_count=%d\n", split_count);
return toku_dump_brtnode(brt, *rootp, 0, 0, 0, 0, 0);
}
#if 0
static int show_brtnode_blocknumbers (BRT brt, DISKOFF off) {
BRTNODE node;
void *node_v;
int i,r;
assert(off%brt->h->nodesize==0);
if ((r = toku_cachetable_get_and_pin(brt->cf, off, &node_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h))) {
if (0) { died0: toku_cachetable_unpin(brt->cf, off, 0, 0); }
return r;
}
printf("%s:%d pin %p\n", __FILE__, __LINE__, node_v);
node=node_v;
printf(" %lld", off/brt->h->nodesize);
if (node->height>0) {
for (i=0; i<node->u.n.n_children; i++) {
if ((r=show_brtnode_blocknumbers(brt, BNC_BLOCKNUM(node, i)))) goto died0;
}
}
r = toku_cachetable_unpin(brt->cf, off, 0, 0);
return r;
}
int show_brt_blocknumbers (BRT brt) {
int r;
CACHEKEY *rootp;
if ((r = toku_read_and_pin_brt_header(brt->cf, &brt->h))) {
if (0) { died0: toku_unpin_brt_header(brt); }
return r;
}
rootp = toku_calculate_root_offset_pointer(brt);
printf("BRT %p has blocks:", brt);
if ((r=show_brtnode_blocknumbers (brt, *rootp, 0))) goto died0;
printf("\n");
if ((r = toku_unpin_brt_header(brt))!=0) return r;
return 0;
}
#endif
typedef struct brt_split {
int did_split;
BRTNODE nodea;
BRTNODE nodeb;
DBT splitk;
} BRT_SPLIT;
static inline void brt_split_init(BRT_SPLIT *split) {
split->did_split = 0;
split->nodea = split->nodeb = 0;
toku_init_dbt(&split->splitk);
}
static int brt_search_node(BRT brt, BRTNODE node, brt_search_t *search, DBT *newkey, DBT *newval, BRT_SPLIT *split, TOKULOGGER logger, OMTCURSOR);
/* search in a node's child */
static int brt_search_child(BRT brt, BRTNODE node, int childnum, brt_search_t *search, DBT *newkey, DBT *newval, BRT_SPLIT *split, TOKULOGGER logger, OMTCURSOR omtcursor) {
int r, rr;
/* if the child's buffer is not empty then try to empty it */
if (BNC_NBYTESINBUF(node, childnum) > 0) {
rr = push_some_brt_cmds_down(brt, node, childnum, &split->did_split, &split->nodea, &split->nodeb, &split->splitk, logger);
assert(rr == 0);
/* push down may cause a child split, so childnum may not be appropriate, and the node itself may split, so retry */
return EAGAIN;
}
void *node_v;
BLOCKNUM childblocknum = BNC_BLOCKNUM(node,childnum);
u_int32_t fullhash = compute_child_fullhash(brt->cf, node, childnum);
rr = toku_cachetable_get_and_pin(brt->cf, childblocknum, fullhash, &node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h);
assert(rr == 0);
for (;;) {
BRTNODE childnode = node_v;
BRT_SPLIT childsplit; brt_split_init(&childsplit);
r = brt_search_node(brt, childnode, search, newkey, newval, &childsplit, logger, omtcursor);
if (childsplit.did_split) {
rr = handle_split_of_child(brt, node, childnum, childsplit.nodea, childsplit.nodeb, &childsplit.splitk,
&split->did_split, &split->nodea, &split->nodeb, &split->splitk, logger);
assert(rr == 0);
break;
} else {
if (r == EAGAIN)
continue;
rr = toku_cachetable_unpin(brt->cf, childnode->thisnodename, childnode->fullhash, childnode->dirty, brtnode_memory_size(childnode));
assert(rr == 0);
break;
}
}
return r;
}
static int brt_search_nonleaf_node(BRT brt, BRTNODE node, brt_search_t *search, DBT *newkey, DBT *newval, BRT_SPLIT *split, TOKULOGGER logger, OMTCURSOR omtcursor) {
int r;
int c;
/* binary search is overkill for a small array */
int child[node->u.n.n_children];
/* scan left to right or right to left depending on the search direction */
for (c = 0; c < node->u.n.n_children; c++)
child[c] = search->direction & BRT_SEARCH_LEFT ? c : node->u.n.n_children - 1 - c;
for (c = 0; c < node->u.n.n_children-1; c++) {
int p = search->direction & BRT_SEARCH_LEFT ? child[c] : child[c] - 1;
struct kv_pair *pivot = node->u.n.childkeys[p];
DBT pivotkey, pivotval;
if (search->compare(search,
toku_fill_dbt(&pivotkey, kv_pair_key(pivot), kv_pair_keylen(pivot)),
brt->flags & TOKU_DB_DUPSORT ? toku_fill_dbt(&pivotval, kv_pair_val(pivot), kv_pair_vallen(pivot)): 0)) {
r = brt_search_child(brt, node, child[c], search, newkey, newval, split, logger, omtcursor);
if (r == 0 || r == EAGAIN) {
return r;
}
}
}
/* check the first (left) or last (right) node if nothing has been found */
return brt_search_child(brt, node, child[c], search, newkey, newval, split, logger, omtcursor);
}
int pair_leafval_bessel_le_committed (u_int32_t klen, void *kval,
u_int32_t dlen, void *dval,
brt_search_t *search) {
DBT x,y;
int cmp = search->compare(search,
search->k ? toku_fill_dbt(&x, kval, klen) : 0,
search->v ? toku_fill_dbt(&y, dval, dlen) : 0);
// The search->compare function returns only 0 or 1
switch (search->direction) {
case BRT_SEARCH_LEFT: return cmp==0 ? -1 : +1;
case BRT_SEARCH_RIGHT: return cmp==0 ? +1 : -1; // Because the comparison runs backwards for right searches.
}
assert(0);
return 0;
}
int pair_leafval_bessel_le_both (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t clen __attribute__((__unused__)), void *cval __attribute__((__unused__)),
u_int32_t plen, void *pval,
brt_search_t *search) {
return pair_leafval_bessel_le_committed(klen, kval, plen, pval, search);
}
int pair_leafval_bessel_le_provdel (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t clen, void *cval,
brt_search_t *be) {
return pair_leafval_bessel_le_committed(klen, kval, clen, cval, be);
}
int pair_leafval_bessel_le_provpair (TXNID xid __attribute__((__unused__)),
u_int32_t klen, void *kval,
u_int32_t plen, void *pval,
brt_search_t *be) {
return pair_leafval_bessel_le_committed(klen, kval, plen, pval, be);
}
static int bessel_from_search_t (OMTVALUE lev, void *extra) {
LEAFENTRY leafval=lev;
brt_search_t *search = extra;
LESWITCHCALL(leafval, pair_leafval_bessel, search);
}
static int brt_search_leaf_node(BRT brt, BRTNODE node, brt_search_t *search, DBT *newkey, DBT *newval, TOKULOGGER logger, OMTCURSOR omtcursor) {
// Now we have to convert from brt_search_t to the bessel function with a direction. What a pain...
int direction;
switch (search->direction) {
case BRT_SEARCH_LEFT: direction = +1; goto ok;
case BRT_SEARCH_RIGHT: direction = -1; goto ok;
}
return EINVAL; // This return and the goto are a hack to get both compile-time and run-time checking on enum
ok: ;
OMTVALUE datav;
u_int32_t idx = 0;
int r = toku_omt_find(node->u.l.buffer,
bessel_from_search_t,
search,
direction,
&datav, &idx, omtcursor);
if (r!=0) return r;
LEAFENTRY le = datav;
if (le_is_provdel(le)) {
TXNID xid = le_any_xid(le);
TOKUTXN txn = 0;
toku_txn_find_by_xid(brt, xid, &txn);
// Provisionally deleted stuff is gone.
// So we need to scan in the direction to see if we can find something
while (1) {
// see if the transaction is alive
TXNID newxid = le_any_xid(le);
if (newxid != xid) {
xid = newxid;
txn = 0;
toku_txn_find_by_xid(brt, xid, &txn);
}
switch (search->direction) {
case BRT_SEARCH_LEFT:
if (txn) {
// printf("xid %llu -> %p\n", (unsigned long long) xid, txn);
idx++;
} else {
// apply a commit message for this leafentry to the node
// printf("apply commit_both %llu\n", (unsigned long long) xid);
DBT key, val;
BRT_CMD_S brtcmd = { BRT_COMMIT_BOTH, xid, .u.id= {toku_fill_dbt(&key, le_latest_key(le), le_latest_keylen(le)),
toku_fill_dbt(&val, le_latest_val(le), le_latest_vallen(le))} };
r = brt_leaf_apply_cmd_once(brt, node, &brtcmd, logger, idx, le);
assert(r == 0);
}
if (idx>=toku_omt_size(node->u.l.buffer)) return DB_NOTFOUND;
break;
case BRT_SEARCH_RIGHT:
if (idx==0) return DB_NOTFOUND;
idx--;
break;
}
if (idx>=toku_omt_size(node->u.l.buffer)) continue;
r = toku_omt_fetch(node->u.l.buffer, idx, &datav, omtcursor);
assert(r==0); // we just validated the index
le = datav;
if (!le_is_provdel(le)) goto got_a_good_value;
}
}
got_a_good_value:
if (newkey || newval) {
bytevec key = newkey ? le_latest_key(le) : NULL;
u_int32_t key_len = newkey ? le_latest_keylen(le) : 0;
bytevec val = newval ? le_latest_val(le) : NULL;
u_int32_t val_len = newval ? le_latest_vallen(le) : 0;
r = toku_dbt_set_two_values(newkey, &key, key_len, &brt->skey, FALSE,
newval, &val, val_len, &brt->sval, FALSE);
if (r!=0) return r;
}
return 0;
}
static int brt_search_node(BRT brt, BRTNODE node, brt_search_t *search, DBT *newkey, DBT *newval, BRT_SPLIT *split, TOKULOGGER logger, OMTCURSOR omtcursor) {
if (node->height > 0)
return brt_search_nonleaf_node(brt, node, search, newkey, newval, split, logger, omtcursor);
else
return brt_search_leaf_node(brt, node, search, newkey, newval, logger, omtcursor);
}
int toku_brt_search(BRT brt, brt_search_t *search, DBT *newkey, DBT *newval, TOKULOGGER logger, OMTCURSOR omtcursor, u_int64_t *root_put_counter)
// Effect: Perform a search. Associate cursor with a leaf if possible.
{
int r, rr;
assert(brt->h);
*root_put_counter = brt->h->root_put_counter;
u_int32_t fullhash;
CACHEKEY *rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
void *node_v;
//assert(fullhash == toku_cachetable_hash(brt->cf, *rootp));
rr = toku_cachetable_get_and_pin(brt->cf, *rootp, fullhash,
&node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h);
assert(rr == 0);
BRTNODE node = node_v;
// push the fifo sutff
{
DBT okey,odata;
BRT_CMD_S ocmd;
while (0==toku_fifo_peek_cmdstruct(brt->h->fifo, &ocmd, &okey, &odata)) {
if ((r = push_something(brt, &node, rootp, &ocmd, logger))) return r;
r = toku_fifo_deq(brt->h->fifo);
assert(r==0);
}
}
for (;;) {
BRT_SPLIT split; brt_split_init(&split);
r = brt_search_node(brt, node, search, newkey, newval, &split, logger, omtcursor);
if (split.did_split) {
rr = brt_init_new_root(brt, split.nodea, split.nodeb, split.splitk, rootp, 0, &node);
assert(rr == 0);
}
if (r != EAGAIN)
break;
}
rr = toku_unpin_brtnode(brt, node);
assert(rr == 0);
return r;
}
static inline void dbt_cleanup(DBT *dbt) {
if (dbt->data && ( (dbt->flags & DB_DBT_REALLOC)
|| (dbt->flags & DB_DBT_MALLOC))) {
toku_free_n(dbt->data, dbt->size); dbt->data = 0;
}
}
static inline int brt_cursor_not_set(BRT_CURSOR cursor) {
return cursor->key.data == 0 || cursor->val.data == 0;
}
BOOL toku_brt_cursor_uninitialized(BRT_CURSOR c) {
return brt_cursor_not_set(c);
}
static inline void load_dbts_from_omt(BRT_CURSOR c, DBT *key, DBT *val) {
OMTVALUE le;
int r = toku_omt_cursor_current(c->omtcursor, &le);
assert(r==0);
if (key) {
key->data = le_latest_key(le);
key->size = le_latest_keylen(le);
}
if (val) {
val->data = le_latest_val(le);
val->size = le_latest_vallen(le);
}
}
static void brt_cursor_invalidate_callback(OMTCURSOR UU(omt_c), void *extra) {
BRT_CURSOR cursor = extra;
if (cursor->current_in_omt) {
assert(cursor->key.flags==DB_DBT_REALLOC);
assert(cursor->val.flags==DB_DBT_REALLOC);
DBT key,val;
int r;
load_dbts_from_omt(cursor, toku_init_dbt(&key), toku_init_dbt(&val));
//Make certain not to try to free the omt's memory.
toku_init_dbt(&cursor->key)->flags = DB_DBT_REALLOC;
toku_init_dbt(&cursor->val)->flags = DB_DBT_REALLOC;
r = toku_dbt_set_two_values(&cursor->key, (bytevec*)&key.data, key.size, NULL, FALSE,
&cursor->val, (bytevec*)&val.data, val.size, NULL, FALSE);
//TODO: Find some way to deal with ENOMEM here.
assert(r==0);
cursor->current_in_omt = FALSE;
}
if (cursor->prev_in_omt) {
toku_init_dbt(&cursor->prevkey)->flags = DB_DBT_REALLOC;
toku_init_dbt(&cursor->prevval)->flags = DB_DBT_REALLOC;
cursor->prev_in_omt = FALSE;
}
}
int toku_brt_cursor (BRT brt, BRT_CURSOR *cursorptr, int is_temporary_cursor) {
BRT_CURSOR cursor = toku_malloc(sizeof *cursor);
if (cursor == 0)
return ENOMEM;
cursor->brt = brt;
toku_init_dbt(&cursor->key); cursor->key.flags = DB_DBT_REALLOC;
toku_init_dbt(&cursor->val); cursor->val.flags = DB_DBT_REALLOC;
toku_init_dbt(&cursor->prevkey); cursor->prevkey.flags = DB_DBT_REALLOC;
toku_init_dbt(&cursor->prevval); cursor->prevval.flags = DB_DBT_REALLOC;
cursor->current_in_omt = FALSE;
cursor->prev_in_omt = FALSE;
list_push(&brt->cursors, &cursor->cursors_link);
cursor->is_temporary_cursor=is_temporary_cursor;
cursor->skey = cursor->sval = 0;
int r = toku_omt_cursor_create(&cursor->omtcursor);
assert(r==0);
toku_omt_cursor_set_invalidate_callback(cursor->omtcursor,
brt_cursor_invalidate_callback, cursor);
cursor->root_put_counter=0;
*cursorptr = cursor;
return 0;
}
int toku_brt_cursor_close(BRT_CURSOR cursor) {
if (!cursor->current_in_omt) {
dbt_cleanup(&cursor->key);
dbt_cleanup(&cursor->val);
}
if (!cursor->prev_in_omt) {
dbt_cleanup(&cursor->prevkey);
dbt_cleanup(&cursor->prevval);
}
if (cursor->skey) toku_free(cursor->skey);
if (cursor->sval) toku_free(cursor->sval);
list_remove(&cursor->cursors_link);
toku_omt_cursor_set_invalidate_callback(cursor->omtcursor, NULL, NULL);
toku_omt_cursor_destroy(&cursor->omtcursor);
toku_free_n(cursor, sizeof *cursor);
return 0;
}
DBT *brt_cursor_peek_prev_key(BRT_CURSOR cursor)
// Effect: Return a pointer to a DBT for the previous key.
// Requires: The caller may not modify that DBT or the memory at which it points.
{
return &cursor->prevkey;
}
DBT *brt_cursor_peek_prev_val(BRT_CURSOR cursor)
// Effect: Return a pointer to a DBT for the previous val
// Requires: The caller may not modify that DBT or the memory at which it points.
{
return &cursor->prevval;
}
void brt_cursor_peek_current(BRT_CURSOR cursor, const DBT **pkey, const DBT **pval)
// Effect: Retrieves a pointer to the DBTs for the current key and value.
// Requires: The caller may not modify the DBTs or the memory at which they points.
{
if (cursor->current_in_omt) load_dbts_from_omt(cursor, &cursor->key, &cursor->val);
*pkey = &cursor->key;
*pval = &cursor->val;
}
DBT *brt_cursor_peek_current_key(BRT_CURSOR cursor)
// Effect: Return a pointer to a DBT for the current key.
// Requires: The caller may not modify that DBT or the memory at which it points.
{
if (cursor->current_in_omt) load_dbts_from_omt(cursor, &cursor->key, NULL);
return &cursor->key;
}
DBT *brt_cursor_peek_current_val(BRT_CURSOR cursor)
// Effect: Return a pointer to a DBT for the current val
// Requires: The caller may not modify that DBT or the memory at which it points.
{
if (cursor->current_in_omt) load_dbts_from_omt(cursor, NULL, &cursor->val);
return &cursor->val;
}
static inline int compare_k_x(BRT brt, DBT *k, DBT *x) {
return brt->compare_fun(brt->db, k, x);
}
static inline int compare_v_y(BRT brt, DBT *v, DBT *y) {
return brt->dup_compare(brt->db, v, y);
}
static inline int compare_kv_xy(BRT brt, DBT *k, DBT *v, DBT *x, DBT *y) {
int cmp = brt->compare_fun(brt->db, k, x);
if (cmp == 0 && v && y)
cmp = brt->dup_compare(brt->db, v, y);
return cmp;
}
static inline int brt_cursor_copyout(BRT_CURSOR cursor, DBT *key, DBT *val) {
//Passing in NULL for both key and val is used with light weight cursors.
//Retrieval of key and val will use the peek functions.
if (!key && !val) return 0;
int r = 0;
void** key_staticp = cursor->is_temporary_cursor ? &cursor->brt->skey : &cursor->skey;
void** val_staticp = cursor->is_temporary_cursor ? &cursor->brt->sval : &cursor->sval;
if (cursor->current_in_omt) load_dbts_from_omt(cursor, &cursor->key, &cursor->val);
r = toku_dbt_set_two_values(key, (bytevec*)&cursor->key.data, cursor->key.size, key_staticp, FALSE,
val, (bytevec*)&cursor->val.data, cursor->val.size, val_staticp, FALSE);
return r;
}
int toku_brt_dbt_set(DBT* key, DBT* key_source) {
int r = toku_dbt_set_value(key, (bytevec*)&key_source->data, key_source->size, NULL, FALSE);
return r;
}
int toku_brt_cursor_dbts_set(BRT_CURSOR cursor,
DBT* key, DBT* key_source, BOOL key_disposable,
DBT* val, DBT* val_source, BOOL val_disposable) {
void** key_staticp = cursor->is_temporary_cursor ? &cursor->brt->skey : &cursor->skey;
void** val_staticp = cursor->is_temporary_cursor ? &cursor->brt->sval : &cursor->sval;
int r;
r = toku_dbt_set_two_values(key, (bytevec*)&key_source->data, key_source->size, key_staticp, key_disposable,
val, (bytevec*)&val_source->data, val_source->size, val_staticp, val_disposable);
return r;
}
int toku_brt_cursor_dbts_set_with_dat(BRT_CURSOR cursor, BRT pdb,
DBT* key, DBT* key_source, BOOL key_disposable,
DBT* val, DBT* val_source, BOOL val_disposable,
DBT* dat, DBT* dat_source, BOOL dat_disposable) {
void** key_staticp = cursor->is_temporary_cursor ? &cursor->brt->skey : &cursor->skey;
void** val_staticp = cursor->is_temporary_cursor ? &cursor->brt->sval : &cursor->sval;
void** dat_staticp = &pdb->sval;
int r;
r = toku_dbt_set_three_values(key, (bytevec*)&key_source->data, key_source->size, key_staticp, key_disposable,
val, (bytevec*)&val_source->data, val_source->size, val_staticp, val_disposable,
dat, (bytevec*)&dat_source->data, dat_source->size, dat_staticp, dat_disposable);
return r;
}
static int brt_cursor_compare_set(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
return compare_kv_xy(brt, search->k, search->v, x, y) <= 0; /* return min xy: kv <= xy */
}
static int brt_cursor_current(BRT_CURSOR cursor, int op, DBT *outkey, DBT *outval, TOKULOGGER logger) {
if (brt_cursor_not_set(cursor))
return EINVAL;
if (op == DB_CURRENT) {
int r = ENOSYS;
DBT newkey; toku_init_dbt(&newkey); newkey.flags = DB_DBT_REALLOC;
DBT newval; toku_init_dbt(&newval); newval.flags = DB_DBT_REALLOC;
brt_cursor_invalidate_callback(cursor->omtcursor, cursor);
brt_search_t search; brt_search_init(&search, brt_cursor_compare_set, BRT_SEARCH_LEFT, &cursor->key, &cursor->val, cursor->brt);
r = toku_brt_search(cursor->brt, &search, &newkey, &newval, logger, cursor->omtcursor, &cursor->root_put_counter);
if (r != 0 || compare_kv_xy(cursor->brt, &cursor->key, &cursor->val, &newkey, &newval) != 0)
r = DB_KEYEMPTY;
dbt_cleanup(&newkey);
dbt_cleanup(&newval);
if (r!=0) return r;
}
return brt_cursor_copyout(cursor, outkey, outval);
}
static void swap_dbts (DBT *a, DBT *b) {
DBT tmp=*a;
*a=*b;
*b=tmp;
}
static void swap_cursor_dbts (BRT_CURSOR cursor) {
swap_dbts(&cursor->prevkey, &cursor->key);
swap_dbts(&cursor->prevval, &cursor->val);
}
void brt_cursor_restore_state_from_prev(BRT_CURSOR cursor) {
toku_omt_cursor_invalidate(cursor->omtcursor);
swap_cursor_dbts(cursor);
}
/* search for the first kv pair that matches the search object */
static int brt_cursor_search(BRT_CURSOR cursor, brt_search_t *search, DBT *outkey, DBT *outval, TOKULOGGER logger) {
assert(cursor->prevkey.flags == DB_DBT_REALLOC);
assert(cursor->prevval.flags == DB_DBT_REALLOC);
brt_cursor_invalidate_callback(cursor->omtcursor, cursor);
int r = toku_brt_search(cursor->brt, search, &cursor->prevkey, &cursor->prevval, logger, cursor->omtcursor, &cursor->root_put_counter);
if (r == 0) {
swap_cursor_dbts(cursor);
r = brt_cursor_copyout(cursor, outkey, outval);
}
return r;
}
/* search for the kv pair that matches the search object and is equal to kv */
static int brt_cursor_search_eq_kv_xy(BRT_CURSOR cursor, brt_search_t *search, DBT *outkey, DBT *outval, TOKULOGGER logger) {
assert(cursor->prevkey.flags == DB_DBT_REALLOC);
assert(cursor->prevval.flags == DB_DBT_REALLOC);
brt_cursor_invalidate_callback(cursor->omtcursor, cursor);
int r = toku_brt_search(cursor->brt, search, &cursor->prevkey, &cursor->prevval, logger, cursor->omtcursor, &cursor->root_put_counter);
if (r == 0) {
if (compare_kv_xy(cursor->brt, search->k, search->v, &cursor->prevkey, &cursor->prevval) == 0) {
swap_cursor_dbts(cursor);
r = brt_cursor_copyout(cursor, outkey, outval);
} else {
r = DB_NOTFOUND;
}
}
return r;
}
/* search for the kv pair that matches the search object and is equal to k */
static int brt_cursor_search_eq_k_x(BRT_CURSOR cursor, brt_search_t *search, DBT *outkey, DBT *outval, TOKULOGGER logger) {
assert(cursor->prevkey.flags == DB_DBT_REALLOC);
assert(cursor->prevval.flags == DB_DBT_REALLOC);
brt_cursor_invalidate_callback(cursor->omtcursor, cursor);
int r = toku_brt_search(cursor->brt, search, &cursor->prevkey, &cursor->prevval, logger, cursor->omtcursor, &cursor->root_put_counter);
if (r == 0) {
if (compare_k_x(cursor->brt, search->k, &cursor->prevkey) == 0) {
swap_cursor_dbts(cursor);
r = brt_cursor_copyout(cursor, outkey, outval);
} else
r = DB_NOTFOUND;
}
return r;
}
static int brt_cursor_compare_one(brt_search_t *search, DBT *x, DBT *y) {
search = search; x = x; y = y;
return 1;
}
static int brt_cursor_first(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_one, BRT_SEARCH_LEFT, 0, 0, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_last(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_one, BRT_SEARCH_RIGHT, 0, 0, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_next(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
return compare_kv_xy(brt, search->k, search->v, x, y) < 0; /* return min xy: kv < xy */
}
static void save_omtcursor_current_in_prev(BRT_CURSOR cursor) {
if (!cursor->prev_in_omt) {
//Free the data.
if (cursor->prevkey.data) toku_free(cursor->prevkey.data);
if (cursor->prevval.data) toku_free(cursor->prevval.data);
cursor->prev_in_omt = TRUE;
}
load_dbts_from_omt(cursor, &cursor->prevkey, &cursor->prevval);
}
static int brt_cursor_next_shortcut (BRT_CURSOR cursor, DBT *outkey, DBT *outval)
// Effect: If possible, increment the cursor and return the key-value pair
// (i.e., the next one from what the cursor pointed to before.)
// That is, do DB_NEXT on DUP databases, and do DB_NEXT_NODUP on NODUP databases.
{
if (toku_omt_cursor_is_valid(cursor->omtcursor)) {
{
u_int64_t h_counter = cursor->brt->h->root_put_counter;
if (h_counter != cursor->root_put_counter) return -1;
}
OMTVALUE le;
//Save current value in prev.
save_omtcursor_current_in_prev(cursor);
u_int32_t starting_index;
u_int32_t index;
u_int32_t size = toku_omt_size(toku_omt_cursor_get_omt(cursor->omtcursor));
int r = toku_omt_cursor_current_index(cursor->omtcursor, &starting_index);
assert(r==0);
index = starting_index;
while (index+1 < size) {
r = toku_omt_cursor_next(cursor->omtcursor, &le);
assert(r==0);
index++;
if (le_is_provdel(le)) continue;
//Free old current if necessary.
if (!cursor->current_in_omt) {
if (cursor->key.data) toku_free(cursor->key.data);
if (cursor->val.data) toku_free(cursor->val.data);
cursor->current_in_omt = TRUE;
}
return brt_cursor_copyout(cursor, outkey, outval);
}
toku_omt_cursor_set_index(cursor->omtcursor, starting_index);
toku_omt_cursor_invalidate(cursor->omtcursor);
}
return -1;
}
int toku_brt_cursor_peek_prev(BRT_CURSOR cursor, DBT *outkey, DBT *outval) {
if (toku_omt_cursor_is_valid(cursor->omtcursor)) {
{
assert(cursor->brt->h);
u_int64_t h_counter = cursor->brt->h->root_put_counter;
if (h_counter != cursor->root_put_counter) return -1;
}
OMTVALUE le;
u_int32_t index = 0;
int r = toku_omt_cursor_current_index(cursor->omtcursor, &index);
assert(r==0);
OMT omt = toku_omt_cursor_get_omt(cursor->omtcursor);
get_prev:;
if (index>0) {
r = toku_omt_fetch(omt, --index, &le, NULL);
if (r==0) {
if (le_is_provdel(le)) goto get_prev;
toku_fill_dbt(outkey, le_latest_key(le), le_latest_keylen(le));
toku_fill_dbt(outval, le_latest_val(le), le_latest_vallen(le));
return 0;
}
}
}
return -1;
}
int toku_brt_cursor_peek_next(BRT_CURSOR cursor, DBT *outkey, DBT *outval) {
if (toku_omt_cursor_is_valid(cursor->omtcursor)) {
{
assert(cursor->brt->h);
u_int64_t h_counter = cursor->brt->h->root_put_counter;
if (h_counter != cursor->root_put_counter) return -1;
}
OMTVALUE le;
u_int32_t index = UINT32_MAX;
int r = toku_omt_cursor_current_index(cursor->omtcursor, &index);
assert(r==0);
OMT omt = toku_omt_cursor_get_omt(cursor->omtcursor);
get_next:;
if (++index<toku_omt_size(omt)) {
r = toku_omt_fetch(omt, index, &le, NULL);
if (r==0) {
if (le_is_provdel(le)) goto get_next;
toku_fill_dbt(outkey, le_latest_key(le), le_latest_keylen(le));
toku_fill_dbt(outval, le_latest_val(le), le_latest_vallen(le));
return 0;
}
}
}
return -1;
}
static int brt_cursor_next(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
if (0!=(cursor->brt->flags & TOKU_DB_DUP) &&
brt_cursor_next_shortcut(cursor, outkey, outval)==0)
return 0;
brt_search_t search; brt_search_init(&search, brt_cursor_compare_next, BRT_SEARCH_LEFT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
int toku_brt_cursor_after(BRT_CURSOR cursor, DBT *key, DBT *val, DBT *outkey, DBT *outval, TOKUTXN txn) {
TOKULOGGER logger = toku_txn_logger(txn);
brt_search_t search; brt_search_init(&search, brt_cursor_compare_next, BRT_SEARCH_LEFT, key, val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_next_nodup(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context; y = y;
return compare_k_x(brt, search->k, x) < 0; /* return min x: k < x */
}
static int brt_cursor_next_nodup(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
if (0==(cursor->brt->flags & TOKU_DB_DUP) &&
brt_cursor_next_shortcut(cursor, outkey, outval)==0)
return 0;
brt_search_t search; brt_search_init(&search, brt_cursor_compare_next_nodup, BRT_SEARCH_LEFT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_next_dup(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
int keycmp = compare_k_x(brt, search->k, x);
if (keycmp < 0)
return 1;
else
return keycmp == 0 && y && compare_v_y(brt, search->v, y) < 0; /* return min xy: k <= x && v < y */
}
static int brt_cursor_next_dup(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_next_dup, BRT_SEARCH_LEFT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search_eq_k_x(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_get_both_range(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
int keycmp = compare_k_x(brt, search->k, x);
if (keycmp < 0)
return 1;
else
return keycmp == 0 && (y == 0 || compare_v_y(brt, search->v, y) <= 0); /* return min xy: k <= x && v <= y */
}
static int brt_cursor_get_both_range(BRT_CURSOR cursor, DBT *key, DBT *val, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_get_both_range, BRT_SEARCH_LEFT, key, val, cursor->brt);
return brt_cursor_search_eq_k_x(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_prev(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
return compare_kv_xy(brt, search->k, search->v, x, y) > 0; /* return max xy: kv > xy */
}
static int brt_cursor_prev_shortcut (BRT_CURSOR cursor, DBT *outkey, DBT *outval)
// Effect: If possible, decrement the cursor and return the key-value pair
// (i.e., the previous one from what the cursor pointed to before.)
// That is, do DB_PREV on DUP databases, and do DB_PREV_NODUP on NODUP databases.
{
if (toku_omt_cursor_is_valid(cursor->omtcursor)) {
{
u_int64_t h_counter = cursor->brt->h->root_put_counter;
if (h_counter != cursor->root_put_counter) return -1;
}
OMTVALUE le;
//Save current value in prev.
save_omtcursor_current_in_prev(cursor);
u_int32_t starting_index = 0;
u_int32_t index;
int r = toku_omt_cursor_current_index(cursor->omtcursor, &starting_index);
assert(r==0);
index = starting_index;
while (index>0) {
r = toku_omt_cursor_prev(cursor->omtcursor, &le);
assert(r==0);
index--;
if (le_is_provdel(le)) continue;
//Free old current if necessary.
if (!cursor->current_in_omt) {
if (cursor->key.data) toku_free(cursor->key.data);
if (cursor->val.data) toku_free(cursor->val.data);
cursor->current_in_omt = TRUE;
}
return brt_cursor_copyout(cursor, outkey, outval);
}
toku_omt_cursor_set_index(cursor->omtcursor, starting_index);
toku_omt_cursor_invalidate(cursor->omtcursor);
}
return -1;
}
int toku_brt_cursor_before(BRT_CURSOR cursor, DBT *key, DBT *val, DBT *outkey, DBT *outval, TOKUTXN txn) {
TOKULOGGER logger = toku_txn_logger(txn);
brt_search_t search; brt_search_init(&search, brt_cursor_compare_prev, BRT_SEARCH_RIGHT, key, val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_prev(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
if (0!=(cursor->brt->flags & TOKU_DB_DUP) &&
brt_cursor_prev_shortcut(cursor, outkey, outval)==0)
return 0;
brt_search_t search; brt_search_init(&search, brt_cursor_compare_prev, BRT_SEARCH_RIGHT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_compare_prev_nodup(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context; y = y;
return compare_k_x(brt, search->k, x) > 0; /* return max x: k > x */
}
static int brt_cursor_prev_nodup(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
if (0==(cursor->brt->flags & TOKU_DB_DUP) &&
brt_cursor_prev_shortcut(cursor, outkey, outval)==0)
return 0;
brt_search_t search; brt_search_init(&search, brt_cursor_compare_prev_nodup, BRT_SEARCH_RIGHT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
#ifdef DB_PREV_DUP
static int brt_cursor_compare_prev_dup(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
int keycmp = compare_k_x(brt, search->k, x);
if (keycmp > 0)
return 1;
else
return keycmp == 0 && y && compare_v_y(brt, search->v, y) > 0; /* return max xy: k >= x && v > y */
}
static int brt_cursor_prev_dup(BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_prev_dup, BRT_SEARCH_RIGHT, &cursor->key, &cursor->val, cursor->brt);
return brt_cursor_search_eq_k_x(cursor, &search, outkey, outval, logger);
}
#endif
static int brt_cursor_compare_set_range(brt_search_t *search, DBT *x, DBT *y) {
BRT brt = search->context;
return compare_kv_xy(brt, search->k, search->v, x, y) <= 0; /* return kv <= xy */
}
static int brt_cursor_set(BRT_CURSOR cursor, DBT *key, DBT *val, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_set_range, BRT_SEARCH_LEFT, key, val, cursor->brt);
return brt_cursor_search_eq_kv_xy(cursor, &search, outkey, outval, logger);
}
static int brt_cursor_set_range(BRT_CURSOR cursor, DBT *key, DBT *outkey, DBT *outval, TOKULOGGER logger) {
brt_search_t search; brt_search_init(&search, brt_cursor_compare_set_range, BRT_SEARCH_LEFT, key, 0, cursor->brt);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
int toku_brt_cursor_get (BRT_CURSOR cursor, DBT *key, DBT *val, int get_flags, TOKUTXN txn) {
int r;
int op = get_flags & DB_OPFLAGS_MASK;
TOKULOGGER logger = toku_txn_logger(txn);
if (get_flags & ~DB_OPFLAGS_MASK)
return EINVAL;
switch (op) {
case DB_CURRENT:
case DB_CURRENT_BINDING:
r = brt_cursor_current(cursor, op, key, val, logger);
break;
case DB_FIRST:
r = brt_cursor_first(cursor, key, val, logger);
break;
case DB_LAST:
r = brt_cursor_last(cursor, key, val, logger);
break;
case DB_NEXT:
if (brt_cursor_not_set(cursor))
r = brt_cursor_first(cursor, key, val, logger);
else
r = brt_cursor_next(cursor, key, val, logger);
break;
case DB_NEXT_DUP:
if (brt_cursor_not_set(cursor))
r = EINVAL;
else
r = brt_cursor_next_dup(cursor, key, val, logger);
break;
case DB_NEXT_NODUP:
if (brt_cursor_not_set(cursor))
r = brt_cursor_first(cursor, key, val, logger);
else
r = brt_cursor_next_nodup(cursor, key, val, logger);
break;
case DB_PREV:
if (brt_cursor_not_set(cursor))
r = brt_cursor_last(cursor, key, val, logger);
else
r = brt_cursor_prev(cursor, key, val, logger);
break;
#ifdef DB_PREV_DUP
case DB_PREV_DUP:
if (brt_cursor_not_set(cursor))
r = EINVAL;
else
r = brt_cursor_prev_dup(cursor, key, val, logger);
break;
#endif
case DB_PREV_NODUP:
if (brt_cursor_not_set(cursor))
r = brt_cursor_last(cursor, key, val, logger);
else
r = brt_cursor_prev_nodup(cursor, key, val, logger);
break;
case DB_SET:
r = brt_cursor_set(cursor, key, 0, 0, val, logger);
break;
case DB_SET_RANGE:
r = brt_cursor_set_range(cursor, key, key, val, logger);
break;
case DB_GET_BOTH:
r = brt_cursor_set(cursor, key, val, 0, 0, logger);
break;
case DB_GET_BOTH_RANGE:
r = brt_cursor_get_both_range(cursor, key, val, 0, val, logger);
break;
default:
r = EINVAL;
break;
}
return r;
}
static int brt_cursor_compare_heavi(brt_search_t *search, DBT *x, DBT *y) {
HEAVI_WRAPPER wrapper = search->context;
int r = wrapper->h(x, y, wrapper->extra_h);
// wrapper->r_h must have the same signus as the final chosen element.
// it is initialized to -1 or 1. 0's are closer to the min (max) that we
// want so once we hit 0 we keep it.
if (r==0) wrapper->r_h = 0;
return (search->direction&BRT_SEARCH_LEFT) ? r>=0 : r<=0;
}
//We pass in toku_dbt_fake to the search functions, since it will not pass the
//key(or val) to the heaviside function if key(or val) is NULL.
//It is not used for anything else,
//the actual 'extra' information for the heaviside function is inside the
//wrapper.
static const DBT __toku_dbt_fake;
static const DBT* const toku_dbt_fake = &__toku_dbt_fake;
int toku_brt_cursor_get_heavi (BRT_CURSOR cursor, DBT *outkey, DBT *outval, TOKUTXN txn, int direction, HEAVI_WRAPPER wrapper) {
TOKULOGGER logger = toku_txn_logger(txn);
brt_search_t search; brt_search_init(&search, brt_cursor_compare_heavi,
direction < 0 ? BRT_SEARCH_RIGHT : BRT_SEARCH_LEFT,
(DBT*)toku_dbt_fake,
cursor->brt->flags & TOKU_DB_DUPSORT ? (DBT*)toku_dbt_fake : NULL,
wrapper);
return brt_cursor_search(cursor, &search, outkey, outval, logger);
}
static void toku_brt_keyrange_internal (BRT brt, CACHEKEY nodename, u_int32_t fullhash, DBT *key, u_int64_t *less, u_int64_t *equal, u_int64_t *greater) {
BRTNODE node;
{
void *node_v;
//assert(fullhash == toku_cachetable_hash(brt->cf, nodename));
int rr = toku_cachetable_get_and_pin(brt->cf, nodename, fullhash,
&node_v, NULL, toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h);
assert(rr == 0);
node = node_v;
assert(node->fullhash==fullhash);
}
if (node->height>0) {
int n_keys = node->u.n.n_children-1;
int compares[n_keys];
int i;
for (i=0; i<n_keys; i++) {
struct kv_pair *pivot = node->u.n.childkeys[i];
DBT dbt;
compares[i] = brt->compare_fun(brt->db, toku_fill_dbt(&dbt, kv_pair_key(pivot), kv_pair_keylen(pivot)), key);
}
for (i=0; i<node->u.n.n_children; i++) {
int prevcomp = (i==0) ? -1 : compares[i-1];
int nextcomp = (i+1 >= n_keys) ? 1 : compares[i];
int subest = BNC_SUBTREE_LEAFENTRY_ESTIMATE(node, i);
if (nextcomp < 0) {
// We're definitely looking too far to the left
*less += subest;
} else if (prevcomp > 0) {
// We're definitely looking too far to the right
*greater += subest;
} else if (prevcomp == 0 && nextcomp == 0) {
// We're looking at a subtree that contains all zeros
*equal += subest;
} else {
// nextcomp>=0 and prevcomp<=0, so something in the subtree could match
// but they are not both zero, so it's not the whole subtree, so we need to recurse
toku_brt_keyrange_internal(brt, BNC_BLOCKNUM(node, i), compute_child_fullhash(brt->cf, node, i), key, less, equal, greater);
}
}
} else {
BRT_CMD_S cmd = { BRT_INSERT, 0, .u.id={key,0}};
struct cmd_leafval_bessel_extra be = {brt, &cmd, 0};
u_int32_t idx;
int r = toku_omt_find_zero(node->u.l.buffer, toku_cmd_leafval_bessel, &be, 0, &idx, NULL);
*less += idx;
if (r==0 && (brt->flags & TOKU_DB_DUP)) {
// There is something, and so we now want to find the rightmost extent.
u_int32_t idx2;
r = toku_omt_find(node->u.l.buffer, toku_cmd_leafval_bessel, &be, +1, 0, &idx2, NULL);
if (r==0) {
*greater += toku_omt_size(node->u.l.buffer)-idx2;
*equal += idx2-idx;
} else {
*equal += toku_omt_size(node->u.l.buffer)-idx;
}
//printf("%s:%d (%llu, %llu, %llu)\n", __FILE__, __LINE__, (unsigned long long)*less, (unsigned long long)*equal, (unsigned long long)*greater);
} else {
*greater += toku_omt_size(node->u.l.buffer)-idx;
if (r==0) {
(*greater)--;
(*equal)++;
}
}
}
{
int rr = toku_unpin_brtnode(brt, node);
assert(rr == 0);
}
}
int toku_brt_keyrange (BRT brt, DBT *key, u_int64_t *less, u_int64_t *equal, u_int64_t *greater) {
assert(brt->h);
u_int32_t fullhash;
CACHEKEY *rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
*less = *equal = *greater = 0;
toku_brt_keyrange_internal (brt, *rootp, fullhash, key, less, equal, greater);
return 0;
}
int toku_brt_cursor_delete(BRT_CURSOR cursor, int flags, TOKUTXN txn) {
if ((flags & ~DB_DELETE_ANY) != 0)
return EINVAL;
if (brt_cursor_not_set(cursor))
return EINVAL;
int r = 0;
if (!(flags & DB_DELETE_ANY))
r = brt_cursor_current(cursor, DB_CURRENT, 0, 0, toku_txn_logger(txn));
if (r == 0) {
if (cursor->current_in_omt) load_dbts_from_omt(cursor, &cursor->key, &cursor->val);
r = toku_brt_delete_both(cursor->brt, &cursor->key, &cursor->val, txn);
}
return r;
}
int toku_brt_height_of_root(BRT brt, int *height) {
// for an open brt, return the current height.
int r;
assert(brt->h);
u_int32_t fullhash;
CACHEKEY *rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
void *node_v;
//assert(fullhash == toku_cachetable_hash(brt->cf, *rootp));
if ((r=toku_cachetable_get_and_pin(brt->cf, *rootp, fullhash, &node_v, NULL,
toku_brtnode_flush_callback, toku_brtnode_fetch_callback, brt->h))) {
return r;
}
BRTNODE node = node_v;
*height = node->height;
r = toku_unpin_brtnode(brt, node); assert(r==0);
return 0;
}
int toku_brt_get_cursor_count (BRT brt) {
int n = 0;
struct list *list;
for (list = brt->cursors.next; list != &brt->cursors; list = list->next)
n += 1;
return n;
}
struct omt_compressor_state {
struct mempool *new_kvspace;
OMT omt;
};
static int move_it (OMTVALUE lev, u_int32_t idx, void *v) {
LEAFENTRY le=lev;
struct omt_compressor_state *oc = v;
u_int32_t size = leafentry_memsize(le);
LEAFENTRY newdata = toku_mempool_malloc(oc->new_kvspace, size, 1);
assert(newdata); // we do this on a fresh mempool, so nothing bad shouldhapepn
memcpy(newdata, le, size);
toku_omt_set_at(oc->omt, newdata, idx);
return 0;
}
// Compress things, and grow the mempool if needed.
static int omt_compress_kvspace (OMT omt, struct mempool *memp, size_t added_size) {
u_int32_t total_size_needed = memp->free_offset-memp->frag_size + added_size;
if (total_size_needed+total_size_needed/4 >= memp->size) {
memp->size = total_size_needed+total_size_needed/4;
}
void *newmem = toku_malloc(memp->size);
if (newmem == 0)
return ENOMEM;
struct mempool new_kvspace;
toku_mempool_init(&new_kvspace, newmem, memp->size);
struct omt_compressor_state oc = { &new_kvspace, omt };
toku_omt_iterate(omt, move_it, &oc);
toku_free(memp->base);
*memp = new_kvspace;
return 0;
}
void *mempool_malloc_from_omt(OMT omt, struct mempool *mp, size_t size) {
void *v = toku_mempool_malloc(mp, size, 1);
if (v==0) {
if (0 == omt_compress_kvspace(omt, mp, size)) {
v = toku_mempool_malloc(mp, size, 1);
assert(v);
}
}
return v;
}